Misplaced Pages

Plasma cosmology: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 21:33, 11 July 2005 editIantresman (talk | contribs)Extended confirmed users21,376 edits Plasma scaling links← Previous edit Latest revision as of 15:04, 5 September 2024 edit undoHeadbomb (talk | contribs)Edit filter managers, Autopatrolled, Extended confirmed users, Page movers, File movers, New page reviewers, Pending changes reviewers, Rollbackers, Template editors455,045 editsm top: clean up, replaced: lanl.arxiv.org → www.arxiv.orgTag: AWB 
Line 1: Line 1:
{{Short description|Non-standard model of the universe; emphasizes the role of ionized gases}}
{| width=85% align=center cellspacing=3 style="border: 1px solid #C0C090; background-color: #F8EABA; margin-bottom: 3px;"
].<ref name=Alfven1990 >{{cite journal
|-
|last1=Alfven | first1=H.O.G.
|align="center"|
|year=1990
'''This is a ] topic''', which may be ].<br>
|title= Cosmology in the plasma universe – an introductory exposition
|}
|journal=IEEE Transactions on Plasma Science
|volume=18
|pages=5–10
|doi=10.1109/27.45495
|bibcode=1990ITPS...18....5A }}</ref>]]


'''Plasma cosmology''' is a ] whose central postulate is that the dynamics of ionized gases and ] play important, if not dominant, roles in the physics of the universe at ] and ] scales.<ref name="Peratt1992">{{cite journal
'''Plasma cosmology''' is a ] ] model which attempts to explain the ] using ] interactions in ] ]s. The theory was largely developed by ] winner ] and subsequently refined by other plasma physicists such as ] and ].
|last1 = Peratt
|first1 = Anthony
|title = Plasma Cosmology
|journal = Sky & Telescope
|volume = 83
|issue = 2
|pages = 136–141
|date = February 1992
|url = http://plasmauniverse.info/downloads/CosmologyPeratt.pdf
|access-date = 26 May 2012
}} recount: It was described as this in the February 1992 issue of ''Sky & Telescope'' ("Plasma Cosmology"), and by Anthony Peratt in the 1980s, who describes it as a "nonstandard picture". The ] big bang picture is typically described as the "concordance model", "standard ]" or "standard ]" of cosmology {{dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes }}, and .</ref><ref name=Alfven1990 /> In contrast, the current ] and ] of ] and ] explain the formation, development, and evolution of large-scale structures as dominated by ] (including its formulation in ]'s ]).


The original form of the theory, '''Alfvén–Klein cosmology''', was developed by ] and ] in the 1960s and 1970s,<ref name="Parker1993">{{cite book
Many astrophysical processes are widely agreed to rely on plasmas, including ] and ]. While the ] model of cosmology suggests that the early universe was composed entirely of plasma from reheating until recombination, plasma cosmology proposes that many cosmological processes that are explained through ] physics in Big Bang cosmology are in fact electromagnetic in nature. A tenative list of such properties include ], ]s (electric currents), double layers (charge separation), filamentation, plasma ], and current circuits. Plasma cosmology as a cosmological model is outside the mainstream of academic cosmology.
|last=Parker
|first=Barry
|date=1993
|title=The Vindication of the Big Bang
|chapter=Plasma Cosmology
|chapter-url=https://link.springer.com/chapter/10.1007/978-1-4899-5980-5_15
|publisher=Springer
|location=Boston, MA
|isbn=978-1-4899-5980-5
|doi=10.1007/978-1-4899-5980-5_15
|page=325
}}</ref> and holds that matter and ] exist in equal quantities at very large scales, that the universe is eternal rather than bounded in time by the ], and that the ] is caused by annihilation between matter and antimatter rather than a mechanism like ].<ref name=Alfven1990 />


Cosmologists and astrophysicists who have evaluated plasma cosmology reject it because it does not match the observations of astrophysical phenomena as well as the currently accepted ].{{sfn|Parker|1993|pp=335–336}} Very few papers supporting plasma cosmology have appeared in the literature since the mid-1990s.
A separate development of plasma cosmology introduces ], a hypothetical plasma containing a mixture of both matter and antimatter. Developed by ] in 1950, and later by Hannes Alfvén in his 1966 book ''Worlds-Antiworlds'', this extended aspect of plasma cosmology has fallen into disfavour, and has not been taken up by Anthony Peratt and Eric Lerner.


The term '''plasma universe'''<!--boldface per WP:R#PLA--> is sometimes used as a synonym for plasma cosmology,<ref name="Peratt1992"/> as an alternative description of the plasma in the universe.<ref name=Alfven1990 /> Plasma cosmology is distinct from ] ideas collectively called the ''Electric Universe,'' though proponents of each are known to be sympathetic to each other''.<ref>{{Cite web |title=Hogan and Velikovsky |url=https://www.jerrypournelle.com/science/velikovsky.htm |access-date=2023-08-24 |website=www.jerrypournelle.com}}</ref>''<ref name="sa-eu">{{Cite news |last=Shermer |first=Michael |author-link=Michael Shermer |date=2015-10-01 |title=The Difference between Science and Pseudoscience |work=] |url=https://www.scientificamerican.com/article/the-difference-between-science-and-pseudoscience/ |access-date=2022-03-28}}</ref> These pseudoscientific ideas vary widely<ref>Bridgman, William T., Stuart Robbins, and C. Alex Young. "Crank Astronomy As A Teaching Tool." ''American Astronomical Society Meeting Abstracts# 215''. Vol. 215. 2010.</ref> but generally claim that electric currents flow into stars and power them like light bulbs, contradicting well-established ] and observations showing that stars are powered by ].<ref>
==Overview==
{{cite web
| url = https://www.vice.com/en/article/nz7neg/electric-universe-theory-thunderbolts-project-wallace-thornhill
| title = The People Who Believe Electricity Rules the Universe
| last = Scoles
| first = Sarah
| date = 18 February 2016
| website = Motherboard
| publisher = Vice
| access-date = 1 November 2022
| quote = }}</ref>


==Alfvén–Klein cosmology<!--'Alfvén–Klein cosmology', 'Alfvén–Klein model', 'Klein–Alfvén cosmology', and 'Ambiplasma' redirect here-->==
Despite the general importance of plasma in astrophysics, and the ]'s use of ]s for describing local phenomena, the standard model asserts that these forces are not important at large cosmological distances. Unlike gravitation, which is attractive only, electromagnetism is both attractive and repulsive. Over large distances electromagnetic forces are believed to cancel each other because structures in the universe are generally neutral.
] suggested that ] laboratory results can be extrapolated up to the scale of the universe. A scaling jump by a factor 10<sup>9</sup> was required to extrapolate to the ], a second jump to extrapolate to galactic conditions, and a third jump to extrapolate to the ].<ref name=scaling>{{cite journal
|last1=Alfvén
|first1=Hannes
|date=1983
|title=On hierarchical cosmology
|journal=Astrophysics and Space Science
|volume=89
|issue=2
|pages=313–324
|bibcode=1983Ap&SS..89..313A|doi=10.1007/bf00655984 |s2cid=122396373
}}</ref>]]


In the 1960s, the theory behind plasma cosmology was introduced by Alfvén,<ref name="Alfven1966" >{{cite book
This is not always the case, however. It can be shown that the electromagnetic forces are several orders of magnitude greater than the gravitational forces in certain plasmas and that the electromagnetic forces can have a longer range than gravitational forces. On the largest scales, evidence that plasmas exhibit external forces on physical objects such as galaxies is the same as that which has led standard model researchers to derive the existence of both ] and ].
|first=Alfvén |last=H.
|title=Worlds-antiworlds: antimatter in cosmology
|publisher=Freeman
|date=1966 }}</ref> a plasma expert who won the 1970 ] for his work on ].<ref name="Kragh1996" /> He proposed the use of ] to extrapolate the results of laboratory experiments and ] observations and scale them over many ] up to the largest observable objects in the universe (see box<ref name=scaling/>).<ref name="Alfvenpu1987">{{cite journal
|last1=Alfven | first1=H.O G
|title=Plasma universe
|journal=Physica Scripta
|volume=T18
|pages=20–28
|url=http://plasmauniverse.info/downloads/AlfvenPlasmaUniverse.pdf
|date= 1987
|doi=10.1088/0031-8949/1987/t18/002|bibcode = 1987PhST...18...20A | s2cid=250828260
}}</ref> In 1971, ], a Swedish theoretical physicist, extended the earlier proposals and developed the Alfvén–Klein model of the ],<ref>{{cite journal
|last1=Klein|first1=O.
|title=Arguments concerning relativity and cosmology
|journal=Science
|volume=171
|issue=3969
|pages=339–45
|doi=10.1126/science.171.3969.339
|bibcode=1971Sci...171..339K
|pmid=17808634
|date=1971|s2cid=22308581
}}</ref> or "metagalaxy", an earlier term used to refer to the empirically accessible part of the universe, rather than the entire universe including parts beyond our ].<ref name="Alfven1963">{{cite book
|last1=Alfvén|first1=H.
|last2=Falthammar|first2=C.-G.
|title=Cosmic electrodynamics
|publisher=Clarendon Press
|location=Oxford
|date=1963}}</ref><ref name="Kragh1996">{{cite book
|last=Kragh
|first=H.S.
|title=Cosmology and Controversy: The Historical Development of Two Theories of the Universe
|volume=23
|pages=482–483
|isbn=978-0-691-00546-1
|publisher=Princeton University Press
|url=https://books.google.com/books?id=f6p0AFgzeMsC&pg=PA384
|date=1996}}</ref>


In this model, the universe is made up of equal amounts of matter and ] with the boundaries between the regions of matter and antimatter being delineated by cosmic ]s formed by ], thin regions comprising two parallel layers with opposite electrical charge. Interaction between these boundary regions would generate radiation, and this would form the plasma. Alfvén introduced the term '''ambiplasma'''<!--boldface per WP:R#PLA--> for a plasma made up of matter and antimatter and the double layers are thus formed of ambiplasma. According to Alfvén, such an ambiplasma would be relatively long-lived as the component particles and antiparticles would be too hot and too low-density to annihilate each other rapidly. The double layers will act to repel clouds of opposite type, but combine clouds of the same type, creating ever-larger regions of matter and antimatter. The idea of ambiplasma was developed further into the forms of heavy ambiplasma (protons-antiprotons) and light ambiplasma (electrons-positrons).<ref name="Alfven1966" />
In the mid-], interest in plasma cosmologies was piqued by a limited few in the standard (]) cosmological community, mostly as a "fallback" theory, in case ] failed to discover variations in the CMB (]) or in case ]s turned out to be unexplainable by standard cosmologies. This interest rapidly waned as more precise measurements, such as those from ], appeared to support standard cosmologies in the late 1990's.


Alfvén–Klein cosmology was proposed in part to explain the observed ] in the universe, starting from an ] of exact ] between matter and antimatter. According to Alfvén and Klein, ambiplasma would naturally form pockets of matter and pockets of antimatter that would expand outwards as annihilation between matter and antimatter occurred in the double layer at the boundaries. They concluded that we must just happen to live in one of the pockets that was mostly ]s rather than antibaryons, explaining the baryon asymmetry. The pockets, or bubbles, of matter or antimatter would expand because of annihilations at the boundaries, which Alfvén considered as a possible explanation for the observed ], which would be merely a local phase of a much larger history. Alfvén postulated that the universe has always existed <ref name="Alfven1988">{{cite web
Both ] and ] have proposed how the CMB can support plasma cosmology. In particular, Lerner has shown how the COBE results themselves can support plasma cosmology by means of an ambient radiation field due to synchrotron radiation. This model fails to predict detail modelling from the CMB ] peaks in the power spectrum. In particular, it fails to predict the 1 degree mode on the sky or the strength of this feature. Plasma cosmology apologists point out that researchers at the University of Durham have analyzed results from the ] probe and discovered cluster correlations in certain modes of the CMB's anisotropies. A specific kind of tiny measured anisotropies in the CMB are seen to correspond to the location of local galactic clusters. The Durham researchers attribute it to the standard model's ] and since this effect isn't universal (the majority of inhomogeneities do not correspond to clusters), it is unclear how or if Lerner's cosmology could predict this feature.
|last1=Alfvén |first1=H.
|title=Has the Universe an Origin? (Trita-EPP)
|volume=7
|page=6
|url=http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/20/047/20047579.pdf
|date=1988}}</ref><ref name=Peratt>{{cite journal
|last1=Peratt|first1=A.L.
|title=Introduction to Plasma Astrophysics and Cosmology
|journal=Astrophysics and Space Science
|volume=227
|issue=1–2
|pages=3–11
|bibcode=1995Ap&SS.227....3P
|doi=10.1007/bf00678062
|url = http://www.plasmauniverse.info/downloads/PrincetonEditorial.1993.pdf
|date=1995|isbn=978-94-010-4181-2
|s2cid=118452749
}}</ref> due to ] arguments and the rejection of '']'' models, such as the ], as a stealth form of ].<ref name="Alfven1992">{{cite journal
|last1=Alfvén |first1=H.
|title=Cosmology: Myth or Science?
|journal=IEEE Transactions on Plasma Science
|volume=20
|issue=6
|pages=590–600
|bibcode=1992ITPS...20..590A
|doi=10.1109/27.199498
|year=1992
}}</ref><ref name="Alfven1984">{{cite journal
|last1=Alfvén|first1=H.
|title=Cosmology - Myth or science?
|journal=Journal of Astrophysics and Astronomy
|volume=5
|issue=1
|pages=79–98
|issn=0250-6335
|bibcode = 1984JApA....5...79A
|doi=10.1007/BF02714974
|date=1984|s2cid=122751100
}}</ref> The exploding double layer was also suggested by Alfvén as a possible mechanism for the generation of ],
<ref name="Alfven1981">{{cite book
|first=Alfvén |last=H.
|title=Cosmic plasma
|pages=IV.10.3.2, 109
|publisher=Taylor & Francis
|date=1981}} recount: "Double layers may also produce extremely high energies. This is known to take place in solar flares, where they generate solar cosmic rays up to 10<sup>9</sup> to 10<sup>10</sup> eV."</ref> ] and ]s.<ref name="Alfven1986">{{cite journal
|last1=Alfvén |first1=H.
|title=Double layers and circuits in astrophysics
|journal=IEEE Transactions on Plasma Science
|volume=PS-14
|issue=6
|pages=779–793
|date=1986
|bibcode=1986ITPS...14..779A|doi = 10.1109/TPS.1986.4316626 |s2cid=11866813
|url=https://cds.cern.ch/record/169085
|hdl=2060/19870005703
|hdl-access=free
}}</ref>


In 1993, theoretical cosmologist ] criticized Alfvén–Klein cosmology, writing that "there is no way that the results can be consistent with the isotropy of the ] and ]s".<ref name="Peebles1993">{{cite book
==Alfvén's model==
|last=Pebbles|first=P.J.E.
|title=Principles of Physical Cosmology
|publisher=Princeton University Press
|pages=207
|isbn=978-0-691-07428-3
|date=1993}}</ref> In his book he also showed that Alfvén's models do not predict ], ], or the existence of the ]. A further difficulty with the ambiplasma model is that matter–antimatter ] results in the production of high energy ]s, which are not observed in the amounts predicted. While it is possible that the local "matter-dominated" cell is simply larger than the ], this proposition does not lend itself to observational tests.


== Plasma cosmology and the study of galaxies ==
Nobel laureate ]'s model of plasma cosmology can be divided into two distinct areas. (1) '''Cosmic Plasma''', his ] description of the Universe based on the results from laboratory experiments on plasmas (2) '''] theory''', based on a hypothetical matter/antimatter plasma.
Hannes Alfvén from the 1960s to 1980s argued that plasma played an important if not dominant role in the universe. He argued that ] are far more important than ] when acting on interplanetary and interstellar ]s.<ref>H. Alfvén and C.-G. Falthammar, ''Cosmic electrodynamics''(2nd edition, Clarendon press, Oxford, 1963). "The basic reason why electromagnetic phenomena are so important in cosmical physics is that there exist celestial magnetic fields which affect the motion of charged particles in space ... The strength of the interplanetary magnetic field is of the order of 10<sup>−4</sup> gauss (10 ]s), which gives the ≈ 10<sup>7</sup>. This illustrates the enormous importance of interplanetary and interstellar magnetic fields, compared with gravitation, as long as the matter is ionized." (p.2-3)</ref> He further hypothesized that they might promote the contraction of ]s and may even constitute the main mechanism for contraction, initiating ].<ref name="Alfven1978" >{{cite journal | last1 = Alfvén | first1 = H. | last2 = Carlqvist | first2 = P. | year = 1978 | title = Interstellar clouds and the formation of stars | journal = Astrophysics and Space Science | volume = 55 | issue = 2| pages = 487–509 | bibcode=1978Ap&SS..55..487A|doi = 10.1007/BF00642272 | s2cid = 122687137 | url = https://cds.cern.ch/record/118596 }}</ref> The current standard view is that magnetic fields can hinder collapse, that large-scale ]s have not been observed, and that the length scale for charge neutrality is predicted to be far smaller than the relevant cosmological scales.<ref name="Siegel2006" >{{Cite journal |author= Siegel, E. R. |author2= Fry, J. N. |title= Can Electric Charges and Currents Survive in an Inhomogeneous Universe? |date= Sep 2006 |arxiv= astro-ph/0609031 |bibcode= 2006astro.ph..9031S }}</ref>


In the 1980s and 1990s, Alfvén and ], a plasma physicist at ], outlined a program they called the "plasma universe".<ref>{{cite journal | last1 = Alfvén | first1 = H. | year = 1986 | title = Model of the Plasma Universe | url = http://www.plasmauniverse.info/downloads/ModelOfTPU_Alfv%C3%A9n.pdf | journal = IEEE Transactions on Plasma Science | volume = PS-14 | issue = 6| pages = 629–638 | doi = 10.1109/tps.1986.4316614 | bibcode = 1986ITPS...14..629A | s2cid = 31617468 }}{{Dead link|date=August 2018 |bot=InternetArchiveBot |fix-attempted=yes }}</ref><ref name="WI1">A. L. Peratt, ''Plasma Cosmology: Part I, Interpretations of a Visible Universe'', World & I, vol. 8, pp. 294–301, August 1989. </ref><ref name="WI2">A. L. Peratt, ''Plasma Cosmology:Part II, The Universe is a Sea of Electrically Charged Particles'', World & I, vol. 9, pp. 306–317, September 1989 .</ref> In plasma universe proposals, various plasma physics phenomena were associated with astrophysical observations and were used to explain contemporary mysteries and problems outstanding in astrophysics in the 1980s and 1990s. In various venues, Peratt profiled what he characterized as an alternative viewpoint to the mainstream models applied in astrophysics and cosmology.<ref name=WI1 /><ref name=WI2 /><ref name=ST>{{Cite web|url=http://www.plasmauniverse.info/downloads/CosmologyPeratt.pdf|title=A.L. Peratt, ''Plasma Cosmology,'' Sky & Tel. Feb. 1992}}</ref><ref name=Peratt />
===Alfvén's Cosmic Plasma===


For example, Peratt proposed that the mainstream approach to galactic dynamics which relied on gravitational modeling of stars and gas in galaxies with the addition of dark matter was overlooking a possibly major contribution from plasma physics. He mentions laboratory experiments of ] in the 1950s that created plasma discharges that looked like galaxies.<ref name="Peratt1986b">{{cite journal |author=A. Peratt |title=Evolution of the plasma universe. I – Double radio galaxies, quasars, and extragalactic jets |journal=IEEE Transactions on Plasma Science |issn=0093-3813 |volume=PS-14 |issue=6 |pages=639–660 |date=1986 |url=http://public.lanl.gov/alp/plasma/downloadsCosmo/Peratt86TPS-I.pdf |bibcode = 1986ITPS...14..639P |doi = 10.1109/TPS.1986.4316615 |s2cid=30767626 }}</ref><ref>{{cite journal | last1 = Bostick | first1 = W. H. | year = 1986 | title = What laboratory-produced plasma structures can contribute to the understanding of cosmic structures both large and small | journal = IEEE Transactions on Plasma Science | volume = PS-14 | issue = 6| pages = 703–717 | bibcode=1986ITPS...14..703B|doi = 10.1109/TPS.1986.4316621 | s2cid = 25575722 }}</ref> Perrat conducted computer simulations of colliding plasma clouds that he reported also mimicked the shape of galaxies.<ref>{{cite journal |author1=AL Peratt |author2=J Green |author3=D Nielson |title=Evolution of Colliding Plasmas |journal=Physical Review Letters |volume=44 |issue=26 |date=20 June 1980 |pages=1767–1770|bibcode = 1980PhRvL..44.1767P |doi = 10.1103/PhysRevLett.44.1767 }}</ref> Peratt proposed that galaxies formed due to plasma filaments joining in a ], the filaments starting 300,000 light years apart and carrying ]s of 10<sup>18</sup> amperes.<ref name="Lerner" /><ref name="Peratt1983">{{cite journal |author1=AL Peratt |author2=J Green |title=On the Evolution of Interacting, Magnetized, Galactic Plasmas |journal=Astrophysics and Space Science |volume=91 |issue=1 |date=1983 |pages=19–33|bibcode = 1983Ap&SS..91...19P |doi = 10.1007/BF00650210 |s2cid=121524786 }}</ref> Peratt also reported simulations he did showing emerging jets of material from the central buffer region that he compared to ] and ] occurring without ]s. Peratt proposed a sequence for ]: "the transition of double ] to ] to radioquiet QSO's to peculiar and ], finally ending in ]".<ref name="Peratt1986">{{cite journal |author=A. Peratt
Building on the work of ], Alfvén's research on plasma led him to develop the field of ] (MHD), a field of work that mathematically models plasma as fluid, and for which he won the Nobel Prize for Physics in 1970. MHD is readily accepted and used by astrophysicists and astronomers to describe many celestial phenomena.
|title=Evolution of the Plasma Universe: II. The Formation of Systems of Galaxies |journal=IEEE Transactions on Plasma Science |issn=0093-3813 |volume=PS-14 |issue=6 |pages=763–778 |date=1986 |url=http://public.lanl.gov/alp/plasma/downloadsCosmo/Peratt86TPS-II.pdf|bibcode = 1986ITPS...14..763P |doi = 10.1109/TPS.1986.4316625 |s2cid=25091690 }}</ref> He also reported that flat ] were simulated without ].<ref name= "Lerner">{{cite book
|author=E. J. Lerner
|title=The Big Bang Never Happened
|publisher=Random House
|location=New York and Toronto
|date=1991
|isbn=978-0-8129-1853-3
|url=https://archive.org/details/bigbangneverhapp00lern
}}</ref> At the same time ], an independent plasma researcher and supporter of Peratt's ideas, proposed a plasma model for quasars based on a ].<ref>{{cite journal |author=E.J. Lerner |title=Magnetic Self‑Compression in Laboratory Plasma, Quasars and Radio Galaxies |journal=Laser and Particle Beams |volume=4 part 2 |issue=2 |date=1986 |pages=193‑222 |bibcode = 1986LPB.....4..193L |doi = 10.1017/S0263034600001750 |doi-access=free }}</ref>


==Comparison with mainstream astrophysics==
But Alfvén felt that many other characteristics of ]s played a more significant role in cosmic plasmas. These include:
Standard astronomical modeling and theories attempt to incorporate all known ] into descriptions and explanations of observed phenomena, with ] playing a dominant role on the largest scales as well as in ] and ]. To that end, both ] orbits and ]'s ] are generally used as the underlying frameworks for modeling astrophysical systems and ], while ] and ] additionally appeal to ] processes including plasma physics and ] to explain relatively small scale energetic processes observed in the ]s and ]s. Due to overall ], ] does not provide for very long-range interactions in astrophysics even while much of the matter in the universe is ].<ref>{{Cite book|url=https://books.google.com/books?id=QJ08AAAAIAAJ|title=Accretion Power in Astrophysics|last1=Frank|first1=Juhan|last2=Frank|first2=Carlos|last3=Frank|first3=J. R.|last4=King|first4=A. R.|last5=Raine|first5=Derek J.|date=1985-04-18|publisher=CUP Archive|isbn=9780521245302|language=en|page=25}}</ref> (See ] for more.)


Proponents of plasma cosmology claim electrodynamics is as important as gravity in explaining the structure of the universe, and speculate that it provides an alternative explanation for the ]<ref name=Peratt1986 /> and the initial collapse of interstellar clouds.<ref name=Alfven1978 /> In particular plasma cosmology is claimed to provide an alternative explanation for the flat ] of spiral galaxies and to do away with the need for ] in galaxies and with the need for ]s in galaxy centres to power ]s and ].<ref name="Peratt1983"/><ref name=Peratt1986 /> However, theoretical analysis shows that "many scenarios for the generation of seed magnetic fields, which rely on the survival and sustainability of currents at early times ",<ref name=Siegel2006 /> i.e. Birkeland currents of the magnitude needed (10<sup>18</sup> amps over scales of megaparsecs) for galaxy formation do not exist.<ref name="Colafrancesco2006" >{{cite journal | last1 = Colafrancesco | first1 = S. | last2 = Giordano | first2 = F. | year = 2006 | title = The impact of magnetic field on the cluster M – T relation | journal = Astronomy and Astrophysics | volume = 454 | issue = 3| pages = L131–134 | bibcode=2006A&A...454L.131C | doi=10.1051/0004-6361:20065404|arxiv = astro-ph/0701852 | s2cid = 1477289 }} recount: "Numerical simulations have shown that the wide-scale magnetic fields in massive clusters produce variations of the cluster mass at the level of ~ 5 − 10% of their unmagnetized value ... Such variations are not expected to produce strong variations in the relative relation for massive clusters."</ref> Additionally, many of the issues that were mysterious in the 1980s and 1990s, including discrepancies relating to the ] and the nature of ]s, have been solved with more evidence that, in detail, provides a distance and time scale for the universe.
* ]
* ]s (electric currents)
* Plasma double layers, charge separation regions that also accelerate ions to relativistic velocities and produce synchrotron radiation
* Electric circuits
* ] such as the Bennett pinch (]) that produces plasma cables (magnetic ropes)
* the cellular structure of plasma.


Some of the places where plasma cosmology supporters are most at odds with standard explanations include the need for their models to have light element production without ], which, in the context of Alfvén–Klein cosmology, has been shown to produce excessive ]s and ]s beyond that observed.<ref>{{cite journal | year = 1985 | title = Big Bang Photosynthesis and Pregalactic Nucleosynthesis of Light Elements | journal = Astrophysical Journal | volume = 293 | pages = L53–L57 | bibcode=1985ApJ...293L..53A|doi = 10.1086/184490 | last1 = Audouze | first1 = J. | last2 = Lindley | first2 = D. | last3 = Silk | first3 = J. }}</ref><ref>{{cite journal | last1 = Epstein | display-authors = etal | year = 1976 | title = The origin of deuterium | doi = 10.1038/263198a0 | journal = Nature | volume = 263 | issue = 5574 | pages = 198–202|bibcode = 1976Natur.263..198E | s2cid = 4213710 }} point out that if proton fluxes with energies greater than 500 MeV were intense enough to produce the observed levels of deuterium, they would also produce about 1000 times more gamma rays than are observed.</ref> Plasma cosmology proponents have made further proposals to explain light element abundances, but the attendant issues have not been fully addressed.<ref>Ref. 10 in "Galactic Model of Element Formation" (Lerner, ''IEEE Transactions on Plasma Science'' Vol. 17, No. 2, April 1989 {{Webarchive|url=https://web.archive.org/web/20061229074857/http://www.health-freedom.info/pdf/Galactic%20Model%20of%20Element%20Formation.pdf|date=2006-12-29}}) is J.Audouze and J.Silk, "Pregalactic Synthesis of Deuterium" in ''Proc. ESO Workshop on "Primordial Helium"'', 1983, pp. 71–75 Lerner includes a paragraph on "Gamma Rays from D Production" in which he claims that the expected gamma ray level is consistent with the observations. He cites neither Audouze nor Epstein in this context, and does not explain why his result contradicts theirs.</ref> In 1995 Eric Lerner published his alternative explanation for the ] (CMBR).<ref>{{cite journal | last1 = Lerner | first1 = Eric | date = 1995 | title = Intergalactic Radio Absorption and the COBE Data | url = http://www.photonmatrix.com/pdf/Intergalactic%20Radio%20Absorption%20And%20The%20COBE%20Data.pdf | journal = Astrophysics and Space Science | volume = 227 | issue = 1–2| pages = 61–81 | doi = 10.1007/bf00678067 | bibcode = 1995Ap&SS.227...61L | s2cid = 121500864 | access-date = 2012-05-30 | archive-url = https://web.archive.org/web/20110715083205/http://www.photonmatrix.com/pdf/Intergalactic%20Radio%20Absorption%20And%20The%20COBE%20Data.pdf | archive-date = 2011-07-15 | url-status = dead }}</ref> He argued that his model explained the fidelity of the CMB spectrum to that of a black body and the low level of anisotropies found, even while the level of isotropy at 1:10<sup>5</sup> is not accounted for to that precision by any alternative models. Additionally, the sensitivity and resolution of the measurement of the CMB anisotropies was greatly advanced by ] and the ] and the statistics of the signal were so in line with the predictions of the Big Bang model, that the CMB has been heralded as a major confirmation of the Big Bang model to the detriment of alternatives.<ref>{{cite journal | last1 = Spergel | first1 = D. N. | display-authors = etal | date = 2003 | title = (WMAP collaboration), "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters | journal = Astrophysical Journal Supplement Series | volume = 148 | issue = 1| pages = 175–194 | doi=10.1086/377226|arxiv = astro-ph/0302209 |bibcode = 2003ApJS..148..175S | s2cid = 10794058 }}</ref> The ] in the early universe are fit with high accuracy by the predictions of the Big Bang model, and, to date, there has never been an attempt to explain the detailed spectrum of the anisotropies within the framework of plasma cosmology or any other alternative cosmological model.
[[Image:Cosmic-plasma_circuits.gif|frame|center|Hannes Alfvén considered a cosmic plasma to be part of a circuit, in the same way a laboratory plasma tube is part of a circuit. A battery with an emf Vb transmits a current around a circuit with a resistance Ro and inductance L. The voltage between the electrodes of the plasma depends on the current I, and various plasma parameters such as density, magnetic field, temperatures, etc. A plasma double layer behaves in a similar fashion.<p>
Depending on the total resistance of the circuit, R + Ro (R can be negative), the plasma may be in equilibrium, or oscilate at a frequency that depends on the inductance L. So even if the plasma's parameters are known, the '''behaviour of the plasma depends on the outer circuit'''.<p>
Every electric circuit is potentially explosive. If the plasma circuit is disrupted in the plasma double layer, the inductive energy in the whole circuit will be released in the plasma, and is equivalent to ½LI<sup>2</sup>.
]]


==References and notes==
===Alfvén's Ambiplasma Theory===
{{reflist|colwidth=25em}}


==Further reading==
Alfvén proposed the first well-developed plasma cosmology model in ]. In his model, the universe exists as a mixture of ] and ] which he called ]. The cellular regions of matter and antimatter can mutually ], leaving ]s and ]s. This can cause a rapid expansion of the region local to the annihilation, which Alfven considered as a possible explanation for the observed apparent expansion of the universe. The Alfvén model deals with the problem of cancellation explained above by postulating that the regions of matter and anti-matter are larger than the presently observable universe, and are separated by double-layers in the plasma. Alfvén stressed the importance of the cellular and filamentary nature of plasmas at any scale, from the laboratory to the galactic.
* ]:
:* "''Cosmic Plasma''" (Reidel, 1981) {{ISBN|90-277-1151-8}}
:* {{cite journal | last1 = Alfvén | first1 = Hannes | date = 1983 | title = On hierarchical cosmology | journal = Astrophysics and Space Science | volume = 89 | issue = 2| pages = 313–324 | bibcode = 1983Ap&SS..89..313A|doi=10.1007/bf00655984 | s2cid = 122396373 }}
:* , ''Laser and Particle Beams'' ({{ISSN|0263-0346}}), vol. 6, August 1988, pp. 389–398
:* , '']'' ({{ISSN|0093-3813}}), vol. PS-14, December 1986, pp. 629–638 (PDF)
:* , '']'' ({{ISSN|0031-9228}}), vol. 39, issue 9, September 1986, pp. 22 – 27


* ]:
Alfvén's model possesses a number of highly appealing properties. Firstly, it addresses the question of what happened before expansion. Alfvén postulated that the universe has always existed, and that the expansion we might now be seeing is merely a local phase of a much larger history. Secondly, the model does not invoke any exotic physics (other than antimatter, which has been verified on Earth in high-energy colliders), instead modelling the universe using the well-understood electromagnetic forces along with gravity. Indeed, Alfvén based his ideas on experimental work in plasma physics here on earth. He strongly advocated experimental work as a necessary and dominant part of any theory. Even in the field of earth-based plasma physics, he had to overcome the inertia of the purely theoretical approach among his colleagues, whose analysis could not make any accurate predictions.
:* "''Physics of the Plasma Universe''", (Springer, 1992) {{ISBN|0-387-97575-6}}
:* , '']'' ({{ISSN|0037-6604}}), vol. 68, August 1984, pp. 118–122
:* "Are Black Holes Necessary?", ''Sky and Telescope'' ({{ISSN|0037-6604}}), vol. 66, July 1983, pp. 19–22
:* , ''IEEE Transactions on Plasma Science'' ({{ISSN|0093-3813}}), vol. PS-14, December 1986, pp. 639–660 (PDF)
:* , ''IEEE Transactions on Plasma Science'' ({{ISSN|0093-3813}}), vol. PS-14, December 1986, pp. 763–778 (PDF)
:* , ''Laser and Particle Beams'' ({{ISSN|0263-0346}}), vol. 6, August 1988, pp. 471–491 (PDF)
* ] journal '']'': special issues on Space and Cosmic Plasma , , , , , , and
* ] journal ''Laser and Particle Beams'': Particle Beams and Basic Phenomena in the Plasma Universe, a Special Issue in Honor of the 80th Birthday of Hannes Alfvén, vol. 6, issue 3, August 1988
* Various authors: , ''Astrophysics and Space Science'', v. 227 (1995) p.&nbsp;3–11. ''Proceedings of the Second IEEE International Workshop on Plasma Astrophysics and Cosmology'', held from 10 to 12 May 1993 in Princeton, New Jersey


==External links==
==Criticisms of Alfvén's model==
* Wright, E. L. . See also: Lerner, E. J. , Lerner's reply to the above.


{{DEFAULTSORT:Plasma Cosmology}}
Alfvén proposed that the bubble of matter we are in is larger than the observable universe. This brought the question of how one would go about testing the model if the very large structures that it predicts cannot be observed. However, many stuctures can be observed, such as intergalactic Birkeland currents, double-layers, velocity-selection effects at multiple scales, etc.
]

Unfortunately, from a theoretical point of view, there remain a number of problems with Alfvén's model. Alfvén did not formalize his model to the point where it is possible to perform numerical simulations similar to those now routinely performed to model the behavior of early galaxies in the standard cosmology and which are used to predict the ] of the universe. Instead, Alfvén, in his usual style, outlined a very general view of how galaxies are disc-generators. He was quite unconcerned with conforming his model so that it can make the same predictions as the Big Bang.

Although 3-D formation simulations of single galaxies have been performed using a plasma model (see articles by ]) wherein electromagnetic forces are taken into account along with gravitation, there have been no published papers which attempt to calculate correlation functions and therefore allow detailed comparison with observations. However, when one compares the simulation cross-section with radio isophotes of AGN, one sees a remarkable resemblance. This resemblance is not surprising, however, since it is well-understood that the high-energies associated with AGN should be similar to plasmas.

Another problem is, ironically, that plasma cosmologies depend on physics which is, while not completely well-understood, quite well-documented from laboratory experimentation. Because the standard Big Bang model involves physics that is poorly understood, one can adjust Big Bang models to fit observations by invoking wiggle room parameters and exotic physics, such as the existence of as-yet unobserved particles. Due to its empirical foundations (Alfven was a laboratory physicist at heart, developing power-transmission systems and the like), it is much harder to modify Alfvén's model to fit cosmological observations.

From an observational point of view, the ]s emitted by even small amounts of matter/antimatter annihilation should be easily visible using gamma ray telescopes. However, such gamma rays have not been observed. One could rescue this model by proposing, as Alfvén does, that the bubble of matter we are in is larger than the observable universe. This then brings up the question of how one would go about testing the model if the structures that it predicts cannot be observed. In order to test the model, one would have to find some signature of the model in current observations, and this requires that the model be formalized to the point where detailed quantitative predictions can be made. That opens the theoretical problem mentioned in the last paragraph.

===Other work===

It must be remembered that Alfvén's model of the universe is not the only model within the field of plasma cosmology. Alfvén did play a very large role in founding the fields of plasma physics and plasma cosmology, however many physicists have expounded on his model and there are in fact versions today which greatly account for much of the observable phenomena in the universe, including the CMB, the distribution of galaxies, the formation of galaxies, redshift, large-scale energy flow and storage, etc..

Eric Lerner and Anthony Peratt have both played a large role in further developing this cosmology. Lerner has taken a different view on the anti-matter problem, dismissing parts of it and formulating a more approachable physical mechanism to account for quasar->galaxy formation. ... more to come

==Redshifts==

Although there are many local ]ing mechanisms observed in ]oratory ]ation with plasmas, one problem in using a majority of them to explain cosmological redshifts is that it is difficult to account for a change in the energy of a ] going through ] without photon ] (changing the photon's direction of ].) In some non-linear optical phenomena there are forms of scattering in which the direction of propagation of the photons is not changed. Specifically, one promising candidate for astrophysical application is ], found locally in ] devices, as an example. This form of forward scattering causes a redshift and a broadening of spectral lines without changing the direction of propagation of the incident light.

==Future work==

There is much work to be done in this field. Lerner's model of quasar and galaxy formation can be compared with Halton Arp's observations of quasars and AGN. The non-linear redshift phenomena can also be compared with Arp's data and Peratt's data.

Within plasma cosmology, there have been no published papers which make predictions on the ] (although this subject is addressed in Lerner's book,) or which calculate ]s.

==Figures in plasma cosmology==

The following physicists and astronomers helped, either directly or indirectly, to develop this field:

* ] - Along with Birkeland, fathered Plasma Cosmology and was a pioneer in laboratory based plasma physics. Received the only Nobel Prize ever awarded to a plasma physicist.
* ] - Astronomer famous for his work on anomalous redshifts, "'']''".
* ] - First suggested that polar electric currents ]l ]s] are connected to a system of filaments (now called "Birkeland Currents") that flowed along geomagnetic field lines into and away from the polar region. Suggested that space is not a vacuum but is instead filled with plasma. Pioneered the technique of "laboratory astrophysics", which became directly responsible for our present understanding of the aurora.
* ] - Claims that the intergalactic medium is a strong absorber of the ] with the absorption occuring in narrow filaments. Postulates that ]s are not related to ]s but are rather produced by a ] self-compression process similar to that occurring in the ].
* ] - Developed computer simulations of galaxy formation using Birkeland currents along with gravity. Along with Alfven, organized international conferences on Plasma Cosmology.
* ] - Developed the ] model.
* ] - Radio Astronomer, writer of "''Interstellar matters : essays on curiosity and astronomical discovery''" and "''Cosmic catastrophes''".

==See also==

* ''']''' : ], ]
* ''']''' : ], ], ], ], ], ]s, ]
* '''Other''': ], ]
* ], which is another cosmology based on plasma physics. It does not appear to be taken seriously by most plasma cosmologists. It is not mentioned in the books, websites, or journal publications of Alfven, Peratt, Lerner, et al. (On page 4 of his book ''The Big Bang Never Happened'', Lerner stated "hat I describe here is not... a Velikovskian fantasy." This serves as an indicator as to how plasma cosmologists view Velikovskians.) Plasma cosmologists have likewise ignored the electric star theory, and have always accepted the standard (fusion) theory.

== Links and resources ==
* Royal Astronomical Society. "''Corrupted echoes from the Big Bang?''". .
* Wright, E. L. "''''".
* Lerner, E. J. "''''". Lerner's reply to the above.
* Peratt, Anthony, "''''". (Frameset)
** Peratt, Anthony, "''''". (Navigation : no frames)
** Peratt, Anthony, "''''" (Related Papers.)
* Wurden, Glen, "''''". Los Alamos National Laboratory. University of California (U.S. Department of Energy). (General Plasma Research)
* Melrose, Don B., "''''". Research Centre for Theoretical Astrophysics. School of Physics, University of Sydney.
** Melrose, Don B., "''''". Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney.
* "''''". (Started in 1990.)
* Marmet, Paul, "''''". 21st Century, Science and Technology,Washington, D.C.
* Thornhill, Wal, "''''". Solution of the mystery. (Neo-Velikovskian site)
** Thornhill, Wal, "''''". Holoscience.
* Arp, Halton, "''''". (Community forum and access to some papers.)
* Eastman, Timothy E., "''''". Plasmas International. (References, Parameters, and Research Centers links.)
* "''''". Laboratory for Laser Energetics, University of Rochester.
* Goodman, J., "''''"
** Goodman, J., "''''".
* "''''". Some more info

==Publications==
* IEEE Xplore, '''', '''18''' issue 1 (1990), Special Issue on Plasma Cosmology.
* G. Arcidiacono, "Plasma physics and big-bang cosmology", ''Hadronic Journal'' '''18''', 306-318 (1995).
* J. E. Brandenburg, "A model cosmology based on gravity-electromagnetism unification", ''Astrophysics and Space Science'' '''227''', 133-144 (1995).
* J. Kanipe, "The pillars of cosmology: a short history and assessment". ''Astrophysics and Space Science'' '''227''', 109-118 (1995).
*O. Klein, "Arguments concerning relativity and cosmology," ''Science'' '''171''' (1971), 339.
* W. C. Kolb, "How can spirals persist?," ''Astrophysics and Space Science'' '''227''', 175-186 (1995).
* E. J. Lerner, "Intergalactic radio absorption and the Cobe data", ''Astrophys. Space Sci.'' '''227''', 61-81 (1995)
* E. J. Lerner, "On the problem of Big-bang nucleosynthesis", ''Astrophys. Space Sci.'' '''227''', 145-149 (1995).
* B. E. Meierovich, "Limiting current in general relativity''" ''Gravitation and Cosmology'' '''3''', 29-37 (1997).
* A. L. Peratt, "Plasma and the universe: Large-scale dynamics, filamentation, and radiation", ''Astrophys. Space Sci.'' '''227''', 97-107 (1995).
* A. L. Peratt, "Plasma cosmology", ''IEEE T. Plasma Sci.'' '''18''', 1-4 (1990).
* C. M. Snell and A. L. Peratt, "Rotation velocity and neutral hydrogen distribution dependency on magnetic-field strength in spiral galaxies", ''Astrophys. Space Sci.'' '''227''', 167-173 (1995).

== Related Books ==
* H. Alfvén, ''Worlds-antiworlds: antimatter in cosmology,'' (Freeman, 1966).
* H. Alfvén, ''Cosmic Plasma'' (Reidel, 1981) ISBN 9027711518
* E. J. Lerner, ''The Big Bang Never Happened'', (Vintage, 1992) ISBN 067974049X
* A. L. Peratt, ''Physics of the Plasma Universe'', (Springer, 1992) ISBN 0387975756

]
]
] ]
]

Latest revision as of 15:04, 5 September 2024

Non-standard model of the universe; emphasizes the role of ionized gases
Comparison of the evolution of the universe under Alfvén–Klein cosmology and the Big Bang theory.

Plasma cosmology is a non-standard cosmology whose central postulate is that the dynamics of ionized gases and plasmas play important, if not dominant, roles in the physics of the universe at interstellar and intergalactic scales. In contrast, the current observations and models of cosmologists and astrophysicists explain the formation, development, and evolution of large-scale structures as dominated by gravity (including its formulation in Albert Einstein's general theory of relativity).

The original form of the theory, Alfvén–Klein cosmology, was developed by Hannes Alfvén and Oskar Klein in the 1960s and 1970s, and holds that matter and antimatter exist in equal quantities at very large scales, that the universe is eternal rather than bounded in time by the Big Bang, and that the expansion of the observable universe is caused by annihilation between matter and antimatter rather than a mechanism like cosmic inflation.

Cosmologists and astrophysicists who have evaluated plasma cosmology reject it because it does not match the observations of astrophysical phenomena as well as the currently accepted Big Bang model. Very few papers supporting plasma cosmology have appeared in the literature since the mid-1990s.

The term plasma universe is sometimes used as a synonym for plasma cosmology, as an alternative description of the plasma in the universe. Plasma cosmology is distinct from pseudoscientific ideas collectively called the Electric Universe, though proponents of each are known to be sympathetic to each other. These pseudoscientific ideas vary widely but generally claim that electric currents flow into stars and power them like light bulbs, contradicting well-established scientific theories and observations showing that stars are powered by nuclear fusion.

Alfvén–Klein cosmology

Hannes Alfvén suggested that scaling laboratory results can be extrapolated up to the scale of the universe. A scaling jump by a factor 10 was required to extrapolate to the magnetosphere, a second jump to extrapolate to galactic conditions, and a third jump to extrapolate to the Hubble distance.

In the 1960s, the theory behind plasma cosmology was introduced by Alfvén, a plasma expert who won the 1970 Nobel Prize in Physics for his work on magnetohydrodynamics. He proposed the use of plasma scaling to extrapolate the results of laboratory experiments and plasma physics observations and scale them over many orders of magnitude up to the largest observable objects in the universe (see box). In 1971, Oskar Klein, a Swedish theoretical physicist, extended the earlier proposals and developed the Alfvén–Klein model of the universe, or "metagalaxy", an earlier term used to refer to the empirically accessible part of the universe, rather than the entire universe including parts beyond our particle horizon.

In this model, the universe is made up of equal amounts of matter and antimatter with the boundaries between the regions of matter and antimatter being delineated by cosmic electromagnetic fields formed by double layers, thin regions comprising two parallel layers with opposite electrical charge. Interaction between these boundary regions would generate radiation, and this would form the plasma. Alfvén introduced the term ambiplasma for a plasma made up of matter and antimatter and the double layers are thus formed of ambiplasma. According to Alfvén, such an ambiplasma would be relatively long-lived as the component particles and antiparticles would be too hot and too low-density to annihilate each other rapidly. The double layers will act to repel clouds of opposite type, but combine clouds of the same type, creating ever-larger regions of matter and antimatter. The idea of ambiplasma was developed further into the forms of heavy ambiplasma (protons-antiprotons) and light ambiplasma (electrons-positrons).

Alfvén–Klein cosmology was proposed in part to explain the observed baryon asymmetry in the universe, starting from an initial condition of exact symmetry between matter and antimatter. According to Alfvén and Klein, ambiplasma would naturally form pockets of matter and pockets of antimatter that would expand outwards as annihilation between matter and antimatter occurred in the double layer at the boundaries. They concluded that we must just happen to live in one of the pockets that was mostly baryons rather than antibaryons, explaining the baryon asymmetry. The pockets, or bubbles, of matter or antimatter would expand because of annihilations at the boundaries, which Alfvén considered as a possible explanation for the observed expansion of the universe, which would be merely a local phase of a much larger history. Alfvén postulated that the universe has always existed due to causality arguments and the rejection of ex nihilo models, such as the Big Bang, as a stealth form of creationism. The exploding double layer was also suggested by Alfvén as a possible mechanism for the generation of cosmic rays, X-ray bursts and gamma-ray bursts.

In 1993, theoretical cosmologist Jim Peebles criticized Alfvén–Klein cosmology, writing that "there is no way that the results can be consistent with the isotropy of the cosmic microwave background radiation and X-ray backgrounds". In his book he also showed that Alfvén's models do not predict Hubble's law, the abundance of light elements, or the existence of the cosmic microwave background. A further difficulty with the ambiplasma model is that matter–antimatter annihilation results in the production of high energy photons, which are not observed in the amounts predicted. While it is possible that the local "matter-dominated" cell is simply larger than the observable universe, this proposition does not lend itself to observational tests.

Plasma cosmology and the study of galaxies

Hannes Alfvén from the 1960s to 1980s argued that plasma played an important if not dominant role in the universe. He argued that electromagnetic forces are far more important than gravity when acting on interplanetary and interstellar charged particles. He further hypothesized that they might promote the contraction of interstellar clouds and may even constitute the main mechanism for contraction, initiating star formation. The current standard view is that magnetic fields can hinder collapse, that large-scale Birkeland currents have not been observed, and that the length scale for charge neutrality is predicted to be far smaller than the relevant cosmological scales.

In the 1980s and 1990s, Alfvén and Anthony Peratt, a plasma physicist at Los Alamos National Laboratory, outlined a program they called the "plasma universe". In plasma universe proposals, various plasma physics phenomena were associated with astrophysical observations and were used to explain contemporary mysteries and problems outstanding in astrophysics in the 1980s and 1990s. In various venues, Peratt profiled what he characterized as an alternative viewpoint to the mainstream models applied in astrophysics and cosmology.

For example, Peratt proposed that the mainstream approach to galactic dynamics which relied on gravitational modeling of stars and gas in galaxies with the addition of dark matter was overlooking a possibly major contribution from plasma physics. He mentions laboratory experiments of Winston H. Bostick in the 1950s that created plasma discharges that looked like galaxies. Perrat conducted computer simulations of colliding plasma clouds that he reported also mimicked the shape of galaxies. Peratt proposed that galaxies formed due to plasma filaments joining in a z-pinch, the filaments starting 300,000 light years apart and carrying Birkeland currents of 10 amperes. Peratt also reported simulations he did showing emerging jets of material from the central buffer region that he compared to quasars and active galactic nuclei occurring without supermassive black holes. Peratt proposed a sequence for galaxy evolution: "the transition of double radio galaxies to radioquasars to radioquiet QSO's to peculiar and Seyfert galaxies, finally ending in spiral galaxies". He also reported that flat galaxy rotation curves were simulated without dark matter. At the same time Eric Lerner, an independent plasma researcher and supporter of Peratt's ideas, proposed a plasma model for quasars based on a dense plasma focus.

Comparison with mainstream astrophysics

Standard astronomical modeling and theories attempt to incorporate all known physics into descriptions and explanations of observed phenomena, with gravity playing a dominant role on the largest scales as well as in celestial mechanics and dynamics. To that end, both Keplerian orbits and Albert Einstein's General Theory of Relativity are generally used as the underlying frameworks for modeling astrophysical systems and structure formation, while high-energy astronomy and particle physics in cosmology additionally appeal to electromagnetic processes including plasma physics and radiative transfer to explain relatively small scale energetic processes observed in the x-rays and gamma rays. Due to overall charge neutrality, plasma physics does not provide for very long-range interactions in astrophysics even while much of the matter in the universe is plasma. (See astrophysical plasma for more.)

Proponents of plasma cosmology claim electrodynamics is as important as gravity in explaining the structure of the universe, and speculate that it provides an alternative explanation for the evolution of galaxies and the initial collapse of interstellar clouds. In particular plasma cosmology is claimed to provide an alternative explanation for the flat rotation curves of spiral galaxies and to do away with the need for dark matter in galaxies and with the need for supermassive black holes in galaxy centres to power quasars and active galactic nuclei. However, theoretical analysis shows that "many scenarios for the generation of seed magnetic fields, which rely on the survival and sustainability of currents at early times ", i.e. Birkeland currents of the magnitude needed (10 amps over scales of megaparsecs) for galaxy formation do not exist. Additionally, many of the issues that were mysterious in the 1980s and 1990s, including discrepancies relating to the cosmic microwave background and the nature of quasars, have been solved with more evidence that, in detail, provides a distance and time scale for the universe.

Some of the places where plasma cosmology supporters are most at odds with standard explanations include the need for their models to have light element production without Big Bang nucleosynthesis, which, in the context of Alfvén–Klein cosmology, has been shown to produce excessive X-rays and gamma rays beyond that observed. Plasma cosmology proponents have made further proposals to explain light element abundances, but the attendant issues have not been fully addressed. In 1995 Eric Lerner published his alternative explanation for the cosmic microwave background radiation (CMBR). He argued that his model explained the fidelity of the CMB spectrum to that of a black body and the low level of anisotropies found, even while the level of isotropy at 1:10 is not accounted for to that precision by any alternative models. Additionally, the sensitivity and resolution of the measurement of the CMB anisotropies was greatly advanced by WMAP and the Planck satellite and the statistics of the signal were so in line with the predictions of the Big Bang model, that the CMB has been heralded as a major confirmation of the Big Bang model to the detriment of alternatives. The acoustic peaks in the early universe are fit with high accuracy by the predictions of the Big Bang model, and, to date, there has never been an attempt to explain the detailed spectrum of the anisotropies within the framework of plasma cosmology or any other alternative cosmological model.

References and notes

  1. ^ Alfven, H.O.G. (1990). "Cosmology in the plasma universe – an introductory exposition". IEEE Transactions on Plasma Science. 18: 5–10. Bibcode:1990ITPS...18....5A. doi:10.1109/27.45495.
  2. ^ Peratt, Anthony (February 1992). "Plasma Cosmology" (PDF). Sky & Telescope. 83 (2): 136–141. Retrieved 26 May 2012. recount: It was described as this in the February 1992 issue of Sky & Telescope ("Plasma Cosmology"), and by Anthony Peratt in the 1980s, who describes it as a "nonstandard picture". The ΛCDM model big bang picture is typically described as the "concordance model", "standard model" or "standard paradigm" of cosmology here, and here.
  3. Parker, Barry (1993). "Plasma Cosmology". The Vindication of the Big Bang. Boston, MA: Springer. p. 325. doi:10.1007/978-1-4899-5980-5_15. ISBN 978-1-4899-5980-5.
  4. Parker 1993, pp. 335–336.
  5. "Hogan and Velikovsky". www.jerrypournelle.com. Retrieved 2023-08-24.
  6. Shermer, Michael (2015-10-01). "The Difference between Science and Pseudoscience". Scientific American. Retrieved 2022-03-28.
  7. Bridgman, William T., Stuart Robbins, and C. Alex Young. "Crank Astronomy As A Teaching Tool." American Astronomical Society Meeting Abstracts# 215. Vol. 215. 2010.
  8. Scoles, Sarah (18 February 2016). "The People Who Believe Electricity Rules the Universe". Motherboard. Vice. Retrieved 1 November 2022.
  9. ^ Alfvén, Hannes (1983). "On hierarchical cosmology". Astrophysics and Space Science. 89 (2): 313–324. Bibcode:1983Ap&SS..89..313A. doi:10.1007/bf00655984. S2CID 122396373.
  10. ^ H., Alfvén (1966). Worlds-antiworlds: antimatter in cosmology. Freeman.
  11. ^ Kragh, H.S. (1996). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Vol. 23. Princeton University Press. pp. 482–483. ISBN 978-0-691-00546-1.
  12. Alfven, H.O G (1987). "Plasma universe" (PDF). Physica Scripta. T18: 20–28. Bibcode:1987PhST...18...20A. doi:10.1088/0031-8949/1987/t18/002. S2CID 250828260.
  13. Klein, O. (1971). "Arguments concerning relativity and cosmology". Science. 171 (3969): 339–45. Bibcode:1971Sci...171..339K. doi:10.1126/science.171.3969.339. PMID 17808634. S2CID 22308581.
  14. Alfvén, H.; Falthammar, C.-G. (1963). Cosmic electrodynamics. Oxford: Clarendon Press.
  15. Alfvén, H. (1988). "Has the Universe an Origin? (Trita-EPP)" (PDF). p. 6.
  16. ^ Peratt, A.L. (1995). "Introduction to Plasma Astrophysics and Cosmology" (PDF). Astrophysics and Space Science. 227 (1–2): 3–11. Bibcode:1995Ap&SS.227....3P. doi:10.1007/bf00678062. ISBN 978-94-010-4181-2. S2CID 118452749.
  17. Alfvén, H. (1992). "Cosmology: Myth or Science?". IEEE Transactions on Plasma Science. 20 (6): 590–600. Bibcode:1992ITPS...20..590A. doi:10.1109/27.199498.
  18. Alfvén, H. (1984). "Cosmology - Myth or science?". Journal of Astrophysics and Astronomy. 5 (1): 79–98. Bibcode:1984JApA....5...79A. doi:10.1007/BF02714974. ISSN 0250-6335. S2CID 122751100.
  19. H., Alfvén (1981). Cosmic plasma. Taylor & Francis. pp. IV.10.3.2, 109. recount: "Double layers may also produce extremely high energies. This is known to take place in solar flares, where they generate solar cosmic rays up to 10 to 10 eV."
  20. Alfvén, H. (1986). "Double layers and circuits in astrophysics". IEEE Transactions on Plasma Science. PS-14 (6): 779–793. Bibcode:1986ITPS...14..779A. doi:10.1109/TPS.1986.4316626. hdl:2060/19870005703. S2CID 11866813.
  21. Pebbles, P.J.E. (1993). Principles of Physical Cosmology. Princeton University Press. p. 207. ISBN 978-0-691-07428-3.
  22. H. Alfvén and C.-G. Falthammar, Cosmic electrodynamics(2nd edition, Clarendon press, Oxford, 1963). "The basic reason why electromagnetic phenomena are so important in cosmical physics is that there exist celestial magnetic fields which affect the motion of charged particles in space ... The strength of the interplanetary magnetic field is of the order of 10 gauss (10 nanoteslas), which gives the ≈ 10. This illustrates the enormous importance of interplanetary and interstellar magnetic fields, compared with gravitation, as long as the matter is ionized." (p.2-3)
  23. ^ Alfvén, H.; Carlqvist, P. (1978). "Interstellar clouds and the formation of stars". Astrophysics and Space Science. 55 (2): 487–509. Bibcode:1978Ap&SS..55..487A. doi:10.1007/BF00642272. S2CID 122687137.
  24. ^ Siegel, E. R.; Fry, J. N. (Sep 2006). "Can Electric Charges and Currents Survive in an Inhomogeneous Universe?". arXiv:astro-ph/0609031. Bibcode:2006astro.ph..9031S. {{cite journal}}: Cite journal requires |journal= (help)
  25. Alfvén, H. (1986). "Model of the Plasma Universe" (PDF). IEEE Transactions on Plasma Science. PS-14 (6): 629–638. Bibcode:1986ITPS...14..629A. doi:10.1109/tps.1986.4316614. S2CID 31617468.
  26. ^ A. L. Peratt, Plasma Cosmology: Part I, Interpretations of a Visible Universe, World & I, vol. 8, pp. 294–301, August 1989.
  27. ^ A. L. Peratt, Plasma Cosmology:Part II, The Universe is a Sea of Electrically Charged Particles, World & I, vol. 9, pp. 306–317, September 1989 .
  28. "A.L. Peratt, Plasma Cosmology, Sky & Tel. Feb. 1992" (PDF).
  29. A. Peratt (1986). "Evolution of the plasma universe. I – Double radio galaxies, quasars, and extragalactic jets" (PDF). IEEE Transactions on Plasma Science. PS-14 (6): 639–660. Bibcode:1986ITPS...14..639P. doi:10.1109/TPS.1986.4316615. ISSN 0093-3813. S2CID 30767626.
  30. Bostick, W. H. (1986). "What laboratory-produced plasma structures can contribute to the understanding of cosmic structures both large and small". IEEE Transactions on Plasma Science. PS-14 (6): 703–717. Bibcode:1986ITPS...14..703B. doi:10.1109/TPS.1986.4316621. S2CID 25575722.
  31. AL Peratt; J Green; D Nielson (20 June 1980). "Evolution of Colliding Plasmas". Physical Review Letters. 44 (26): 1767–1770. Bibcode:1980PhRvL..44.1767P. doi:10.1103/PhysRevLett.44.1767.
  32. ^ E. J. Lerner (1991). The Big Bang Never Happened. New York and Toronto: Random House. ISBN 978-0-8129-1853-3.
  33. ^ AL Peratt; J Green (1983). "On the Evolution of Interacting, Magnetized, Galactic Plasmas". Astrophysics and Space Science. 91 (1): 19–33. Bibcode:1983Ap&SS..91...19P. doi:10.1007/BF00650210. S2CID 121524786.
  34. ^ A. Peratt (1986). "Evolution of the Plasma Universe: II. The Formation of Systems of Galaxies" (PDF). IEEE Transactions on Plasma Science. PS-14 (6): 763–778. Bibcode:1986ITPS...14..763P. doi:10.1109/TPS.1986.4316625. ISSN 0093-3813. S2CID 25091690.
  35. E.J. Lerner (1986). "Magnetic Self‑Compression in Laboratory Plasma, Quasars and Radio Galaxies". Laser and Particle Beams. 4 part 2 (2): 193‑222. Bibcode:1986LPB.....4..193L. doi:10.1017/S0263034600001750.
  36. Frank, Juhan; Frank, Carlos; Frank, J. R.; King, A. R.; Raine, Derek J. (1985-04-18). Accretion Power in Astrophysics. CUP Archive. p. 25. ISBN 9780521245302.
  37. Colafrancesco, S.; Giordano, F. (2006). "The impact of magnetic field on the cluster M – T relation". Astronomy and Astrophysics. 454 (3): L131–134. arXiv:astro-ph/0701852. Bibcode:2006A&A...454L.131C. doi:10.1051/0004-6361:20065404. S2CID 1477289. recount: "Numerical simulations have shown that the wide-scale magnetic fields in massive clusters produce variations of the cluster mass at the level of ~ 5 − 10% of their unmagnetized value ... Such variations are not expected to produce strong variations in the relative relation for massive clusters."
  38. Audouze, J.; Lindley, D.; Silk, J. (1985). "Big Bang Photosynthesis and Pregalactic Nucleosynthesis of Light Elements". Astrophysical Journal. 293: L53 – L57. Bibcode:1985ApJ...293L..53A. doi:10.1086/184490.
  39. Epstein; et al. (1976). "The origin of deuterium". Nature. 263 (5574): 198–202. Bibcode:1976Natur.263..198E. doi:10.1038/263198a0. S2CID 4213710. point out that if proton fluxes with energies greater than 500 MeV were intense enough to produce the observed levels of deuterium, they would also produce about 1000 times more gamma rays than are observed.
  40. Ref. 10 in "Galactic Model of Element Formation" (Lerner, IEEE Transactions on Plasma Science Vol. 17, No. 2, April 1989 Archived 2006-12-29 at the Wayback Machine) is J.Audouze and J.Silk, "Pregalactic Synthesis of Deuterium" in Proc. ESO Workshop on "Primordial Helium", 1983, pp. 71–75 Lerner includes a paragraph on "Gamma Rays from D Production" in which he claims that the expected gamma ray level is consistent with the observations. He cites neither Audouze nor Epstein in this context, and does not explain why his result contradicts theirs.
  41. Lerner, Eric (1995). "Intergalactic Radio Absorption and the COBE Data" (PDF). Astrophysics and Space Science. 227 (1–2): 61–81. Bibcode:1995Ap&SS.227...61L. doi:10.1007/bf00678067. S2CID 121500864. Archived from the original (PDF) on 2011-07-15. Retrieved 2012-05-30.
  42. Spergel, D. N.; et al. (2003). "(WMAP collaboration), "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters". Astrophysical Journal Supplement Series. 148 (1): 175–194. arXiv:astro-ph/0302209. Bibcode:2003ApJS..148..175S. doi:10.1086/377226. S2CID 10794058.

Further reading

External links

Categories:
Plasma cosmology: Difference between revisions Add topic