Misplaced Pages

Gliese 514: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 13:30, 11 October 2022 editLithopsian (talk | contribs)Autopatrolled, Extended confirmed users, New page reviewers68,673 editsm excess whitespace← Previous edit Latest revision as of 16:37, 24 October 2024 edit undoBwnnn2304 (talk | contribs)31 editsm I added an interarticle link.Tag: Visual edit 
(13 intermediate revisions by 7 users not shown)
Line 14: Line 14:
| class = M0Ve<ref name=Lindegren2021>{{citation|arxiv=2105.09014|year=2021|title=Astrometric radial velocities for nearby stars|doi=10.1051/0004-6361/202141344|last1=Lindegren|first1=Lennart|last2=Dravins|first2=Dainis|journal=Astronomy & Astrophysics|volume=652|pages=A45|bibcode=2021A&A...652A..45L|s2cid=234778154}}</ref> | class = M0Ve<ref name=Lindegren2021>{{citation|arxiv=2105.09014|year=2021|title=Astrometric radial velocities for nearby stars|doi=10.1051/0004-6361/202141344|last1=Lindegren|first1=Lennart|last2=Dravins|first2=Dainis|journal=Astronomy & Astrophysics|volume=652|pages=A45|bibcode=2021A&A...652A..45L|s2cid=234778154}}</ref>
| appmag_1_passband = J | appmag_1_passband = J
| appmag_1 = 5.902{{±|0.018}}<ref name=Lindgren2017>{{citation|arxiv=1705.08785|year=2017|title=Metallicity determination of M dwarfs|doi=10.1051/0004-6361/201730715|last1=Lindgren|first1=Sara|last2=Heiter|first2=Ulrike|journal=Astronomy & Astrophysics|volume=604|pages=A97|s2cid=119216828}}</ref> | appmag_1 = 5.902{{±|0.018}}<ref name=Lindgren2017>{{citation|arxiv=1705.08785|year=2017|title=Metallicity determination of M dwarfs|doi=10.1051/0004-6361/201730715|last1=Lindgren|first1=Sara|last2=Heiter|first2=Ulrike|journal=Astronomy & Astrophysics|volume=604|pages=A97|bibcode=2017A&A...604A..97L |s2cid=119216828}}</ref>
| appmag_2_passband = H | appmag_2_passband = H
| appmag_2 = 5.300{{±|0.033}}<ref name=Lindgren2017/> | appmag_2 = 5.300{{±|0.033}}<ref name=Lindgren2017/>
Line 20: Line 20:
{{Starbox astrometry {{Starbox astrometry
| radial_v = 14.606<ref name=Manara2021>{{citation|arxiv=2103.12446|year=2021|title=PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES)|doi=10.1051/0004-6361/202140639|last1=Manara|first1=C. F.|last2=Frasca|first2=A.|last3=Venuti|first3=L.|last4=Siwak|first4=M.|last5=Herczeg|first5=G. J.|last6=Calvet|first6=N.|last7=Hernandez|first7=J.|last8=Tychoniec|first8=Ł.|last9=Gangi|first9=M.|last10=Alcalá|first10=J. M.|last11=Boffin|first11=H. M. J.|last12=Nisini|first12=B.|last13=Robberto|first13=M.|last14=Briceno|first14=C.|last15=Campbell-White|first15=J.|last16=Sicilia-Aguilar|first16=A.|last17=McGinnis|first17=P.|last18=Fedele|first18=D.|last19=Kóspál|first19=Á.|last20=Ábrahám|first20=P.|last21=Alonso-Santiago|first21=J.|last22=Antoniucci|first22=S.|last23=Arulanantham|first23=N.|last24=Bacciotti|first24=F.|last25=Banzatti|first25=A.|last26=Beccari|first26=G.|last27=Benisty|first27=M.|last28=Biazzo|first28=K.|last29=Bouvier|first29=J.|last30=Cabrit|first30=S.|journal=Astronomy & Astrophysics|volume=650|pages=A196|s2cid=232320330|display-authors=1}}</ref> | radial_v = 14.606<ref name=Manara2021>{{citation|arxiv=2103.12446|year=2021|title=PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES)|doi=10.1051/0004-6361/202140639|last1=Manara|first1=C. F.|last2=Frasca|first2=A.|last3=Venuti|first3=L.|last4=Siwak|first4=M.|last5=Herczeg|first5=G. J.|last6=Calvet|first6=N.|last7=Hernandez|first7=J.|last8=Tychoniec|first8=Ł.|last9=Gangi|first9=M.|last10=Alcalá|first10=J. M.|last11=Boffin|first11=H. M. J.|last12=Nisini|first12=B.|last13=Robberto|first13=M.|last14=Briceno|first14=C.|last15=Campbell-White|first15=J.|last16=Sicilia-Aguilar|first16=A.|last17=McGinnis|first17=P.|last18=Fedele|first18=D.|last19=Kóspál|first19=Á.|last20=Ábrahám|first20=P.|last21=Alonso-Santiago|first21=J.|last22=Antoniucci|first22=S.|last23=Arulanantham|first23=N.|last24=Bacciotti|first24=F.|last25=Banzatti|first25=A.|last26=Beccari|first26=G.|last27=Benisty|first27=M.|last28=Biazzo|first28=K.|last29=Bouvier|first29=J.|last30=Cabrit|first30=S.|journal=Astronomy & Astrophysics|volume=650|pages=A196|s2cid=232320330|display-authors=1}}</ref>
| prop_mo_ra = 1127.34{{±|0.03}}<ref name=EDR3>{{cite Gaia EDR3|3738099879558957952}}</ref> | prop_mo_ra = 1,127.34{{±|0.03}}<ref name=EDR3>{{cite Gaia EDR3|3738099879558957952}}</ref>
| prop_mo_dec = -1073.888{{±|0.013}}<ref name=EDR3/> | prop_mo_dec = −1,073.888{{±|0.013}}<ref name=EDR3/>
| parallax = 131.1013 | parallax = 131.1013
| p_error = 0.0270 | p_error = 0.0270
| parallax_footnote = <ref name=EDR3/> | parallax_footnote = <ref name=EDR3/>
| absmag_v =
| absmag_v = 5.89<ref name=Khata2020>{{citation|arxiv=2002.05762|year=2020|title=Understanding the physical properties of young M dwarfs: NIR spectroscopic studies|doi=10.1093/mnras/staa427|last1=Ghosh|first1=Samrat|last2=Ghosh|first2=Supriyo|last3=Das|first3=Ramkrishna|last4=Mondal|first4=Soumen|last5=Khata|first5=Dhrimadri|journal=Monthly Notices of the Royal Astronomical Society|volume=493|issue=3|pages=4533–4550}}</ref>
}} }}
{{Starbox detail {{Starbox detail
| source = | source =
| mass = 0.526<ref name=Berger2006>{{citation|arxiv=astro-ph/0602105|year=2006|title=First Results from the CHARA Array. IV. The Interferometric Radii of Low‐Mass Stars|doi=10.1086/503318|last1=Berger|first1=D. H.|last2=Gies|first2=D. R.|last3=McAlister|first3=H. A.|last4=Brummelaar|first4=T. A. ten|last5=Henry|first5=T. J.|last6=Sturmann|first6=J.|last7=Sturmann|first7=L.|last8=Turner|first8=N. H.|last9=Ridgway|first9=S. T.|last10=Aufdenberg|first10=J. P.|last11=Merand|first11=A.|journal=The Astrophysical Journal|volume=644|issue=1|pages=475–483|bibcode=2006ApJ...644..475B|s2cid=14966363}}</ref> | mass = 0.526<ref name=Berger2006>{{citation|arxiv=astro-ph/0602105|year=2006|title=First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars|doi=10.1086/503318|last1=Berger|first1=D. H.|last2=Gies|first2=D. R.|last3=McAlister|first3=H. A.|last4=Brummelaar|first4=T. A. ten|last5=Henry|first5=T. J.|last6=Sturmann|first6=J.|last7=Sturmann|first7=L.|last8=Turner|first8=N. H.|last9=Ridgway|first9=S. T.|last10=Aufdenberg|first10=J. P.|last11=Merand|first11=A.|journal=The Astrophysical Journal|volume=644|issue=1|pages=475–483|bibcode=2006ApJ...644..475B|s2cid=14966363}}</ref>
| radius = 0.611{{±|0.043}}<ref name=Berger2006/> | radius = 0.611{{±|0.043}}<ref name=Berger2006/>
| temperature = 2,901<ref name=Khata2020>{{citation|arxiv=2002.05762|year=2020|title=Understanding the physical properties of young M dwarfs: NIR spectroscopic studies|doi=10.1093/mnras/staa427|last1=Ghosh|first1=Samrat|last2=Ghosh|first2=Supriyo|last3=Das|first3=Ramkrishna|last4=Mondal|first4=Soumen|last5=Khata|first5=Dhrimadri|journal=Monthly Notices of the Royal Astronomical Society|volume=493|issue=3|pages=4533–4550|doi-access=free |bibcode=2020MNRAS.493.4533K }}</ref> - 3,727<ref name=Lindgren2017/>
| temperature = 2901<ref name=Khata2020/> - 3727<ref name=Lindgren2017/>
| luminosity_bolometric = 0.043<ref name=Berger2006/> | luminosity_bolometric = 0.043<ref name=Berger2006/>
| gravity = 4.59<ref name=Berger2006/> | gravity = 4.59<ref name=Berger2006/>
| metal_fe = -0.7 to +0.34<ref name=Olander2021/> | metal_fe = {{val|−0.07|0.07}}<ref name=Lindgren2017/>
| rotation = 28.0{{±|2.9}}<ref name=Damasso2022/> | rotation = 28.0{{±|2.9}}<ref name=Damasso2022/>
| rotational_velocity = 2.00<ref name=Olander2021/> | rotational_velocity = 2.00<ref name=Olander2021/>
| age_gyr = 8.25<ref name=maldonado2020>{{cite journal |bibcode=2020A&A...644A..68M |title=HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets |last1=Maldonado |first1=J. |last2=Micela |first2=G. |last3=Baratella |first3=M. |last4=d'Orazi |first4=V. |last5=Affer |first5=L. |last6=Biazzo |first6=K. |last7=Lanza |first7=A. F. |last8=Maggio |first8=A. |last9=González Hernández |first9=J. I. |last10=Perger |first10=M. |last11=Pinamonti |first11=M. |last12=Scandariato |first12=G. |last13=Sozzetti |first13=A. |last14=Locci |first14=D. |last15=Di Maio |first15=C. |last16=Bignamini |first16=A. |last17=Claudi |first17=R. |last18=Molinari |first18=E. |last19=Rebolo |first19=R. |last20=Ribas |first20=I. |last21=Toledo-Padrón |first21=B. |last22=Covino |first22=E. |last23=Desidera |first23=S. |last24=Herrero |first24=E. |last25=Morales |first25=J. C. |last26=Suárez-Mascareño |first26=A. |last27=Pagano |first27=I. |last28=Petralia |first28=A. |last29=Piotto |first29=G. |last30=Poretti |first30=E. |journal=Astronomy and Astrophysics |year=2020 |volume=644 |pages=A68 |doi=10.1051/0004-6361/202039478 |arxiv=2010.14867 |s2cid=225094682 }}</ref>
| age_gyr = >0.8
}} }}
{{Starbox catalog {{Starbox catalog
Line 47: Line 47:
{{Starbox end}} {{Starbox end}}


'''Gliese 514''', also known as BD+11 2576 or HIP 65859, is a ], in the constellation ] 24.85 light-years away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988.<ref></ref> '''Gliese 514''', also known as BD+11 2576 or HIP 65859, is a ], in the constellation ] 24.85 ] away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988.<ref>{{Cite journal |url=https://ui.adsabs.harvard.edu/abs/1988AcASn..29..127W/abstract |title=Determinations of the parallaxes of BD +11 2576 and BD +18 683 |bibcode=1988AcASn..29..127W |access-date=2022-04-17 |archive-date=2023-03-07 |archive-url=https://web.archive.org/web/20230307161425/https://ui.adsabs.harvard.edu/abs/1988AcASn..29..127W/abstract |url-status=live |last1=Wang |first1=J. -J. |last2=Jiang |first2=P. -F. |last3=Chen |first3=J. |journal=Acta Astronomica Sinica |date=1988 |volume=29 |page=127 }}</ref>


Gliese 514's ] Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in the literature. This discrepancy is due to peculiarities of the stellar spectrum of Gliese 514. The spectrum peculiarities also affect the accuracy of the star's temperature measurement,<ref name=Olander2021>{{citation|arxiv=2102.08836|year=2021|title=Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects|doi=10.1051/0004-6361/202039747|last1=Olander|first1=T.|last2=Heiter|first2=U.|last3=Kochukhov|first3=O.|journal=Astronomy & Astrophysics|volume=649|pages=A103|bibcode=2021A&A...649A.103O|s2cid=231942628}}</ref> with reported values as low as 2901 ].<ref name=Khata2020/> The spectrum of Gliese 514 shows emission lines,<ref name=Lindegren2021/> but the star itself has a low ] activity.<ref>{{citation |bibcode=2007A&A...467..259R |title=The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation |last1=Reiners |first1=A. |journal=Astronomy and Astrophysics |year=2007 |volume=467 |issue=1 |page=259 |doi=10.1051/0004-6361:20066991 |arxiv=astro-ph/0702634 |s2cid=8672566 }}</ref> Gliese 514's ] Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in the literature. This discrepancy is due to peculiarities of the stellar spectrum of Gliese 514. The spectrum peculiarities also affect the accuracy of the star's temperature measurement,<ref name=Olander2021>{{citation|arxiv=2102.08836|year=2021|title=Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects|doi=10.1051/0004-6361/202039747|last1=Olander|first1=T.|last2=Heiter|first2=U.|last3=Kochukhov|first3=O.|journal=Astronomy & Astrophysics|volume=649|pages=A103|bibcode=2021A&A...649A.103O|s2cid=231942628}}</ref> with reported values as low as 2901 ].<ref name=Khata2020/> The spectrum of Gliese 514 shows emission lines,<ref name=Lindegren2021/> but the star itself has a low ] activity.<ref>{{citation |bibcode=2007A&A...467..259R |title=The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation |last1=Reiners |first1=A. |journal=Astronomy and Astrophysics |year=2007 |volume=467 |issue=1 |page=259 |doi=10.1051/0004-6361:20066991 |arxiv=astro-ph/0702634 |s2cid=8672566 }}</ref>


Multiplicity surveys did not detect any stellar companions as of 2020.<ref>{{citation|arxiv=2001.05988|year=2020|title=Robo-AO M-dwarf Multiplicity Survey: Catalog|doi=10.3847/1538-3881/ab6ef1|last1=Lamman|first1=Claire|last2=Baranec|first2=Christoph|last3=Berta-Thompson|first3=Zachory K.|last4=Law|first4=Nicholas M.|last5=Schonhut-Stasik|first5=Jessica|last6=Ziegler|first6=Carl|last7=Salama|first7=Maïssa|last8=Jensen-Clem|first8=Rebecca|last9=Duev|first9=Dmitry A.|last10=Riddle|first10=Reed|last11=Kulkarni|first11=Shrinivas R.|last12=Winters|first12=Jennifer G.|last13=Irwin|first13=Jonathan M.|journal=The Astronomical Journal|volume=159|issue=4|page=139|bibcode=2020AJ....159..139L|s2cid=210718832}}</ref> Multiplicity surveys did not detect any stellar companions as of 2020.<ref>{{citation|arxiv=2001.05988|year=2020|title=Robo-AO M-dwarf Multiplicity Survey: Catalog|doi=10.3847/1538-3881/ab6ef1|last1=Lamman|first1=Claire|last2=Baranec|first2=Christoph|last3=Berta-Thompson|first3=Zachory K.|last4=Law|first4=Nicholas M.|last5=Schonhut-Stasik|first5=Jessica|last6=Ziegler|first6=Carl|last7=Salama|first7=Maïssa|last8=Jensen-Clem|first8=Rebecca|last9=Duev|first9=Dmitry A.|last10=Riddle|first10=Reed|last11=Kulkarni|first11=Shrinivas R.|last12=Winters|first12=Jennifer G.|last13=Irwin|first13=Jonathan M.|journal=The Astronomical Journal|volume=159|issue=4|page=139|bibcode=2020AJ....159..139L|s2cid=210718832 |doi-access=free }}</ref>


The Sun is currently calculated to be passing through the tidal tail of Gliese 514`s ]. Thus, future ]s passing through Solar system may originate from Gliese 514.<ref>{{citation |arxiv=2011.08257 |doi=10.1051/0004-6361/202038888 |title=Oort cloud Ecology |year=2021 |last1=Portegies Zwart |first1=S. |journal=Astronomy & Astrophysics |volume=647 |pages=A136 |s2cid=226976082 }}</ref> The Sun is currently calculated to be passing through the tidal tail of Gliese 514's ]. Thus, future ]s passing through Solar system may originate from Gliese 514.<ref>{{citation |arxiv=2011.08257 |doi=10.1051/0004-6361/202038888 |title=Oort cloud Ecology |year=2021 |last1=Portegies Zwart |first1=S. |journal=Astronomy & Astrophysics |volume=647 |pages=A136 |s2cid=226976082 }}</ref>


==Planetary system== ==Planetary system==
The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019.<ref>{{cite arXiv|last1=Barnes|first1=J. R.|last2=Kiraga|first2=M.|last3=Diaz|first3=M.|last4=Berdiñas|first4=Z.|last5=Jenkins|first5=J. S.|last6=Keiser|first6=S.|last7=Thompson|first7=I.|last8=Crane|first8=J. D.|last9=Shectman|first9=S. A.|display-authors=1|date=2019-06-11|title=Frequency of planets orbiting M dwarfs in the Solar neighbourhood|class=astro-ph.EP|eprint=1906.04644|language=en}}</ref> However, that planet was not confirmed. Instead, in 2022, one ] planet, named ], was discovered on an eccentric 140-day orbit by the ]. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to {{val|202|11}} ].<ref name=Damasso2022>{{citation|arxiv=2204.06376|year=2022|title=A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514 A super-Earth on an eccentric orbit moving in and out of the habitable zone|last1=Damasso|first1=M.|last2=Perger|first2=M.|last3=Almenara|first3=J. M.|last4=Nardiello|first4=D.|last5=Pérez-Torres|first5=M.|last6=Sozzetti|first6=A.|last7=Hara|first7=N. C.|last8=Quirrenbach|first8=A.|last9=Bonfils|first9=X.|last10=Zapatero Osorio|first10=M. R.|last11=Astudillo-Defru|first11=N.|last12=González Hernández|first12=J. I.|last13=Suárez Mascareño|first13=A.|last14=Amado|first14=P. J.|last15=Forveille|first15=T.|last16=Lillo-Box|first16=J.|last17=Alibert|first17=Y.|last18=Caballero|first18=J. A.|last19=Cifuentes|first19=C.|last20=Delfosse|first20=X.|last21=Figueira|first21=P.|last22=Galadí-Enríquez|first22=D.|last23=Hatzes|first23=A. P.|last24=Henning|first24=Th.|last25=Kaminski|first25=A.|last26=Mayor|first26=M.|last27=Murgas|first27=F.|last28=Montes|first28=D.|last29=Pinamonti|first29=M.|last30=Reiners|first30=A.|display-authors=1}}</ref> The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019.<ref>{{cite arXiv|last1=Barnes|first1=J. R.|last2=Kiraga|first2=M.|last3=Diaz|first3=M.|last4=Berdiñas|first4=Z.|last5=Jenkins|first5=J. S.|last6=Keiser|first6=S.|last7=Thompson|first7=I.|last8=Crane|first8=J. D.|last9=Shectman|first9=S. A.|display-authors=1|date=2019-06-11|title=Frequency of planets orbiting M dwarfs in the Solar neighbourhood|class=astro-ph.EP|eprint=1906.04644|language=en}}</ref> However, that planet was not confirmed. Instead, in 2022, one ] planet, named ], was discovered on an eccentric 140-day orbit by the ]. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to {{val|202|11}} ].<ref name=Damasso2022>{{citation|arxiv=2204.06376|year=2022|title=A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514|last1=Damasso|first1=M.|last2=Perger|first2=M.|last3=Almenara|first3=J. M.|last4=Nardiello|first4=D.|last5=Pérez-Torres|first5=M.|last6=Sozzetti|first6=A.|last7=Hara|first7=N. C.|last8=Quirrenbach|first8=A.|last9=Bonfils|first9=X.|last10=Zapatero Osorio|first10=M. R.|last11=Astudillo-Defru|first11=N.|last12=González Hernández|first12=J. I.|last13=Suárez Mascareño|first13=A.|last14=Amado|first14=P. J.|last15=Forveille|first15=T.|last16=Lillo-Box|first16=J.|last17=Alibert|first17=Y.|last18=Caballero|first18=J. A.|last19=Cifuentes|first19=C.|last20=Delfosse|first20=X.|last21=Figueira|first21=P.|last22=Galadí-Enríquez|first22=D.|last23=Hatzes|first23=A. P.|last24=Henning|first24=Th.|last25=Kaminski|first25=A.|last26=Mayor|first26=M.|last27=Murgas|first27=F.|last28=Montes|first28=D.|last29=Pinamonti|first29=M.|last30=Reiners|first30=A.|journal=Astronomy & Astrophysics |volume=666 |pages=A187 |doi=10.1051/0004-6361/202243522 |s2cid=248157318 |display-authors=1}}</ref>


The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.<ref>{{citation|arxiv=2004.12597|year=2020|title=Herschel Observations of Disks around Late-type Stars|doi=10.1088/1538-3873/ab895f|last1=Tanner|first1=Angelle|last2=Plavchan|first2=Peter|last3=Bryden|first3=Geoff|last4=Kennedy|first4=Grant|last5=Matrá|first5=Luca|last6=Cronin-Coltsmann|first6=Patrick|last7=Lowrance|first7=Patrick|last8=Henry|first8=Todd|last9=Riaz|first9=Basmah|last10=Gizis|first10=John E.|last11=Riedel|first11=Adric|last12=Choquet|first12=Elodie|journal=Publications of the Astronomical Society of the Pacific|volume=132|issue=1014|page=084401|bibcode=2020PASP..132h4401T|s2cid=216553868}}</ref> The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.<ref>{{citation|arxiv=2004.12597|year=2020|title=Herschel Observations of Disks around Late-type Stars|doi=10.1088/1538-3873/ab895f|last1=Tanner|first1=Angelle|last2=Plavchan|first2=Peter|last3=Bryden|first3=Geoff|last4=Kennedy|first4=Grant|last5=Matrá|first5=Luca|last6=Cronin-Coltsmann|first6=Patrick|last7=Lowrance|first7=Patrick|last8=Henry|first8=Todd|last9=Riaz|first9=Basmah|last10=Gizis|first10=John E.|last11=Riedel|first11=Adric|last12=Choquet|first12=Elodie|journal=Publications of the Astronomical Society of the Pacific|volume=132|issue=1014|page=084401|bibcode=2020PASP..132h4401T|s2cid=216553868}}</ref>
Line 65: Line 65:
}} }}
{{OrbitboxPlanet {{OrbitboxPlanet
| exoplanet = ] | exoplanet = b
| mass_earth = >5.2{{±|0.9}} | mass_earth = >5.2{{±|0.9}}
| radius = | radius =
Line 87: Line 87:
] ]
] ]
]
] ]

Latest revision as of 16:37, 24 October 2024

Gliese 514
Observation data
Epoch J2000      Equinox J2000
Constellation Virgo
Right ascension 13 29 59.7859
Declination 10° 22′ 37.7845″
Apparent magnitude (V) 9.029
Characteristics
Evolutionary stage main-sequence star
Spectral type M0Ve
Apparent magnitude (J) 5.902±0.018
Apparent magnitude (H) 5.300±0.033
Astrometry
Radial velocity (Rv)14.606 km/s
Proper motion (μ) RA: 1,127.34±0.03 mas/yr
Dec.: −1,073.888±0.013 mas/yr
Parallax (π)131.1013 ± 0.0270 mas
Distance24.878 ± 0.005 ly
(7.628 ± 0.002 pc)
Details
Mass0.526 M
Radius0.611±0.043 R
Luminosity (bolometric)0.043 L
Surface gravity (log g)4.59 cgs
Temperature2,901 - 3,727 K
Metallicity −0.07±0.07 dex
Rotation28.0±2.9
Rotational velocity (v sin i)2.00 km/s
Age8.25 Gyr
Other designations
BD+11 2576, HIP 65859, LTT 13925, Ross 490, TYC 895-317-1, 2MASS J13295979+1022376, Gaia EDR3 3738099879558957952
Database references
SIMBADdata

Gliese 514, also known as BD+11 2576 or HIP 65859, is a M-type main-sequence star, in the constellation Virgo 24.85 light-years away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988.

Gliese 514's metallicity Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in the literature. This discrepancy is due to peculiarities of the stellar spectrum of Gliese 514. The spectrum peculiarities also affect the accuracy of the star's temperature measurement, with reported values as low as 2901 K. The spectrum of Gliese 514 shows emission lines, but the star itself has a low starspot activity.

Multiplicity surveys did not detect any stellar companions as of 2020.

The Sun is currently calculated to be passing through the tidal tail of Gliese 514's Oort cloud. Thus, future interstellar objects passing through Solar system may originate from Gliese 514.

Planetary system

The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019. However, that planet was not confirmed. Instead, in 2022, one Super-Earth planet, named Gliese 514 b, was discovered on an eccentric 140-day orbit by the radial velocity method. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to 202±11 K.

The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.

The Gliese 514 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b >5.2±0.9 M🜨 0.422
−0.015
140.43±0.41 0.45
−0.14

References

  1. ^ "BD+11 2576". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2022-04-17.
  2. ^ Lindegren, Lennart; Dravins, Dainis (2021), "Astrometric radial velocities for nearby stars", Astronomy & Astrophysics, 652: A45, arXiv:2105.09014, Bibcode:2021A&A...652A..45L, doi:10.1051/0004-6361/202141344, S2CID 234778154
  3. ^ Lindgren, Sara; Heiter, Ulrike (2017), "Metallicity determination of M dwarfs", Astronomy & Astrophysics, 604: A97, arXiv:1705.08785, Bibcode:2017A&A...604A..97L, doi:10.1051/0004-6361/201730715, S2CID 119216828
  4. Manara, C. F.; et al. (2021), "PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES)", Astronomy & Astrophysics, 650: A196, arXiv:2103.12446, doi:10.1051/0004-6361/202140639, S2CID 232320330
  5. ^ Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  6. ^ Berger, D. H.; Gies, D. R.; McAlister, H. A.; Brummelaar, T. A. ten; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Merand, A. (2006), "First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars", The Astrophysical Journal, 644 (1): 475–483, arXiv:astro-ph/0602105, Bibcode:2006ApJ...644..475B, doi:10.1086/503318, S2CID 14966363
  7. ^ Ghosh, Samrat; Ghosh, Supriyo; Das, Ramkrishna; Mondal, Soumen; Khata, Dhrimadri (2020), "Understanding the physical properties of young M dwarfs: NIR spectroscopic studies", Monthly Notices of the Royal Astronomical Society, 493 (3): 4533–4550, arXiv:2002.05762, Bibcode:2020MNRAS.493.4533K, doi:10.1093/mnras/staa427
  8. ^ Damasso, M.; et al. (2022), "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514", Astronomy & Astrophysics, 666: A187, arXiv:2204.06376, doi:10.1051/0004-6361/202243522, S2CID 248157318
  9. ^ Olander, T.; Heiter, U.; Kochukhov, O. (2021), "Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects", Astronomy & Astrophysics, 649: A103, arXiv:2102.08836, Bibcode:2021A&A...649A.103O, doi:10.1051/0004-6361/202039747, S2CID 231942628
  10. Maldonado, J.; Micela, G.; Baratella, M.; d'Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A. F.; Maggio, A.; González Hernández, J. I.; Perger, M.; Pinamonti, M.; Scandariato, G.; Sozzetti, A.; Locci, D.; Di Maio, C.; Bignamini, A.; Claudi, R.; Molinari, E.; Rebolo, R.; Ribas, I.; Toledo-Padrón, B.; Covino, E.; Desidera, S.; Herrero, E.; Morales, J. C.; Suárez-Mascareño, A.; Pagano, I.; Petralia, A.; Piotto, G.; Poretti, E. (2020). "HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets". Astronomy and Astrophysics. 644: A68. arXiv:2010.14867. Bibcode:2020A&A...644A..68M. doi:10.1051/0004-6361/202039478. S2CID 225094682.
  11. Wang, J. -J.; Jiang, P. -F.; Chen, J. (1988). "Determinations of the parallaxes of BD +11 2576 and BD +18 683". Acta Astronomica Sinica. 29: 127. Bibcode:1988AcASn..29..127W. Archived from the original on 2023-03-07. Retrieved 2022-04-17.
  12. Reiners, A. (2007), "The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation", Astronomy and Astrophysics, 467 (1): 259, arXiv:astro-ph/0702634, Bibcode:2007A&A...467..259R, doi:10.1051/0004-6361:20066991, S2CID 8672566
  13. Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M. (2020), "Robo-AO M-dwarf Multiplicity Survey: Catalog", The Astronomical Journal, 159 (4): 139, arXiv:2001.05988, Bibcode:2020AJ....159..139L, doi:10.3847/1538-3881/ab6ef1, S2CID 210718832
  14. Portegies Zwart, S. (2021), "Oort cloud Ecology", Astronomy & Astrophysics, 647: A136, arXiv:2011.08257, doi:10.1051/0004-6361/202038888, S2CID 226976082
  15. Barnes, J. R.; et al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 .
  16. Tanner, Angelle; Plavchan, Peter; Bryden, Geoff; Kennedy, Grant; Matrá, Luca; Cronin-Coltsmann, Patrick; Lowrance, Patrick; Henry, Todd; Riaz, Basmah; Gizis, John E.; Riedel, Adric; Choquet, Elodie (2020), "Herschel Observations of Disks around Late-type Stars", Publications of the Astronomical Society of the Pacific, 132 (1014): 084401, arXiv:2004.12597, Bibcode:2020PASP..132h4401T, doi:10.1088/1538-3873/ab895f, S2CID 216553868
Constellation of Virgo
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Star clusters
Nebulae
Galaxies
Messier
NGC
Other
Galaxy clusters
Astronomical events
Category
Categories: