Misplaced Pages

Pluto: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 06:57, 11 November 2024 view sourceJellyman1129 (talk | contribs)14 editsNo edit summaryTags: Reverted Visual edit Mobile edit Mobile web edit← Previous edit Latest revision as of 23:46, 31 December 2024 view source Stephan Leeds (talk | contribs)Extended confirmed users, IP block exemptions31,155 edits Orcus: “second” is not so complex as to justify resorting to notation in figures 
(15 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{Short description|Dwarf planet}} {{Short description|Dwarf planet}}
{{About|the dwarf planet|the deity|Pluto (mythology)|other uses|Pluto (disambiguation)}} {{About|the dwarf planet|the deity|Pluto (mythology)|other uses|Pluto (disambiguation)}}
{{Featured article}}
{{Pp-semi-indef}} {{Pp-semi-indef}}
{{Pp-move}} {{Pp-move}}
{{Featured article}}
{{Use American English|date=August 2024}} {{Use American English|date=August 2024}}
{{Use mdy dates|date=August 2024}} {{Use mdy dates|date=August 2024}}
{{Infobox planet {{Infobox planet
| name = Pluto | name = 134340 Pluto
| minorplanet = no | minorplanet = yes
| symbol = ] or ]<!--Do not delete the bident symbol; it is not merely astrological. NASA has used it; moreover, the IAU specifically discourages use of symbols--> | symbol = ] or ]<!--Do not delete the bident symbol; it is not merely astrological. NASA has used it; moreover, the IAU specifically discourages use of symbols-->
| image = Pluto in True Color - High-Res.jpg | image = Pluto in True Color - High-Res.jpg
| caption = Pluto, imaged by the '']'' spacecraft, July 2015.{{efn|name = caption|This photograph was taken by the ] telescope aboard '']'' on July 14, 2015, from a distance of {{convert|35,445|km|mi|abbr=on}}}} The most prominent feature in the image, the bright, youthful plains of ] and ], can be seen at right. It contrasts the darker, cratered terrain of ] at lower left | caption = Pluto, imaged by the '']'' spacecraft, July 2015.{{efn|name = caption|This photograph was taken by the ] telescope aboard '']'' on July 14, 2015, from a distance of {{convert|35,445|km|mi|abbr=on}}}} The most prominent feature in the image, the bright, youthful plains of ] and ], can be seen at right. It contrasts the darker, cratered terrain of ] at lower left.
| background = PapayaWhip | background = PapayaWhip
| discoverer = ] | discoverer = ]
Line 85: Line 85:
* −6 d, 9 h, 17&nbsp;m, 36 s * −6 d, 9 h, 17&nbsp;m, 36 s
}} }}
| rot_velocity = {{cvt|47.18|km/h|m/s|disp=out}}{{fact|date=July 2024}} | rot_velocity = {{cvt|47.18|km/h|m/s|disp=out}}{{citation needed|date=July 2024}}
| axial_tilt = {{val|122.53|u=°}} (to orbit)<ref name="Pluto Fact Sheet" /> | axial_tilt = {{val|122.53|u=°}} (to orbit)<ref name="Pluto Fact Sheet" />
| right_asc_north_pole = 132.993°<ref name="Archinal" /> | right_asc_north_pole = 132.993°<ref name="Archinal" />
Line 115: Line 115:
Pluto has ]: ], the largest, whose diameter is just over half that of Pluto; ]; ]; ]; and ]. Pluto and Charon are sometimes considered a ] because the ] of their orbits does not lie within either body, and they are ]. '']'' was the first spacecraft to visit Pluto and its moons, making a ] on July&nbsp;14,&nbsp;2015, and taking detailed measurements and observations. Pluto has ]: ], the largest, whose diameter is just over half that of Pluto; ]; ]; ]; and ]. Pluto and Charon are sometimes considered a ] because the ] of their orbits does not lie within either body, and they are ]. '']'' was the first spacecraft to visit Pluto and its moons, making a ] on July&nbsp;14,&nbsp;2015, and taking detailed measurements and observations.


Pluto was discovered in 1930 by ], making it by far the first known object in the Kuiper belt. It was immediately hailed as the ninth planet. In 2006, the ] (IAU) attempted to ]. Only a mere 2% voted to exclude dwarf planets such as Pluto. This was deemed by planetary astronomers as a violation of the scientific method. They continue to consider Pluto and other dwarf planets to be planets. Pluto was discovered in 1930 by ], making it by far the first known object in the Kuiper belt. It was immediately hailed as the ]. However,<ref name=T&M/>{{rp|27}} its planetary status was questioned when it was found to be much smaller than expected. These doubts increased following the discovery of additional objects in the Kuiper belt starting in the 1990s, and particularly the more massive ] object ] in 2005. In 2006, the ] (IAU) formally ] to exclude dwarf planets such as Pluto. Many planetary astronomers, however, continue to consider Pluto and other dwarf planets to be planets.


== History == == History ==
Line 223: Line 223:
There has been some resistance within the astronomical community toward the reclassification, and in particular planetary scientists often continue to reject it, considering Pluto, Charon, and Eris to be planets for the same reason they do so for Ceres. In effect, this amounts to accepting only the second clause of the IAU definition.<ref name="geoff2006c" /><ref name="Ruibal-1999" /><ref name="Britt-2006" /> ], principal investigator with ]'s ''New Horizons'' mission to Pluto, derided the IAU resolution.<ref name="geoff2006a" /><ref name="newscientistspace" /> He also stated that because less than five percent of astronomers voted for it, the decision was not representative of the entire astronomical community.<ref name="newscientistspace" /> ], then at the Lowell Observatory, petitioned against the definition.<ref name="Buie2006 IAU response" /> Others have supported the IAU, for example ], the astronomer who discovered Eris.<ref name="Overbye2006" /> There has been some resistance within the astronomical community toward the reclassification, and in particular planetary scientists often continue to reject it, considering Pluto, Charon, and Eris to be planets for the same reason they do so for Ceres. In effect, this amounts to accepting only the second clause of the IAU definition.<ref name="geoff2006c" /><ref name="Ruibal-1999" /><ref name="Britt-2006" /> ], principal investigator with ]'s ''New Horizons'' mission to Pluto, derided the IAU resolution.<ref name="geoff2006a" /><ref name="newscientistspace" /> He also stated that because less than five percent of astronomers voted for it, the decision was not representative of the entire astronomical community.<ref name="newscientistspace" /> ], then at the Lowell Observatory, petitioned against the definition.<ref name="Buie2006 IAU response" /> Others have supported the IAU, for example ], the astronomer who discovered Eris.<ref name="Overbye2006" />


Public reception to the IAU decision was mixed. A resolution introduced in the ] facetiously called the IAU decision a "scientific heresy".<ref name="DeVore2006" /> The ] passed a resolution in honor of Clyde Tombaugh, the discoverer of Pluto and a longtime resident of that state, that declared that Pluto will always be considered a planet while in New Mexican skies and that March 13, 2007, was Pluto Planet Day.<ref name="Holden2007" /><ref name="Gutierrez2007" /> The ] passed a similar resolution in 2009 on the basis that Tombaugh was born in Illinois. The resolution asserted that Pluto was "unfairly downgraded to a 'dwarf' planet" by the IAU."<ref name="ILGA SR0046" /> Some members of the public have also rejected the change, citing the disagreement within the scientific community on the issue, or for sentimental reasons, maintaining that they have always known Pluto as a planet and will continue to do so regardless of the IAU decision.<ref name="Sapa-AP" /> In 2006, in its 17th annual words-of-the-year vote, the ] voted '']'' as the word of the year. To "pluto" is to "demote or devalue someone or something".<ref name="msnbc" /> Public reception to the IAU decision was mixed. A resolution introduced in the ] facetiously called the IAU decision a "scientific heresy".<ref name="DeVore2006" /> The ] passed a resolution in honor of Clyde Tombaugh, the discoverer of Pluto and a longtime resident of that state, that declared that Pluto will always be considered a planet while in New Mexican skies and that March 13, 2007, was Pluto Planet Day.<ref name="Holden2007" /><ref name="Gutierrez2007" /> The ] passed a similar resolution in 2009 on the basis that Tombaugh was born in Illinois. The resolution asserted that Pluto was "unfairly downgraded to a 'dwarf' planet" by the IAU."<ref name="ILGA SR0046" /> Some members of the public have also rejected the change, citing the disagreement within the scientific community on the issue, or for sentimental reasons, maintaining that they have always known Pluto as a planet and will continue to do so regardless of the IAU decision.<ref name="Sapa-AP" /> In 2006, in its 17th annual words-of-the-year vote, the ] voted '']'' as the word of the year. To "pluto" is to "demote or devalue someone or something".<ref name="msnbc" /> In April 2024, ] (where Pluto was first discovered in 1930) passed a law naming Pluto as the official state planet.<ref>{{cite web |last1=Sanchez |first1=Cameron |title=Pluto is a planet again — at least in Arizona |url=https://www.npr.org/2024/04/06/1243230463/pluto-was-discovered-at-an-arizona-observatory-it-might-be-named-the-state-plane |website=npr.org |publisher=NPR |access-date=April 12, 2024}}</ref>


Researchers on both sides of the debate gathered in August 2008, at the Johns Hopkins University ] for a conference that included back-to-back talks on the IAU definition of a planet.<ref name="Minkel2008" /> Entitled "The Great Planet Debate",<ref name="The Great Planet Debate" /> the conference published a post-conference press release indicating that scientists could not come to a consensus about the definition of planet.<ref name="PSIedu press release 2008-09-19" /> In June 2008, the IAU had announced in a press release that the term "]" would henceforth be used to refer to Pluto and other planetary-mass objects that have an orbital ] greater than that of Neptune, though the term has not seen significant use.<ref name="IAU0804" /><ref name="Discover 2009-JANp76" /><ref name="Science News, July 5, 2008 p. 7" /> Researchers on both sides of the debate gathered in August 2008, at the Johns Hopkins University ] for a conference that included back-to-back talks on the IAU definition of a planet.<ref name="Minkel2008" /> Entitled "The Great Planet Debate",<ref name="The Great Planet Debate" /> the conference published a post-conference press release indicating that scientists could not come to a consensus about the definition of planet.<ref name="PSIedu press release 2008-09-19" /> In June 2008, the IAU had announced in a press release that the term "]" would henceforth be used to refer to Pluto and other planetary-mass objects that have an orbital ] greater than that of Neptune, though the term has not seen significant use.<ref name="IAU0804" /><ref name="Discover 2009-JANp76" /><ref name="Science News, July 5, 2008 p. 7" />

In April 2024, ] (where Pluto was first discovered in 1930) passed a law naming Pluto as the official state planet.<ref>{{cite web |last1=Sanchez |first1=Cameron |title=Pluto is a planet again — at least in Arizona |url=https://www.npr.org/2024/04/06/1243230463/pluto-was-discovered-at-an-arizona-observatory-it-might-be-named-the-state-plane |website=npr.org |publisher=NPR |access-date=April 12, 2024}}</ref>


== Orbit == == Orbit ==
Line 255: Line 253:


===Orcus=== ===Orcus===
The 2nd-largest known ], ], has a diameter around 900&nbsp;km and is in a very similar orbit to that of Pluto. However, the orbits of Pluto and Orcus are out of phase, so that the two never approach each other. It has been termed the "anti-Pluto", and is named for the ]. The second-largest known ], ], has a diameter around 900&nbsp;km and is in a very similar orbit to that of Pluto. However, the orbits of Pluto and Orcus are out of phase, so that the two never approach each other. It has been termed the "anti-Pluto", and is named for the ].


== Rotation == == Rotation ==
Line 286: Line 284:


<gallery mode=packed heights=160> <gallery mode=packed heights=160>
File:Pluto-01 Stern 03 Pluto Color TXT.jpg|Multispectral Visual Imaging Camera image of Pluto in enhanced color to bring out differences in surface composition. File:Pluto-01 Stern 03 Pluto Color TXT.jpg|Multispectral Visual Imaging Camera image of Pluto in enhanced color to bring out differences in surface composition
File:Pluto_Charon_crater_map_Robbins_Dones_2023.jpg|Distribution of numerous impact craters and basins on both Pluto and Charon. The variation in density (with none found in ]) indicates a long history of varying geological activity. Precisely for this reason, the confidence of numerous craters on Pluto remain uncertain.<ref name="Robbins2023"/> The lack of craters on the left and right of each map is due to low-resolution coverage of those anti-encounter regions. File:Pluto_Charon_crater_map_Robbins_Dones_2023.jpg|Distribution of numerous impact craters and basins on both Pluto and Charon. The variation in density (with none found in ]) indicates a long history of varying geological activity. Precisely for this reason, the confidence of numerous craters on Pluto remain uncertain.<ref name="Robbins2023"/> The lack of craters on the left and right of each map is due to low-resolution coverage of those anti-encounter regions.
File:Pluto's Sputnik Planum geologic map (cropped).jpg|Geologic map of Sputnik Planitia and surroundings (]), with ] margins outlined in black File:Pluto's Sputnik Planum geologic map (cropped).jpg|Geologic map of Sputnik Planitia and surroundings (]), with ] margins outlined in black
Line 296: Line 294:
] ]
Pluto's density is {{val|1.853|0.004|u=g/cm3}}.<ref name="Brozovic2024"/> Because the decay of radioactive elements would eventually heat the ices enough for the rock to separate from them, scientists expect that Pluto's internal structure is differentiated, with the rocky material having settled into a dense ] surrounded by a ] of water ice. The pre–''New Horizons'' estimate for the diameter of the core is {{val|1,700|u=km}}, 70% of Pluto's diameter.<ref name="Hussmann2006" /> Pluto's density is {{val|1.853|0.004|u=g/cm3}}.<ref name="Brozovic2024"/> Because the decay of radioactive elements would eventually heat the ices enough for the rock to separate from them, scientists expect that Pluto's internal structure is differentiated, with the rocky material having settled into a dense ] surrounded by a ] of water ice. The pre–''New Horizons'' estimate for the diameter of the core is {{val|1,700|u=km}}, 70% of Pluto's diameter.<ref name="Hussmann2006" />
It is possible that such heating continues, creating a ] of liquid water {{nowrap|100 to 180 km}} thick at the core–mantle boundary.<ref name="Hussmann2006" /><ref name="pluto.jhuapl Inside Story" /><ref name="Sci Am 2017"> {{Webarchive|url=https://web.archive.org/web/20181226133924/https://www.scientificamerican.com/article/overlooked-ocean-worlds-fill-the-outer-solar-system/ |date=December 26, 2018 }}. John Wenz, ''Scientific American''. October 4, 2017.</ref> In September 2016, scientists at ] simulated the impact thought to have formed ], and showed that it might have been the result of liquid water upweling from below after the collision, implying the existence of a subsurface ocean at least 100&nbsp;km deep.<ref>{{cite magazine|title=An Incredibly Deep Ocean Could Be Hiding Beneath Pluto's Icy Heart|author=Samantha Cole|url=http://www.popsci.com/an-incredibly-deep-ocean-could-be-hiding-beneath-plutos-icy-heart|magazine=Popular Science|access-date=September 24, 2016|archive-date=September 27, 2016|archive-url=https://web.archive.org/web/20160927112125/http://www.popsci.com/an-incredibly-deep-ocean-could-be-hiding-beneath-plutos-icy-heart|url-status=live}}</ref> In June 2020, astronomers reported evidence that Pluto may have had a ], and consequently may have been ], when it was first formed.<ref name="INV-20200622">{{cite news |last=Rabie |first=Passant |title=New Evidence Suggests Something Strange and Surprising about Pluto - The findings will make scientists rethink the habitability of Kuiper Belt objects. |url=https://www.inverse.com/science/pluto-hot-star |date=June 22, 2020 |work=] |access-date=June 23, 2020 |archive-date=June 23, 2020 |archive-url=https://web.archive.org/web/20200623071829/https://www.inverse.com/science/pluto-hot-star |url-status=live }}</ref><ref name="NGS-20200622">{{cite journal |author=Bierson, Carver |display-authors=et al. |title=Evidence for a hot start and early ocean formation on Pluto |url=https://www.nature.com/articles/s41561-020-0595-0 |date=June 22, 2020 |journal=] |volume=769 |issue=7 |pages=468–472 |doi=10.1038/s41561-020-0595-0 |bibcode=2020NatGe..13..468B |s2cid=219976751 |access-date=June 23, 2020 |url-access=subscription |archive-date=June 22, 2020 |archive-url=https://web.archive.org/web/20200622201613/https://www.nature.com/articles/s41561-020-0595-0 |url-status=live }}</ref> In March 2022, a team of researchers proposed that the mountains ] and ] are actually a merger of many smaller cryovolcanic domes, suggesting a source of heat on the body at levels previously thought not possible.<ref>{{cite journal |title=Large-scale cryovolcanic resurfacing on Pluto |first=Kelsi N. |last=Singer |journal=] |date=March 29, 2022 |volume=13 |issue=1 |page=1542 |doi=10.1038/s41467-022-29056-3 |pmid=35351895 |pmc=8964750 |arxiv=2207.06557 |bibcode=2022NatCo..13.1542S }}</ref> It is possible that such heating continues, creating a ] of liquid water {{nowrap|100 to 180 km}} thick at the core–mantle boundary.<ref name="Hussmann2006" /><ref name="pluto.jhuapl Inside Story" /><ref name="Sci Am 2017"> {{Webarchive|url=https://web.archive.org/web/20181226133924/https://www.scientificamerican.com/article/overlooked-ocean-worlds-fill-the-outer-solar-system/ |date=December 26, 2018 }}. John Wenz, ''Scientific American''. October 4, 2017.</ref> In September 2016, scientists at ] simulated the impact thought to have formed ], and showed that it might have been the result of liquid water upweling from below after the collision, implying the existence of a subsurface ocean at least 100&nbsp;km deep.<ref>{{cite magazine|title=An Incredibly Deep Ocean Could Be Hiding Beneath Pluto's Icy Heart|author=Samantha Cole|url=http://www.popsci.com/an-incredibly-deep-ocean-could-be-hiding-beneath-plutos-icy-heart|magazine=Popular Science|access-date=September 24, 2016|archive-date=September 27, 2016|archive-url=https://web.archive.org/web/20160927112125/http://www.popsci.com/an-incredibly-deep-ocean-could-be-hiding-beneath-plutos-icy-heart|url-status=live}}</ref> In June 2020, astronomers reported evidence that Pluto may have had a ], and consequently may have been ], when it was first formed.<ref name="INV-20200622">{{cite news |last=Rabie |first=Passant |title=New Evidence Suggests Something Strange and Surprising about Pluto{{dash}}The findings will make scientists rethink the habitability of Kuiper Belt objects. |url=https://www.inverse.com/science/pluto-hot-star |date=June 22, 2020 |work=] |access-date=June 23, 2020 |archive-date=June 23, 2020 |archive-url=https://web.archive.org/web/20200623071829/https://www.inverse.com/science/pluto-hot-star |url-status=live }}</ref><ref name="NGS-20200622">{{cite journal |author=Bierson, Carver |display-authors=et al. |title=Evidence for a hot start and early ocean formation on Pluto |url=https://www.nature.com/articles/s41561-020-0595-0 |date=June 22, 2020 |journal=] |volume=769 |issue=7 |pages=468–472 |doi=10.1038/s41561-020-0595-0 |bibcode=2020NatGe..13..468B |s2cid=219976751 |access-date=June 23, 2020 |url-access=subscription |archive-date=June 22, 2020 |archive-url=https://web.archive.org/web/20200622201613/https://www.nature.com/articles/s41561-020-0595-0 |url-status=live }}</ref> In March 2022, a team of researchers proposed that the mountains ] and ] are actually a merger of many smaller cryovolcanic domes, suggesting a source of heat on the body at levels previously thought not possible.<ref>{{cite journal |title=Large-scale cryovolcanic resurfacing on Pluto |first=Kelsi N. |last=Singer |journal=] |date=March 29, 2022 |volume=13 |issue=1 |page=1542 |doi=10.1038/s41467-022-29056-3 |pmid=35351895 |pmc=8964750 |arxiv=2207.06557 |bibcode=2022NatCo..13.1542S }}</ref>


== Mass and size == == Mass and size ==
Line 1,967: Line 1,965:
* {{Cite book |author=Codex Regius |url=https://books.google.com/books?id=dTs2DQAAQBAJ |title=Pluto & Charon: the new horizons spacecraft at the farthest worldly shores |date=2016 |publisher=Codex Regius |isbn=978-1-5349-6074-9 |location=Wiesbaden}} * {{Cite book |author=Codex Regius |url=https://books.google.com/books?id=dTs2DQAAQBAJ |title=Pluto & Charon: the new horizons spacecraft at the farthest worldly shores |date=2016 |publisher=Codex Regius |isbn=978-1-5349-6074-9 |location=Wiesbaden}}
* {{Cite book |author-link=Alan Stern |url=https://books.google.com/books?id=VcY7iYJwJZoC |title=Pluto and Charon |author-link2=David J. Tholen |date=1997 |publisher=] |isbn=978-0-8165-1840-1 |editor-last=Stern |editor-first=Alan |series=Space science series |location=Tucson |editor-last2=Tholen |editor-first2=David J.}} * {{Cite book |author-link=Alan Stern |url=https://books.google.com/books?id=VcY7iYJwJZoC |title=Pluto and Charon |author-link2=David J. Tholen |date=1997 |publisher=] |isbn=978-0-8165-1840-1 |editor-last=Stern |editor-first=Alan |series=Space science series |location=Tucson |editor-last2=Tholen |editor-first2=David J.}}
* {{Cite book |last=Stern |first=Alan |author-link=Alan Stern |title=Chasing new horizons: inside the epic first mission to Pluto |title-link=Chasing New Horizons |last2=Grinspoon |first2=David |author-link2=David Grinspoon |date=2018 |publisher=] |isbn=978-1-250-09896-2 |location=New York}} * {{Cite book |last1=Stern |first1=Alan |author-link1=Alan Stern |title=Chasing new horizons: inside the epic first mission to Pluto |title-link=Chasing New Horizons |last2=Grinspoon |first2=David |author-link2=David Grinspoon |date=2018 |publisher=] |isbn=978-1-250-09896-2 |location=New York}}
* {{Cite book |url=https://books.google.com/books?id=bi01EAAAQBAJ |title=The Pluto system after New Horizons |date=2021 |publisher=] |isbn=978-0-8165-4094-5 |editor-last=Stern |editor-first=Alan |editor-link=Alan Stern |series=The University of Arizona Space science series |location=Tucson |pages=688 |editor-last2=Moore |editor-first2=J. |editor-last3=Grundy |editor-first3=William M. |editor-last4=Young |editor-first4=Leslie A. |editor-last5=Binzel |editor-first5=Richard P. |editor-link5=Richard P. Binzel}} * {{Cite book |url=https://books.google.com/books?id=bi01EAAAQBAJ |title=The Pluto system after New Horizons |date=2021 |publisher=] |isbn=978-0-8165-4094-5 |editor-last=Stern |editor-first=Alan |editor-link=Alan Stern |series=The University of Arizona Space science series |location=Tucson |pages=688 |editor-last2=Moore |editor-first2=J. |editor-last3=Grundy |editor-first3=William M. |editor-last4=Young |editor-first4=Leslie A. |editor-last5=Binzel |editor-first5=Richard P. |editor-link5=Richard P. Binzel}}
{{refend}} {{refend}}
Line 2,012: Line 2,010:
] ]
] ]
]

Latest revision as of 23:46, 31 December 2024

Dwarf planet This article is about the dwarf planet. For the deity, see Pluto (mythology). For other uses, see Pluto (disambiguation).

134340 Pluto
Pluto, imaged by the New Horizons spacecraft, July 2015. The most prominent feature in the image, the bright, youthful plains of Tombaugh Regio and Sputnik Planitia, can be seen at right. It contrasts the darker, cratered terrain of Belton Regio at lower left.
Discovery
Discovered byClyde W. Tombaugh
Discovery siteLowell Observatory
Discovery dateFebruary 18, 1930
Designations
MPC designation(134340) Pluto
Pronunciation/ˈpluːtoʊ/
Named afterPluto
Minor planet category
AdjectivesPlutonian /pluːˈtoʊniən/
Symbol♇ or ⯓
Orbital characteristics
Epoch J2000
Earliest precovery dateAugust 20, 1909
Aphelion
  • 49.305 AU
  • (7.37593 billion km)
  • February 2114
Perihelion
  • 29.658 AU
  • (4.43682 billion km)
  • (September 5, 1989)
Semi-major axis
  • 39.482 AU
  • (5.90638 billion km)
Eccentricity0.2488
Orbital period (sidereal)
Orbital period (synodic)366.73 days
Average orbital speed4.743 km/s
Mean anomaly14.53 deg
Inclination
  • 17.16°
  • (11.88° to Sun's equator)
Longitude of ascending node110.299°
Argument of perihelion113.834°
Known satellites5
Physical characteristics
Dimensions2,376.6±1.6 km (observations consistent with a sphere, predicted deviations too small to be observed)
Mean radius
  • 1,188.3±0.8 km
  • 0.1868 Earths
Flattening<1%
Surface area
  • 1.774443×10 km
  • 0.035 Earths
Volume
  • (7.057±0.004)×10 km
  • 0.00651 Earths
Mass
Mean density1.853±0.004 g/cm
Equatorial surface gravity0.620 m/s (0.0632 g0)
Equatorial escape velocity1.212 km/s
Synodic rotation period
  • −6.38680 d
  • −6 d, 9 h, 17 m, 00 s
Sidereal rotation period
  • −6.387230 d
  • −6 d, 9 h, 17 m, 36 s
Equatorial rotation velocity13.11 m/s
Axial tilt122.53° (to orbit)
North pole right ascension132.993°
North pole declination−6.163°
Geometric albedo0.52 geometric
0.72 Bond
Surface temp. min mean max
Kelvin 33 K 44 K (−229 °C) 55 K
Apparent magnitude13.65 to 16.3
(mean is 15.1)
Absolute magnitude (H)−0.44
Angular diameter0.06″ to 0.11″
Atmosphere
Surface pressure1.0 Pa (2015)
Composition by volumeNitrogen, methane, carbon monoxide

Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest known trans-Neptunian object by volume, by a small margin, but is less massive than Eris. Like other Kuiper belt objects, Pluto is made primarily of ice and rock and is much smaller than the inner planets. Pluto has roughly one-sixth the mass of the Moon, and one-third its volume.

Pluto has a moderately eccentric and inclined orbit, ranging from 30 to 49 astronomical units (4.5 to 7.3 billion kilometres; 2.8 to 4.6 billion miles) from the Sun. Light from the Sun takes 5.5 hours to reach Pluto at its orbital distance of 39.5 AU (5.91 billion km; 3.67 billion mi). Pluto's eccentric orbit periodically brings it closer to the Sun than Neptune, but a stable orbital resonance prevents them from colliding.

Pluto has five known moons: Charon, the largest, whose diameter is just over half that of Pluto; Styx; Nix; Kerberos; and Hydra. Pluto and Charon are sometimes considered a binary system because the barycenter of their orbits does not lie within either body, and they are tidally locked. New Horizons was the first spacecraft to visit Pluto and its moons, making a flyby on July 14, 2015, and taking detailed measurements and observations.

Pluto was discovered in 1930 by Clyde W. Tombaugh, making it by far the first known object in the Kuiper belt. It was immediately hailed as the ninth planet. However, its planetary status was questioned when it was found to be much smaller than expected. These doubts increased following the discovery of additional objects in the Kuiper belt starting in the 1990s, and particularly the more massive scattered disk object Eris in 2005. In 2006, the International Astronomical Union (IAU) formally redefined the term planet to exclude dwarf planets such as Pluto. Many planetary astronomers, however, continue to consider Pluto and other dwarf planets to be planets.

History

Discovery

Further information: Planets beyond Neptune
The same area of night sky with stars, shown twice, side by side. One of the bright points, located with an arrow, changes position between the two images.
Discovery photographs of Pluto

In the 1840s, Urbain Le Verrier used Newtonian mechanics to predict the position of the then-undiscovered planet Neptune after analyzing perturbations in the orbit of Uranus. Subsequent observations of Neptune in the late 19th century led astronomers to speculate that Uranus's orbit was being disturbed by another planet besides Neptune.

In 1906, Percival Lowell—a wealthy Bostonian who had founded Lowell Observatory in Flagstaff, Arizona, in 1894—started an extensive project in search of a possible ninth planet, which he termed "Planet X". By 1909, Lowell and William H. Pickering had suggested several possible celestial coordinates for such a planet. Lowell and his observatory conducted his search, using mathematical calculations made by Elizabeth Williams, until his death in 1916, but to no avail. Unknown to Lowell, his surveys had captured two faint images of Pluto on March 19 and April 7, 1915, but they were not recognized for what they were. There are fourteen other known precovery observations, with the earliest made by the Yerkes Observatory on August 20, 1909.

Clyde Tombaugh, in Kansas

Percival's widow, Constance Lowell, entered into a ten-year legal battle with the Lowell Observatory over her husband's legacy, and the search for Planet X did not resume until 1929. Vesto Melvin Slipher, the observatory director, gave the job of locating Planet X to 23-year-old Clyde Tombaugh, who had just arrived at the observatory after Slipher had been impressed by a sample of his astronomical drawings.

Tombaugh's task was to systematically image the night sky in pairs of photographs, then examine each pair and determine whether any objects had shifted position. Using a blink comparator, he rapidly shifted back and forth between views of each of the plates to create the illusion of movement of any objects that had changed position or appearance between photographs. On February 18, 1930, after nearly a year of searching, Tombaugh discovered a possible moving object on photographic plates taken on January 23 and 29. A lesser-quality photograph taken on January 21 helped confirm the movement. After the observatory obtained further confirmatory photographs, news of the discovery was telegraphed to the Harvard College Observatory on March 13, 1930.

One Plutonian year corresponds to 247.94 Earth years; thus, in 2178, Pluto will complete its first orbit since its discovery.

Name and symbol

The name Pluto came from the Roman god of the underworld; and it is also an epithet for Hades (the Greek equivalent of Pluto).

Upon the announcement of the discovery, Lowell Observatory received over a thousand suggestions for names. Three names topped the list: Minerva, Pluto and Cronus. 'Minerva' was the Lowell staff's first choice but was rejected because it had already been used for an asteroid; Cronus was disfavored because it was promoted by an unpopular and egocentric astronomer, Thomas Jefferson Jackson See. A vote was then taken and 'Pluto' was the unanimous choice. To make sure the name stuck, and that the planet would not suffer changes in its name as Uranus had, Lowell Observatory proposed the name to the American Astronomical Society and the Royal Astronomical Society; both approved it unanimously. The name was published on May 1, 1930.

The name Pluto had received some 150 nominations among the letters and telegrams sent to Lowell. The first had been from Venetia Burney (1918–2009), an eleven-year-old schoolgirl in Oxford, England, who was interested in classical mythology. She had suggested it to her grandfather Falconer Madan when he read the news of Pluto's discovery to his family over breakfast; Madan passed the suggestion to astronomy professor Herbert Hall Turner, who cabled it to colleagues at Lowell on March 16, three days after the announcement.

The name 'Pluto' was mythologically appropriate: the god Pluto was one of six surviving children of Saturn, and the others had already all been chosen as names of major or minor planets (his brothers Jupiter and Neptune, and his sisters Ceres, Juno and Vesta). Both the god and the planet inhabited "gloomy" regions, and the god was able to make himself invisible, as the planet had been for so long. The choice was further helped by the fact that the first two letters of Pluto were the initials of Percival Lowell; indeed, 'Percival' had been one of the more popular suggestions for a name for the new planet. Pluto's planetary symbol♇⟩ was then created as a monogram of the letters "PL". This symbol is rarely used in astronomy anymore, though it is still common in astrology. However, the most common astrological symbol for Pluto, occasionally used in astronomy as well, is an orb (possibly representing Pluto's invisibility cap) over Pluto's bident⯓⟩, which dates to the early 1930s.

The name 'Pluto' was soon embraced by wider culture. In 1930, Walt Disney was apparently inspired by it when he introduced for Mickey Mouse a canine companion named Pluto, although Disney animator Ben Sharpsteen could not confirm why the name was given. In 1941, Glenn T. Seaborg named the newly created element plutonium after Pluto, in keeping with the tradition of naming elements after newly discovered planets, following uranium, which was named after Uranus, and neptunium, which was named after Neptune.

Most languages use the name "Pluto" in various transliterations. In Japanese, Houei Nojiri suggested the calque Meiōsei (冥王星, "Star of the King (God) of the Underworld"), and this was borrowed into Chinese and Korean. Some languages of India use the name Pluto, but others, such as Hindi, use the name of Yama, the God of Death in Hinduism. Polynesian languages also tend to use the indigenous god of the underworld, as in Māori Whiro. Vietnamese might be expected to follow Chinese, but does not because the Sino-Vietnamese word 冥 minh "dark" is homophonous with 明 minh "bright". Vietnamese instead uses Yama, which is also a Buddhist deity, in the form of Sao Diêm Vương 星閻王 "Yama's Star", derived from Chinese 閻王 Yán Wáng / Yìhm Wòhng "King Yama".

Planet X disproved

Once Pluto was found, its faintness and lack of a viewable disc cast doubt on the idea that it was Lowell's Planet X. Estimates of Pluto's mass were revised downward throughout the 20th century.

Mass estimates for Pluto
Year Mass Estimate by
1915 7 Earths Lowell (prediction for Planet X)
1931 1 Earth Nicholson & Mayall
1948 0.1 (1/10) Earth Kuiper
1976 0.01 (1/100) Earth Cruikshank, Pilcher, & Morrison
1978 0.0015 (1/650) Earth Christy & Harrington
2006 0.00218 (1/459) Earth Buie et al.

Astronomers initially calculated its mass based on its presumed effect on Neptune and Uranus. In 1931, Pluto was calculated to be roughly the mass of Earth, with further calculations in 1948 bringing the mass down to roughly that of Mars. In 1976, Dale Cruikshank, Carl Pilcher and David Morrison of the University of Hawaiʻi calculated Pluto's albedo for the first time, finding that it matched that for methane ice; this meant Pluto had to be exceptionally luminous for its size and therefore could not be more than 1 percent the mass of Earth. (Pluto's albedo is 1.4–1.9 times that of Earth.)

In 1978, the discovery of Pluto's moon Charon allowed the measurement of Pluto's mass for the first time: roughly 0.2% that of Earth, and far too small to account for the discrepancies in the orbit of Uranus. Subsequent searches for an alternative Planet X, notably by Robert Sutton Harrington, failed. In 1992, Myles Standish used data from Voyager 2's flyby of Neptune in 1989, which had revised the estimates of Neptune's mass downward by 0.5%—an amount comparable to the mass of Mars—to recalculate its gravitational effect on Uranus. With the new figures added in, the discrepancies, and with them the need for a Planet X, vanished. As of 2000 the majority of scientists agree that Planet X, as Lowell defined it, does not exist. Lowell had made a prediction of Planet X's orbit and position in 1915 that was fairly close to Pluto's actual orbit and its position at that time; Ernest W. Brown concluded soon after Pluto's discovery that this was a coincidence.

Classification

Further information: Definition of planet

From 1992 onward, many bodies were discovered orbiting in the same volume as Pluto, showing that Pluto is part of a population of objects called the Kuiper belt. This made its official status as a planet controversial, with many questioning whether Pluto should be considered together with or separately from its surrounding population. Museum and planetarium directors occasionally created controversy by omitting Pluto from planetary models of the Solar System. In February 2000 the Hayden Planetarium in New York City displayed a Solar System model of only eight planets, which made headlines almost a year later.

Ceres, Pallas, Juno and Vesta lost their planet status among most astronomers after the discovery of many other asteroids in the 1840s. On the other hand, planetary geologists often regarded Ceres, and less often Pallas and Vesta, as being different from smaller asteroids because they were large enough to have undergone geological evolution. Although the first Kuiper belt objects discovered were quite small, objects increasingly closer in size to Pluto were soon discovered, some large enough (like Pluto itself) to satisfy geological but not dynamical ideas of planethood. On July 29, 2005, the debate became unavoidable when astronomers at Caltech announced the discovery of a new trans-Neptunian object, Eris, which was substantially more massive than Pluto and the most massive object discovered in the Solar System since Triton in 1846. Its discoverers and the press initially called it the tenth planet, although there was no official consensus at the time on whether to call it a planet. Others in the astronomical community considered the discovery the strongest argument for reclassifying Pluto as a minor planet.

IAU classification

Main article: IAU definition of planet

The debate came to a head in August 2006, with an IAU resolution that created an official definition for the term "planet". According to this resolution, there are three conditions for an object in the Solar System to be considered a planet:

  • The object must be in orbit around the Sun.
  • The object must be massive enough to be rounded by its own gravity. More specifically, its own gravity should pull it into a shape defined by hydrostatic equilibrium.
  • It must have cleared the neighborhood around its orbit.

Pluto fails to meet the third condition. Its mass is substantially less than the combined mass of the other objects in its orbit: 0.07 times, in contrast to Earth, which is 1.7 million times the remaining mass in its orbit (excluding the moon). The IAU further decided that bodies that, like Pluto, meet criteria 1 and 2, but do not meet criterion 3 would be called dwarf planets. In September 2006, the IAU included Pluto, and Eris and its moon Dysnomia, in their Minor Planet Catalogue, giving them the official minor-planet designations "(134340) Pluto", "(136199) Eris", and "(136199) Eris I Dysnomia". Had Pluto been included upon its discovery in 1930, it would have likely been designated 1164, following 1163 Saga, which was discovered a month earlier.

There has been some resistance within the astronomical community toward the reclassification, and in particular planetary scientists often continue to reject it, considering Pluto, Charon, and Eris to be planets for the same reason they do so for Ceres. In effect, this amounts to accepting only the second clause of the IAU definition. Alan Stern, principal investigator with NASA's New Horizons mission to Pluto, derided the IAU resolution. He also stated that because less than five percent of astronomers voted for it, the decision was not representative of the entire astronomical community. Marc W. Buie, then at the Lowell Observatory, petitioned against the definition. Others have supported the IAU, for example Mike Brown, the astronomer who discovered Eris.

Public reception to the IAU decision was mixed. A resolution introduced in the California State Assembly facetiously called the IAU decision a "scientific heresy". The New Mexico House of Representatives passed a resolution in honor of Clyde Tombaugh, the discoverer of Pluto and a longtime resident of that state, that declared that Pluto will always be considered a planet while in New Mexican skies and that March 13, 2007, was Pluto Planet Day. The Illinois Senate passed a similar resolution in 2009 on the basis that Tombaugh was born in Illinois. The resolution asserted that Pluto was "unfairly downgraded to a 'dwarf' planet" by the IAU." Some members of the public have also rejected the change, citing the disagreement within the scientific community on the issue, or for sentimental reasons, maintaining that they have always known Pluto as a planet and will continue to do so regardless of the IAU decision. In 2006, in its 17th annual words-of-the-year vote, the American Dialect Society voted plutoed as the word of the year. To "pluto" is to "demote or devalue someone or something". In April 2024, Arizona (where Pluto was first discovered in 1930) passed a law naming Pluto as the official state planet.

Researchers on both sides of the debate gathered in August 2008, at the Johns Hopkins University Applied Physics Laboratory for a conference that included back-to-back talks on the IAU definition of a planet. Entitled "The Great Planet Debate", the conference published a post-conference press release indicating that scientists could not come to a consensus about the definition of planet. In June 2008, the IAU had announced in a press release that the term "plutoid" would henceforth be used to refer to Pluto and other planetary-mass objects that have an orbital semi-major axis greater than that of Neptune, though the term has not seen significant use.

Orbit

Animation of Pluto's orbit from 1850 to 2097
   Sun ·    Saturn ·    Uranus ·    Neptune ·    Pluto

Pluto's orbital period is about 248 years. Its orbital characteristics are substantially different from those of the planets, which follow nearly circular orbits around the Sun close to a flat reference plane called the ecliptic. In contrast, Pluto's orbit is moderately inclined relative to the ecliptic (over 17°) and moderately eccentric (elliptical). This eccentricity means a small region of Pluto's orbit lies closer to the Sun than Neptune's. The Pluto–Charon barycenter came to perihelion on September 5, 1989, and was last closer to the Sun than Neptune between February 7, 1979, and February 11, 1999.

Although the 3:2 resonance with Neptune (see below) is maintained, Pluto's inclination and eccentricity behave in a chaotic manner. Computer simulations can be used to predict its position for several million years (both forward and backward in time), but after intervals much longer than the Lyapunov time of 10–20 million years, calculations become unreliable: Pluto is sensitive to immeasurably small details of the Solar System, hard-to-predict factors that will gradually change Pluto's position in its orbit.

The semi-major axis of Pluto's orbit varies between about 39.3 and 39.6 AU with a period of about 19,951 years, corresponding to an orbital period varying between 246 and 249 years. The semi-major axis and period are presently getting longer.

Relationship with Neptune

Orbit of Pluto – ecliptic view. This "side view" of Pluto's orbit (in red) shows its large inclination to the ecliptic. Neptune is seen orbiting close to the ecliptic.

Despite Pluto's orbit appearing to cross that of Neptune when viewed from north or south of the Solar System, the two objects' orbits do not intersect. When Pluto is closest to the Sun, and close to Neptune's orbit as viewed from such a position, it is also the farthest north of Neptune's path. Pluto's orbit passes about 8 AU north of that of Neptune, preventing a collision.

This alone is not enough to protect Pluto; perturbations from the planets (especially Neptune) could alter Pluto's orbit (such as its orbital precession) over millions of years so that a collision could happen. However, Pluto is also protected by its 2:3 orbital resonance with Neptune: for every two orbits that Pluto makes around the Sun, Neptune makes three, in a frame of reference that rotates at the rate that Pluto's perihelion precesses (about 0.97×10 degrees per year). Each cycle lasts about 495 years. (There are many other objects in this same resonance, called plutinos.) At present, in each 495-year cycle, the first time Pluto is at perihelion (such as in 1989), Neptune is 57° ahead of Pluto. By Pluto's second passage through perihelion, Neptune will have completed a further one and a half of its own orbits, and will be 123° behind Pluto. Pluto and Neptune's minimum separation is over 17 AU, which is greater than Pluto's minimum separation from Uranus (11 AU). The minimum separation between Pluto and Neptune actually occurs near the time of Pluto's aphelion.

Ecliptic longitude of Neptune minus that of Pluto (blue), and rate of change of Pluto's distance from the sun (red). The red curve crosses zero at perihelion and aphelion.

The 2:3 resonance between the two bodies is highly stable and has been preserved over millions of years. This prevents their orbits from changing relative to one another, so the two bodies can never pass near each other. Even if Pluto's orbit were not inclined, the two bodies could never collide. When Pluto's period is slightly different from 3/2 of Neptune's, the pattern of its distance from Neptune will drift. Near perihelion Pluto moves interior to Neptune's orbit and is therefore moving faster, so during the first of two orbits in the 495-year cycle, it is approaching Neptune from behind. At present it remains between 50° and 65° behind Neptune for 100 years (e.g. 1937–2036). The gravitational pull between the two causes angular momentum to be transferred to Pluto. This situation moves Pluto into a slightly larger orbit, where it has a slightly longer period, according to Kepler's third law. After several such repetitions, Pluto is sufficiently delayed that at the second perihelion of each cycle it will not be far ahead of Neptune coming behind it, and Neptune will start to decrease Pluto's period again. The whole cycle takes about 20,000 years to complete.

Other factors

Numerical studies have shown that over millions of years, the general nature of the alignment between the orbits of Pluto and Neptune does not change. There are several other resonances and interactions that enhance Pluto's stability. These arise principally from two additional mechanisms (besides the 2:3 mean-motion resonance).

First, Pluto's argument of perihelion, the angle between the point where it crosses the ecliptic (or the invariant plane) and the point where it is closest to the Sun, librates around 90°. This means that when Pluto is closest to the Sun, it is at its farthest north of the plane of the Solar System, preventing encounters with Neptune. This is a consequence of the Kozai mechanism, which relates the eccentricity of an orbit to its inclination to a larger perturbing body—in this case, Neptune. Relative to Neptune, the amplitude of libration is 38°, and so the angular separation of Pluto's perihelion to the orbit of Neptune is always greater than 52° (90°–38°). The closest such angular separation occurs every 10,000 years.

Second, the longitudes of ascending nodes of the two bodies—the points where they cross the invariant plane—are in near-resonance with the above libration. When the two longitudes are the same—that is, when one could draw a straight line through both nodes and the Sun—Pluto's perihelion lies exactly at 90°, and hence it comes closest to the Sun when it is furthest north of Neptune's orbit. This is known as the 1:1 superresonance. All the Jovian planets (Jupiter, Saturn, Uranus, and Neptune) play a role in the creation of the superresonance.

Orcus

The second-largest known plutino, Orcus, has a diameter around 900 km and is in a very similar orbit to that of Pluto. However, the orbits of Pluto and Orcus are out of phase, so that the two never approach each other. It has been termed the "anti-Pluto", and is named for the Etruscan counterpart to the god Pluto.

Rotation

Pluto's rotation period, its day, is equal to 6.387 Earth days. Like Uranus and 2 Pallas, Pluto rotates on its "side" in its orbital plane, with an axial tilt of 120°, and so its seasonal variation is extreme; at its solstices, one-fourth of its surface is in continuous daylight, whereas another fourth is in continuous darkness. The reason for this unusual orientation has been debated. Research from the University of Arizona has suggested that it may be due to the way that a body's spin will always adjust to minimize energy. This could mean a body reorienting itself to put extraneous mass near the equator and regions lacking mass tend towards the poles. This is called polar wander. According to a paper released from the University of Arizona, this could be caused by masses of frozen nitrogen building up in shadowed areas of the dwarf planet. These masses would cause the body to reorient itself, leading to its unusual axial tilt of 120°. The buildup of nitrogen is due to Pluto's vast distance from the Sun. At the equator, temperatures can drop to −240 °C (−400.0 °F; 33.1 K), causing nitrogen to freeze as water would freeze on Earth. The same polar wandering effect seen on Pluto would be observed on Earth were the Antarctic ice sheet several times larger.

Geology

Main articles: Geology of Pluto and Geography of Pluto

Surface

Sputnik Planitia is covered with churning nitrogen ice "cells" that are geologically young and turning over due to convection.

The plains on Pluto's surface are composed of more than 98 percent nitrogen ice, with traces of methane and carbon monoxide. Nitrogen and carbon monoxide are most abundant on the anti-Charon face of Pluto (around 180° longitude, where Tombaugh Regio's western lobe, Sputnik Planitia, is located), whereas methane is most abundant near 300° east. The mountains are made of water ice. Pluto's surface is quite varied, with large differences in both brightness and color. Pluto is one of the most contrastive bodies in the Solar System, with as much contrast as Saturn's moon Iapetus. The color varies from charcoal black, to dark orange and white. Pluto's color is more similar to that of Io with slightly more orange and significantly less red than Mars. Notable geographical features include Tombaugh Regio, or the "Heart" (a large bright area on the side opposite Charon), Belton Regio, or the "Whale" (a large dark area on the trailing hemisphere), and the "Brass Knuckles" (a series of equatorial dark areas on the leading hemisphere).

Sputnik Planitia, the western lobe of the "Heart", is a 1,000 km-wide basin of frozen nitrogen and carbon monoxide ices, divided into polygonal cells, which are interpreted as convection cells that carry floating blocks of water ice crust and sublimation pits towards their margins; there are obvious signs of glacial flows both into and out of the basin. It has no craters that were visible to New Horizons, indicating that its surface is less than 10 million years old. Latest studies have shown that the surface has an age of 180000+90000
−40000 years. The New Horizons science team summarized initial findings as "Pluto displays a surprisingly wide variety of geological landforms, including those resulting from glaciological and surface–atmosphere interactions as well as impact, tectonic, possible cryovolcanic, and mass-wasting processes."

In Western parts of Sputnik Planitia there are fields of transverse dunes formed by the winds blowing from the center of Sputnik Planitia in the direction of surrounding mountains. The dune wavelengths are in the range of 0.4–1 km and likely consist of methane particles 200–300 μm in size.

  • Multispectral Visual Imaging Camera image of Pluto in enhanced color to bring out differences in surface composition Multispectral Visual Imaging Camera image of Pluto in enhanced color to bring out differences in surface composition
  • Distribution of numerous impact craters and basins on both Pluto and Charon. The variation in density (with none found in Sputnik Planitia) indicates a long history of varying geological activity. Precisely for this reason, the confidence of numerous craters on Pluto remain uncertain. The lack of craters on the left and right of each map is due to low-resolution coverage of those anti-encounter regions. Distribution of numerous impact craters and basins on both Pluto and Charon. The variation in density (with none found in Sputnik Planitia) indicates a long history of varying geological activity. Precisely for this reason, the confidence of numerous craters on Pluto remain uncertain. The lack of craters on the left and right of each map is due to low-resolution coverage of those anti-encounter regions.
  • Geologic map of Sputnik Planitia and surroundings (context), with convection cell margins outlined in black Geologic map of Sputnik Planitia and surroundings (context), with convection cell margins outlined in black
  • Regions where water ice has been detected (blue regions) Regions where water ice has been detected (blue regions)

Internal structure

"Life on Pluto" redirects here. For fiction about aliens from Pluto, see Life on Pluto in fiction.
Model of the internal structure of Pluto
  • Water ice crust
  • Liquid water ocean
  • Silicate core

Pluto's density is 1.853±0.004 g/cm. Because the decay of radioactive elements would eventually heat the ices enough for the rock to separate from them, scientists expect that Pluto's internal structure is differentiated, with the rocky material having settled into a dense core surrounded by a mantle of water ice. The pre–New Horizons estimate for the diameter of the core is 1700 km, 70% of Pluto's diameter. It is possible that such heating continues, creating a subsurface ocean of liquid water 100 to 180 km thick at the core–mantle boundary. In September 2016, scientists at Brown University simulated the impact thought to have formed Sputnik Planitia, and showed that it might have been the result of liquid water upweling from below after the collision, implying the existence of a subsurface ocean at least 100 km deep. In June 2020, astronomers reported evidence that Pluto may have had a subsurface ocean, and consequently may have been habitable, when it was first formed. In March 2022, a team of researchers proposed that the mountains Wright Mons and Piccard Mons are actually a merger of many smaller cryovolcanic domes, suggesting a source of heat on the body at levels previously thought not possible.

Mass and size

Pluto (bottom left) compared in size to the Earth and the Moon

Pluto's diameter is 2376.6±3.2 km and its mass is (1.303±0.003)×10 kg, 17.7% that of the Moon (0.22% that of Earth). Its surface area is 1.774443×10 km, or just slightly bigger than Russia or Antarctica (particularly including the Antarctic sea ice during winter). Its surface gravity is 0.063 g (compared to 1 g for Earth and 0.17 g for the Moon). This gives Pluto an escape velocity of 4,363.2 km per hour / 2,711.167 miles per hour (as compared to Earth's 40,270 km per hour / 25,020 miles per hour). Pluto is more than twice the diameter and a dozen times the mass of Ceres, the largest object in the asteroid belt. It is less massive than the dwarf planet Eris, a trans-Neptunian object discovered in 2005, though Pluto has a larger diameter of 2,376.6 km compared to Eris's approximate diameter of 2,326 km.

With less than 0.2 lunar masses, Pluto is much less massive than the terrestrial planets, and also less massive than seven moons: Ganymede, Titan, Callisto, Io, the Moon, Europa, and Triton. The mass is much less than thought before Charon was discovered.

The discovery of Pluto's satellite Charon in 1978 enabled a determination of the mass of the Pluto–Charon system by application of Newton's formulation of Kepler's third law. Observations of Pluto in occultation with Charon allowed scientists to establish Pluto's diameter more accurately, whereas the invention of adaptive optics allowed them to determine its shape more accurately.

Determinations of Pluto's size have been complicated by its atmosphere and hydrocarbon haze. In March 2014, Lellouch, de Bergh et al. published findings regarding methane mixing ratios in Pluto's atmosphere consistent with a Plutonian diameter greater than 2,360 km, with a "best guess" of 2,368 km. On July 13, 2015, images from NASA's New Horizons mission Long Range Reconnaissance Imager (LORRI), along with data from the other instruments, determined Pluto's diameter to be 2,370 km (1,473 mi), which was later revised to be 2,372 km (1,474 mi) on July 24, and later to 2374±8 km. Using radio occultation data from the New Horizons Radio Science Experiment (REX), the diameter was found to be 2376.6±3.2 km.

Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org.
The masses of Pluto and Charon compared to other dwarf planets (Eris, Haumea, Makemake, Gonggong, Quaoar, Orcus, Ceres) and to the icy moons Triton (Neptune I), Titania (Uranus III), Oberon (Uranus IV), Rhea (Saturn V) and Iapetus (Saturn VIII). The unit of mass is ×10 kg.

Atmosphere

Main article: Atmosphere of Pluto
A near-true-color image taken by New Horizons after its flyby. Numerous layers of blue haze float in Pluto's atmosphere. Along and near the limb, mountains and their shadows are visible.

Pluto has a tenuous atmosphere consisting of nitrogen (N2), methane (CH4), and carbon monoxide (CO), which are in equilibrium with their ices on Pluto's surface. According to the measurements by New Horizons, the surface pressure is about 1 Pa (10 μbar), roughly one million to 100,000 times less than Earth's atmospheric pressure. It was initially thought that, as Pluto moves away from the Sun, its atmosphere should gradually freeze onto the surface; studies of New Horizons data and ground-based occultations show that Pluto's atmospheric density increases, and that it likely remains gaseous throughout Pluto's orbit. New Horizons observations showed that atmospheric escape of nitrogen to be 10,000 times less than expected. Alan Stern has contended that even a small increase in Pluto's surface temperature can lead to exponential increases in Pluto's atmospheric density; from 18 hPa to as much as 280 hPa (three times that of Mars to a quarter that of the Earth). At such densities, nitrogen could flow across the surface as liquid. Just like sweat cools the body as it evaporates from the skin, the sublimation of Pluto's atmosphere cools its surface. Pluto has no or almost no troposphere; observations by New Horizons suggest only a thin tropospheric boundary layer. Its thickness in the place of measurement was 4 km, and the temperature was 37±3 K. The layer is not continuous.

In July 2019, an occultation by Pluto showed that its atmospheric pressure, against expectations, had fallen by 20% since 2016. In 2021, astronomers at the Southwest Research Institute confirmed the result using data from an occultation in 2018, which showed that light was appearing less gradually from behind Pluto's disc, indicating a thinning atmosphere.

The presence of methane, a powerful greenhouse gas, in Pluto's atmosphere creates a temperature inversion, with the average temperature of its atmosphere tens of degrees warmer than its surface, though observations by New Horizons have revealed Pluto's upper atmosphere to be far colder than expected (70 K, as opposed to about 100 K). Pluto's atmosphere is divided into roughly 20 regularly spaced haze layers up to 150 km high, thought to be the result of pressure waves created by airflow across Pluto's mountains.

Natural satellites

Main article: Moons of Pluto
An oblique view of the Pluto–Charon system, showing that Pluto orbits a point outside itself. The two bodies are mutually tidally locked.
Five known moons of Pluto to scale

Pluto has five known natural satellites. The largest and closest to Pluto is Charon. First identified in 1978 by astronomer James Christy, Charon is the only moon of Pluto that may be in hydrostatic equilibrium. Charon's mass is sufficient to cause the barycenter of the Pluto–Charon system to be outside Pluto. Beyond Charon there are four much smaller circumbinary moons. In order of distance from Pluto they are Styx, Nix, Kerberos, and Hydra. Nix and Hydra were both discovered in 2005, Kerberos was discovered in 2011, and Styx was discovered in 2012. The satellites' orbits are circular (eccentricity < 0.006) and coplanar with Pluto's equator (inclination < 1°), and therefore tilted approximately 120° relative to Pluto's orbit. The Plutonian system is highly compact: the five known satellites orbit within the inner 3% of the region where prograde orbits would be stable.

The orbital periods of all Pluto's moons are linked in a system of orbital resonances and near-resonances. When precession is accounted for, the orbital periods of Styx, Nix, and Hydra are in an exact 18:22:33 ratio. There is a sequence of approximate ratios, 3:4:5:6, between the periods of Styx, Nix, Kerberos, and Hydra with that of Charon; the ratios become closer to being exact the further out the moons are.

The Pluto–Charon system is one of the few in the Solar System whose barycenter lies outside the primary body; the Patroclus–Menoetius system is a smaller example, and the Sun–Jupiter system is the only larger one. The similarity in size of Charon and Pluto has prompted some astronomers to call it a double dwarf planet. The system is also unusual among planetary systems in that each is tidally locked to the other, which means that Pluto and Charon always have the same hemisphere facing each other — a property shared by only one other known system, Eris and Dysnomia. From any position on either body, the other is always at the same position in the sky, or always obscured. This also means that the rotation period of each is equal to the time it takes the entire system to rotate around its barycenter.

Pluto's moons are hypothesized to have been formed by a collision between Pluto and a similar-sized body, early in the history of the Solar System. The collision released material that consolidated into the moons around Pluto.

Quasi-satellite

In 2012, it was calculated that 15810 Arawn could be a quasi-satellite of Pluto, a specific type of co-orbital configuration. According to the calculations, the object would be a quasi-satellite of Pluto for about 350,000 years out of every two-million-year period. Measurements made by the New Horizons spacecraft in 2015 made it possible to calculate the orbit of Arawn more accurately, and confirmed the earlier ones. However, it is not agreed upon among astronomers whether Arawn should be classified as a quasi-satellite of Pluto based on its orbital dynamics, since its orbit is primarily controlled by Neptune with only occasional perturbations by Pluto.

Origin

Further information: Kuiper belt and Nice model
Plot of the known Kuiper belt objects, set against the four giant planets

Pluto's origin and identity had long puzzled astronomers. One early hypothesis was that Pluto was an escaped moon of Neptune knocked out of orbit by Neptune's largest moon, Triton. This idea was eventually rejected after dynamical studies showed it to be impossible because Pluto never approaches Neptune in its orbit.

Pluto's true place in the Solar System began to reveal itself only in 1992, when astronomers began to find small icy objects beyond Neptune that were similar to Pluto not only in orbit but also in size and composition. This trans-Neptunian population is thought to be the source of many short-period comets. Pluto is the largest member of the Kuiper belt, a stable belt of objects located between 30 and 50 AU from the Sun. As of 2011, surveys of the Kuiper belt to magnitude 21 were nearly complete and any remaining Pluto-sized objects are expected to be beyond 100 AU from the Sun. Like other Kuiper-belt objects (KBOs), Pluto shares features with comets; for example, the solar wind is gradually blowing Pluto's surface into space. It has been claimed that if Pluto were placed as near to the Sun as Earth, it would develop a tail, as comets do. This claim has been disputed with the argument that Pluto's escape velocity is too high for this to happen. It has been proposed that Pluto may have formed as a result of the agglomeration of numerous comets and Kuiper-belt objects.

Though Pluto is the largest Kuiper belt object discovered, Neptune's moon Triton, which is larger than Pluto, is similar to it both geologically and atmospherically, and is thought to be a captured Kuiper belt object. Eris (see above) is about the same size as Pluto (though more massive) but is not strictly considered a member of the Kuiper belt population. Rather, it is considered a member of a linked population called the scattered disc.

Like other members of the Kuiper belt, Pluto is thought to be a residual planetesimal; a component of the original protoplanetary disc around the Sun that failed to fully coalesce into a full-fledged planet. Most astronomers agree that Pluto owes its position to a sudden migration undergone by Neptune early in the Solar System's formation. As Neptune migrated outward, it approached the objects in the proto-Kuiper belt, setting one in orbit around itself (Triton), locking others into resonances, and knocking others into chaotic orbits. The objects in the scattered disc, a dynamically unstable region overlapping the Kuiper belt, are thought to have been placed in their positions by interactions with Neptune's migrating resonances. A computer model created in 2004 by Alessandro Morbidelli of the Observatoire de la Côte d'Azur in Nice suggested that the migration of Neptune into the Kuiper belt may have been triggered by the formation of a 1:2 resonance between Jupiter and Saturn, which created a gravitational push that propelled both Uranus and Neptune into higher orbits and caused them to switch places, ultimately doubling Neptune's distance from the Sun. The resultant expulsion of objects from the proto-Kuiper belt could also explain the Late Heavy Bombardment 600 million years after the Solar System's formation and the origin of the Jupiter trojans. It is possible that Pluto had a near-circular orbit about 33 AU from the Sun before Neptune's migration perturbed it into a resonant capture. The Nice model requires that there were about a thousand Pluto-sized bodies in the original planetesimal disk, which included Triton and Eris.

Observation and exploration

Observation

Computer-generated rotating image of Pluto based on observations by the Hubble Space Telescope in 2002–2003

Pluto's distance from Earth makes its in-depth study and exploration difficult. Pluto's visual apparent magnitude averages 15.1, brightening to 13.65 at perihelion. To see it, a telescope is required; around 30 cm (12 in) aperture being desirable. It looks star-like and without a visible disk even in large telescopes, because its angular diameter is maximum 0.11".

The earliest maps of Pluto, made in the late 1980s, were brightness maps created from close observations of eclipses by its largest moon, Charon. Observations were made of the change in the total average brightness of the Pluto–Charon system during the eclipses. For example, eclipsing a bright spot on Pluto makes a bigger total brightness change than eclipsing a dark spot. Computer processing of many such observations can be used to create a brightness map. This method can also track changes in brightness over time.

Better maps were produced from images taken by the Hubble Space Telescope (HST), which offered higher resolution, and showed considerably more detail, resolving variations several hundred kilometers across, including polar regions and large bright spots. These maps were produced by complex computer processing, which finds the best-fit projected maps for the few pixels of the Hubble images. These remained the most detailed maps of Pluto until the flyby of New Horizons in July 2015, because the two cameras on the HST used for these maps were no longer in service.

Exploration

Main articles: Exploration of Pluto and New Horizons
Pluto and Charon seen orbiting each other by New Horizons

The New Horizons spacecraft, which flew by Pluto in July 2015, is the first and so far only attempt to explore Pluto directly. Launched in 2006, it captured its first (distant) images of Pluto in late September 2006 during a test of the Long Range Reconnaissance Imager. The images, taken from a distance of approximately 4.2 billion kilometers, confirmed the spacecraft's ability to track distant targets, critical for maneuvering toward Pluto and other Kuiper belt objects. In early 2007 the craft made use of a gravity assist from Jupiter.

New Horizons made its closest approach to Pluto on July 14, 2015, after a 3,462-day journey across the Solar System. Scientific observations of Pluto began five months before the closest approach and continued for at least a month after the encounter. Observations were conducted using a remote sensing package that included imaging instruments and a radio science investigation tool, as well as spectroscopic and other experiments. The scientific goals of New Horizons were to characterize the global geology and morphology of Pluto and its moon Charon, map their surface composition, and analyze Pluto's neutral atmosphere and its escape rate. On October 25, 2016, at 05:48 pm ET, the last bit of data (of a total of 50 billion bits of data; or 6.25 gigabytes) was received from New Horizons from its close encounter with Pluto.

Since the New Horizons flyby, scientists have advocated for an orbiter mission that would return to Pluto to fulfill new science objectives. They include mapping the surface at 9.1 m (30 ft) per pixel, observations of Pluto's smaller satellites, observations of how Pluto changes as it rotates on its axis, investigations of a possible subsurface ocean, and topographic mapping of Pluto's regions that are covered in long-term darkness due to its axial tilt. The last objective could be accomplished using laser pulses to generate a complete topographic map of Pluto. New Horizons principal investigator Alan Stern has advocated for a Cassini-style orbiter that would launch around 2030 (the 100th anniversary of Pluto's discovery) and use Charon's gravity to adjust its orbit as needed to fulfill science objectives after arriving at the Pluto system. The orbiter could then use Charon's gravity to leave the Pluto system and study more KBOs after all Pluto science objectives are completed. A conceptual study funded by the NASA Innovative Advanced Concepts (NIAC) program describes a fusion-enabled Pluto orbiter and lander based on the Princeton field-reversed configuration reactor.

New Horizons imaged all of Pluto's northern hemisphere, and the equatorial regions down to about 30° South. Higher southern latitudes have only been observed, at very low resolution, from Earth. Images from the Hubble Space Telescope in 1996 cover 85% of Pluto and show large albedo features down to about 75° South. This is enough to show the extent of the temperate-zone maculae. Later images had slightly better resolution, due to minor improvements in Hubble instrumentation. The equatorial region of the sub-Charon hemisphere of Pluto has only been imaged at low resolution, as New Horizons made its closest approach to the anti-Charon hemisphere.

Some albedo variations in the higher southern latitudes could be detected by New Horizons using Charon-shine (light reflected off Charon). The south polar region seems to be darker than the north polar region, but there is a high-albedo region in the southern hemisphere that may be a regional nitrogen or methane ice deposit.

Panoramic view of Pluto's icy mountains and flat ice plains, imaged by New Horizons 15 minutes after its closest approach to Pluto. Distinct haze layers in Pluto's atmosphere can be seen backlit by the Sun.

See also

Notes

  1. This photograph was taken by the Ralph telescope aboard New Horizons on July 14, 2015, from a distance of 35,445 km (22,025 mi)
  2. The mean elements here are from the Theory of the Outer Planets (TOP2013) solution by the Institut de mécanique céleste et de calcul des éphémérides (IMCCE). They refer to the standard equinox J2000, the barycenter of the Solar System, and the epoch J2000.
  3. Surface area derived from the radius r: 4 π r 2 {\displaystyle 4\pi r^{2}} .
  4. Volume v derived from the radius r: 4 π r 3 / 3 {\displaystyle 4\pi r^{3}/3} .
  5. Surface gravity derived from the mass M, the gravitational constant G and the radius r: G M / r 2 {\displaystyle GM/r^{2}} .
  6. Escape velocity derived from the mass M, the gravitational constant G and the radius r: 2 G M / r {\displaystyle {\sqrt {2GM/r}}} .
  7. Based on geometry of minimum and maximum distance from Earth and Pluto radius in the factsheet
  8. A French astronomer had suggested the name Pluto for Planet X in 1919, but there is no indication that the Lowell staff knew of this.
  9. For example, ⟨♇⟩ (in Unicode: U+2647 ♇ PLUTO) occurs in a table of the planets identified by their symbols in a 2004 article written before the 2006 IAU definition, but not in a graph of planets, dwarf planets and moons from 2016, where only the eight IAU planets are identified by their symbols. (Planetary symbols in general are uncommon in astronomy, and are discouraged by the IAU.)
  10. The bident symbol (U+2BD3 ⯓ PLUTO FORM TWO) has seen some astronomical use as well since the IAU decision on dwarf planets, for example in a public-education poster on dwarf planets published by the NASA/JPL Dawn mission in 2015, in which each of the five dwarf planets announced by the IAU receives a symbol. There are in addition several other symbols for Pluto found in astrological sources, including three accepted by Unicode: ⯔, U+2BD4 ⯔ PLUTO FORM THREE, used principally in southern Europe; ⯖/⯖, U+2BD6 ⯖ PLUTO FORM FIVE (found in various orientations, showing Pluto's orbit cutting across that of Neptune), used principally in northern Europe; and ⯕, U+2BD5 ⯕ PLUTO FORM FOUR, used in Uranian astrology.
  11. The equivalence is less close in languages whose phonology differs widely from Greek's, such as Somali Buluuto and Navajo Tłóotoo.
  12. The discovery of Charon in 1978 allowed astronomers to accurately calculate the mass of the Plutonian system. But it did not indicate the two bodies' individual masses, which could only be estimated after other moons of Pluto were discovered in late 2005. As a result, because Pluto came to perihelion in 1989, most Pluto perihelion date estimates are based on the Pluto–Charon barycenter. Charon came to perihelion 4 September 1989. The Pluto–Charon barycenter came to perihelion 5 September 1989. Pluto came to perihelion 8 September 1989.
  13. Because of the eccentricity of Pluto's orbit, some have theorized that it was once a satellite of Neptune.
  14. The dwarf planet Eris is roughly the same size as Pluto, about 2330 km; Eris is 28% more massive than Pluto. Eris is a scattered-disc object, often considered a distinct population from Kuiper-belt objects like Pluto; Pluto is the largest body in the Kuiper belt proper, which excludes the scattered-disc objects.

References

  1. "Plutonian". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. Simon, J.L.; Francou, G.; Fienga, A.; Manche, H. (September 2013). "New analytical planetary theories VSOP2013 and TOP2013" (PDF). Astronomy and Astrophysics. 557 (2): A49. Bibcode:2013A&A...557A..49S. doi:10.1051/0004-6361/201321843. S2CID 56344625. Archived (PDF) from the original on May 27, 2022. Retrieved February 26, 2024. The elements in the clearer and usual format is in the spreadsheet Archived May 15, 2016, at the Wayback Machine and the original TOP2013 elements here. Archived October 19, 2021, at the Wayback Machine
  3. ^ Williams, David R. (July 24, 2015). "Pluto Fact Sheet". NASA. Archived from the original on November 19, 2015. Retrieved August 6, 2015.
  4. ^ "Horizon Online Ephemeris System for Pluto Barycenter". JPL Horizons On-Line Ephemeris System @ Solar System Dynamics Group. Archived from the original on May 10, 2011. Retrieved January 16, 2011. (Observer Location @sun with the observer at the center of the Sun)
  5. ^ Nimmo, Francis; et al. (2017). "Mean radius and shape of Pluto and Charon from New Horizons images". Icarus. 287: 12–29. arXiv:1603.00821. Bibcode:2017Icar..287...12N. doi:10.1016/j.icarus.2016.06.027. S2CID 44935431.
  6. ^ Stern, S.A.; Grundy, W.; McKinnon, W.B.; Weaver, H.A.; Young, L.A. (2017). "The Pluto System After New Horizons". Annual Review of Astronomy and Astrophysics. 2018: 357–392. arXiv:1712.05669. Bibcode:2018ARA&A..56..357S. doi:10.1146/annurev-astro-081817-051935. ISSN 0066-4146. S2CID 119072504.
  7. ^ Stern, S.A.; et al. (2015). "The Pluto system: Initial results from its exploration by New Horizons". Science. 350 (6258): 249–352. arXiv:1510.07704. Bibcode:2015Sci...350.1815S. doi:10.1126/science.aad1815. PMID 26472913. S2CID 1220226.
  8. ^ Brozović, Marina; Jacobson, Robert A. (May 8, 2024). "Post-new-horizons Orbits and Masses for the Satellites of Pluto". The Astronomical Journal. 167 (256): 256. Bibcode:2024AJ....167..256B. doi:10.3847/1538-3881/ad39f0.
  9. Seligman, Courtney. "Rotation Period and Day Length". Archived from the original on September 29, 2018. Retrieved June 12, 2021.
  10. ^ Archinal, Brent A.; A'Hearn, Michael F.; Bowell, Edward G.; Conrad, Albert R.; Consolmagno, Guy J.; et al. (2010). "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009" (PDF). Celestial Mechanics and Dynamical Astronomy. 109 (2): 101–135. Bibcode:2011CeMDA.109..101A. doi:10.1007/s10569-010-9320-4. S2CID 189842666. Archived from the original (PDF) on March 4, 2016. Retrieved September 26, 2018.
  11. "AstDys (134340) Pluto Ephemerides". Department of Mathematics, University of Pisa, Italy. Archived from the original on January 17, 2020. Retrieved June 27, 2010.
  12. "JPL Small-Body Database Browser: 134340 Pluto". Archived from the original on February 18, 2017. Retrieved September 29, 2022.
  13. Amos, Jonathan (July 23, 2015). "New Horizons: Pluto may have 'nitrogen glaciers'". BBC News. Archived from the original on October 27, 2017. Retrieved July 26, 2015. It could tell from the passage of sunlight and radiowaves through the Plutonian "air" that the pressure was only about 10 microbars at the surface
  14. "Pluto has carbon monoxide in its atmosphere". Physorg.com. April 19, 2011. Archived from the original on May 11, 2011. Retrieved November 22, 2011.
  15. ^ Clyde Tombaugh & Patrick Moore (2008) Out of the Darkness: The Planet Pluto
  16. Croswell, Ken (1997). Planet Quest: The Epic Discovery of Alien Solar Systems. New York: The Free Press. p. 43. ISBN 978-0-684-83252-4. Archived from the original on February 26, 2024. Retrieved April 15, 2022.
  17. ^ Tombaugh, Clyde W. (1946). "The Search for the Ninth Planet, Pluto". Astronomical Society of the Pacific Leaflets. 5 (209): 73–80. Bibcode:1946ASPL....5...73T.
  18. ^ Hoyt, William G. (1976). "W. H. Pickering's Planetary Predictions and the Discovery of Pluto". Isis. 67 (4): 551–564. doi:10.1086/351668. JSTOR 230561. PMID 794024. S2CID 26512655.
  19. Littman, Mark (1990). Planets Beyond: Discovering the Outer Solar System. Wiley. p. 70. ISBN 978-0-471-51053-6.
  20. Buchwald, Greg; Dimario, Michael; Wild, Walter (2000). "Pluto is Discovered Back in Time". Amateur–Professional Partnerships in Astronomy. 220. San Francisco: 335. Bibcode:2000ASPC..220..355B. ISBN 978-1-58381-052-1.
  21. ^ Croswell 1997, p. 50.
  22. Croswell 1997, p. 52.
  23. Rao, Joe (March 11, 2005). "Finding Pluto: Tough Task, Even 75 Years Later". Space.com. Archived from the original on August 23, 2010. Retrieved September 8, 2006.
  24. ^ Kevin Schindler & William Grundy (2018) Pluto and Lowell Observatory, pp. 73–79.
  25. Croswell 1997, pp. 54–55.
  26. ^ Rincon, Paul (January 13, 2006). "The girl who named a planet". BBC News. Archived from the original on October 4, 2018. Retrieved April 12, 2007.
  27. "Pluto Research at Lowell". Lowell Observatory. Archived from the original on April 18, 2016. Retrieved March 22, 2017.
  28. Ferris (2012: 336) Seeing in the Dark
  29. Scott & Powell (2018) The Universe as It Really Is
  30. Coincidentally, as popular science author Martin Gardner and others have noted of the name "Pluto", "the last two letters are the first two letters of Tombaugh's name" Martin Gardner, Puzzling Questions about the Solar System (Dover Publications, 1997) p. 55
  31. "NASA's Solar System Exploration: Multimedia: Gallery: Pluto's Symbol". NASA. Archived from the original on October 1, 2006. Retrieved November 29, 2011.
  32. John Lewis, ed. (2004). Physics and chemistry of the solar system (2 ed.). Elsevier. p. 64.
  33. Jingjing Chen; David Kipping (2017). "Probabilistic Forecasting of the Masses and Radii of Other Worlds". The Astrophysical Journal. 834 (17). The American Astronomical Society: 8. arXiv:1603.08614. Bibcode:2017ApJ...834...17C. doi:10.3847/1538-4357/834/1/17. S2CID 119114880.
  34. The IAU Style Manual (PDF). 1989. p. 27. Archived (PDF) from the original on July 26, 2011. Retrieved January 29, 2022.
  35. Dane Rudhyar (1936) The Astrology of Personality, credits it to Paul Clancy Publications, founded in 1933.
  36. NASA/JPL, What is a Dwarf Planet? Archived December 8, 2021, at the Wayback Machine 2015 Apr 22
  37. Fred Gettings (1981) Dictionary of Occult, Hermetic and Alchemical Sigils. Routledge & Kegan Paul, London.
  38. Faulks, David. "Astrological Plutos" (PDF). www.unicode.org. Unicode. Archived (PDF) from the original on November 12, 2020. Retrieved October 1, 2021.
  39. Heinrichs, Allison M. (2006). "Dwarfed by comparison". Pittsburgh Tribune-Review. Archived from the original on November 14, 2007. Retrieved March 26, 2007.
  40. Clark, David L.; Hobart, David E. (2000). "Reflections on the Legacy of a Legend" (PDF). Archived (PDF) from the original on June 3, 2016. Retrieved November 29, 2011.
  41. ^ "Planetary Linguistics". Archived from the original on December 17, 2007. Retrieved June 12, 2007.
  42. Renshaw, Steve; Ihara, Saori (2000). "A Tribute to Houei Nojiri". Archived from the original on December 6, 2012. Retrieved November 29, 2011.
  43. Bathrobe. "Uranus, Neptune, and Pluto in Chinese, Japanese, and Vietnamese". cjvlang.com. Archived from the original on July 20, 2011. Retrieved November 29, 2011.
  44. Stern, Alan; Tholen, David James (1997). Pluto and Charon. University of Arizona Press. pp. 206–208. ISBN 978-0-8165-1840-1.
  45. Crommelin, Andrew Claude de la Cherois (1931). "The Discovery of Pluto". Monthly Notices of the Royal Astronomical Society. 91 (4): 380–385. Bibcode:1931MNRAS..91..380.. doi:10.1093/mnras/91.4.380.
  46. ^ Nicholson, Seth B.; Mayall, Nicholas U. (December 1930). "The Probable Value of the Mass of Pluto". Publications of the Astronomical Society of the Pacific. 42 (250): 350. Bibcode:1930PASP...42..350N. doi:10.1086/124071.
  47. Nicholson, Seth B.; Mayall, Nicholas U. (January 1931). "Positions, Orbit, and Mass of Pluto". Astrophysical Journal. 73: 1. Bibcode:1931ApJ....73....1N. doi:10.1086/143288.
  48. ^ Kuiper, Gerard P. (1950). "The Diameter of Pluto". Publications of the Astronomical Society of the Pacific. 62 (366): 133–137. Bibcode:1950PASP...62..133K. doi:10.1086/126255.
  49. ^ Croswell 1997, p. 57.
  50. Christy, James W.; Harrington, Robert Sutton (1978). "The Satellite of Pluto". Astronomical Journal. 83 (8): 1005–1008. Bibcode:1978AJ.....83.1005C. doi:10.1086/112284. S2CID 120501620.
  51. Buie, Marc W.; Grundy, William M.; Young, Eliot F.; et al. (2006). "Orbits and photometry of Pluto's satellites: Charon, S/2005 P1, and S/2005 P2". Astronomical Journal. 132 (1): 290–298. arXiv:astro-ph/0512491. Bibcode:2006AJ....132..290B. doi:10.1086/504422. S2CID 119386667.
  52. Seidelmann, P. Kenneth; Harrington, Robert Sutton (1988). "Planet X – The current status". Celestial Mechanics and Dynamical Astronomy. 43 (1–4): 55–68. Bibcode:1988CeMec..43...55S. doi:10.1007/BF01234554. S2CID 189831334.
  53. Standish, E. Myles (1993). "Planet X – No dynamical evidence in the optical observations". Astronomical Journal. 105 (5): 200–2006. Bibcode:1993AJ....105.2000S. doi:10.1086/116575.
  54. Standage, Tom (2000). The Neptune File. Penguin. p. 168. ISBN 978-0-8027-1363-6.
  55. Ernest W. Brown, On the predictions of trans-Neptunian planets from the perturbations of Uranus Archived January 18, 2022, at the Wayback Machine, PNAS May 15, 1930, 16 (5) 364-371.
  56. Tyson, Neil deGrasse (February 2, 2001). "Astronomer Responds to Pluto-Not-a-Planet Claim". Space.com. Archived from the original on May 12, 2020. Retrieved November 30, 2011.
  57. Metzger, Philip T.; Sykes, Mark V.; Stern, Alan; Runyon, Kirby (2019). "The Reclassification of Asteroids from Planets to Non-Planets". Icarus. 319: 21–32. arXiv:1805.04115. Bibcode:2019Icar..319...21M. doi:10.1016/j.icarus.2018.08.026. S2CID 119206487.
  58. Metzger, Philip T.; Grundy, W. M.; Sykes, Mark V.; Stern, Alan; Bell III, James F.; Detelich, Charlene E.; Runyon, Kirby; Summers, Michael (2022). "Moons are planets: Scientific usefulness versus cultural teleology in the taxonomy of planetary science". Icarus. 374: 114768. arXiv:2110.15285. Bibcode:2022Icar..37414768M. doi:10.1016/j.icarus.2021.114768. S2CID 240071005. Archived from the original on September 11, 2022. Retrieved August 8, 2022.
  59. "NASA-Funded Scientists Discover Tenth Planet". NASA press releases. July 29, 2005. Archived from the original on May 12, 2020. Retrieved February 22, 2007.
  60. Soter, Steven (November 2, 2006). "What Is a Planet?". The Astronomical Journal. 132 (6): 2513–2519. arXiv:astro-ph/0608359. Bibcode:2006AJ....132.2513S. doi:10.1086/508861. S2CID 14676169.
  61. "IAU 2006 General Assembly: Resolutions 5 and 6" (PDF). IAU. August 24, 2006. Archived (PDF) from the original on June 20, 2009. Retrieved June 15, 2008.
  62. ^ "IAU 2006 General Assembly: Result of the IAU Resolution votes". International Astronomical Union (News Release – IAU0603). August 24, 2006. Archived from the original on April 29, 2014. Retrieved June 15, 2008.
  63. Margot, Jean-Luc (2015). "A Quantitative Criterion for Defining Planets". The Astronomical Journal. 150 (6): 185. arXiv:1507.06300. Bibcode:2015AJ....150..185M. doi:10.1088/0004-6256/150/6/185. S2CID 51684830.
  64. Soter, Steven (2007). "What is a Planet?". The Astronomical Journal. 132 (6). Department of Astrophysics, American Museum of Natural History: 2513–2519. arXiv:astro-ph/0608359. Bibcode:2006AJ....132.2513S. doi:10.1086/508861. S2CID 14676169. Archived from the original on November 6, 2013. Retrieved April 9, 2012.
  65. Green, Daniel W. E. (September 13, 2006). "(134340) Pluto, (136199) Eris, and (136199) Eris I (Dysnomia)" (PDF). IAU Circular. 8747: 1. Bibcode:2006IAUC.8747....1G. Archived from the original on February 5, 2007. Retrieved December 1, 2011.
  66. "JPL Small-Body Database Browser". California Institute of Technology. Archived from the original on July 21, 2011. Retrieved July 15, 2015.
  67. Britt, Robert Roy (August 24, 2006). "Pluto Demoted: No Longer a Planet in Highly Controversial Definition". Space.com. Archived from the original on December 27, 2010. Retrieved September 8, 2006.
  68. Ruibal, Sal (January 6, 1999). "Astronomers question if Pluto is real planet". USA Today.
  69. Britt, Robert Roy (November 21, 2006). "Why Planets Will Never Be Defined". Space.com. Archived from the original on May 24, 2009. Retrieved December 1, 2006.
  70. Britt, Robert Roy (August 24, 2006). "Scientists decide Pluto's no longer a planet". NBC News. Archived from the original on February 11, 2013. Retrieved September 8, 2006.
  71. ^ Shiga, David (August 25, 2006). "New planet definition sparks furore". NewScientist.com. Archived from the original on October 3, 2010. Retrieved September 8, 2006.
  72. Buie, Marc W. (September 2006). "My response to 2006 IAU Resolutions 5a and 6a". Southwest Research Institute. Archived from the original on June 3, 2007. Retrieved December 1, 2011.
  73. Overbye, Dennis (August 24, 2006). "Pluto Is Demoted to 'Dwarf Planet'". The New York Times. Archived from the original on June 22, 2022. Retrieved December 1, 2011.
  74. DeVore, Edna (September 7, 2006). "Planetary Politics: Protecting Pluto". Space.com. Archived from the original on August 4, 2011. Retrieved December 1, 2011.
  75. Holden, Constance (March 23, 2007). "Rehabilitating Pluto". Science. 315 (5819): 1643. doi:10.1126/science.315.5819.1643c. S2CID 220102037.
  76. Gutierrez, Joni Marie (2007). "A joint memorial. Declaring Pluto a planet and declaring March 13, 2007, 'Pluto planet day' at the legislature". Legislature of New Mexico. Archived from the original on May 11, 2020. Retrieved September 5, 2009.
  77. "Illinois General Assembly: Bill Status of SR0046, 96th General Assembly". ilga.gov. Illinois General Assembly. Archived from the original on May 14, 2011. Retrieved March 16, 2011.
  78. "Pluto's still the same Pluto". Independent Newspapers. Associated Press. October 21, 2006. Archived from the original on December 1, 2017. Retrieved November 29, 2011. Mickey Mouse has a cute dog.
  79. "'Plutoed' chosen as '06 Word of the Year". Associated Press. January 8, 2007. Archived from the original on March 1, 2013. Retrieved January 10, 2007.
  80. Sanchez, Cameron. "Pluto is a planet again — at least in Arizona". npr.org. NPR. Retrieved April 12, 2024.
  81. Minkel, J. R. (April 10, 2008). "Is Rekindling the Pluto Planet Debate a Good Idea?". Scientific American. Archived from the original on August 11, 2011. Retrieved December 1, 2011.
  82. "The Great Planet Debate: Science as Process. A Scientific Conference and Educator Workshop". gpd.jhuapl.edu. Johns Hopkins University Applied Physics Laboratory. June 27, 2008. Archived from the original on August 17, 2011. Retrieved December 1, 2011.
  83. "Scientists Debate Planet Definition and Agree to Disagree", Planetary Science Institute press release of September 19, 2008, PSI.edu Archived July 15, 2011, at the Wayback Machine
  84. "Plutoid chosen as name for Solar System objects like Pluto". Paris: International Astronomical Union (News Release – IAU0804). June 11, 2008. Archived from the original on August 10, 2011. Retrieved December 1, 2011.
  85. "Plutoids Join the Solar Family", Discover Magazine, January 2009, p. 76
  86. Science News, July 5, 2008, p. 7
  87. "Pluto to become most distant planet". JPL/NASA. January 28, 1999. Archived from the original on September 2, 2010. Retrieved January 16, 2011.
  88. Sussman, Gerald Jay; Wisdom, Jack (1988). "Numerical evidence that the motion of Pluto is chaotic". Science. 241 (4864): 433–437. Bibcode:1988Sci...241..433S. doi:10.1126/science.241.4864.433. hdl:1721.1/6038. PMID 17792606. S2CID 1398095. Archived from the original on September 24, 2017. Retrieved May 16, 2018.
  89. Wisdom, Jack; Holman, Matthew (1991). "Symplectic maps for the n-body problem". Astronomical Journal. 102: 1528–1538. Bibcode:1991AJ....102.1528W. doi:10.1086/115978. Archived from the original on July 10, 2021. Retrieved October 18, 2021.
  90. ^ Williams, James G.; Benson, G. S. (1971). "Resonances in the Neptune-Pluto System". Astronomical Journal. 76: 167. Bibcode:1971AJ.....76..167W. doi:10.1086/111100. S2CID 120122522.
  91. ^ Wan, Xiao-Sheng; Huang, Tian-Yi; Innanen, Kim A. (2001). "The 1:1 Superresonance in Pluto's Motion". The Astronomical Journal. 121 (2): 1155–1162. Bibcode:2001AJ....121.1155W. doi:10.1086/318733.
  92. Hunter, Maxwell W. (2004). "Unmanned scientific exploration throughout the Solar System". Space Science Reviews. 6 (5): 501. Bibcode:1967SSRv....6..601H. doi:10.1007/BF00168793. S2CID 125982610.
  93. ^ Malhotra, Renu (1997). "Pluto's Orbit". Archived from the original on July 31, 2019. Retrieved March 26, 2007.
  94. Sagan, Carl & Druyan, Ann (1997). Comet. New York: Random House. p. 223. ISBN 978-0-3078-0105-0. Archived from the original on February 26, 2024. Retrieved October 18, 2021.
  95. ^ The ecliptic longitude of Pluto Archived February 13, 2024, at the Wayback Machine and of Neptune Archived February 13, 2024, at the Wayback Machine are available from the JPL Horizons On-Line Ephemeris System.
  96. ^ Alfvén, Hannes; Arrhenius, Gustaf (1976). "SP-345 Evolution of the Solar System". Archived from the original on May 13, 2007. Retrieved March 28, 2007.
  97. Cohen, C. J.; Hubbard, E. C. (1965). "Libration of the close approaches of Pluto to Neptune". Astronomical Journal. 70: 10. Bibcode:1965AJ.....70...10C. doi:10.1086/109674.
  98. ^ Faure, Gunter; Mensing, Teresa M. (2007). "Pluto and Charon: The Odd Couple". Introduction to Planetary Science. Springer. pp. 401–408. doi:10.1007/978-1-4020-5544-7. ISBN 978-1-4020-5544-7.
  99. Schombert, Jim; University of Oregon Astronomy 121 Lecture notes Archived July 23, 2011, at the Wayback Machine, Pluto Orientation diagram Archived March 25, 2009, at the Wayback Machine
  100. Kirschvink, Joseph L.; Ripperdan, Robert L.; Evans, David A. (July 25, 1997). "Evidence for a Large-Scale Reorganization of Early Cambrian Continental Masses by Inertial Interchange True Polar Wander". Science. 277 (5325): 541–545. doi:10.1126/science.277.5325.541. ISSN 0036-8075. S2CID 177135895.
  101. Keane, James T.; Matsuyama, Isamu; Kamata, Shunichi; Steckloff, Jordan K. (2016). "Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia". Nature. 540 (7631): 90–93. Bibcode:2016Natur.540...90K. doi:10.1038/nature20120. PMID 27851731. S2CID 4468636.
  102. Owen, Tobias C.; Roush, Ted L.; Cruikshank, Dale P.; et al. (1993). "Surface Ices and the Atmospheric Composition of Pluto". Science. 261 (5122): 745–748. Bibcode:1993Sci...261..745O. doi:10.1126/science.261.5122.745. JSTOR 2882241. PMID 17757212. S2CID 6039266.
  103. Grundy, W.M.; Olkin, C.B.; Young, L.A.; Buie, M.W.; Young, E.F. (2013). "Near-infrared spectral monitoring of Pluto's ices: Spatial distribution and secular evolution" (PDF). Icarus. 223 (2): 710–721. arXiv:1301.6284. Bibcode:2013Icar..223..710G. doi:10.1016/j.icarus.2013.01.019. S2CID 26293543. Archived from the original (PDF) on November 8, 2015.
  104. Drake, Nadia (November 9, 2015). "Floating Mountains on Pluto – You Can't Make This Stuff Up". National Geographic. Archived from the original on November 13, 2015. Retrieved December 23, 2016.
  105. Buie, Marc W.; Grundy, William M.; Young, Eliot F.; et al. (2010). "Pluto and Charon with the Hubble Space Telescope: I. Monitoring global change and improved surface properties from light curves". Astronomical Journal. 139 (3): 1117–1127. Bibcode:2010AJ....139.1117B. CiteSeerX 10.1.1.625.7795. doi:10.1088/0004-6256/139/3/1117. S2CID 1725219. Archived from the original on July 20, 2015. Retrieved February 10, 2010.
  106. ^ Buie, Marc W. "Pluto map information". Archived from the original on June 29, 2011. Retrieved February 10, 2010.
  107. Villard, Ray; Buie, Marc W. (February 4, 2010). "New Hubble Maps of Pluto Show Surface Changes". News Release Number: STScI-2010-06. Archived from the original on September 1, 2016. Retrieved February 10, 2010.
  108. ^ Buie, Marc W.; Grundy, William M.; Young, Eliot F.; et al. (2010). "Pluto and Charon with the Hubble Space Telescope: II. Resolving changes on Pluto's surface and a map for Charon". Astronomical Journal. 139 (3): 1128–1143. Bibcode:2010AJ....139.1128B. CiteSeerX 10.1.1.625.7795. doi:10.1088/0004-6256/139/3/1128. S2CID 9343680. Archived from the original on July 7, 2015. Retrieved February 10, 2010.
  109. Lakdawalla, Emily (October 26, 2016). "DPS/EPSC update on New Horizons at the Pluto system and beyond". The Planetary Society. Archived from the original on October 8, 2018. Retrieved October 26, 2016.
  110. McKinnon, W. B.; Nimmo, F.; Wong, T.; Schenk, P. M.; White, O. L.; et al. (June 1, 2016). "Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour". Nature. 534 (7605): 82–85. arXiv:1903.05571. Bibcode:2016Natur.534...82M. doi:10.1038/nature18289. PMID 27251279. S2CID 30903520.
  111. Trowbridge, A. J.; Melosh, H. J.; Steckloff, J. K.; Freed, A. M. (June 1, 2016). "Vigorous convection as the explanation for Pluto's polygonal terrain". Nature. 534 (7605): 79–81. Bibcode:2016Natur.534...79T. doi:10.1038/nature18016. PMID 27251278. S2CID 6743360.
  112. Lakdawalla, Emily (December 21, 2015). "Pluto updates from AGU and DPS: Pretty pictures from a confusing world". The Planetary Society. Archived from the original on December 24, 2015. Retrieved January 24, 2016.
  113. Umurhan, O. (January 8, 2016). "Probing the Mysterious Glacial Flow on Pluto's Frozen 'Heart'". blogs.nasa.gov. NASA. Archived from the original on April 19, 2016. Retrieved January 24, 2016.
  114. Marchis, F.; Trilling, D. E. (January 20, 2016). "The Surface Age of Sputnik Planum, Pluto, Must Be Less than 10 Million Years". PLOS ONE. 11 (1): e0147386. arXiv:1601.02833. Bibcode:2016PLoSO..1147386T. doi:10.1371/journal.pone.0147386. PMC 4720356. PMID 26790001.
  115. Buhler, P. B.; Ingersoll, A. P. (March 23, 2017). "Sublimation pit distribution indicates convection cell surface velocity of ~10 centimeters per year in Sputnik Planitia, Pluto" (PDF). 48th Lunar and Planetary Science Conference. Archived (PDF) from the original on August 13, 2017. Retrieved May 11, 2017.
  116. Telfer, Matt W; Parteli, Eric J. R; Radebaugh, Jani; Beyer, Ross A; Bertrand, Tanguy; Forget, François; Nimmo, Francis; Grundy, Will M; Moore, Jeffrey M; Stern, S. Alan; Spencer, John; Lauer, Tod R; Earle, Alissa M; Binzel, Richard P; Weaver, Hal A; Olkin, Cathy B; Young, Leslie A; Ennico, Kimberly; Runyon, Kirby (2018). "Dunes on Pluto" (PDF). Science. 360 (6392): 992–997. Bibcode:2018Sci...360..992T. doi:10.1126/science.aao2975. PMID 29853681. S2CID 44159592. Archived (PDF) from the original on October 23, 2020. Retrieved April 12, 2020.
  117. Robbins, Stuart J.; Dones, Luke (December 2023). "Impact Crater Databases for Pluto and Charon, Version 2". The Planetary Science Journal. 4 (12): 6. Bibcode:2023PSJ.....4..233R. doi:10.3847/PSJ/acf7be. S2CID 266147862. 233.
  118. ^ Hussmann, Hauke; Sohl, Frank; Spohn, Tilman (November 2006). "Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects". Icarus. 185 (1): 258–273. Bibcode:2006Icar..185..258H. doi:10.1016/j.icarus.2006.06.005. Archived (PDF) from the original on August 31, 2015. Retrieved October 25, 2018.
  119. "The Inside Story". pluto.jhuapl.edu – NASA New Horizons mission site. Johns Hopkins University Applied Physics Laboratory. 2007. Archived from the original on May 16, 2008. Retrieved February 15, 2014.
  120. Overlooked Ocean Worlds Fill the Outer Solar System Archived December 26, 2018, at the Wayback Machine. John Wenz, Scientific American. October 4, 2017.
  121. Samantha Cole. "An Incredibly Deep Ocean Could Be Hiding Beneath Pluto's Icy Heart". Popular Science. Archived from the original on September 27, 2016. Retrieved September 24, 2016.
  122. Rabie, Passant (June 22, 2020). "New Evidence Suggests Something Strange and Surprising about Pluto – The findings will make scientists rethink the habitability of Kuiper Belt objects". Inverse. Archived from the original on June 23, 2020. Retrieved June 23, 2020.
  123. Bierson, Carver; et al. (June 22, 2020). "Evidence for a hot start and early ocean formation on Pluto". Nature Geoscience. 769 (7): 468–472. Bibcode:2020NatGe..13..468B. doi:10.1038/s41561-020-0595-0. S2CID 219976751. Archived from the original on June 22, 2020. Retrieved June 23, 2020.
  124. Singer, Kelsi N. (March 29, 2022). "Large-scale cryovolcanic resurfacing on Pluto". Nature Communications. 13 (1): 1542. arXiv:2207.06557. Bibcode:2022NatCo..13.1542S. doi:10.1038/s41467-022-29056-3. PMC 8964750. PMID 35351895.
  125. Davies, John (2001). "Beyond Pluto (extract)" (PDF). Royal Observatory, Edinburgh. Archived from the original (PDF) on July 15, 2011. Retrieved March 26, 2007.
  126. ^ "How Big Is Pluto? New Horizons Settles Decades-Long Debate". NASA. July 13, 2015. Archived from the original on July 1, 2017. Retrieved July 13, 2015.
  127. "Pluto and Charon | Astronomy". courses.lumenlearning.com. Archived from the original on March 24, 2022. Retrieved April 6, 2022. For a long time, it was thought that the mass of Pluto was similar to that of Earth, so that it was classed as a fifth terrestrial planet, somehow misplaced in the far outer reaches of the solar system. There were other anomalies, however, as Pluto's orbit was more eccentric and inclined to the plane of our solar system than that of any other planet. Only after the discovery of its moon Charon in 1978 could the mass of Pluto be measured, and it turned out to be far less than the mass of Earth.
  128. Close, Laird M.; Merline, William J.; Tholen, David J.; et al. (2000). Wizinowich, Peter L. (ed.). "Adaptive optics imaging of Pluto–Charon and the discovery of a moon around the Asteroid 45 Eugenia: the potential of adaptive optics in planetary astronomy". Proceedings of the International Society for Optical Engineering. Adaptive Optical Systems Technology. 4007: 787–795. Bibcode:2000SPIE.4007..787C. doi:10.1117/12.390379. S2CID 122678656.
  129. Young, Eliot F.; Young, Leslie A.; Buie, Marc W. (2007). "Pluto's Radius". American Astronomical Society, DPS Meeting No. 39, #62.05; Bulletin of the American Astronomical Society. 39: 541. Bibcode:2007DPS....39.6205Y.
  130. ^ Brown, Michael E. (November 22, 2010). "How big is Pluto, anyway?". Mike Brown's Planets. Archived from the original on July 21, 2011. Retrieved June 9, 2015. (Franck Marchis on 8 November 2010)
  131. Lellouch, Emmanuel; de Bergh, Catherine; Sicardy, Bruno; et al. (January 15, 2015). "Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere". Icarus. 246: 268–278. arXiv:1403.3208. Bibcode:2015Icar..246..268L. doi:10.1016/j.icarus.2014.03.027. S2CID 119194193.
  132. Lakdawalla, Emily (July 13, 2015). "Pluto minus one day: Very first New Horizons Pluto encounter science results". The Planetary Society. Archived from the original on March 2, 2020. Retrieved July 13, 2015.
  133. NASA's New Horizons Team Reveals New Scientific Findings on Pluto. NASA. July 24, 2015. Event occurs at 52:30. Archived from the original on October 28, 2021. Retrieved July 30, 2015. We had an uncertainty that ranged over maybe 70 kilometers, we've collapsed that to plus and minus two, and it's centered around 1186
  134. "Conditions on Pluto: Incredibly Hazy With Flowing Ice". New York Times. July 24, 2015. Archived from the original on July 28, 2015. Retrieved July 24, 2015.
  135. Croswell, Ken (1992). "Nitrogen in Pluto's Atmosphere". KenCroswell.com. New Scientist. Archived from the original on May 11, 2020. Retrieved April 27, 2007.
  136. Olkin, C.B.; Young, L.A.; Borncamp, D.; et al. (January 2015). "Evidence that Pluto's atmosphere does not collapse from occultations including the 2013 May 04 event". Icarus. 246: 220–225. Bibcode:2015Icar..246..220O. doi:10.1016/j.icarus.2014.03.026. hdl:10261/167246. Archived from the original on September 29, 2021. Retrieved September 8, 2017.
  137. ^ Kelly Beatty (2016). "Pluto's Atmosphere Confounds Researchers". Sky & Telescope. Archived from the original on April 7, 2016. Retrieved April 2, 2016.
  138. Than, Ker (2006). "Astronomers: Pluto colder than expected". Space.com. Archived from the original on October 19, 2012. Retrieved November 30, 2011 – via CNN.
  139. Gladstone, G. R.; Stern, S. A.; Ennico, K.; et al. (March 2016). "The atmosphere of Pluto as observed by New Horizons" (PDF). Science. 351 (6279): aad8866. arXiv:1604.05356. Bibcode:2016Sci...351.8866G. doi:10.1126/science.aad8866. PMID 26989258. S2CID 32043359. Archived from the original (PDF) on May 21, 2016. Retrieved June 12, 2016. (Supplementary Material)
  140. "What is happening to Pluto's Atmosphere". May 22, 2020. Archived from the original on October 24, 2021. Retrieved October 7, 2021.
  141. "SwRI Scientists Confirm Decrease In Pluto's Atmospheric Density". Southwest Research Institute. October 4, 2021. Archived from the original on October 15, 2021. Retrieved October 7, 2021.
  142. Lellouch, Emmanuel; Sicardy, Bruno; de Bergh, Catherine; et al. (2009). "Pluto's lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations". Astronomy and Astrophysics. 495 (3): L17 – L21. arXiv:0901.4882. Bibcode:2009A&A...495L..17L. doi:10.1051/0004-6361/200911633. S2CID 17779043.
  143. Gugliotta, Guy (November 1, 2005). "Possible New Moons for Pluto". The Washington Post. Archived from the original on October 20, 2012. Retrieved October 10, 2006.
  144. "NASA's Hubble Discovers Another Moon Around Pluto". NASA. July 20, 2011. Archived from the original on May 12, 2020. Retrieved July 20, 2011.
  145. Wall, Mike (July 11, 2012). "Pluto Has a Fifth Moon, Hubble Telescope Reveals". Space.com. Archived from the original on May 14, 2020. Retrieved July 11, 2012.
  146. Buie, M.; Tholen, D.; Grundy, W. (2012). "The Orbit of Charon is Circular" (PDF). The Astronomical Journal. 144 (1): 15. Bibcode:2012AJ....144...15B. doi:10.1088/0004-6256/144/1/15. S2CID 15009477. Archived from the original (PDF) on April 12, 2020.
  147. ^ Showalter, M.R.; Hamilton, D.P. (June 3, 2015). "Resonant interactions and chaotic rotation of Pluto's small moons". Nature. 522 (7554): 45–49. Bibcode:2015Natur.522...45S. doi:10.1038/nature14469. PMID 26040889. S2CID 205243819.
  148. Stern, S. Alan; Weaver, Harold A. Jr.; Steffl, Andrew J.; et al. (2005). "Characteristics and Origin of the Quadruple System at Pluto". arXiv:astro-ph/0512599.
  149. Witze, Alexandra (2015). "Pluto's moons move in synchrony". Nature. doi:10.1038/nature.2015.17681. S2CID 134519717.
  150. Matson, J. (July 11, 2012). "New Moon for Pluto: Hubble Telescope Spots a 5th Plutonian Satellite". Scientific American web site. Archived from the original on August 31, 2016. Retrieved July 12, 2012.
  151. Richardson, Derek C.; Walsh, Kevin J. (2005). "Binary Minor Planets". Annual Review of Earth and Planetary Sciences. 34 (1): 47–81. Bibcode:2006AREPS..34...47R. doi:10.1146/annurev.earth.32.101802.120208. S2CID 1692921.
  152. Sicardy, Bruno; Bellucci, Aurélie; Gendron, Éric; et al. (2006). "Charon's size and an upper limit on its atmosphere from a stellar occultation". Nature. 439 (7072): 52–54. Bibcode:2006Natur.439...52S. doi:10.1038/nature04351. hdl:11336/39754. PMID 16397493. S2CID 4411478.
  153. Szakáts, R.; Kiss, Cs.; Ortiz, J.L.; Morales, N.; Pál, A.; Müller, T.G.; et al. (2023). "Tidally locked rotation of the dwarf planet (136199) Eris discovered from long-term ground based and space photometry". Astronomy & Astrophysics. L3: 669. arXiv:2211.07987. Bibcode:2023A&A...669L...3S. doi:10.1051/0004-6361/202245234. S2CID 253522934.
  154. Young, Leslie A. (1997). "The Once and Future Pluto". Southwest Research Institute, Boulder, Colorado. Archived from the original on March 30, 2004. Retrieved March 26, 2007.
  155. "NASA's Hubble Finds Pluto's Moons Tumbling in Absolute Chaos". June 3, 2015. Archived from the original on April 6, 2020. Retrieved June 3, 2015.
  156. ^ de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (2012). "Plutino 15810 (1994 JR1), an accidental quasi-satellite of Pluto". Monthly Notices of the Royal Astronomical Society Letters. 427 (1): L85. arXiv:1209.3116. Bibcode:2012MNRAS.427L..85D. doi:10.1111/j.1745-3933.2012.01350.x. S2CID 118570875.
  157. "Pluto's fake moon". Sky & Telescope. September 24, 2012. Archived from the original on February 20, 2020. Retrieved September 24, 2012.
  158. ^ "New Horizons Collects First Science on a Post-Pluto Object". NASA. May 13, 2016. Archived from the original on June 7, 2016. Retrieved June 5, 2016.
  159. ^ de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (2016). "The analemma criterion: accidental quasi-satellites are indeed true quasi-satellites". Monthly Notices of the Royal Astronomical Society. 462 (3): 3344–3349. arXiv:1607.06686. Bibcode:2016MNRAS.462.3344D. doi:10.1093/mnras/stw1833. S2CID 119284843.
  160. Porter, Simon B.; et al. (2016). "The First High-phase Observations of a KBO: New Horizons Imaging of (15810) 1994 JR1 from the Kuiper Belt". The Astrophysical Journal Letters. 828 (2): L15. arXiv:1605.05376. Bibcode:2016ApJ...828L..15P. doi:10.3847/2041-8205/828/2/L15. S2CID 54507506.
  161. Kuiper, Gerard (1961). Planets and Satellites. Chicago: University of Chicago Press. p. 576.
  162. Stern, S. Alan; Tholen, David J. (1997). Pluto and Charon. University of Arizona Press. p. 623. ISBN 978-0-8165-1840-1. Archived from the original on February 26, 2024. Retrieved October 23, 2015.
  163. Sheppard, Scott S.; Trujillo, Chadwick A.; Udalski, Andrzej; et al. (2011). "A Southern Sky and Galactic Plane Survey for Bright Kuiper Belt Objects". Astronomical Journal. 142 (4): 98. arXiv:1107.5309. Bibcode:2011AJ....142...98S. doi:10.1088/0004-6256/142/4/98. S2CID 53552519.
  164. "Colossal Cousin to a Comet?". pluto.jhuapl.edu – NASA New Horizons mission site. Johns Hopkins University Applied Physics Laboratory. Archived from the original on November 13, 2014. Retrieved February 15, 2014.
  165. Tyson, Neil deGrasse (1999). "Pluto Is Not a Planet". The Planetary Society. Archived from the original on September 27, 2011. Retrieved November 30, 2011.
  166. Philip Metzger (April 13, 2015). "Nine Reasons Why Pluto Is a Planet". Philip Metzger. Archived from the original on April 15, 2015.
  167. Wall, Mike (May 24, 2018). "Pluto May Have Formed from 1 Billion Comets". Space.com. Archived from the original on May 24, 2018. Retrieved May 24, 2018.
  168. Glein, Christopher R.; Waite, J. Hunter Jr. (May 24, 2018). "Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto". Icarus. 313 (2018): 79–92. arXiv:1805.09285. Bibcode:2018Icar..313...79G. doi:10.1016/j.icarus.2018.05.007. S2CID 102343522.
  169. "Neptune's Moon Triton". The Planetary Society. Archived from the original on December 10, 2011. Retrieved November 30, 2011.
  170. Gomes R. S.; Gallardo T.; Fernández J. A.; Brunini A. (2005). "On the origin of the High-Perihelion Scattered Disk: the role of the Kozai mechanism and mean motion resonances". Celestial Mechanics and Dynamical Astronomy. 91 (1–2): 109–129. Bibcode:2005CeMDA..91..109G. doi:10.1007/s10569-004-4623-y. hdl:11336/38379. S2CID 18066500.
  171. Hahn, Joseph M. (2005). "Neptune's Migration into a Stirred-up Kuiper Belt: A Detailed Comparison of Simulations to Observations" (PDF). The Astronomical Journal. 130 (5): 2392–2414. arXiv:astro-ph/0507319. Bibcode:2005AJ....130.2392H. doi:10.1086/452638. S2CID 14153557. Archived (PDF) from the original on July 23, 2011. Retrieved March 5, 2008.
  172. ^ Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; et al. (2007). "Origin of the Structure of the Kuiper Belt during a Dynamical Instability in the Orbits of Uranus and Neptune". Icarus. 196 (1): 258–273. arXiv:0712.0553. Bibcode:2008Icar..196..258L. doi:10.1016/j.icarus.2007.11.035. S2CID 7035885.
  173. Malhotra, Renu (1995). "The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune". Astronomical Journal. 110: 420. arXiv:astro-ph/9504036. Bibcode:1995AJ....110..420M. doi:10.1086/117532. S2CID 10622344.
  174. "This month Pluto's apparent magnitude is m=14.1. Could we see it with an 11" reflector of focal length 3400 mm?". Singapore Science Centre. 2002. Archived from the original on November 11, 2005. Retrieved November 29, 2011.
  175. "How to Scope Out Pluto in the Night Sky Friday". Space.com. July 3, 2014. Archived from the original on April 6, 2022. Retrieved April 6, 2022.
  176. Young, Eliot F.; Binzel, Richard P.; Crane, Keenan (2001). "A Two-Color Map of Pluto's Sub-Charon Hemisphere". The Astronomical Journal. 121 (1): 552–561. Bibcode:2001AJ....121..552Y. doi:10.1086/318008.
  177. Buie, Marc W.; Tholen, David J.; Horne, Keith (1992). "Albedo maps of Pluto and Charon: Initial mutual event results". Icarus. 97 (2): 221–227. Bibcode:1992Icar...97..211B. doi:10.1016/0019-1035(92)90129-U. Archived from the original on June 22, 2011. Retrieved February 10, 2010.
  178. ^ Buie, Marc W. "How the Pluto maps were made". Archived from the original on February 9, 2010. Retrieved February 10, 2010.
  179. "New Horizons, Not Quite to Jupiter, Makes First Pluto Sighting". pluto.jhuapl.edu – NASA New Horizons mission site. Johns Hopkins University Applied Physics Laboratory. November 28, 2006. Archived from the original on November 13, 2014. Retrieved November 29, 2011.
  180. Chang, Kenneth (October 28, 2016). "No More Data From Pluto". New York Times. Archived from the original on March 29, 2019. Retrieved October 28, 2016.
  181. "Pluto Exploration Complete: New Horizons Returns Last Bits of 2015 Flyby Data to Earth". Johns Hopkins Applied Research Laboratory. October 27, 2016. Archived from the original on October 28, 2016. Retrieved October 28, 2016.
  182. Brown, Dwayne; Buckley, Michael; Stothoff, Maria (January 15, 2015). "Release 15-011 – NASA's New Horizons Spacecraft Begins First Stages of Pluto Encounter". NASA. Archived from the original on April 7, 2020. Retrieved January 15, 2015.
  183. "New Horizons". pluto.jhuapl.edu. Archived from the original on October 8, 2016. Retrieved May 15, 2016.
  184. "Why a group of scientists think we need another mission to Pluto". The Verge. Archived from the original on July 8, 2018. Retrieved July 14, 2018.
  185. "Why NASA should visit Pluto again". MIT Technology Review. Archived from the original on January 18, 2022. Retrieved January 18, 2022.
  186. "New videos simulate Pluto and Charon flyby; return mission to Pluto proposed". August 2021. Archived from the original on September 4, 2021. Retrieved September 4, 2021.
  187. "Going Back to Pluto? Scientists to Push for Orbiter Mission". Space.com. Archived from the original on July 14, 2018. Retrieved July 14, 2018.
  188. Hall, Loura (April 5, 2017). "Fusion-Enabled Pluto Orbiter and Lander". NASA. Archived from the original on April 21, 2017. Retrieved July 14, 2018.
  189. Fusion-Enabled Pluto Orbiter and Lander – Phase I Final Report Archived April 29, 2019, at the Wayback Machine. (PDF) Stephanie Thomas, Princeton Satellite Systems. 2017.
  190. Nadia Drake (July 14, 2016). "5 Amazing Things We've Learned a Year After Visiting Pluto". National Geographic. Archived from the original on March 7, 2021. Retrieved August 19, 2021.
  191. "HUBBLE REVEALS SURFACE OF PLUTO FOR FIRST TIME". HubbleSite.org. Space Telescope Science Institute. March 7, 1996. Archived from the original on August 19, 2021. Retrieved October 18, 2021.
  192. "MAP OF PLUTO'S SURFACE". HubbleSite.org. Space Telescope Science Institute. March 7, 1996. Archived from the original on August 19, 2021. Retrieved October 18, 2021.
  193. A.S.Ganesh (March 7, 2021). "Seeing Pluto like never before". The Hindu. Archived from the original on August 19, 2021. Retrieved August 19, 2021.
  194. Rothery, David A (October 2015). "Pluto and Charon from New Horizons". Astronomy & Geophysics. 56 (5): 5.19 – 5.22. doi:10.1093/astrogeo/atv168.
  195. Lauer, Todd R.; Spencer, John R.; Bertrand, Tanguy; Beyer, Ross A.; Runyon, Kirby D.; White, Oliver L.; Young, Leslie A.; Ennico, Kimberly; MacKinnon, William B.; Moore, Jeffrey M.; Olkin, Catherine B.; Stern, S. Alan; Weaver, Harold A. (October 20, 2021). "The Dark Side of Pluto". The Planetary Science Journal. 2 (214): 214. arXiv:2110.11976. Bibcode:2021PSJ.....2..214L. doi:10.3847/PSJ/ac2743. S2CID 239047659.

Further reading

External links

Pluto
Geography
(features)
Regions
Hills and
mountains
Plains
Valleys and
depressions
Lineae
Craters
Pluto
Both to scale
Charon
Moons
Exploration
Astronomy
Official definitions
Scientist opinions
Discovery
General
Related
Links to related articles
Dwarf planets
Consensus
Candidate
Asteroids
Centaurs
Plutinos
Twotinos
Cubewanos
Other KBOs
Scattered disc
objects
Detached objects
Sednoids
Trans-Neptunian objects
TNO classes
Dwarf planets (moons)
Sednoids
Minor planets navigator
Solar System
The Sun, the planets, their moons, and several trans-Neptunian objectsThe SunMercuryVenusThe MoonEarthMarsPhobos and DeimosCeresThe main asteroid beltJupiterMoons of JupiterRings of JupiterSaturnMoons of SaturnRings of SaturnUranusMoons of UranusRings of UranusNeptuneMoons of NeptuneRings of NeptunePlutoMoons of PlutoHaumeaMoons of HaumeaMakemakeS/2015 (136472) 1The Kuiper BeltErisDysnomiaThe Scattered DiscThe Hills CloudThe Oort Cloud
Planets,
dwarfs,
minors
Moons
Formation,
evolution
,
contents,
and
History
Rings
Hypothetical
objects
Exploration
(outline)
Small
Solar
System
bodies
Lists
Related

Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion Arm → Milky Way → Milky Way subgroup → Local GroupLocal SheetVirgo SuperclusterLaniakea Supercluster → Local Hole → Observable universe → Universe
Each arrow (→) may be read as "within" or "part of".

New Horizons
Targets
Flybys
Observations
Rejected
Spacecraft
Instruments
Subsystems
Personnel
Institutions
People
Logistics
Related
Category
Portals: Categories: