Revision as of 00:52, 4 May 2024 edit24.97.110.217 (talk) adding generalization of the Born RuleTags: Reverted Visual edit← Previous edit | Latest revision as of 17:54, 21 November 2024 edit undoCountercheck (talk | contribs)Extended confirmed users8,106 edits clean up, typo(s) fixed: ’s → 'sTag: AWB | ||
(11 intermediate revisions by 6 users not shown) | |||
Line 3: | Line 3: | ||
{{Quantum mechanics|cTopic=]}} | {{Quantum mechanics|cTopic=]}} | ||
The '''Born rule''' is a postulate of ] that gives the ] that a ] will yield a given result. |
The '''Born rule''' is a postulate of ] that gives the ] that a ] will yield a given result. In one commonly used application, it states that the ] for finding a particle at a given position is proportional to the square of the amplitude of the system's ] at that position. It was formulated and published by German physicist ] in July, 1926.<ref>{{cite book | last=Hall | first=Brian C. | title=Graduate Texts in Mathematics | chapter=Quantum Theory for Mathematicians | publisher=Springer New York | publication-place=New York, NY | year=2013 | isbn=978-1-4614-7115-8 | issn=0072-5285 | doi=10.1007/978-1-4614-7116-5|pages=14–15, 58}}</ref> | ||
== Details == | == Details == | ||
Line 11: | Line 11: | ||
: (In the case where the eigenspace of <math>A</math> corresponding to <math>\lambda_i</math> is one-dimensional and spanned by the normalized eigenvector <math>|\lambda_i\rang</math>, <math>P_i</math> is equal to <math>|\lambda_i\rang\lang\lambda_i|</math>, so the probability <math>\lang\psi|P_i|\psi\rang</math> is equal to <math>\lang\psi|\lambda_i\rang\lang\lambda_i|\psi\rang</math>. Since the ] <math>\lang\lambda_i|\psi\rang</math> is known as the '']'' that the state vector <math>|\psi\rang</math> assigns to the eigenvector <math>|\lambda_i\rang</math>, it is common to describe the Born rule as saying that probability is equal to the amplitude-squared (really the amplitude times its own ]). Equivalently, the probability can be written as <math>\big|\lang\lambda_i|\psi\rang\big|^2</math>.) | : (In the case where the eigenspace of <math>A</math> corresponding to <math>\lambda_i</math> is one-dimensional and spanned by the normalized eigenvector <math>|\lambda_i\rang</math>, <math>P_i</math> is equal to <math>|\lambda_i\rang\lang\lambda_i|</math>, so the probability <math>\lang\psi|P_i|\psi\rang</math> is equal to <math>\lang\psi|\lambda_i\rang\lang\lambda_i|\psi\rang</math>. Since the ] <math>\lang\lambda_i|\psi\rang</math> is known as the '']'' that the state vector <math>|\psi\rang</math> assigns to the eigenvector <math>|\lambda_i\rang</math>, it is common to describe the Born rule as saying that probability is equal to the amplitude-squared (really the amplitude times its own ]). Equivalently, the probability can be written as <math>\big|\lang\lambda_i|\psi\rang\big|^2</math>.) | ||
In the case where the spectrum of <math>A</math> is not wholly discrete, the ] proves the existence of a certain ] <math>Q</math>, the spectral measure of <math>A</math>. In this case: | In the case where the spectrum of <math>A</math> is not wholly discrete, the ] proves the existence of a certain ] <math>Q</math>, the spectral measure of <math>A</math>. In this case: | ||
* the probability that the result of the measurement lies in a measurable set <math>M</math> is given by <math>\lang\psi|Q(M)|\psi\rang</math>. | * the probability that the result of the measurement lies in a measurable set <math>M</math> is given by <math>\lang\psi|Q(M)|\psi\rang</math>. | ||
For example, a single structureless particle can be described by a wave function <math>\psi</math> that depends upon position coordinates <math>(x, y, z)</math> and a time coordinate <math>t</math>. The Born rule implies that the probability density function <math>p</math> for the result of a measurement of the particle's position at time <math>t_0</math> is: | |||
⚫ | <math display="block">p(x, y, z, t_0) = |\psi(x, y, z, t_0)|^2.</math> | ||
The Born rule can also be employed to calculate probabilities (for measurements with discrete sets of outcomes) or probability densities (for continuous-valued measurements) for other observables, like momentum, energy, and angular momentum. | |||
⚫ | |||
In some applications, this treatment of the Born rule is generalized using ]. A POVM is a ] whose values are ] on a ]. POVMs are a generalization of von Neumann measurements and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurements described by self-adjoint observables. In rough analogy, a POVM is to a PVM what a ] is to a ]. Mixed states are needed to specify the state of a subsystem of a larger system (see ]); analogously, POVMs are necessary to describe the effect on a subsystem of a projective measurement performed on a larger system. POVMs are the most general kind of measurement in quantum mechanics and can also be used in ].<ref>{{cite journal |last1=Peres |first1=Asher |author-link1=Asher Peres |last2=Terno |first2=Daniel R. |title=Quantum information and relativity theory |journal=] |volume=76 |number=1 |year=2004 |pages=93–123 |arxiv=quant-ph/0212023 |doi=10.1103/RevModPhys.76.93 |bibcode=2004RvMP...76...93P |s2cid=7481797 }}</ref> They are extensively used in the field of ]. | In some applications, this treatment of the Born rule is generalized using ]. A POVM is a ] whose values are ] on a ]. POVMs are a generalization of von Neumann measurements and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurements described by self-adjoint observables. In rough analogy, a POVM is to a PVM what a ] is to a ]. Mixed states are needed to specify the state of a subsystem of a larger system (see ]); analogously, POVMs are necessary to describe the effect on a subsystem of a projective measurement performed on a larger system. POVMs are the most general kind of measurement in quantum mechanics and can also be used in ].<ref>{{cite journal |last1=Peres |first1=Asher |author-link1=Asher Peres |last2=Terno |first2=Daniel R. |title=Quantum information and relativity theory |journal=] |volume=76 |number=1 |year=2004 |pages=93–123 |arxiv=quant-ph/0212023 |doi=10.1103/RevModPhys.76.93 |bibcode=2004RvMP...76...93P |s2cid=7481797 }}</ref> They are extensively used in the field of ]. | ||
In the simplest case, of a POVM with a finite number of elements acting on a finite-dimensional ], a POVM is a set of ] ] <math>\{F_i\}</math> on a Hilbert space <math>\mathcal{H}</math> that sum to the ],<ref name="mike_ike">{{Cite book |last1=Nielsen |first1=Michael A. |author-link1=Michael Nielsen |last2=Chuang |first2=Isaac L. |author-link2=Isaac Chuang |title=Quantum Computation and Quantum Information|title-link=Quantum Computation and Quantum Information |publisher=] |location=Cambridge |year=2000 |edition=1st |oclc=634735192 |isbn=978-0-521-63503-5}}</ref>{{rp|90}} |
In the simplest case, of a POVM with a finite number of elements acting on a finite-dimensional ], a POVM is a set of ] ] <math>\{F_i\}</math> on a Hilbert space <math>\mathcal{H}</math> that sum to the ],:<ref name="mike_ike">{{Cite book |last1=Nielsen |first1=Michael A. |author-link1=Michael Nielsen |last2=Chuang |first2=Isaac L. |author-link2=Isaac Chuang |title=Quantum Computation and Quantum Information|title-link=Quantum Computation and Quantum Information |publisher=] |location=Cambridge |year=2000 |edition=1st |oclc=634735192 |isbn=978-0-521-63503-5}}</ref>{{rp|90}} | ||
⚫ | <math display="block">\sum_{i=1}^n F_i = I.</math> | ||
⚫ | |||
The POVM element <math>F_i</math> is associated with the measurement outcome <math>i</math>, such that the probability of obtaining it when making a measurement on the quantum state <math>\rho</math> is given by: | The POVM element <math>F_i</math> is associated with the measurement outcome <math>i</math>, such that the probability of obtaining it when making a measurement on the quantum state <math>\rho</math> is given by: | ||
<math display="block">p(i) = \operatorname{tr}(\rho F_i),</math> | |||
where <math>\operatorname{tr}</math> is the ] operator. This is the POVM version of the Born rule. When the quantum state being measured is a pure state <math>|\psi\rangle</math> this formula reduces to: | where <math>\operatorname{tr}</math> is the ] operator. This is the POVM version of the Born rule. When the quantum state being measured is a pure state <math>|\psi\rangle</math> this formula reduces to: | ||
⚫ | <math display="block">p(i) = \operatorname{tr}\big(|\psi\rangle\langle\psi| F_i\big) = \langle\psi|F_i|\psi\rangle.</math> | ||
⚫ | The Born rule, together with the ] of the time evolution operator <math>e^{-i\hat{H}t}</math> (or, equivalently, the ] <math>\hat{H}</math> being ]), implies the ] of the theory: a wave function that is time-evolved by a unitary operator will remain properly normalized. (In the more general case where one considers the time evolution of a ], proper normalization is ensured by requiring that the time evolution is a ].) | ||
⚫ | |||
⚫ | The Born rule, together with the ] of the time evolution operator <math>e^{-i\hat{H}t}</math> (or, equivalently, the ] <math>\hat{H}</math> being ]), implies the ] of the theory |
||
== Application == | |||
Given a one-qubit state <math>|\psi\rangle = \alpha |0\rangle + \beta |1\rangle</math>, the Born rule states that the probability of measuring the state to be 0 is <math>|\alpha|^2</math> and the probability of measuring the state to be 1 is <math>|\beta|^2</math>. | |||
Of course, this rule works for multi-qubit states as well. For example, the probability of measuring the state <math>|\psi\rangle = \alpha |00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle</math> to be 00 is <math>|\alpha|^2</math>. | |||
Often times, it is useful to ask for the probability of measuring a specific qubit to be in a certain state, rather than that of the entire system. Consider the three-qubit state <math>|\psi\rangle = \alpha|000\rangle + \beta|010\rangle + \gamma|101\rangle + \delta|110\rangle</math>. Suppose we would like to know the probability of measuring the second qubit to be 0. | |||
The most straightforward way of solving this problem is to find the probability of measuring each state. That is, with probability <math>|\alpha|^2</math> 000 is measured, with probability <math>|\beta|^2</math> 010 is measured, and so on. Then, since the outcomes are mutually exclusive, the probability of measuring the second qubit to be 0 is simply the sum of the probabilities of the states whose seconds qubits are 0. In this case, the probability would be <math>|\alpha|^2 + |\gamma|^2</math>. | |||
There is, however, a more refined way of representing the process above. Some university courses on quantum computing call this method the "Generalized Born Rule," although it directly follows as a consequence of the regular Born rule. The first observation to make is that notationally, we can swap the position of the second and third qubits, since the order we write the qubits is simply a matter of notation. Thus, we have | |||
<math> | |||
\begin{align} | |||
|\psi\rangle &= \alpha|000\rangle + \beta|010\rangle + \gamma|101\rangle + \delta|110\rangle \\ | |||
&= \alpha|000\rangle + \beta|001\rangle + \gamma|110\rangle + \delta|101\rangle &\text{swap positions of 2nd and 3rd qubits} \\ | |||
&= (\alpha|00\rangle + \gamma|11\rangle)|0\rangle + (\beta|00\rangle + \delta|10\rangle)|1\rangle &\text{factor last qubit out} | |||
\end{align} | |||
</math> | |||
By factoring out what used to be the second qubit, we can now apply the "generalized Born rule," which tells us that the qubit will be 0 with probability <math>|\alpha|^2 + |\gamma|^2</math> and 1 with probability <math>|\beta|^2 + \delta|^2</math>. The correctness of this procedure can be immediately verified, since the math is exactly the same as the straightforward approach given above; this procedure simply makes the process easier to reason about and present. | |||
The "generalized Born rule" also of course works when finding the probability of measuring multiple qubits to be in a given state, sometimes referred to as the "multi-qubit generalization of the Generalized Born Rule." Suppose the question instead asked to find the probability of measuring the last two qubits to be 10. Then, we would have | |||
<math> | |||
\begin{align} | |||
|\psi\rangle &= \alpha|000\rangle + \beta|010\rangle + \gamma|101\rangle + \delta|110\rangle \\ | |||
&= \alpha|0\rangle|00\rangle + \gamma|1\rangle|01\rangle + (\beta|0\rangle + \delta|1\rangle)|10\rangle \\ | |||
\end{align} | |||
</math> | |||
Applying the multi-qubit generalization of the generalized Born rule gives us that the probability of measuring the last two qubits to be 10 is <math>|\beta|^2 + |\delta|^2</math>. | |||
Now suppose the problem states that the first qubit has already been measured to be 1. It asks now, what is the probability of measuring the last qubit to be 1. To solve this question, first re-arrange the expression to isolate the first qubit: | |||
<math> | |||
\begin{align} | |||
|\psi\rangle &= \alpha|000\rangle + \beta|010\rangle + \gamma|101\rangle + \delta|110\rangle \\ | |||
&= |0\rangle(\alpha|00\rangle + \beta|10\rangle) + |1\rangle(\gamma|01\rangle + \delta|10\rangle) | |||
\end{align} | |||
</math> | |||
Then, since 1 has already been measured, the state collapses to the following re-normalized state | |||
<math> | |||
\begin{align} | |||
|\psi'\rangle &= \frac{1}{\sqrt{|\gamma|^2 + |\delta|^2}}|1\rangle(\gamma|01\rangle + \delta|10\rangle) \\ | |||
&= \frac{1}{\sqrt{|\gamma|^2 + |\delta|^2}} \gamma|10\rangle|1\rangle + \delta|11\rangle|0\rangle | |||
\end{align} | |||
</math> | |||
Thus Born rule tells us that the last qubit is measured as 1 with probability <math>\frac{|\gamma|^2}{|\gamma|^2 + |\delta|^2}</math> | |||
== Generalization == | |||
Regular Born rule can be generalized as follows: given a state <math>\psi</math> of n qubits | |||
<math>|\psi\rang _n = \sum _{0 \leq n < 2^n} \alpha _x |x\rang _n</math>, | |||
the probability of getting the measurement result <math>x</math> is | |||
<math>p(x)=|\alpha _x|^2</math>.<ref name=":0">{{Cite book |last=Mermin |first=N. David |url=https://www.worldcat.org/title/137221653 |title=Quantum computer science: an introduction |date=2007 |publisher=Cambridge University Press |isbn=978-0-521-87658-2 |location=Cambridge |oclc=137221653}}</ref> | |||
The Born rule provides a connection between the amplitudes of the states <math>|x\rang _n</math> with the measurement result. Note however that the ] results themselves are simply the state <math>|x\rang _n</math> and no amplitude information is included. Similarly, the original state <math>|\psi\rang _n</math> ] to the measurement result <math>| x \rang _n</math> with no amplitude information <math>\alpha _x</math>associated. After measurement, the amplitude information is only encoded in the probability of getting certain results as shown by the Born rule. | |||
The generalized Born rule can be formulated as follows: any state of <math>n+1</math> qubits can be represented as the decomposition | |||
<math>|\psi\rang _{n+1} = \alpha_0 |0\rang |\phi_0\rang _n + \alpha_1 |1\rang |\phi_1\rang_n</math> where <math> |\alpha_0|^2 + |\alpha_1|^2 =1</math>, <math>|\phi_0\rang_n</math> and <math>|\phi_1\rang_n</math> are normalized by not necessarily orthogonal, | |||
and the states <math>|\phi_0\rang_n</math> and <math>|\phi_1\rang_n</math> are given by | |||
<math>|\phi_0\rang_n = (1/ \alpha_0)\sum_{x=0}^{2^n-1} \gamma(x)|x\rang_n</math> and <math>|\phi_1\rang_n = (1/ \alpha_1)\sum_{x=0}^{2^n-1} \gamma(2^n + x)|x\rang _n</math> where <math>\alpha_0^2=\sum_{x=0}^{2^n-1}|\gamma(x)|^2</math> and <math>\alpha_1^2=\sum_{x=0}^{2^n-1}|\gamma(2^n + x)|^2</math> | |||
the probability of getting state <math>|x\rang</math> after performing 1-qubit measurement on the separated out qubit is | |||
<math>p(x)=|\alpha _x|^2</math>.<ref name=":0" /> | |||
An even more general version of the Born rule states the probability of acquiring certain result when performing <math>m</math>-qubit measurement: the general state of <math>m+n</math> qubits can be written as | |||
<math>|\psi\rang_{m_n} = \sum_{x=0}^{2^m}\alpha_x|x\rang_m|\phi_x\rang_n</math> where <math>\sum_x|\alpha_x|^2=1</math> and <math>|\phi_x\rang_n</math> are normalized by not necessarily orthogonal, | |||
and the probability of getting state <math>|x\rang_m</math> after performing <math>m</math>-qubit measurement on the separated out qubits is | |||
<math>p(x)=|\alpha _x|^2</math>. | |||
After the measurement, the state of all <math>m+n</math> qubits becomes <math>|x\rang_m|\phi_x\rang_n</math>.<ref name=":0" /> | |||
== History == | == History == | ||
Line 154: | Line 67: | ||
|pages=52–55 | |pages=52–55 | ||
}} | }} | ||
</ref> In this paper, Born solves the ] for a scattering problem and, inspired by ] and ] for the ],<ref name=Nobel> | </ref> In this paper, Born solves the ] for a scattering problem and, inspired by ] and ] for the ],<ref name=Nobel> | ||
{{cite web | {{cite web | ||
|url=https://www.nobelprize.org/uploads/2018/06/born-lecture.pdf | |url=https://www.nobelprize.org/uploads/2018/06/born-lecture.pdf | ||
Line 166: | Line 79: | ||
|access-date=7 November 2018 | |access-date=7 November 2018 | ||
|quote=Again an idea of Einstein's gave me the lead. He had tried to make the duality of particles - light quanta or photons - and waves comprehensible by interpreting the square of the optical wave amplitudes as probability density for the occurrence of photons. This concept could at once be carried over to the psi-function: |psi|<sup>2</sup> ought to represent the probability density for electrons (or other particles). | |quote=Again an idea of Einstein's gave me the lead. He had tried to make the duality of particles - light quanta or photons - and waves comprehensible by interpreting the square of the optical wave amplitudes as probability density for the occurrence of photons. This concept could at once be carried over to the psi-function: |psi|<sup>2</sup> ought to represent the probability density for electrons (or other particles). | ||
}}</ref> concludes, in a footnote, that the Born rule gives the only possible interpretation of the solution. |
}}</ref> concludes, in a footnote, that the Born rule gives the only possible interpretation of the solution. (The main body of the article says that the amplitude "gives the probability" , while the footnote added in proof says that the probability is proportional to the square of its magnitude.) In 1954, together with ], Born was awarded the ] for this and other work.<ref name=Nobel/> ] discussed the application of ] to Born's rule in his 1932 book.<ref name=Grundlagen> | ||
{{cite book | {{cite book | ||
|last=Neumann (von) | |last=Neumann (von) | ||
Line 185: | Line 98: | ||
] shows that the Born rule can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of ]. ] first proved the theorem in 1957,<ref name="gleason1957">{{cite journal |first=Andrew M. |author-link=Andrew M. Gleason |year = 1957 |title = Measures on the closed subspaces of a Hilbert space |url = http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050 |journal = ] |volume = 6 |issue=4 |pages = 885–893 |doi=10.1512/iumj.1957.6.56050 |mr=0096113 |last = Gleason |doi-access = free}}</ref> prompted by a question posed by ].<ref>{{Cite journal |last=Mackey |first=George W. |author-link=George Mackey |title=Quantum Mechanics and Hilbert Space |journal=] |year=1957 |volume=64 |number=8P2 |pages=45–57 |doi=10.1080/00029890.1957.11989120 |jstor=2308516}}</ref><ref name="chernoff2009">{{Cite journal|last=Chernoff |first=Paul R. |author-link=Paul Chernoff |title=Andy Gleason and Quantum Mechanics |date=November 2009 |journal=] |volume=56 |number=10 |pages=1253–1259 |url=https://www.ams.org/notices/200910/rtx091001236p.pdf}}</ref> This theorem was historically significant for the role it played in showing that wide classes of ] are inconsistent with quantum physics.<ref name="mermin1993">{{Cite journal |last=Mermin |first=N. David |author-link=David Mermin |date=1993-07-01 |title=Hidden variables and the two theorems of John Bell |journal=] |volume=65 |issue=3 |pages=803–815 |doi=10.1103/RevModPhys.65.803 |bibcode=1993RvMP...65..803M |arxiv=1802.10119 |s2cid=119546199}}</ref> | ] shows that the Born rule can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of ]. ] first proved the theorem in 1957,<ref name="gleason1957">{{cite journal |first=Andrew M. |author-link=Andrew M. Gleason |year = 1957 |title = Measures on the closed subspaces of a Hilbert space |url = http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050 |journal = ] |volume = 6 |issue=4 |pages = 885–893 |doi=10.1512/iumj.1957.6.56050 |mr=0096113 |last = Gleason |doi-access = free}}</ref> prompted by a question posed by ].<ref>{{Cite journal |last=Mackey |first=George W. |author-link=George Mackey |title=Quantum Mechanics and Hilbert Space |journal=] |year=1957 |volume=64 |number=8P2 |pages=45–57 |doi=10.1080/00029890.1957.11989120 |jstor=2308516}}</ref><ref name="chernoff2009">{{Cite journal|last=Chernoff |first=Paul R. |author-link=Paul Chernoff |title=Andy Gleason and Quantum Mechanics |date=November 2009 |journal=] |volume=56 |number=10 |pages=1253–1259 |url=https://www.ams.org/notices/200910/rtx091001236p.pdf}}</ref> This theorem was historically significant for the role it played in showing that wide classes of ] are inconsistent with quantum physics.<ref name="mermin1993">{{Cite journal |last=Mermin |first=N. David |author-link=David Mermin |date=1993-07-01 |title=Hidden variables and the two theorems of John Bell |journal=] |volume=65 |issue=3 |pages=803–815 |doi=10.1103/RevModPhys.65.803 |bibcode=1993RvMP...65..803M |arxiv=1802.10119 |s2cid=119546199}}</ref> | ||
Several other researchers have also tried to derive the Born rule from more basic principles. |
Several other researchers have also tried to derive the Born rule from more basic principles. A number of derivations have been proposed in the context of the ]. These include the decision-theory approach pioneered by ]<ref>{{cite journal |last1=Deutsch |first1=David |author-link=David Deutsch |title=Quantum Theory of Probability and Decisions |journal=Proceedings of the Royal Society A |date=8 August 1999 |volume=455 |issue=1988 |pages=3129–3137 |doi=10.1098/rspa.1999.0443 |arxiv=quant-ph/9906015 |bibcode=1999RSPSA.455.3129D |s2cid=5217034 |url=https://royalsocietypublishing.org/doi/10.1098/rspa.1999.0443 |access-date=December 5, 2022 |ref=deutsch}}</ref> and later developed by ]<ref>{{cite journal |last1=Greaves |first1=Hilary |title=Probability in the Everett Interpretation |journal=Philosophy Compass |date=21 December 2006 |volume=2 |issue=1 |pages=109–128 |doi=10.1111/j.1747-9991.2006.00054.x |url=http://philsci-archive.pitt.edu/3103/2/pitei.pdf |access-date=6 December 2022 |ref=greaves |archive-date= |archive-url= |url-status= }}</ref> and David Wallace;<ref>{{Cite book|last=Wallace |first=David |chapter=How to Prove the Born Rule |title=Many Worlds? Everett, Quantum Theory, & Reality |pages=227–263 |publisher=Oxford University Press |year=2010 |isbn=978-0-191-61411-8 |editor-first1=Adrian |editor-last1=Kent |editor-first2=David |editor-last2=Wallace |editor-first3=Jonathan |editor-last3=Barrett |editor-first4=Simon |editor-last4=Saunders |arxiv=0906.2718|ref=wallace}}</ref> and an "envariance" approach by ].<ref>{{cite journal |last1=Zurek |first1=Wojciech H. |title=Probabilities from entanglement, Born's rule from envariance |journal=Physical Review A |date=25 May 2005 |volume=71 |page=052105 |doi=10.1103/PhysRevA.71.052105 |arxiv=quant-ph/0405161 |url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.71.052105 |access-date=6 December 2022 |ref=zurek}}</ref> These proofs have, however, been criticized as circular.<ref>{{cite book |first=N. P. |last=Landsman |chapter-url=https://www.math.ru.nl/~landsman/Born.pdf |quote=The conclusion seems to be that no generally accepted derivation of the Born rule has been given to date, but this does not imply that such a derivation is impossible in principle |chapter=The Born rule and its interpretation |title=Compendium of Quantum Physics |editor-first=F. |editor-last=Weinert |editor2-first=K. |editor2-last=Hentschel |editor3-first=D. |editor3-last=Greenberger |editor4-first=B. |editor4-last=Falkenburg |publisher=Springer |year=2008 |isbn=978-3-540-70622-9 }}</ref> In 2018, an approach based on self-locating uncertainty was suggested by Charles Sebens and ];<ref>{{cite journal |last1=Sebens |first1=Charles T. |last2=Carroll |first2=Sean M. |date=March 2018 |title=Self-Locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics |journal=The British Journal for the Philosophy of Science |volume=69 |issue=1 |pages=25–74 |doi=10.1093/bjps/axw004 |ref=sebens-carroll|doi-access=free |arxiv=1405.7577 }}</ref> this has also been criticized.<ref>{{cite book|first=Lev |last=Vaidman |author-link=Lev Vaidman |chapter=Derivations of the Born Rule |title=Quantum, Probability, Logic |series=Jerusalem Studies in Philosophy and History of Science |publisher=Springer |year=2020 |pages=567–584 |isbn=978-3-030-34315-6 |doi=10.1007/978-3-030-34316-3_26 |s2cid=156046920 |chapter-url=https://philsci-archive.pitt.edu/15943/1/BornRule24-4-19.pdf}}</ref> ], in 2021, produced a branch counting derivation of the Born rule. The crucial feature of this approach is to define the branches so that they all have the same magnitude or ]. The ratios of the numbers of branches thus defined give the probabilities of the various outcomes of a measurement, in accordance with the Born rule.<ref name=BranchCounting>{{Cite journal|last=Saunders|first=Simon|author-link=Simon Saunders|date=24 November 2021|title=Branch-counting in the Everett interpretation of quantum mechanics.|journal=Proceedings of the Royal Society A|language=en|volume=477|issue=2255|pages=1–22 |doi=10.1098/rspa.2021.0600|issn=|arxiv=2201.06087|bibcode=2021RSPSA.47710600S |s2cid=244491576 }}</ref> | ||
In 2019, Lluís Masanes, Thomas Galley, and Markus Müller proposed a derivation based on postulates including the possibility of state estimation.<ref>{{cite journal |last1=Masanes |first1=Lluís |last2=Galley |first2=Thomas |last3=Müller |first3=Markus |url= |title=The measurement postulates of quantum mechanics are operationally redundant |journal=] |volume=10 |year=2019 |issue=1 |page=1361 |doi=10.1038/s41467-019-09348-x |pmid=30911009 |pmc=6434053 |arxiv=1811.11060 |bibcode=2019NatCo..10.1361M }}</ref><ref>{{cite web |last=Ball |first=Philip |author-link=Philip Ball |date=February 13, 2019 |title=Mysterious Quantum Rule Reconstructed From Scratch |url=https://www.quantamagazine.org/the-born-rule-has-been-derived-from-simple-physical-principles-20190213/ |url-status=live |website=]|archive-url=https://web.archive.org/web/20190213180115/https://www.quantamagazine.org/the-born-rule-has-been-derived-from-simple-physical-principles-20190213/ |archive-date=2019-02-13 }}</ref> | In 2019, Lluís Masanes, Thomas Galley, and Markus Müller proposed a derivation based on postulates including the possibility of state estimation.<ref>{{cite journal |last1=Masanes |first1=Lluís |last2=Galley |first2=Thomas |last3=Müller |first3=Markus |url= |title=The measurement postulates of quantum mechanics are operationally redundant |journal=] |volume=10 |year=2019 |issue=1 |page=1361 |doi=10.1038/s41467-019-09348-x |pmid=30911009 |pmc=6434053 |arxiv=1811.11060 |bibcode=2019NatCo..10.1361M }}</ref><ref>{{cite web |last=Ball |first=Philip |author-link=Philip Ball |date=February 13, 2019 |title=Mysterious Quantum Rule Reconstructed From Scratch |url=https://www.quantamagazine.org/the-born-rule-has-been-derived-from-simple-physical-principles-20190213/ |url-status=live |website=]|archive-url=https://web.archive.org/web/20190213180115/https://www.quantamagazine.org/the-born-rule-has-been-derived-from-simple-physical-principles-20190213/ |archive-date=2019-02-13 }}</ref> |
Latest revision as of 17:54, 21 November 2024
Calculation rule in quantum mechanics Not to be confused with Cauchy–Born rule or Born approximation.Part of a series of articles about |
Quantum mechanics |
---|
Schrödinger equation |
Background |
Fundamentals |
Experiments |
Formulations |
Equations |
Interpretations |
Advanced topics |
Scientists
|
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position. It was formulated and published by German physicist Max Born in July, 1926.
Details
The Born rule states that an observable, measured in a system with normalized wave function (see Bra–ket notation), corresponds to a self-adjoint operator whose spectrum is discrete if:
- the measured result will be one of the eigenvalues of , and
- the probability of measuring a given eigenvalue will equal , where is the projection onto the eigenspace of corresponding to .
- (In the case where the eigenspace of corresponding to is one-dimensional and spanned by the normalized eigenvector , is equal to , so the probability is equal to . Since the complex number is known as the probability amplitude that the state vector assigns to the eigenvector , it is common to describe the Born rule as saying that probability is equal to the amplitude-squared (really the amplitude times its own complex conjugate). Equivalently, the probability can be written as .)
In the case where the spectrum of is not wholly discrete, the spectral theorem proves the existence of a certain projection-valued measure (PVM) , the spectral measure of . In this case:
- the probability that the result of the measurement lies in a measurable set is given by .
For example, a single structureless particle can be described by a wave function that depends upon position coordinates and a time coordinate . The Born rule implies that the probability density function for the result of a measurement of the particle's position at time is: The Born rule can also be employed to calculate probabilities (for measurements with discrete sets of outcomes) or probability densities (for continuous-valued measurements) for other observables, like momentum, energy, and angular momentum.
In some applications, this treatment of the Born rule is generalized using positive-operator-valued measures (POVM). A POVM is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of von Neumann measurements and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurements described by self-adjoint observables. In rough analogy, a POVM is to a PVM what a mixed state is to a pure state. Mixed states are needed to specify the state of a subsystem of a larger system (see purification of quantum state); analogously, POVMs are necessary to describe the effect on a subsystem of a projective measurement performed on a larger system. POVMs are the most general kind of measurement in quantum mechanics and can also be used in quantum field theory. They are extensively used in the field of quantum information.
In the simplest case, of a POVM with a finite number of elements acting on a finite-dimensional Hilbert space, a POVM is a set of positive semi-definite matrices on a Hilbert space that sum to the identity matrix,:
The POVM element is associated with the measurement outcome , such that the probability of obtaining it when making a measurement on the quantum state is given by:
where is the trace operator. This is the POVM version of the Born rule. When the quantum state being measured is a pure state this formula reduces to:
The Born rule, together with the unitarity of the time evolution operator (or, equivalently, the Hamiltonian being Hermitian), implies the unitarity of the theory: a wave function that is time-evolved by a unitary operator will remain properly normalized. (In the more general case where one considers the time evolution of a density matrix, proper normalization is ensured by requiring that the time evolution is a trace-preserving, completely positive map.)
History
The Born rule was formulated by Born in a 1926 paper. In this paper, Born solves the Schrödinger equation for a scattering problem and, inspired by Albert Einstein and Einstein's probabilistic rule for the photoelectric effect, concludes, in a footnote, that the Born rule gives the only possible interpretation of the solution. (The main body of the article says that the amplitude "gives the probability" , while the footnote added in proof says that the probability is proportional to the square of its magnitude.) In 1954, together with Walther Bothe, Born was awarded the Nobel Prize in Physics for this and other work. John von Neumann discussed the application of spectral theory to Born's rule in his 1932 book.
Derivation from more basic principles
Gleason's theorem shows that the Born rule can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality. Andrew M. Gleason first proved the theorem in 1957, prompted by a question posed by George W. Mackey. This theorem was historically significant for the role it played in showing that wide classes of hidden-variable theories are inconsistent with quantum physics.
Several other researchers have also tried to derive the Born rule from more basic principles. A number of derivations have been proposed in the context of the many-worlds interpretation. These include the decision-theory approach pioneered by David Deutsch and later developed by Hilary Greaves and David Wallace; and an "envariance" approach by Wojciech H. Zurek. These proofs have, however, been criticized as circular. In 2018, an approach based on self-locating uncertainty was suggested by Charles Sebens and Sean M. Carroll; this has also been criticized. Simon Saunders, in 2021, produced a branch counting derivation of the Born rule. The crucial feature of this approach is to define the branches so that they all have the same magnitude or 2-norm. The ratios of the numbers of branches thus defined give the probabilities of the various outcomes of a measurement, in accordance with the Born rule.
In 2019, Lluís Masanes, Thomas Galley, and Markus Müller proposed a derivation based on postulates including the possibility of state estimation.
It has also been claimed that pilot-wave theory can be used to statistically derive the Born rule, though this remains controversial.
Within the QBist interpretation of quantum theory, the Born rule is seen as an extension of the normative principle of coherence, which ensures self-consistency of probability assessments across a whole set of such assessments. It can be shown that an agent who thinks they are gambling on the outcomes of measurements on a sufficiently quantum-like system but refuses to use the Born rule when placing their bets is vulnerable to a Dutch book.
References
- Hall, Brian C. (2013). "Quantum Theory for Mathematicians". Graduate Texts in Mathematics. New York, NY: Springer New York. pp. 14–15, 58. doi:10.1007/978-1-4614-7116-5. ISBN 978-1-4614-7115-8. ISSN 0072-5285.
- Peres, Asher; Terno, Daniel R. (2004). "Quantum information and relativity theory". Reviews of Modern Physics. 76 (1): 93–123. arXiv:quant-ph/0212023. Bibcode:2004RvMP...76...93P. doi:10.1103/RevModPhys.76.93. S2CID 7481797.
- Nielsen, Michael A.; Chuang, Isaac L. (2000). Quantum Computation and Quantum Information (1st ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-63503-5. OCLC 634735192.
- Born, Max (1926). "Zur Quantenmechanik der Stoßvorgänge" [On the quantum mechanics of collisions]. Zeitschrift für Physik. 37 (12): 863–867. Bibcode:1926ZPhy...37..863B. doi:10.1007/BF01397477. S2CID 119896026. Reprinted as Born, Max (1983). "On the quantum mechanics of collisions". In Wheeler, J. A.; Zurek, W. H. (eds.). Quantum Theory and Measurement. Princeton University Press. pp. 52–55. ISBN 978-0-691-08316-2.
- ^
Born, Max (11 December 1954). "The statistical interpretation of quantum mechanics" (PDF). www.nobelprize.org. nobelprize.org. Retrieved 7 November 2018.
Again an idea of Einstein's gave me the lead. He had tried to make the duality of particles - light quanta or photons - and waves comprehensible by interpreting the square of the optical wave amplitudes as probability density for the occurrence of photons. This concept could at once be carried over to the psi-function: |psi| ought to represent the probability density for electrons (or other particles).
- Neumann (von), John (1932). Mathematische Grundlagen der Quantenmechanik [Mathematical Foundations of Quantum Mechanics]. Translated by Beyer, Robert T. Princeton University Press (published 1996). ISBN 978-0691028934.
- Gleason, Andrew M. (1957). "Measures on the closed subspaces of a Hilbert space". Indiana University Mathematics Journal. 6 (4): 885–893. doi:10.1512/iumj.1957.6.56050. MR 0096113.
- Mackey, George W. (1957). "Quantum Mechanics and Hilbert Space". The American Mathematical Monthly. 64 (8P2): 45–57. doi:10.1080/00029890.1957.11989120. JSTOR 2308516.
- Chernoff, Paul R. (November 2009). "Andy Gleason and Quantum Mechanics" (PDF). Notices of the AMS. 56 (10): 1253–1259.
- Mermin, N. David (1993-07-01). "Hidden variables and the two theorems of John Bell". Reviews of Modern Physics. 65 (3): 803–815. arXiv:1802.10119. Bibcode:1993RvMP...65..803M. doi:10.1103/RevModPhys.65.803. S2CID 119546199.
- Deutsch, David (8 August 1999). "Quantum Theory of Probability and Decisions". Proceedings of the Royal Society A. 455 (1988): 3129–3137. arXiv:quant-ph/9906015. Bibcode:1999RSPSA.455.3129D. doi:10.1098/rspa.1999.0443. S2CID 5217034. Retrieved December 5, 2022.
- Greaves, Hilary (21 December 2006). "Probability in the Everett Interpretation" (PDF). Philosophy Compass. 2 (1): 109–128. doi:10.1111/j.1747-9991.2006.00054.x. Retrieved 6 December 2022.
- Wallace, David (2010). "How to Prove the Born Rule". In Kent, Adrian; Wallace, David; Barrett, Jonathan; Saunders, Simon (eds.). Many Worlds? Everett, Quantum Theory, & Reality. Oxford University Press. pp. 227–263. arXiv:0906.2718. ISBN 978-0-191-61411-8.
- Zurek, Wojciech H. (25 May 2005). "Probabilities from entanglement, Born's rule from envariance". Physical Review A. 71: 052105. arXiv:quant-ph/0405161. doi:10.1103/PhysRevA.71.052105. Retrieved 6 December 2022.
- Landsman, N. P. (2008). "The Born rule and its interpretation" (PDF). In Weinert, F.; Hentschel, K.; Greenberger, D.; Falkenburg, B. (eds.). Compendium of Quantum Physics. Springer. ISBN 978-3-540-70622-9.
The conclusion seems to be that no generally accepted derivation of the Born rule has been given to date, but this does not imply that such a derivation is impossible in principle
- Sebens, Charles T.; Carroll, Sean M. (March 2018). "Self-Locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics". The British Journal for the Philosophy of Science. 69 (1): 25–74. arXiv:1405.7577. doi:10.1093/bjps/axw004.
- Vaidman, Lev (2020). "Derivations of the Born Rule" (PDF). Quantum, Probability, Logic. Jerusalem Studies in Philosophy and History of Science. Springer. pp. 567–584. doi:10.1007/978-3-030-34316-3_26. ISBN 978-3-030-34315-6. S2CID 156046920.
- Saunders, Simon (24 November 2021). "Branch-counting in the Everett interpretation of quantum mechanics". Proceedings of the Royal Society A. 477 (2255): 1–22. arXiv:2201.06087. Bibcode:2021RSPSA.47710600S. doi:10.1098/rspa.2021.0600. S2CID 244491576.
- Masanes, Lluís; Galley, Thomas; Müller, Markus (2019). "The measurement postulates of quantum mechanics are operationally redundant". Nature Communications. 10 (1): 1361. arXiv:1811.11060. Bibcode:2019NatCo..10.1361M. doi:10.1038/s41467-019-09348-x. PMC 6434053. PMID 30911009.
- Ball, Philip (February 13, 2019). "Mysterious Quantum Rule Reconstructed From Scratch". Quanta Magazine. Archived from the original on 2019-02-13.
- Goldstein, Sheldon (2017). "Bohmian Mechanics". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
- DeBrota, John B.; Fuchs, Christopher A.; Pienaar, Jacques L.; Stacey, Blake C. (2021). "Born's rule as a quantum extension of Bayesian coherence". Phys. Rev. A. 104 (2). 022207. arXiv:2012.14397. Bibcode:2021PhRvA.104b2207D. doi:10.1103/PhysRevA.104.022207.
External links
- Quantum Mechanics Not in Jeopardy: Physicists Confirm a Decades-Old Key Principle Experimentally ScienceDaily (July 23, 2010)