Misplaced Pages

Autocorrelation matrix: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 01:40, 20 January 2019 edit75.80.57.181 (talk)No edit summary← Previous edit Latest revision as of 20:45, 16 November 2024 edit undoChristian75 (talk | contribs)Extended confirmed users, New page reviewers, Pending changes reviewers, Rollbackers114,675 edits {{R with history}} 
(6 intermediate revisions by 6 users not shown)
Line 1: Line 1:
#REDIRECT ]
{{Correlation and covariance}}
{{context|date=July 2018}}
{{technical|date=July 2018}}


{{R with history}}
The '''auto-correlation matrix''' (also called second moment) of a ] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> is a <math>n \times n</math> matrix containing as elements the ] of all pairs of elements of the random vector <math>\mathbf{X}</math>. The autocorrelation matrix is used in various digital signal processing algorithms.

==Definition==
For a ] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> containing ]s whose ] and ] exist, the '''auto-correlation matrix''' is defined by<ref name=Papoulis>Papoulis, Athanasius, ''Probability, Random variables and Stochastic processes'', McGraw-Hill, 1991</ref>{{rp|p.190}}<ref name=Gubner>{{cite book |first=John A. |last=Gubner |year=2006 |title=Probability and Random Processes for Electrical and Computer Engineers |publisher=Cambridge University Press |isbn=978-0-521-86470-1}}</ref>{{rp|p.334}}

{{Equation box 1
|indent =
|title=
|equation = {{NumBlk||<math>\operatorname{R}_{\mathbf{X}\mathbf{X}} \triangleq\ \operatorname{E}</math>|{{EquationRef|Eq.1}}}}
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=#F5FFFA}}

where <math>{}^{\rm T}</math> denotes transposition and has dimensions <math>n \times n</math>.

Written component-wise:

:<math>\operatorname{R}_{\mathbf{X}\mathbf{X}} =
\begin{bmatrix}
\operatorname{E} & \operatorname{E} & \cdots & \operatorname{E} \\ \\
\operatorname{E} & \operatorname{E} & \cdots & \operatorname{E} \\ \\
\vdots & \vdots & \ddots & \vdots \\ \\
\operatorname{E} & \operatorname{E} & \cdots & \operatorname{E} \\ \\
\end{bmatrix}
</math>

If <math>\mathbf{Z}</math> is a ], the autocorrelation matrix is instead defined by

:<math>\operatorname{R}_{\mathbf{Z}\mathbf{Z}} \triangleq\ \operatorname{E}</math>.

Here <math>{}^{\rm H}</math> denotes ].

==Example==
For example, if <math>\mathbf{X} = \left( X_1,X_2,X_3 \right)^{\rm T}</math> is a random vectors, then <math>\operatorname{R}_{\mathbf{X}\mathbf{X}}</math> is a <math>3 \times 3</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}</math>.

==Properties==
* The autocorrelation matrix is a ] for complex random vectors and a ] for real random vectors.<ref name=Papoulis />{{rp|p.190}}
* The autocorrelation matrix is a ].
* The autocorrelation matrix is a positive semidefinite matrix<ref name=Papoulis />{{rp|p.190}}, i.e. <math>\mathbf{a}^{\mathrm T} \operatorname{R}_{\mathbf{X}\mathbf{X}} \mathbf{a} \ge 0 \quad \text{for all } \mathbf{a} \in \mathbb{R}^n</math> for a real random vector respectively <math>\mathbf{a}^{\mathrm H} \operatorname{R}_{\mathbf{Z}\mathbf{Z}} \mathbf{a} \ge 0 \quad \text{for all } \mathbf{a} \in \mathbb{C}^n</math> in case of a complex random vector.
* All eigenvalues of the autocorrelation matrix are real and positive.
* The ''autocovariance matrix'' is related to the autocorrelation matrix as follows:
:<math>\operatorname{K}_{\mathbf{X}\mathbf{X}} = \operatorname{E})(\mathbf{X} - \operatorname{E})^{\rm T}] = \operatorname{R}_{\mathbf{X}\mathbf{X}} - \operatorname{E} \operatorname{E}^{\rm T}</math>
: Respectively for complex random vectors:
:<math>\operatorname{K}_{\mathbf{Z}\mathbf{Z}} = \operatorname{E})(\mathbf{Z} - \operatorname{E})^{\rm H}] = \operatorname{R}_{\mathbf{Z}\mathbf{Z}} - \operatorname{E} \operatorname{E}^{\rm H}</math>

== References ==
{{reflist}}

* Hayes, Monson H., ''Statistical Digital Signal Processing and Modeling'', John Wiley & Sons, Inc., 1996. {{ISBN|0-471-59431-8}}.
* Solomon W. Golomb, and Guang Gong. . Cambridge University Press, 2005.
* M. Soltanalian. . Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.


] ]
]

Latest revision as of 20:45, 16 November 2024

Redirect to:

  • With history: This is a redirect from a page containing substantive page history. This page is kept as a redirect to preserve its former content and attributions. Please do not remove the tag that generates this text (unless the need to recreate content on this page has been demonstrated), nor delete this page.
    • This template should not be used for redirects having some edit history but no meaningful content in their previous versions, nor for redirects created as a result of a page merge (use {{R from merge}} instead), nor for redirects from a title that forms a historic part of Misplaced Pages (use {{R with old history}} instead).
Category: