Revision as of 00:17, 14 April 2007 view sourceJohnfos (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers47,078 edits →Concerns about nuclear power: adding globalize tag, see talk page discussion← Previous edit | Latest revision as of 01:15, 4 January 2025 view source Citation bot (talk | contribs)Bots5,445,336 edits Add: bibcode, issue. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles tagged with the inline citation overkill template from December 2024 | #UCB_Category 44/75 | ||
Line 1: | Line 1: | ||
{{short description|Power generated from nuclear reactions}} | |||
{{Mergefrom|Nuclear power controversy|date=April 2007}} | |||
{{redirect|Atomic power|the film|Atomic Power (film)}} | |||
{{For|countries with the power or ability to project nuclear weapons|List of states with nuclear weapons}} | |||
{{pp|small=yes}} | |||
{{good article}} | |||
] in Switzerland]] | |||
]'''Nuclear power''' is the use of ]s to produce ]. Nuclear power can be obtained from ], ] and ] reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear ''fission'' of ] and ] in ]s. Nuclear ''decay'' processes are used in niche applications such as ]s in some space probes such as '']''.<ref>{{Cite web |title=Power: Radioisotope Thermoelectric Generators - NASA Science |url=https://science.nasa.gov/planetary-science/programs/radioisotope-power-systems/power-radioisotope-thermoelectric-generators/ |access-date=2024-10-01 |website=science.nasa.gov |language=en-US}}</ref> Reactors producing controlled ] have been operated since 1958 but have yet to generate net power and are not expected to be commercially available in the near future.<ref>Moynihan, M., & Bortz, A. B. (2023). Fusion’s Promise: How Technological Breakthroughs in Nuclear Fusion Can Conquer Climate Change on Earth (And Carry Humans To Mars, Too) . Springer International Publishing. https://doi.org/10.1007/978-3-031-22906-0</ref> | |||
The ] was built in the 1950s. The global installed nuclear capacity grew to 100{{nbsp}}GW in the late 1970s, and then expanded during the 1980s, reaching 300{{nbsp}}GW by 1990. The 1979 ] in the ] and the 1986 ] in the ] resulted in increased regulation and public opposition to nuclear power plants. Nuclear power plants supplied 2,602 ]s (TWh) of electricity in 2023, equivalent to about 9% of ],<ref name="PerformanceReport">{{Cite report |title=World Nuclear Performance Report 2024 |date=2024 |url=https://world-nuclear.org/images/articles/World-Nuclear-Performance-Report-2024.pdf |access-date=2024-11-10 |publisher=World Nuclear Association |pages=3–5}}</ref> and were the second largest ] source after ]. {{As of|2024|11|post=,}} there are ], with overall capacity of 374{{nbsp}}GW,<ref name=":3">{{Cite web |title=Power Reactor Information System |url=https://pris.iaea.org/pris/home.aspx |access-date=2024-11-10 |publisher=International Atomic Energy Agency }}</ref> 66 under construction and 87 planned, with a combined capacity of 72{{nbsp}}GW and 84{{nbsp}}GW, respectively.<ref name="WNA" /> The United States has the largest fleet of nuclear reactors, generating almost 800{{nbsp}}TWh of low-carbon electricity per year with an average ] of 92%. The average global capacity factor is 89%.<ref name=":3" /> Most new reactors under construction are ]s in Asia. | |||
{{sprotect2}} | |||
{{otheruses4|applications as a power source|the underlying energy itself|Nuclear energy}} | |||
] shaped ]s. The nuclear reactors are inside the cylindrical ]s.]] | |||
{{portal|Nuclear technology}}{{portal|Energy}} | |||
Nuclear power is a safe, sustainable energy source that reduces ]. This is because nuclear power generation causes one of the lowest levels of fatalities per unit of energy generated compared to other energy sources. "Economists estimate that each nuclear plant built could save more than 800,000 life years."<ref>{{Cite web |last=Bailey |first=Ronald |date=2024-11-29 |title=Nuclear energy prevents air pollution and saves lives |url=https://reason.com/2024/11/29/nuclear-power-saves-lives/?utm_medium=reason_email&utm_source=new_at_reason&utm_campaign=reason_brand&utm_content=Joe%20Biden%20Rarely%20Issues%20Pardons%20but%20Made%20an%20Exception%20for%20His%20Son&utm_term=&time=December%202nd,%202024&mpid=38717&mpweb=2534-5108-38717 |access-date=2024-12-05 |website=Reason.com |language=en-US}}</ref> Coal, petroleum, ] and hydroelectricity have each caused more fatalities per unit of energy due to ] and ]. Nuclear power plants also emit no ] and result in less life-cycle carbon emissions than common "renewables". The radiological hazards associated with nuclear power are the primary motivations of the ], which contends that nuclear power poses threats to people and the environment, citing the potential for ] like the ] in Japan in 2011, and is too expensive to deploy when compared to alternative ] sources.{{TOC limit}} | |||
'''Nuclear power''' is the controlled use of ] to release ] for ] including ], ], and the generation of ]. Use of nuclear power to do significant useful work is currently limited to ] and ]. ] is produced when a fissile material, such as ]-235 (]), is concentrated such that nuclear fission takes place in a controlled ] and creates ] — which is used to ] water, produce ], and drive a ]. The turbine can be used for mechanical work and also to generate electricity. Nuclear power provides 7% of the world's energy and 15.7% of the world's electricity and is used to power most military ]s and ].<ref name="iea_pdf">{{Cite web|url=http://www.iea.org/dbtw-wpd/Textbase/nppdf/free/2006/key2006.pdf|title=Key World Energy Statistics|accessdate=2006-11-08|publisher=International Energy Agency|year=2006|format=PDF}}</ref> | |||
==History== | |||
Nuclear power occupies a unique position, usually being little understood but greatly feared. This was exacerbated by the unsafe design and operation of the ]-built plants at ]. However new, vastly-safer plant designs are on the verge of being built - and ] concerns may spark a major resurgence. But controversy remains (see ] and, below, ]). | |||
{{main|History of nuclear power}} | |||
==Use== | |||
{{seealso|Nuclear power by country}} | |||
The ] produces the most nuclear energy, with nuclear power providing 20% of the electricity it consumes, while ] produces the highest percentage of its electrical energy from nuclear reactors—80% ].<ref name="eia_s.1766">{{Cite web|url=http://www.eia.doe.gov/oiaf/servicerpt/erd/nuclear.html|title=Impacts of Energy Research and Development With Analysis of Price-Anderson Act and Hydroelectric Relicensing|accessdate=2006-11-08|publisher=Energy Information Administration|year=2004|work=Nuclear Energy (Subtitle D, Section 1241)}}</ref><ref name="npr20060501">{{Cite web|url=http://www.npr.org/templates/story/story.php?storyId=5369610|title=France Presses Ahead with Nuclear Power|accessdate=2006-11-08|publisher=NPR|year=2006|author=Eleanor Beardsley}}</ref> In the ] as a whole, nuclear energy provides 30% of the electricity.<ref>{{Cite web|url=http://epp.eurostat.ec.europa.eu/portal/page?_pageid=1996,39140985&_dad=portal&_schema=PORTAL&screen=detailref&language=en&product=sdi_cc&root=sdi_cc/sdi_cc/sdi_cc_ene/sdi_cc2300|title=Gross electricity generation, by fuel used in power-stations|accesdate=2007-02-03|publisher=Eurostat|year=2006}}</ref> ] differs between countries. | |||
International research is ongoing into various safety improvements, the use of ] and additional uses such as the generation of hydrogen (in support of ]), for ] sea water, and for use in ] systems. Lately, there has been renewed interest in nuclear energy from national governments due to energy security and ]. Other reasons for interest include the public, some notable environmentalists due to increased oil prices, new ] designs of plants. The low emission rate of ] which all countries, excluding the US and Australia, need to meet the standards of the ]. A few reactors are under construction, and several new types of reactors are planned. | |||
The use of nuclear power is ] because of the problem of storing ] for indefinite periods, the potential for possibly severe ] by accident or sabotage, and the possibility that its use in some countries could lead to the ] of ]. Proponents believe that these risks are small and can be further reduced by the technology in the new reactors. They further claim that the safety record is already good when compared to other ] plants, that it releases much less radioactive waste than coal power, and that nuclear power is a ] source. Critics, including most major ], claim nuclear power is an uneconomic and potentially dangerous energy source with a limited fuel supply, especially compared to ], and dispute whether the costs and risks can be reduced through new technology. | |||
There is concern in some countries over ] and ] operating research reactors and fuel enrichment plants, since those countries refuse adequate ] oversight and are believed to be trying to develop nuclear weapons. ] admits that it is developing ], while the Iranian government vehemently denies the claims against Iran. <!--"The ] doesn't allow checks either, but is allowed to develop nuclear weapons under the ]." - Even as a NWS, the US does allow limited inspections of facilities for peaceful uses, expandable if discrepancies are found. --> | |||
<!--On ] ] the State of Illinois sued ] for repeated leaks of ] into water discharged around its ]. Exelon states that despite the leaks it has operated within legal limits, but is agreeing to compensate landowners.<ref>http://www.msnbc.msn.com/id/11859737/</ref><ref>http://news.yahoo.com/s/ap/20060316/ap_on_re_us/illinois_nuclear</ref> Note: Braidwood has no cooling towers, uses pond cooling, water is recycled and isn't "wasteful" --> | |||
==History== | |||
===Origins=== | ===Origins=== | ||
] at ]-West, December 20, 1951.<ref>{{cite web |title=Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology Legacy |url=https://www.ne.anl.gov/About/modern-day-alchemy/ |website=www.ne.anl.gov |access-date=24 March 2021}}</ref>]] | |||
The first successful experiment with ] was conducted in 1938 in ] by the German physicists ], ] and ]. | |||
The process of nuclear fission was discovered in 1938 after over four decades of work on the science of ] and the elaboration of new ] that described the components of ]s. Soon after the discovery of the fission process, it was realized that neutrons released by a fissioning nucleus could, under the right conditions, induce fissions in nearby nuclei, thus initiating a ].<ref name="Inside the Atomic Patent Office">{{cite journal | doi = 10.2968/064002008 | volume=64 | issue=2 | title=Inside the atomic patent office | year=2008 | journal=Bulletin of the Atomic Scientists | pages=26–31 | last1 = Wellerstein | first1 = Alex| bibcode=2008BuAtS..64b..26W |issn = 0096-3402 }}</ref> Once this was experimentally confirmed in 1939, scientists in many countries petitioned their governments for support for nuclear fission research, just on the cusp of ], in order to develop a ].<ref>{{cite web |url=http://www.atomicarchive.com/History/mp/introduction.shtml |title=The Einstein Letter |publisher=Atomicarchive.com |access-date=2013-06-22 |archive-date=2013-06-28 |archive-url=https://web.archive.org/web/20130628151924/http://www.atomicarchive.com/History/mp/introduction.shtml |url-status=live }}</ref> | |||
In the United States, these research efforts led to the creation of the first human-made ], the ] under the ] stadium at the ], which achieved ] on December 2, 1942. The reactor's development was part of the ], the ] effort to create ] during World War II. It led to the building of larger single-purpose ]s for the production of ] for use in the first nuclear weapons. The United States tested the first nuclear weapon in July 1945, the ], and the ] happened one month later. | |||
].<ref>{{cite web |title=Nautilus (SSN-571) |url=https://www.history.navy.mil/browse-by-topic/ships/uss-nautilus.html |publisher=US Naval History and Heritage Command (US Navy)}}</ref>]] | |||
Electricity was generated for the first time by a nuclear reactor on ] ] at the ] experimental fast breeder station near ], which initially produced about 100 kW. | |||
] in the United Kingdom, the world's first commercial nuclear power station]] | |||
Despite the military nature of the first nuclear devices, there was strong optimism in the 1940s and 1950s that nuclear power could provide cheap and endless energy.<ref>{{cite book |last1=Wendt |first1=Gerald |last2=Geddes |first2=Donald Porter |title=The Atomic Age Opens |date=1945 |publisher=Pocket Books |location=New York |url=http://alsos.wlu.edu/information.aspx?id=279 |access-date=2017-11-03 |archive-date=2016-03-28 |archive-url=https://web.archive.org/web/20160328104803/http://alsos.wlu.edu/information.aspx?id=279 }}</ref> Electricity was generated for the first time by a nuclear reactor on December 20, 1951, at the ] experimental station near ], which initially produced about 100{{nbsp}}].<ref>{{cite web |url=http://www.ne.anl.gov/About/reactors/frt.shtml |title=Reactors Designed by Argonne National Laboratory: Fast Reactor Technology |publisher=U.S. Department of Energy, Argonne National Laboratory |year=2012 |access-date=2012-07-25 |archive-date=2021-04-18 |archive-url=https://web.archive.org/web/20210418094852/https://www.ne.anl.gov/About/reactors/frt.shtml |url-status=live }}</ref><ref>{{cite magazine| url=https://books.google.com/books?id=yNwDAAAAMBAJ&q=1954+Popular+Mechanics+January&pg=PA105 |title=Reactor Makes Electricity |magazine=Popular Mechanics |date= March 1952| page= 105|publisher=Hearst Magazines }}</ref> In 1953, American President ] gave his "]" speech at the ], emphasizing the need to develop "peaceful" uses of nuclear power quickly. This was followed by the ] which allowed rapid declassification of U.S. reactor technology and encouraged development by the private sector. | |||
===First power generation=== | |||
In 1952 a report by the ] (''The President's Materials Policy Commission'') for President ] made a "relatively pessimistic" assessment of nuclear power, and called for "aggressive research in the whole field of solar energy".<ref name="ieer">{{Cite web|url=http://www.ieer.org/reports/npd.html|title=The Nuclear Power Deception|accessdate=--|publisher=Institute for Energy and Environmental Research|year=1996|author=Makhijani, Arjun and Saleska, Scott}}</ref> | |||
The first organization to develop practical nuclear power was the ], with the ] for the purpose of propelling ]s and ]s. The first nuclear-powered submarine, {{USS|Nautilus|SSN-571|6}}, was put to sea in January 1954.<ref name="iaeapdf" /><ref>{{cite web |url=http://www.ne.anl.gov/About/reactors/lwr3.shtml#fragment-2 |title=STR (Submarine Thermal Reactor) in "Reactors Designed by Argonne National Laboratory: Light Water Reactor Technology Development" |publisher=U.S. Department of Energy, Argonne National Laboratory |year=2012 |access-date=2012-07-25 |archive-date=2012-06-22 |archive-url=https://web.archive.org/web/20120622185310/http://www.ne.anl.gov/About/reactors/lwr3.shtml#fragment-2 |url-status=live }}</ref> The S1W reactor was a ]. This design was chosen because it was simpler, more compact, and easier to operate compared to alternative designs, thus more suitable to be used in submarines. This decision would result in the PWR being the reactor of choice also for power generation, thus having a lasting impact on the civilian electricity market in the years to come.<ref>{{cite book|last=Rockwell|first=Theodore|title=The Rickover Effect|publisher=Naval Institute Press|year=1992|page=162|isbn=978-1-55750-702-0}}</ref> | |||
On June 27, 1954, the ] in the ] became the world's first nuclear power plant to generate electricity for a ], producing around 5 megawatts of electric power.<ref name="IAEANews">{{cite web |url=http://www.iaea.org/NewsCenter/News/2004/obninsk.html |title=From Obninsk Beyond: Nuclear Power Conference Looks to Future |website=] |access-date=2006-06-27 |date=2004-06-23 |archive-date=2006-11-15 |archive-url=https://web.archive.org/web/20061115165641/http://www.iaea.org/NewsCenter/News/2004/obninsk.html |url-status=live }}</ref> The world's first commercial nuclear power station, ] at Windscale, England was connected to the national power grid on 27 August 1956. In common with a number of other ]s, the plant had the dual purpose of producing ] and ], the latter for the nascent ].<ref>{{cite book |last1=Hill |first1=C. N. |title=An atomic empire: a technical history of the rise and fall of the British atomic energy programme |date=2013 |publisher=Imperial College Press |isbn=978-1-908977-43-4 |location=London, England}}</ref> | |||
A December 1953 speech by President ], "]", set the U.S. on a course of strong government support for the international use of nuclear power. | |||
===Expansion and first opposition=== | |||
===Early years=== | |||
The total global installed nuclear capacity initially rose relatively quickly, rising from less than 1 ] (GW) in 1960 to 100{{nbsp}}GW in the late 1970s.<ref name="iaeapdf">{{cite web |url=http://www.iaea.org/About/Policy/GC/GC48/Documents/gc48inf-4_ftn3.pdf |title=50 Years of Nuclear Energy |access-date=2006-11-09 |publisher=International Atomic Energy Agency |archive-date=2010-01-07 |archive-url=https://web.archive.org/web/20100107093607/http://www.iaea.org/About/Policy/GC/GC48/Documents/gc48inf-4_ftn3.pdf |url-status=live }}</ref> During the 1970s and 1980s rising economic costs (related to extended construction times largely due to regulatory changes and pressure-group litigation)<ref name="Bernard L. Cohen 1990">{{cite book |author=Bernard L. Cohen |date=1990 |title=The Nuclear Energy Option: An Alternative for the 90s |url=https://archive.org/details/nuclearenergyopt0000cohe |location=New York |publisher=Plenum Press |isbn=978-0-306-43567-6 |url-access=registration }}</ref> and falling fossil fuel prices made nuclear power plants then under construction less attractive. In the 1980s in the U.S. and 1990s in Europe, the flat electric grid growth and ] also made the addition of large new ] energy generators economically unattractive. | |||
] in ] was the first commercial reactor in the ] and was opened in 1957.]] | |||
The ] had a significant effect on countries, such as ] and ], which had relied more heavily on oil for electric generation to invest in nuclear power.<ref>{{cite web |author=Beder |first=Sharon |date=2006 |title=The Japanese Situation, English version of conclusion of Sharon Beder, "Power Play: The Fight to Control the World's Electricity" |url=http://www.herinst.org/sbeder/privatisation/japan.html |url-status=live |archive-url=https://web.archive.org/web/20110317160509/http://www.herinst.org/sbeder/privatisation/japan.html |archive-date=2011-03-17 |access-date=2009-05-15 |publisher=Soshisha, Japan}}</ref> France would construct 25 nuclear power plants over the next 15 years,<ref name="palfreman">{{Cite news| last = Palfreman| first = Jon| title = Why the French Like Nuclear Energy| work = ]| publisher = ]| access-date = 25 August 2007| year = 1997| url = https://www.pbs.org/wgbh/pages/frontline/shows/reaction/readings/french.html| archive-date = 25 August 2007| archive-url = https://web.archive.org/web/20070825003225/http://www.pbs.org/wgbh/pages/frontline/shows/reaction/readings/french.html| url-status = live}}</ref><ref name="de preneuf">{{cite web |last=de Preneuf |first=Rene |title=Nuclear Power in France – Why does it Work? |url=http://www.npcil.nic.in/nupower_vol13_2/npfr_.htm |archive-url=https://web.archive.org/web/20070813233335/http://www.npcil.nic.in/nupower_vol13_2/npfr_.htm <!-- Bot retrieved archive --> |archive-date=13 August 2007 |access-date=25 August 2007}}</ref> and as of 2019, 71% of French electricity was generated by nuclear power, the highest percentage by any nation in the world.<ref name=":0" /> | |||
On ] ], the world's first nuclear power plant to generate electricity for a ] started operations at ], ].<ref name="wna">{{Cite web|url=http://world-nuclear.org/info/inf45.html|title=Nuclear Power in Russia|accessdate=2006-11-09|publisher=World Nuclear Association|year=2006}}</ref> The reactor was graphite moderated, water cooled and had a capacity of 5 megawatts (MW). The world's first commercial nuclear power station, Calder Hall in ], ] was opened in ], a gas-cooled ] reactor with an initial capacity of 50 MW (later 200 MW).<ref name="bbc17oct">{{Cite web|url=http://news.bbc.co.uk/onthisday/hi/dates/stories/october/17/newsid_3147000/3147145.stm|title=On This Day: 17 October|accessdate=2006-11-09|publisher=BBC News}}</ref> The ] (], 1957), a ], was the first commercial nuclear generator to become operational in the ]. | |||
Some local opposition to nuclear power emerged in the United States in the early 1960s.<ref name="well">{{cite journal |author=Garb |first=Paula |year=1999 |title=Review of Critical Masses: Opposition to Nuclear Power in California, 1958–1978 |url=http://jpe.library.arizona.edu/volume_6/wellockvol6.htm |url-status=dead |journal=Journal of Political Ecology |volume=6 |archive-url=https://web.archive.org/web/20180601112114/http://jpe.library.arizona.edu/volume_6/wellockvol6.htm |archive-date=2018-06-01 |access-date=2011-03-14}}</ref> In the late 1960s, some members of the scientific community began to express pointed concerns.<ref name=wolfgang /> These ] concerns related to ], ], ] and ].<ref name="bm">{{cite journal |author=Martin |first=Brian |author-link=Brian Martin (social scientist) |date=2007 |title=Opposing nuclear power: past and present |url=http://www.bmartin.cc/pubs/07sa.html |url-status=live |journal=Social Alternatives |volume=26 |pages=43–47 |archive-url=https://web.archive.org/web/20190510124855/https://www.bmartin.cc/pubs/07sa.html |archive-date=2019-05-10 |access-date=2011-03-14 |number=2}}</ref> In the early 1970s, there were large protests about a proposed nuclear power plant in ], Germany. The project was cancelled in 1975. The anti-nuclear success at Wyhl inspired opposition to nuclear power in other parts of Europe and North America.<ref name="pub">{{cite book |last1=Mills |first1=Stephen |url=https://books.google.com/books?id=SeMNAAAAQAAJ&q=%22public+acceptance+of+new+technologies%22 |title=Public acceptance of new technologies: an international review |last2=Williams |first2=Roger |date=1986 |publisher=Croom Helm |isbn=978-0-7099-4319-8 |location=London |pages=375–376}}</ref><ref name=got>Robert Gottlieb (2005). , Revised Edition, Island Press, p. 237.</ref> | |||
In 1954, the chairman of the ] (forerunner of the U.S. ]) talked about electricity being ''"too cheap to meter"'' in the future, often misreported as a concrete statement about nuclear power, and foresaw 1000 nuclear plants on line in the USA by the year 2000.<ref name="cns-snc">{{Cite web|url=http://www.cns-snc.ca/media/toocheap/toocheap.html|title=Too Cheap to Meter?|accessdate=2006-11-09|publisher=Canadian Nuclear Society|year=2006}}</ref> | |||
By the mid-1970s ] activism gained a wider appeal and influence, and nuclear power began to become an issue of major public protest.<ref name="jimfalk">{{cite book |last=Falk |first=Jim |url=https://archive.org/details/globalfissionbat00falk |title=Global Fission: The Battle Over Nuclear Power |date=1982 |publisher=Oxford University Press |isbn=978-0-19-554315-5 |location=Melbourne, Australia |pages= |url-access=registration}}</ref><ref name="eleven">Walker, J. Samuel (2004). '' {{Webarchive|url=https://web.archive.org/web/20230323071157/https://books.google.com/books?id=tf0AfoynG-EC&q=Three+Mile+Island:+A+Nuclear+Crisis+in+Historical+Perspective|date=2023-03-23}}'' (Berkeley, California: University of California Press), pp. 10–11.</ref> In some countries, the ] "reached an intensity unprecedented in the history of technology controversies".<ref name="marcuse.org">{{cite journal |author=Herbert P. Kitschelt |date=1986 |title=Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies |url=http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |journal=British Journal of Political Science |volume=16 |issue=1 |page=57 |doi=10.1017/s000712340000380x |s2cid=154479502 |access-date=2010-02-28 |archive-date=2010-08-21 |archive-url=https://web.archive.org/web/20100821195323/http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |url-status=live }}</ref><ref name="kits">{{cite journal |author=Kitschelt |first=Herbert P. |date=1986 |title=Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies |url=http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |url-status=live |journal=British Journal of Political Science |volume=16 |issue=1 |page=71 |doi=10.1017/s000712340000380x |s2cid=154479502 |archive-url=https://web.archive.org/web/20100821195323/http://www.marcuse.org/harold/hmimages/seabrook/861KitscheltAntiNuclear4Democracies.pdf |archive-date=2010-08-21 |access-date=2010-02-28}}</ref> The increased public hostility to nuclear power led to a longer license procurement process, more regulations and increased requirements for safety equipment, which made new construction much more expensive.<ref name="phyast.pitt.edu">{{cite web |title=Costs of Nuclear Power Plants – What Went Wrong? |url=http://www.phyast.pitt.edu/~blc/book/chapter9.html |website=www.phyast.pitt.edu |access-date=2007-12-04 |archive-date=2010-04-13 |archive-url=https://web.archive.org/web/20100413204335/http://www.phyast.pitt.edu/~blc/book/chapter9.html |url-status=live }}</ref><ref>{{cite news |last1=Ginn |first1=Vance |last2=Raia |first2=Elliott |date=August 18, 2017 |title=nuclear energy may soon be free from its tangled regulatory web |url=https://www.washingtonexaminer.com/nuclear-energy-may-soon-be-free-from-its-tangled-regulatory-web |url-status=live |archive-url=https://web.archive.org/web/20190106204903/https://www.washingtonexaminer.com/nuclear-energy-may-soon-be-free-from-its-tangled-regulatory-web |archive-date=January 6, 2019 |access-date=January 6, 2019 |work=Washington Examiner}}</ref> In the United States, over ]<ref>{{cite web | url=https://fas.org/sgp/crs/misc/RL33442.pdf | title=Nuclear Power: Outlook for New U.S. Reactors | page=3 | access-date=2015-10-18 | archive-date=2015-09-24 | archive-url=https://web.archive.org/web/20150924134344/http://www.fas.org/sgp/crs/misc/RL33442.pdf | url-status=live }}</ref> and the construction of new reactors ground to a halt.<ref name="ReferenceA">{{cite journal |date=1985-02-11 |title=Nuclear Follies |journal=Forbes Magazine|last=Cook|first=James}}</ref> The 1979 ] with no fatalities, played a major part in the reduction in the number of new plant constructions in many countries.<ref name="wolfgang">{{cite book |url=https://books.google.com/books?id=ZXwfAQAAIAAJ |title=Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy |publisher=Longman Current Affairs |year=1990 |isbn=978-0-8103-9000-3 |editor1-last=Rüdig |editor1-first=Wolfgang |location=Detroit, Michigan |page=1 |language=en-us}}</ref> | |||
In 1955 the ]' "First Geneva Conference", then the world's largest gathering of scientists and engineers, met to explore the technology. In 1957 ] was launched alongside the ] (the latter is now the ]). The same year also saw the launch of the ] (IAEA). | |||
===Chernobyl and renaissance=== | |||
===Development=== | |||
] abandoned since 1986, with the Chernobyl plant and the ] arch in the distance]] | |||
Installed nuclear capacity initially rose relatively quickly, rising from less than 1 ] (GW) in 1960 to 100 GW in the late 1970s, and 300 GW in the late 1980s. Construction of nuclear power plants declined following the ]. The oil crisis led to a global economic recession and high inflation that both reduced the projected demand for electricity and made financing such capital intensive projects difficult. Since the late 1980s capacity has risen much more slowly, reaching 366 GW in 2005, primarily due to Chinese expansion of nuclear power. Between around 1970 and 1990, more than 50 GW of capacity was under construction (peaking at over 150 GW in the late 70s and early 80s) — in 2005, around 25 GW of new capacity was planned. More than two-thirds of all nuclear plants ordered after January 1970 were eventually cancelled.<ref name="iaeapdf">{{Cite web|url=http://www.iaea.org/About/Policy/GC/GC48/Documents/gc48inf-4_ftn3.pdf|title=50 Years of Nuclear Energy|accessdate=2006-11-09|publisher=International Atomic Energy Agency|format=PDF}}</ref> | |||
] under construction in 2009. It was the first ], a modernized PWR design, to start construction. ]] | |||
During the 1980s one new nuclear reactor started up every 17 days on average.<ref>{{cite book |last1=Thorpe |first1=Gary S. |title=AP Environmental Science, 6th ed. |date=2015 |publisher=Barrons Educational Series |isbn=978-1-4380-6728-5}} {{ISBN|1-4380-6728-3}}</ref> By the end of the decade, global installed nuclear capacity reached 300{{nbsp}}GW. Since the late 1980s, new capacity additions slowed significantly, with the installed nuclear capacity reaching 366{{nbsp}}GW in 2005. | |||
The 1986 ] in the ], involving an ] reactor, altered the development of nuclear power and led to a greater focus on meeting international safety and regulatory standards.<ref>{{cite web|url=https://www.iaea.org/newscenter/focus/chernobyl|title=Chernobyl Nuclear Accident|date=14 May 2014|website=www.iaea.org|publisher=IAEA|access-date=23 March 2021|archive-date=11 June 2008|archive-url=https://web.archive.org/web/20080611102751/http://www.iaea.org/NewsCenter/Focus/Chernobyl/|url-status=live}}</ref> It is considered the worst nuclear disaster in history both in total casualties, with 56 direct deaths, and financially, with the cleanup and the cost estimated at 18{{nbsp}}billion{{nbsp}}]s (US$68{{nbsp}}billion in 2019, adjusted for inflation).<ref name="OECD02-Ch2">{{cite web|url=https://www.oecd-nea.org/rp/reports/2003/nea3508-chernobyl.pdf|title=Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter II – The release, dispersion and deposition of radionuclides|year=2002|publisher=OECD-NEA|access-date=3 June 2015|archive-url=https://web.archive.org/web/20150622010856/https://www.oecd-nea.org/rp/reports/2003/nea3508-chernobyl.pdf|archive-date=22 June 2015|url-status=live}}</ref><ref name="GorbachevBoC">{{cite AV media |url=https://www.andanafilms.com/catalogueFiche.php?idFiche=255&rub=Toutes%20les%20fiches%20films |title=The battle of Chernobyl |date=2006 |publisher=Play Film / Discovery Channel |access-date=2021-03-23 |archive-url=https://web.archive.org/web/20210307205137/https://www.andanafilms.com/catalogueFiche.php?idFiche=255&rub=Toutes%20les%20fiches%20films |archive-date=2021-03-07 |url-status=live |people=Johnson, Thomas (author/director)}} (see 1996 interview with Mikhail Gorbachev.)</ref> The international organization to promote safety awareness and the professional development of operators in nuclear facilities, the ] (WANO), was created as a direct outcome of the 1986 Chernobyl accident. The Chernobyl disaster played a major part in the reduction in the number of new plant constructions in the following years.<ref name=wolfgang/> Influenced by these events, Italy voted against nuclear power in a 1987 referendum,<ref>{{Cite book |last=Sassoon |first=Donald |url=https://books.google.com/books?id=W8K3AwAAQBAJ&dq=Italy+voted+against+nuclear+power+in+a+1987+referendum&pg=PT179 |title=Contemporary Italy: Politics, Economy and Society Since 1945 |date=2014-06-03 |publisher=Routledge |isbn=978-1-317-89377-6 |language=en}}</ref> becoming the first country to completely phase out nuclear power in 1990. | |||
] Nuclear Power Plants 3 and 5 were never completed]] | |||
During the 1970s and 1980s rising economic costs (related to vastly extended construction times largely due to regulatory changes and pressure-group litigation) and falling fossil fuel prices made nuclear power plants then under construction less attractive. In the 1980s (U.S.) and 1990s (Europe), flat load growth and ] also made the addition of large new baseload capacity unattractive. | |||
In the early 2000s, nuclear energy was expecting a ], an increase in the construction of new reactors, due to concerns about ].<ref name=":1">{{cite news |date=2011-03-14 |title=Analysis: Nuclear renaissance could fizzle after Japan quake |work=Reuters |url=https://www.reuters.com/article/us-japan-quake-nuclear-analysis-idUSTRE72C41W20110314 |access-date=2011-03-14 |archive-date=2015-12-08 |archive-url=https://web.archive.org/web/20151208211554/http://www.reuters.com/article/us-japan-quake-nuclear-analysis-idUSTRE72C41W20110314 |url-status=live }}</ref> During this period, newer ]s, such as the ] began construction. | |||
A general movement against nuclear power arose during the last third of the 20th century, based on the fear of a possible ] and on fears of ], and on the opposition to ] production, transport and final storage. Perceived risks on the citizens' health and safety, the 1979 accident at ] and the ] ] played a key part in stopping new plant construction in many countries. ] (1978), ] (1980) and ] (1987) voted in referendums to oppose or phase out nuclear power, while opposition in ] prevented a nuclear programme there. However, the Brookings Institution suggests that new nuclear units have not been ordered in the US primarily for economic reasons rather than fears of accidents.<ref name="tbi">{{Cite web|url=http://www.brookings.edu/comm/policybriefs/pb138.htm|title=The Political Economy of Nuclear Energy in the United States|accessdate=2006-11-09|publisher=The Brookings Institution|year=2004|work=Social Policy}}</ref> | |||
{{clear}} | |||
<gallery mode="packed" heights="130px" style="text-align:left"> | |||
Global electricity generation by energy source.png|Net ] by source and growth from 1980. In terms of energy generated between 1980 and 2010, the contribution from fission grew the fastest. | |||
Electricity in France.svg|], showing the shift to nuclear power. {{legend|#D55E00|thermofossil}}{{legend|#0072B2|hydroelectric}}{{legend|#F0E442|nuclear}}{{legend|#009E73|Other renewables}} | |||
Nuclear-energy-timeline.svg|The rate of new reactor constructions essentially halted in the late 1980s. Increased ] in existing reactors was primarily responsible for the continuing increase in electrical energy produced during this period. | |||
Nuclear power generation in different countries.svg|Electricity generation trends in the top producing countries (Our World in Data) | |||
</gallery> | |||
== |
===Fukushima accident=== | ||
{{Image frame | |||
===Current technology=== | |||
|width = 520 | |||
There are two types of nuclear power in current use: | |||
|align=right | |||
|pos=bottom | |||
|content={{Graph:Chart | |||
| width = 180 | |||
| height = 150 | |||
| type=area | |||
| interpolate=step-before | |||
| y= 2263.79 , 2298.27 , 2378.93 , 2443.85 , 2511.09 , 2553.18 , 2504.78 , 2616.24 , 2626.34 , 2660.85 , 2608.18 , 2597.81 , 2558.06 , 2629.82 , 2517.98 , 2346.19 , 2358.86 , 2410.37 , 2441.33 , 2477.30 , 2502.82 , 2562.76 , 2586.16 | |||
| xAxisTitle=Year | |||
| xAxisAngle = -45 | |||
| xType=date | |||
| yType=number | |||
| yAxisTitle=Generation (TWh) | |||
| x = 1997 ,1998 ,1999 , 2000 ,2001 ,2002 ,2003 ,2004 , 2005 ,2006 ,2007 ,2008 ,2009 , 2010 ,2011 ,2012 ,2013 ,2014 , 2015 , 2016, 2017, 2018, 2019 | |||
}}{{Graph:Chart | |||
| width = 180 | |||
| height = 150 | |||
| type=area | |||
| interpolate=step-before | |||
| y = 441 , 438 , 434 , 438 , 438 , 444 , 443 , 443 , 443 , 443 , 439 , 439 , 440 , 442 , 448 , 440 , 441 , 439 , 448 , 451 , 451 , 457 , 456 | |||
| xAxisTitle=Year | |||
| xAxisAngle = -45 | |||
| xType=date | |||
| yType=number | |||
| yAxisTitle=Number of reactors | |||
| x = 1997 ,1998 ,1999 , 2000 ,2001 ,2002 ,2003 ,2004 , 2005 ,2006 ,2007 ,2008 ,2009 , 2010 ,2011 ,2012 ,2013 ,2014 , 2015 , 2016, 2017, 2018, 2019 | |||
}} | |||
|caption = Nuclear power generation (TWh) and operational nuclear reactors since 1997<ref name="pris-supplied">{{cite web |url=https://pris.iaea.org/PRIS/WorldStatistics/WorldTrendinElectricalProduction.aspx |title=Trend in Electricity Supplied |publisher=International Atomic Energy Agency |access-date=2021-01-09 |archive-date=2021-01-11 |archive-url=https://web.archive.org/web/20210111090143/https://pris.iaea.org/PRIS/WorldStatistics/WorldTrendinElectricalProduction.aspx |url-status=live }}</ref> | |||
}} | |||
Prospects of a nuclear renaissance were delayed by another nuclear accident.<ref name=":1" /><ref name=carbonbrief_2016>{{cite news |title=Analysis: The legacy of the Fukushima nuclear disaster |url=https://www.carbonbrief.org/analysis-the-legacy-of-the-fukushima-nuclear-disaster |access-date=24 March 2021 |work=Carbon Brief |date=10 March 2016 |language=en |archive-date=8 March 2021 |archive-url=https://web.archive.org/web/20210308035109/https://www.carbonbrief.org/analysis-the-legacy-of-the-fukushima-nuclear-disaster |url-status=live }}</ref> The 2011 ] was caused by the ], one of the largest earthquakes ever recorded. The ] suffered three core meltdowns due to failure of the emergency cooling system for lack of electricity supply. This resulted in the most serious nuclear accident since the Chernobyl disaster. | |||
The accident prompted a re-examination of ] and ] in many countries.<ref name="sciamer2011">{{cite journal |last1=Westall |first1=Sylvia |last2=Dahl |first2=Fredrik |name-list-style=amp |date=2011-06-24 |title=IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety |url=http://www.scientificamerican.com/article.cfm?id=iaea-head-sees-wide-support |url-status=dead |journal=Scientific American |archive-url=https://archive.today/20110625042535/http://www.scientificamerican.com/article.cfm?id=iaea-head-sees-wide-support |archive-date=2011-06-25 |accessdate=2011-06-25}}</ref> Germany approved plans to close all its reactors by 2022, and many other countries reviewed their nuclear power programs.<ref>{{cite news |author=Chandler |first=Jo |author-link=Jo Chandler |date=2011-03-19 |title=Is this the end of the nuclear revival? |url=https://www.smh.com.au/world/is-this-the-end-of-the-nuclear-revival-20110318-1c0i9.html |url-status=live |archive-url=https://web.archive.org/web/20200510043432/https://www.smh.com.au/environment/sustainability/is-this-the-end-of-the-nuclear-revival-20110318-1c0i9.html |archive-date=2020-05-10 |access-date=2020-02-20 |newspaper=The Sydney Morning Herald |publication-place=Sydney, Australia}}</ref><ref>{{cite news |author=Belford |first=Aubrey |date=2011-03-17 |title=Indonesia to Continue Plans for Nuclear Power |url=https://www.nytimes.com/2011/03/18/business/global/18atomic.html?partner=rss&emc=rss |url-status=live |archive-url=https://web.archive.org/web/20200510043432/https://www.nytimes.com/2011/03/18/business/global/18atomic.html?partner=rss&emc=rss |archive-date=2020-05-10 |access-date=2017-02-25 |newspaper=The New York Times}}</ref><ref name="piersmorgan.blogs.cnn.com">{{cite news |author=Morgan |first=Piers |date=2011-03-17 |title=Israel Prime Minister Netanyahu: Japan situation has "caused me to reconsider" nuclear power |url=http://piersmorgan.blogs.cnn.com/2011/03/17/israel-prime-minister-netanyahu-japan-situation-has-caused-me-to-reconsider-nuclear-power/ |url-status=dead |archive-url=https://web.archive.org/web/20190930221401/http://piersmorgan.blogs.cnn.com/2011/03/17/israel-prime-minister-netanyahu-japan-situation-has-caused-me-to-reconsider-nuclear-power/ |archive-date=2019-09-30 |access-date=2011-03-17 |work=CNN}}</ref><ref name="news.xinhuanet.com">{{cite news|url=http://news.xinhuanet.com/english2010/world/2011-03/18/c_13784578.htm |archive-url=https://web.archive.org/web/20110318184804/http://news.xinhuanet.com/english2010/world/2011-03/18/c_13784578.htm |archive-date=March 18, 2011 |title=Israeli PM cancels plan to build nuclear plant|work= xinhuanet.com|date=2011-03-18| access-date= 2011-03-17}}</ref> Following the disaster, Japan shut down all of its nuclear power reactors, some of them permanently, and in 2015 began a gradual process to restart the remaining 40 reactors, following safety checks and based on revised criteria for operations and public approval.<ref>{{cite web |url=http://www.kyuden.co.jp/en_information_150811.html |title=Startup of Sendai Nuclear Power Unit No.1 |date=2015-08-11 |website=Kyushu Electric Power Company Inc. |access-date=2015-08-12 |archive-url=https://web.archive.org/web/20170525170529/http://www.kyuden.co.jp/en_information_150811.html |archive-date=2017-05-25 |url-status=dead }}</ref> | |||
# The ] produces heat through a controlled ] in a ] of ] material.<br/> All current ]s are critical fission reactors, which are the focus of this article. The output of fission reactors is controllable. There are several subtypes of critical fission reactors, which can be classified as Generation I, ] and ]. All reactors will be compared to the Pressurized Water Reactor (PWR), as that is the standard modern reactor design.<br/> The difference between ] and ] reactors will be covered later. In general, fast-spectrum reactors will produce less waste, and the waste they do produce will have a vastly shorter ], but they are more difficult to build, and more expensive to operate. Fast reactors can also be ], whereas thermal reactors generally cannot. | |||
#; A. ]s (PWR) | |||
#: These are reactors cooled and moderated by high pressure liquid (even at extreme temperatures) water. They are the majority of current reactors, and are generally considered the safest and most reliable technology currently in large scale deployment, although ] (known for the ]) is a reactor of this type. This is a ] reactor design. | |||
#; B. ]s (BWR) | |||
#: These are reactors cooled and moderated by water, under slightly lower pressure. The water is allowed to boil in the reactor. The thermal efficiency of these reactors can be higher, and they can be simpler, and even potentially more stable and safe. Unfortunately, the boiling water puts more stress on many of the components, and increases the risk that radioactive water may escape in an accident. These reactors make up a substantial percentage of modern reactors. This is a thermal neutron reactor design. | |||
#; C. ] (PHWR) | |||
#: A ] design, (known as ]) these reactors are ]-cooled and -moderated Pressurized-Water reactors. Instead of using a single large pressure vessel as in a PWR, the fuel is contained in hundreds of pressure tubes. These reactors are fuelled with natural ] and are thermal neutron reactor designs. PHWRs can be refueled while at full power, which makes them very efficient in their use of uranium (it allows for precise flux control in the core). Most PHWRs exist within Canada, but units have been sold to ], ], ] (pre-NPT), ] (pre-NPT), ], and ]. India also operates a number of PHWR's, often termed 'CANDU-derivatives', built after the 1974 ] nuclear weapon test. | |||
#; D. Reaktor Bolshoy Moshchnosti Kanalniy (]) | |||
#: A Soviet Union design, built to produce plutonium as well as power. RBMKs are water cooled with a ] moderator. RBMKs are in some respects similar to CANDU in that they are refuelable On-Load and employ a pressure tube design instead of a PWR-style pressure vessel. However, unlike CANDU they are very unstable and too large to have ]s making them dangerous in the case of an accident. A series of critical safety flaws have also been identified with the RBMK design, though some of these were corrected following the ]. RBMK reactors are generally considered one of the most dangerous reactor designs in use. The Chernobyl plant had four RBMK reactors. | |||
#; E. Gas Cooled Reactor (GCR) and ] (AGCR) | |||
#: These are generally graphite moderated and ] cooled. They can have a high thermal efficiency compared with PWRs due to higher operating temperatures. There are a number of operating reactors of this design, mostly in the ], where the concept was developed. Older designs (i.e. ] stations) are either shut down or will be in the near future. However, the AGCRs have an anticipated life of a further 10 to 20 years. This is a thermal neutron reactor design. Decommissioning costs can be high due to large volume of reactor core. | |||
#; F. ] ] (LMFBR) | |||
#: This is a reactor design that is cooled by liquid metal, totally unmoderated, and produces more fuel than it consumes. These reactors can function much like a PWR in terms of efficiency, and do not require much high pressure containment, as the liquid metal does not need to be kept at high pressure, even at very high temperatures. ] in France was a reactor of this type, as was ] in the United States. The ] reactor in Japan suffered a sodium leak in 1995 and is approved for restart in ]. All three use/used liquid ]. These reactors are ], not thermal neutron designs. These reactors come in two types: | |||
#:; ] | |||
#:: Using ] as the liquid metal provides excellent radiation shielding, and allows for operation at very high temperatures. Also, lead is (mostly) transparent to neutrons, so fewer neutrons are lost in the coolant, and the coolant does not become radioactive. Unlike sodium, lead is mostly inert, so there is less risk of explosion or accident, but such large quantities of lead may be problematic from toxicology and disposal points of view. Often a reactor of this type would use a ] mixture. In this case, the bismuth would present some minor radiation problems, as it is not quite as transparent to neutrons, and can be transmuted to a radioactive isotope more readily than lead. | |||
#:; ] | |||
#:: Most LMFBRs are of this type. The sodium is relatively easy to obtain and work with, and it also manages to actually prevent corrosion on the various reactor parts immersed in it. However, sodium explodes violently when exposed to water, so care must be taken, but such explosions wouldn't be vastly more violent than (for example) a leak of superheated fluid from a ] or PWR. | |||
# The ] produces heat through passive ]. | |||
#: Some radioisotope thermoelectric generators have been created to power space probes (for example, the ] probe), some ]s in the former ], and some ]s. The heat output of these generators diminishes with time; the heat is converted to electricity utilising the ]. | |||
In 2022, the Japanese government, under the leadership of Prime Minister ], declared that 10 more nuclear power plants were to be reopened since the 2011 disaster.<ref>{{cite news |date=24 August 2022 |title=Japan turns back to nuclear power in post-Fukushima shift |url=https://www.ft.com/content/b380cb74-7b2e-493f-be99-281bd0dd478f |url-status=live |archive-url=https://web.archive.org/web/20220930125230/https://www.ft.com/content/b380cb74-7b2e-493f-be99-281bd0dd478f |archive-date=30 September 2022 |access-date=November 15, 2022 |newspaper=Financial Times |location=London, England}}</ref> Kishida is also pushing for research and construction of new safer nuclear plants to safeguard Japanese consumers from the fluctuating price of the fossil fuel market and reduce Japan's greenhouse gas emissions.<ref name="auto">{{cite web|url=https://reason.com/2022/08/25/japan-is-reopening-nuclear-power-plants-and-planning-to-build-new-ones/|title=Japan Is Reopening Nuclear Power Plants and Planning To Build New Ones|date=August 25, 2022|access-date=November 26, 2022|archive-date=November 15, 2022|archive-url=https://web.archive.org/web/20221115142242/https://reason.com/2022/08/25/japan-is-reopening-nuclear-power-plants-and-planning-to-build-new-ones/|url-status=live}}</ref> Kishida intends to have Japan become a significant exporter of nuclear energy and technology to developing countries around the world.<ref name="auto"/> | |||
{{see details|Nuclear power plant}} | |||
=== |
=== Current prospects === | ||
By 2015, the IAEA's outlook for nuclear energy had become more promising, recognizing the importance of low-carbon generation for mitigating ].<ref>{{cite web|url=http://www.iea.org/newsroomandevents/news/2015/january/taking-a-fresh-look-at-the-future-of-nuclear-power.html|title=January: Taking a fresh look at the future of nuclear power|website=www.iea.org|access-date=2016-04-18|archive-date=2016-04-05|archive-url=https://web.archive.org/web/20160405120522/http://www.iea.org/newsroomandevents/news/2015/january/taking-a-fresh-look-at-the-future-of-nuclear-power.html|url-status=live}}</ref> {{As of|2015}}, the global trend was for new nuclear power stations coming online to be balanced by the number of old plants being retired.<ref>{{cite web |publisher=] |url=http://www.world-nuclear.org/info/current-and-future-generation/plans-for-new-reactors-worldwide/ |title=Plans for New Reactors Worldwide |date=October 2015 |access-date=2016-01-05 |archive-date=2016-01-31 |archive-url=https://web.archive.org/web/20160131214224/http://www.world-nuclear.org/info/Current-and-Future-Generation/Plans-For-New-Reactors-Worldwide/ |url-status=live }}</ref> In 2016, the ] projected for its "base case" that world nuclear power generation would increase from 2,344 ]s (TWh) in 2012 to 4,500{{nbsp}}TWh in 2040. Most of the predicted increase was expected to be in Asia.<ref>{{cite web | url=http://www.eia.gov/forecasts/aeo/data/browser/#/?id=31-IEO2016&sourcekey=0 | title=International Energy outlook 2016 | publisher=US Energy Information Administration | access-date=17 August 2016 | archive-date=15 August 2016 | archive-url=https://web.archive.org/web/20160815223701/http://www.eia.gov/forecasts/aeo/data/browser/#/?id=31-IEO2016&sourcekey=0 | url-status=live }}</ref> As of 2018, there were over 150 nuclear reactors planned including 50 under construction.<ref>{{Cite web|title=Plans for New Nuclear Reactors Worldwide|url=http://www.world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx|access-date=2018-09-29|website=www.world-nuclear.org|publisher=World Nuclear Association|archive-date=2018-09-28|archive-url=https://web.archive.org/web/20180928230742/http://world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx|url-status=live}}</ref> In January 2019, China had 45 reactors in operation, 13 under construction, and planned to build 43 more, which would make it the world's largest generator of nuclear electricity.<ref name="china19">{{cite magazine |date=12 January 2019 |title=Can China become a scientific superpower? – The great experiment |url=https://www.economist.com/science-and-technology/2019/01/12/can-china-become-a-scientific-superpower |url-status=live |archive-url=https://web.archive.org/web/20190125020045/https://www.economist.com/science-and-technology/2019/01/12/can-china-become-a-scientific-superpower |archive-date=25 January 2019 |access-date=25 January 2019 |magazine=The Economist}}</ref> As of 2021, 17 reactors were reported to be under construction. China built significantly fewer reactors than originally planned. Its share of electricity from nuclear power was 5% in 2019<ref name="dwfrance">{{cite news |title=A global nuclear phaseout or renaissance? {{!}} DW {{!}} 04.02.2021 |url=https://www.dw.com/en/germany-looking-for-final-repository-for-nuclear-waste-global-outlook/a-56449115 |access-date=25 November 2021 |work=Deutsche Welle (www.dw.com) |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125101423/https://www.dw.com/en/germany-looking-for-final-repository-for-nuclear-waste-global-outlook/a-56449115 |url-status=live }}</ref> and observers have cautioned that, along with the risks, the changing economics of energy generation may cause new nuclear energy plants to "no longer make sense in a world that is leaning toward cheaper, more reliable renewable energy".<ref name="cnnchina">{{cite news |last1=Griffiths |first1=James |title=China's gambling on a nuclear future, but is it destined to lose? |url=https://edition.cnn.com/2019/09/13/business/china-nuclear-climate-intl-hnk/index.html |access-date=25 November 2021 |work=CNN |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125101428/https://edition.cnn.com/2019/09/13/business/china-nuclear-climate-intl-hnk/index.html |url-status=live }}</ref><ref name="francere">{{cite news |title=Building new nuclear plants in France uneconomical -environment agency |url=https://www.reuters.com/article/france-nuclearpower/building-new-nuclear-plants-in-france-uneconomical-environment-agency-idUSL8N1YF5HC |access-date=25 November 2021 |work=Reuters |date=10 December 2018 |language=en |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125145227/https://www.reuters.com/article/france-nuclearpower/building-new-nuclear-plants-in-france-uneconomical-environment-agency-idUSL8N1YF5HC |url-status=live }}</ref> | |||
The key components common to most types of nuclear power plants are: | |||
*''']''' | |||
*''']''' | |||
*''']''' | |||
*''']s''' | |||
*''']''' | |||
*''']s''' (ECCS) | |||
*''']''' (RPS) | |||
*''']''' (not in BWRs) | |||
*''']''' | |||
*''']''' | |||
*''']''' | |||
*''']''' | |||
*''']''' | |||
In October 2021, the Japanese cabinet approved the new Plan for Electricity Generation to 2030 prepared by the Agency for Natural Resources and Energy (ANRE) and an advisory committee, following public consultation. The nuclear target for 2030 requires the restart of another ten reactors. Prime Minister ] in July 2022 announced that the country should consider building advanced reactors and extending operating licences beyond 60 years.<ref>{{cite web|title=Nuclear Power in Japan|url=https://world-nuclear.org/information-library/country-profiles/countries-g-n/japan-nuclear-power.aspx|author=World Nuclear Association|access-date=2022-09-12|archive-date=2020-04-01|archive-url=https://web.archive.org/web/20200401112727/http://world-nuclear.org/information-library/country-profiles/countries-g-n/japan-nuclear-power.aspx|url-status=live}}</ref> | |||
Conventional thermal power plants all have a fuel source to provide heat. Examples are gas, coal, or oil. For a nuclear power plant, this heat is provided by ] inside the ]. When a relatively large ] ] (usually ] or ]) is struck by a ] it forms two or more smaller nuclei as ], releasing energy and neutrons in a process called ]. The neutrons then trigger further fission. And so on. When this ] is controlled, the energy released can be used to heat water, produce steam and drive a ] that generates electricity. It should be noted that a ] involves an '''uncontrolled''' chain reaction, and the rate of fission in a reactor is not capable of reaching sufficient levels to trigger a ] because commercial reactor grade nuclear fuel is not enriched to a high enough level. (see ]) | |||
As of 2022, with world oil and gas prices on the rise, while Germany is restarting its coal plants to deal with loss of Russian gas that it needs to supplement its {{lang|de|]}},<ref>{{cite news| url=https://www.reuters.com/business/energy/germanys-uniper-bring-coal-fired-power-plant-heyden-4-back-onto-electricity-2022-08-22/| title=Germany's Uniper to restart coal-fired power plant as Gazprom halts supply to Europe| date=22 August 2022| publisher=Reuters| access-date=2022-09-12| archive-date=2022-09-09| archive-url=https://web.archive.org/web/20220909205007/https://www.reuters.com/business/energy/germanys-uniper-bring-coal-fired-power-plant-heyden-4-back-onto-electricity-2022-08-22/| url-status=live}}</ref> many other countries have announced ambitious plans to reinvigorate ageing nuclear generating capacity with new investments. French President ] announced his intention to build six new reactors in coming decades, placing nuclear at the heart of France's drive for ] by 2050.<ref>{{cite news |url = https://www.reuters.com/business/energy/macron-bets-nuclear-carbon-neutrality-push-announces-new-reactors-2022-02-10/ |publisher = Reuters |title = Macron bets on nuclear in carbon-neutrality push, announces new reactors |date = 10 February 2022 |access-date = 2022-09-12 |archive-date = 2022-09-14 |archive-url = https://web.archive.org/web/20220914080529/https://www.reuters.com/business/energy/macron-bets-nuclear-carbon-neutrality-push-announces-new-reactors-2022-02-10/ |url-status = live }}</ref> Meanwhile, in the United States, the ], in collaboration with commercial entities, ] and ], is planning on building two different advanced nuclear reactors by 2027, with further plans for nuclear implementation in its long term green energy and energy security goals.<ref>{{cite news |url = https://www.science.org/content/article/department-energy-picks-two-advanced-nuclear-reactors-demonstration-projects |publisher = Science.org |title = Department of Energy picks two advanced nuclear reactors for demonstration projects, announces new reactors |date = 16 October 2020 |access-date = 3 March 2023 |archive-date = 24 February 2023 |archive-url = https://web.archive.org/web/20230224021201/https://www.science.org/content/article/department-energy-picks-two-advanced-nuclear-reactors-demonstration-projects |url-status = live }}</ref> | |||
The chain reaction is controlled through the use of materials that absorb and moderate neutrons. In uranium-fueled reactors, neutrons must be moderated (slowed down) because slow neutrons are more likely to cause fission when colliding with a uranium-235 nucleus. ] use ordinary water to moderate and cool the reactors. When at operating temperatures if the temperature of the water increases, its density drops, and fewer neutrons passing through it are slowed enough to trigger further reactions. That ] stabilizes the reaction rate. | |||
== Power plants == | |||
===Experimental technologies=== | |||
] in operation]] | |||
A number of other designs for nuclear power generation, the ]s, are the subject of active research and may be used for practical power generation in the future. A number of the advanced nuclear reactor designs could also make critical fission reactors much cleaner, much safer and/or much less of a risk to the proliferation of nuclear weapons. | |||
{{image frame | |||
|width=220 | |||
|content={{Graph:Chart | |||
| width=100 | |||
| height=100 | |||
| type=pie | |||
| x=PWR,BWR,GCR,PHWR,LWGR,FBR | |||
| y1=277,80,15,49,15,2 | |||
| showValues= | |||
| colors=#1f77b4, | |||
#ff7f0e, | |||
#2ca02c, | |||
#d62728, | |||
#9467bd, | |||
#8c564b | |||
}} | |||
|caption=Number of electricity-generating civilian reactors by type as of 2014<ref name="IAEA_reactors_stats">{{cite web|title=Nuclear Power Reactors in the World – 2015 Edition|url=http://www-pub.iaea.org/MTCD/Publications/PDF/rds2-35web-85937611.pdf|publisher=International Atomic Energy Agency (IAEA)|access-date=26 October 2017|archive-date=16 November 2020|archive-url=https://web.archive.org/web/20201116191727/https://www-pub.iaea.org/MTCD/Publications/PDF/rds2-35web-85937611.pdf|url-status=live}}</ref> | |||
{{columns-list|colwidth=4em|{{legend inline|#1f77b4|]}} {{legend inline|#ff7f0e|]}} {{legend inline|#2ca02c|]}} {{legend inline|#d62728|]}} {{legend inline|#9467bd|]}} {{legend inline|#8c564b|]}}}} | |||
}} | |||
{{Main|Nuclear power plant|Nuclear reactor}} | |||
{{See also|List of commercial nuclear reactors|List of nuclear power stations}} | |||
Nuclear power plants are ]s that generate electricity by harnessing the ] released from ]. A fission nuclear power plant is generally composed of: a ], in which the nuclear reactions generating heat take place; a cooling system, which removes the heat from inside the reactor; a ], which transforms the heat into ]; an ], which transforms the mechanical energy into electrical energy.<ref name=WNAnuclearreactorbasics /> | |||
When a ] hits the nucleus of a ] or ] atom, it can split the nucleus into two smaller nuclei, which is a nuclear fission reaction. The reaction releases energy and neutrons. The released neutrons can hit other uranium or plutonium nuclei, causing new fission reactions, which release more energy and more neutrons. This is called a ]. In most commercial reactors, the reaction rate is contained by ]s that absorb excess neutrons. The controllability of nuclear reactors depends on the fact that a small fraction of neutrons resulting from fission are ]. The time delay between the fission and the release of the neutrons slows changes in reaction rates and gives time for moving the control rods to adjust the reaction rate.<ref name=WNAnuclearreactorbasics>{{cite web |title=How does a nuclear reactor make electricity? |publisher=World Nuclear Association |url=http://www.world-nuclear.org/nuclear-basics/how-does-a-nuclear-reactor-make-electricity.aspx |website=www.world-nuclear.org |access-date=24 August 2018 |archivedate=24 August 2018 |archiveurl=https://web.archive.org/web/20180824134906/http://www.world-nuclear.org/nuclear-basics/how-does-a-nuclear-reactor-make-electricity.aspx |url-status=deviated }}</ref><ref>{{Cite news|url=https://www.scientificamerican.com/article/atomic-age-began-75-years-ago-with-the-first-controlled-nuclear-chain-reaction/|title=Atomic age began 75 years ago with the first controlled nuclear chain reaction|last1=Spyrou|first1=Artemis|date=2017-12-03|work=Scientific American|access-date=2018-11-18|last2=Mittig|first2=Wolfgang|archive-date=2018-11-18|archive-url=https://web.archive.org/web/20181118205736/https://www.scientificamerican.com/article/atomic-age-began-75-years-ago-with-the-first-controlled-nuclear-chain-reaction/|url-status=live}}</ref> | |||
*] (SCWR) | |||
: The Super-critical Water-cooled Reactor combines higher efficiency than a GCR with the safety of a PWR, though it is perhaps more technically challenging than either. The water is pressurized and heated past its ], until there is no difference between the liquid and gas states. An SCWR is similar to a BWR, except there is no boiling (as the water is critical), and the thermal efficiency is higher as the water behaves more like a classical gas. This is an epithermal neutron reactor design. | |||
*] | |||
: The IFR was built, tested and evaluated during the 1980s and then retired under the Clinton administration in the 1990s due to nuclear non-proliferation policies of the administration. Recycling spent fuel is the core of its design and it therefore produces only a fraction of the waste of current reactors. The link at the end of this paragraph references an interview with Dr. Charles Till, former director of Argonne National Laboratory West in Idaho and outlines the Integral Fast Reactor and its advantages over current reactor design, especially in the areas of safety, efficient nuclear fuel usage and reduced waste.<ref name="pbs">{{Cite web|url=http://www.pbs.org/wgbh/pages/frontline/shows/reaction/interviews/till.html|title=Nuclear Reaction: Why Do Americans Fear Nuclear Power?|accessdate=2006-11-09|publisher=Public Broadcasting Service (PBS)|author=Dr. Charles Till}}</ref> | |||
*] — This reactor type is designed so high temperatures reduce power output by ] of the fuel's neutron cross-section. It uses ceramic fuels so its safe operating temperatures exceed the power-reduction temperature range. Most designs are cooled by inert helium, which cannot have steam explosions, and which does not easily absorb neutrons and become radioactive, or dissolve contaminants that can become radioactive. Typical designs have more layers (up to 7) of passive containment than light water reactors (usually 3). A unique feature that might aid safety is that the fuel-balls actually form the core's mechanism, and are replaced one-by-one as they age. The design of the fuel makes fuel reprocessing expensive. | |||
*], '''S'''mall, '''S'''ealed, '''T'''ransportable, '''A'''utonomous '''R'''eactor is being primarily researched and developed in the US, intended as a fast breeder reactor that is passively safe and could be remotely shut down in case the suspicion arises that it is being tampered with. | |||
* ]s are designed to be safer and more stable, but pose a number of engineering and economic difficulties. | |||
*Thorium based reactors | |||
:It is possible to convert Thorium-232 into U-233 in reactors specially designed for the purpose. In this way, Thorium, which is more plentiful than uranium, can be used to breed U-233 nuclear fuel. U-233 is also believed to have favourable nuclear properties as compared to traditionally used U-235, including better neutron economy and lower production of long lived transuranic waste. | |||
:*] — A proposed heavy water moderated nuclear power reactor that will be the next generation design of the PHWR type. Under development in the ] (BARC). | |||
:*] — A unique reactor using Uranium-233 isotope for fuel. Built by ] and ] Uses thorium. | |||
:*India is also building a bigger scale FBTR or fast breeder thorium reactor to harness the power with the use of thorium. | |||
Controlled ] could in principle be used in ] plants to produce power without the complexities of handling actinides, but significant scientific and technical obstacles remain. Several fusion reactors have been built, but as yet none has 'produced' more thermal energy than electrical energy consumed. Despite research having started in the 1950s, no commercial fusion reactor is expected before 2050. The ] project is currently leading the effort to commercialize fusion power. | |||
== |
== Fuel cycle == | ||
] is mined, enriched, and manufactured into nuclear fuel |
]. After use, the spent fuel is delivered to a reprocessing plant (2) or to a final repository (3). In ], 95% of spent fuel can potentially be recycled to be returned to use in a power plant (4).]] | ||
] | |||
{{Main|Nuclear fuel cycle}} | |||
{{Main|Nuclear fuel cycle|Integrated Nuclear Fuel Cycle Information System}} | |||
A nuclear reactor is only part of the life-cycle for nuclear power. The process starts with mining. Generally, uranium mines are either open-pit ], or in-situ leach mines. In either case, the uranium ore is extracted, usually converted into a stable and compact form such as ], and then transported to a processing facility. Here, the yellowcake is converted to ], which is then ] using various techniques. At this point, the enriched uranium, containing more than the natural 0.7% U-235, is used to make rods of the proper composition and geometry for the particular reactor that the fuel is destined for. The fuel rods will spend about 3 years inside the reactor, generally until about 3% of their uranium has been fissioned, then they will be moved to a ] where the short lived isotopes generated by fission can decay away. After about 5 years in a cooling pond, the spent fuel is radioactively cool enough to handle, and it can be moved to dry storage casks or reprocessed. | |||
The life cycle of nuclear fuel starts with ]. The ] is then converted into a compact ] form, known as ] (U<sub>3</sub>O<sub>8</sub>), to facilitate transport.<ref name="nrc_fuel">{{cite web |title=Stages of the Nuclear Fuel Cycle |url=https://www.nrc.gov/materials/fuel-cycle-fac/stages-fuel-cycle.html |website=NRC Web |publisher=] |access-date=17 April 2021 |archive-date=20 April 2021 |archive-url=https://web.archive.org/web/20210420203721/https://www.nrc.gov/materials/fuel-cycle-fac/stages-fuel-cycle.html |url-status=live }}</ref> Fission reactors generally need ], a ] ]. The concentration of uranium-235 in natural uranium is low (about 0.7%). Some reactors can use this natural uranium as fuel, depending on their ]. These reactors generally have graphite or ] moderators. For light water reactors, the most common type of reactor, this concentration is too low, and it must be increased by a process called ].<ref name="nrc_fuel"/> In civilian light water reactors, uranium is typically enriched to 3.5{{ndash}}5% uranium-235.<ref name="wna_fuel"/> The uranium is then generally converted into ] (UO<sub>2</sub>), a ceramic, that is then compressively ] into fuel pellets, a stack of which forms ]s of the proper composition and geometry for the particular reactor.<ref name="wna_fuel">{{cite web |title=Nuclear Fuel Cycle Overview |url=https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/nuclear-fuel-cycle-overview.aspx |website=www.world-nuclear.org |publisher=World Nuclear Association |access-date=17 April 2021 |archive-date=20 April 2021 |archive-url=https://web.archive.org/web/20210420112134/https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/nuclear-fuel-cycle-overview.aspx |url-status=live }}</ref> | |||
=== Fuel resources === | |||
{{Main|Uranium market}} | |||
{{Main|Future_energy_development#Nuclear_power}} | |||
After some time in the reactor, the fuel will have reduced fissile material and increased fission products, until its use becomes impractical.<ref name="wna_fuel"/> At this point, the spent fuel will be moved to a ] which provides cooling for the thermal heat and shielding for ionizing radiation. After several months or years, the spent fuel is radioactively and thermally cool enough to be moved to dry storage casks or reprocessed.<ref name="wna_fuel"/> | |||
] is a common ], occurring almost everywhere on land and in the oceans. It is about as common as ], and 500 times more common than ]. Most types of rocks and soils contain uranium, although often in low concentrations. At present, economically viable deposits are regarded as being those with concentrations of at least 0.1% uranium. At this cost level, available reserves would last for 50 years at the present rate of use. Doubling the price of uranium, which would have only little effect on the overall cost of nuclear power, would increase reserves to hundreds of years. To put this in perspective; a doubling in the cost of natural uranium would increase the total cost of nuclear power by 5%. On the other hand, if the price of natural gas was doubled, the cost of gas-fired power would increase by about 60%. Doubling the price of coal would increase the cost of power production in a large coal-fired power station by about 30%. | |||
=== Uranium resources === | |||
Uranium enrichment produces many tons of ] (DU) which consists of U-238 with most of the easily fissile U-235 isotope removed. U-238 is a tough metal with several commercial uses — for example, aircraft production, radiation shielding, and making bullets and armor — as it has a higher density than ]. There are concerns that U-238 may lead to health problems in groups exposed to this material excessively, like tank crews and civilians living in areas where large quantities of DU ammunition have been used. | |||
{{Main|Uranium market|Uranium mining|Energy development#Nuclear}} | |||
] (blue) and uranium-235 (red) found in natural uranium and in ] for different applications. Light water reactors use 3{{ndash}}5% enriched uranium, while ] reactors work with natural uranium.]] | |||
] is a fairly common ] in the Earth's crust: it is approximately as common as ] or ], and is about 40 times more common than ].<ref>{{cite encyclopedia |url=http://www.encyclopedia.com/topic/uranium.aspx |title=uranium Facts, information, pictures | Encyclopedia.com articles about uranium |encyclopedia=Encyclopedia.com |date=2001-09-11 |access-date=2013-06-14 |archive-date=2016-09-13 |archive-url=https://web.archive.org/web/20160913203913/http://www.encyclopedia.com/topic/uranium.aspx |url-status=live }}</ref> Uranium is present in trace concentrations in most rocks, dirt, and ocean water, but is generally economically extracted only where it is present in relatively high concentrations. Uranium mining can be underground, ], or ] mining. An increasing number of the highest output mines are remote underground operations, such as ], in Canada, which by itself accounts for 13% of global production. As of 2011 the world's known resources of uranium, economically recoverable at the arbitrary price ceiling of US$130/kg, were enough to last for between 70 and 100 years.<ref>{{cite web |url=http://www.spp.nus.edu.sg/docs/policy-briefs/201101_RSU_PolicyBrief_1-2nd_Thought_Nuclear-Sovacool.pdf |title=Second Thoughts About Nuclear Power |website=A Policy Brief – Challenges Facing Asia |date=January 2011 |archive-url=https://web.archive.org/web/20130116084833/http://spp.nus.edu.sg/docs/policy-briefs/201101_RSU_PolicyBrief_1-2nd_Thought_Nuclear-Sovacool.pdf |archive-date=January 16, 2013 |access-date=September 11, 2012 |url-status=dead }}</ref><ref>{{cite web | url= http://www.nea.fr/html/general/press/2008/2008-02.html | title= Uranium resources sufficient to meet projected nuclear energy requirements long into the future | date= 2008-06-03 | publisher= ] (NEA) | access-date= 2008-06-16 | archive-url= https://web.archive.org/web/20081205121250/http://www.nea.fr/html/general/press/2008/2008-02.html | archive-date= 2008-12-05 | url-status= dead }}</ref><ref name="Red">{{cite book |year=2008 |title=Uranium 2007 – Resources, Production and Demand |url=http://www.oecdbookshop.org/oecd/display.asp?sf1=identifiers&st1=9789264047662 |publisher=], ] |isbn=978-92-64-04766-2 |archive-url=https://web.archive.org/web/20090130092151/http://www.oecdbookshop.org/oecd/display.asp?sf1=identifiers&st1=9789264047662 |archive-date=2009-01-30 }}</ref> In 2007, the OECD estimated 670 years of economically recoverable uranium in total conventional resources and ] ores assuming the then-current use rate.<ref>{{cite web |url=https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |title=Energy Supply |page=271 |archive-url=https://web.archive.org/web/20071215202932/http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |archive-date=2007-12-15}} and table 4.10.</ref> | |||
Light water reactors make relatively inefficient use of nuclear fuel, mostly using only the very rare uranium-235 isotope.<ref name="wna-wmitnfc">{{cite web |url=http://www.world-nuclear.org/info/inf04.html |title=Waste Management in the Nuclear Fuel Cycle |access-date=2006-11-09 |publisher=World Nuclear Association |year=2006 |website=Information and Issue Briefs |archive-date=2010-06-11 |archive-url=https://web.archive.org/web/20100611201409/http://www.world-nuclear.org/info/inf04.html |url-status=dead }}</ref> ] can make this waste reusable, and newer reactors also achieve a more efficient use of the available resources than older ones.<ref name="wna-wmitnfc"/> With a pure ] fuel cycle with a burn up of all the uranium and ]s (which presently make up the most hazardous substances in nuclear waste), there is an estimated 160,000 years worth of uranium in total conventional resources and phosphate ore at the price of 60–100 US$/kg.<ref>{{cite web |url=https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |title=Energy Supply |page=271 |archive-url=https://web.archive.org/web/20071215202932/http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |archive-date=2007-12-15}} and figure 4.10.</ref> However, reprocessing is expensive, possibly dangerous and can be used to manufacture nuclear weapons.<ref name="repr"/><ref name="future1">{{cite web |title=Toward an Assessment of Future Proliferation Risk |url=https://cpb-us-e1.wpmucdn.com/blogs.gwu.edu/dist/3/1964/files/2021/03/Mark_Hibbs.pdf |access-date=25 November 2021 |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125145228/https://cpb-us-e1.wpmucdn.com/blogs.gwu.edu/dist/3/1964/files/2021/03/Mark_Hibbs.pdf |url-status=live }}</ref><ref name="pluto">{{cite journal |last1=Zhang |first1=Hui |title=Plutonium reprocessing, breeder reactors, and decades of debate: A Chinese response |journal=Bulletin of the Atomic Scientists |date=1 July 2015 |volume=71 |issue=4 |pages=18–22 |doi=10.1177/0096340215590790 |s2cid=145763632 |language=en |issn=0096-3402}}</ref><ref name="civlib">{{cite journal |last1=Martin |first1=Brian |date=1 January 2015 |title=Nuclear power and civil liberties |url=https://ro.uow.edu.au/lhapapers/2126/ |url-status=live |journal=Faculty of Law, Humanities and the Arts – Papers (Archive) |pages=1–6 |archive-url=https://web.archive.org/web/20211125145241/https://ro.uow.edu.au/lhapapers/2126/ |archive-date=25 November 2021 |access-date=26 November 2021}}</ref><ref name="detect">{{cite journal |last1=Kemp |first1=R. Scott |title=Environmental Detection of Clandestine Nuclear Weapon Programs |journal=Annual Review of Earth and Planetary Sciences |date=29 June 2016 |volume=44 |issue=1 |pages=17–35 |doi=10.1146/annurev-earth-060115-012526 |bibcode=2016AREPS..44...17K |hdl=1721.1/105171 |url=https://www.annualreviews.org/doi/full/10.1146/annurev-earth-060115-012526 |language=en |issn=0084-6597 |quote=Although commercial reprocessing involves large, expensive facilities, some of which are identifiable in structure, a small, makeshift operation using standard industrial supplies is feasible (Ferguson 1977, US GAO 1978). Such a plant could be constructed to have no visual signatures that would reveal its location by overhead imaging, could be built in several months, and once operational could produce weapon quantities of fissile material in several days |hdl-access=free |access-date=26 November 2021 |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125145230/https://www.annualreviews.org/doi/full/10.1146/annurev-earth-060115-012526 |url-status=live }}</ref> One analysis found that uranium prices could increase by two orders of magnitude between 2035 and 2100 and that there could be a shortage near the end of the century.<ref>{{cite journal |last1=Monnet |first1=Antoine |last2=Gabriel |first2=Sophie |last3=Percebois |first3=Jacques |title=Long-term availability of global uranium resources |journal=Resources Policy |date=1 September 2017 |volume=53 |pages=394–407 |doi=10.1016/j.resourpol.2017.07.008 |bibcode=2017RePol..53..394M |language=en |issn=0301-4207 |url=https://tel.archives-ouvertes.fr/tel-01530739/file/2016_MONNET_diff.pdf |quote=However, it can be seen that the simulation in scenario A3 stops in 2075 due to a shortage: the R/P ratio cancels itself out. The detailed calculations also show that even though it does not cancel itself out in scenario C2, the R/P ratio constantly deteriorates, falling from 130 years in 2013 to 10 years around 2100, which raises concerns of a shortage around that time. The exploration constraints thus affect the security of supply. |access-date=1 December 2021 |archive-date=31 October 2021 |archive-url=https://web.archive.org/web/20211031090212/https://tel.archives-ouvertes.fr/tel-01530739/file/2016_MONNET_diff.pdf |url-status=live }}</ref> A 2017 study by researchers from ] and ] found that "at the current consumption rate, global conventional reserves of terrestrial uranium (approximately 7.6 million tonnes) could be depleted in a little over a century".<ref>{{cite conference |last1=Haji |first1=Maha N. |last2=Drysdale |first2=Jessica |last3=Buesseler |first3=Ken |last4=Slocum |first4=Alexander H. |title=Ocean Testing of a Symbiotic Device to Harvest Uranium From Seawater Through the Use of Shell Enclosures |book-title=Proceedings of the 27th International Ocean and Polar Engineering Conference |date=25 June 2017 |url=https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE17/All-ISOPE17/ISOPE-I-17-356/17896 |publisher=International Society of Offshore and Polar |via=OnePetro |language=en |access-date=28 November 2021 |archive-date=26 November 2021 |archive-url=https://web.archive.org/web/20211126185614/https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE17/All-ISOPE17/ISOPE-I-17-356/17896 |url-status=live }}</ref> Limited uranium-235 supply may inhibit substantial expansion with the current nuclear technology.<ref name="sol1"/> While various ways to reduce dependence on such resources are being explored,<ref>{{cite journal |last1=Chen |first1=Yanxin |last2=Martin |first2=Guillaume |last3=Chabert |first3=Christine |last4=Eschbach |first4=Romain |last5=He |first5=Hui |last6=Ye |first6=Guo-an |title=Prospects in China for nuclear development up to 2050 |journal=Progress in Nuclear Energy |date=1 March 2018 |volume=103 |pages=81–90 |doi=10.1016/j.pnucene.2017.11.011 |bibcode=2018PNuE..103...81C |s2cid=126267852 |language=en |issn=0149-1970 |url=https://hal-cea.archives-ouvertes.fr/cea-01908268/file/Chen%20-%202018%20-%20PNE%20-%20Chinese%20scenarios%20up%20to%202050.pdf |access-date=1 December 2021 |archive-date=16 December 2021 |archive-url=https://web.archive.org/web/20211216102121/https://hal-cea.archives-ouvertes.fr/cea-01908268/file/Chen%20-%202018%20-%20PNE%20-%20Chinese%20scenarios%20up%20to%202050.pdf |url-status=live }}</ref><ref>{{cite journal |last1=Gabriel |first1=Sophie |last2=Baschwitz |first2=Anne |last3=Mathonnière |first3=Gilles |last4=Eleouet |first4=Tommy |last5=Fizaine |first5=Florian |title=A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets |journal=Annals of Nuclear Energy |date=1 August 2013 |volume=58 |pages=213–220 |doi=10.1016/j.anucene.2013.03.010 |bibcode=2013AnNuE..58..213G |language=en |issn=0306-4549}}</ref><ref>{{cite journal |last1=Shang |first1=Delei |last2=Geissler |first2=Bernhard |last3=Mew |first3=Michael |last4=Satalkina |first4=Liliya |last5=Zenk |first5=Lukas |last6=Tulsidas |first6=Harikrishnan |last7=Barker |first7=Lee |last8=El-Yahyaoui |first8=Adil |last9=Hussein |first9=Ahmed |last10=Taha |first10=Mohamed |last11=Zheng |first11=Yanhua |last12=Wang |first12=Menglai |last13=Yao |first13=Yuan |last14=Liu |first14=Xiaodong |last15=Deng |first15=Huidong |last16=Zhong |first16=Jun |last17=Li |first17=Ziying |last18=Steiner |first18=Gerald |last19=Bertau |first19=Martin |last20=Haneklaus |first20=Nils |title=Unconventional uranium in China's phosphate rock: Review and outlook |journal=Renewable and Sustainable Energy Reviews |date=1 April 2021 |volume=140 |page=110740 |doi=10.1016/j.rser.2021.110740 |bibcode=2021RSERv.14010740S |s2cid=233577205 |language=en |issn=1364-0321}}</ref> new nuclear technologies are considered to not be available in time for climate change mitigation purposes or competition with alternatives of renewables in addition to being more expensive and require costly research and development.<ref name="sol1"/><ref name="10.5281/zenodo.5573718"/><ref name="mil1"/> A study found it to be uncertain whether identified resources will be developed quickly enough to provide uninterrupted fuel supply to expanded nuclear facilities<ref>{{cite web |title=USGS Scientific Investigations Report 2012–5239: Critical Analysis of World Uranium Resources |url=https://pubs.usgs.gov/sir/2012/5239/ |website=pubs.usgs.gov |access-date=28 November 2021 |archive-date=19 January 2022 |archive-url=https://web.archive.org/web/20220119075200/http://pubs.usgs.gov/sir/2012/5239/ |url-status=live }}</ref> and various forms of mining may be challenged by ecological barriers, costs, and land requirements.<ref>{{cite journal |last=Barthel |first=F. H. |date=2007 |title=Thorium and unconventional uranium resources |url=https://inis.iaea.org/search/search.aspx?orig_q=RN:39023282 |url-status=live |language=en |archive-url=https://web.archive.org/web/20211128121630/https://inis.iaea.org/search/search.aspx?orig_q=RN:39023282 |archive-date=2021-11-28 |access-date=2021-11-28 |website=International Atomic Energy Agency}}</ref><ref>{{cite journal |last1=Dungan |first1=K. |last2=Butler |first2=G. |last3=Livens |first3=F. R. |last4=Warren |first4=L. M. |title=Uranium from seawater – Infinite resource or improbable aspiration? |journal=Progress in Nuclear Energy |date=1 August 2017 |volume=99 |pages=81–85 |doi=10.1016/j.pnucene.2017.04.016 |bibcode=2017PNuE...99...81D |language=en |issn=0149-1970}}</ref> Researchers also report considerable import dependence of nuclear energy.<ref>{{cite journal |last1=Fang |first1=Jianchun |last2=Lau |first2=Chi Keung Marco |last3=Lu |first3=Zhou |last4=Wu |first4=Wanshan |title=Estimating Peak uranium production in China – Based on a Stella model |journal=Energy Policy |date=1 September 2018 |volume=120 |pages=250–258 |doi=10.1016/j.enpol.2018.05.049 |bibcode=2018EnPol.120..250F |s2cid=158066671 |language=en |issn=0301-4215|url=https://pure.hud.ac.uk/en/publications/4f2be679-fb50-4267-81ef-7cb2a5fe0f1d }}</ref><ref name="10.1016/j.enpol.2018.12.024"/><ref name="10.1016/j.anucene.2017.08.019"/><ref name="10.1002/ente.201600444"/> | |||
Current ]s make relatively inefficient use of nuclear fuel, leading to energy waste. But ] makes this waste reusable (except in the USA, where this is not allowed) and more efficient reactor designs would allow better use of the available resources (and reduce the amount of waste material).<ref name="wna-wmitnfc">{{Cite web|url=http://www.world-nuclear.org/info/inf04.html|title=Waste Management in the Nuclear Fuel Cycle|accessdate=2006-11-09|publisher=World Nuclear Assosciation|year=2006|work=Information and Issue Briefs}}</ref> | |||
Unconventional uranium resources also exist. Uranium is naturally present in seawater at a concentration of about 3 ]s per liter,<ref name="books.google.ie">{{Cite book |last1=Ferronsky |first1=V. I. |url=https://books.google.com/books?id=OeEUcIRsIwAC&q=Radium+and+thorium+isotopes+in+the+surface+waters+of+the+East+Pacific+and+coastal+southern+California.+Earth+Planet.+Sci.+Lett.,+39:+235249.&pg=PA598 |title=Isotopes of the Earth's Hydrosphere |last2=Polyakov |first2=V. A. |publisher=Springer |year=2012 |isbn=978-94-007-2856-1 |page=399}}</ref><ref>{{Cite web |url=http://www.atsdr.cdc.gov/toxprofiles/tp147.pdf |title=Toxicological profile for thorium |year=1990 |publisher=Agency for Toxic Substances and Disease Registry |page=76 |quote=world average concentration in seawater is 0.05 μg/L (Harmsen and De Haan 1980) |access-date=2018-10-09 |archive-date=2018-04-22 |archive-url=https://web.archive.org/web/20180422083351/https://www.atsdr.cdc.gov/toxprofiles/tp147.pdf |url-status=live }}</ref><ref>{{Cite journal |last1=Huh |first1=C. A. |last2=Bacon |first2=M. P. |year=2002 |title=Determination of thorium concentration in seawater by neutron activation analysis |journal=Analytical Chemistry |volume=57 |issue=11 |pages=2138–2142 |doi=10.1021/ac00288a030}}</ref> with 4.4 billion tons of uranium considered present in seawater at any time.<ref name="gepr.org" /> In 2014 it was suggested that it would be economically competitive to produce nuclear fuel from seawater if the process was implemented at large scale.<ref>{{Cite journal |doi=10.3390/jmse2010081|title=Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology|journal=Journal of Marine Science and Engineering|volume=2|pages=81–92|year=2014|last1=Wang|first1=Taiping|last2=Khangaonkar|first2=Tarang|last3=Long|first3=Wen|last4=Gill|first4=Gary|issue=1 |doi-access=free|bibcode=2014JMSE....2...81W }}</ref> Like fossil fuels, over geological timescales, uranium extracted on an industrial scale from seawater would be replenished by both river erosion of rocks and the natural process of uranium ] from the surface area of the ocean floor, both of which maintain the ] of seawater concentration at a stable level.<ref name="gepr.org">{{cite web|url=http://www.gepr.org/en/contents/20130729-01/|title=The current state of promising research into extraction of uranium from seawater – Utilization of Japan's plentiful seas|first=Noriaki|last=Seko|publisher=Global Energy Policy Research|date=July 29, 2013|access-date=October 9, 2018|archive-date=October 9, 2018|archive-url=https://web.archive.org/web/20181009172251/http://www.gepr.org/en/contents/20130729-01/|url-status=live}}</ref> Some commentators have argued that this strengthens the case for ].<ref>{{cite journal |vauthors=Alexandratos SD, Kung S |journal=Industrial & Engineering Chemistry Research |date=April 20, 2016 |volume=55 |issue=15 |pages=4101–4362 |title=Uranium in Seawater |doi=10.1021/acs.iecr.6b01293 |doi-access=free}}</ref> | |||
As opposed to current light water reactors which use ] (0.7% of all natural uranium), ]s use ] (99.3% of all natural uranium). It has been estimated that there is up to five-billion years’ worth of uranium-238 for use in these power plants.<ref name="stanford-cohen">{{Cite web|url=http://www-formal.stanford.edu/jmc/progress/cohen.html|title=Facts From Choen and Others|accessdate=2006-11-09|publisher=Stanford|year=2006|author=John McCarthy|work=Progress and its Sustainability}}</ref> Breeder technology has been used in several reactors.<ref name="wna-anpr">{{Cite web|url=http://www.world-nuclear.org/info/inf08.html|title=Advanced Nuclear Power Reactors|accessdate=2006-11-09|publisher=World Nuclear Assosciation|year=2006|work=Information and Issue Briefs}}</ref> Currently (December 2005), the only breeder reactor producing power is BN-600 in Beloyarsk, Russia. (The electricity output of BN-600 is 600 MW — Russia has planned to build another unit, BN-800, at Beloyarsk nuclear power plant.) Also, Japan's ] reactor is planned for restart (having been shut down since 1995), and both China and India intend to build breeder reactors. | |||
=== Waste === | |||
Another alternative would be to use uranium-233 bred from ] as fission fuel — the ]. Thorium is three times more abundant in the Earth's crust than uranium, and (theoretically) all of it can be used for breeding, making the potential thorium resource orders of magnitude larger than the uranium fuel cycle operated without breeding.<ref name="wna-thorium">{{Cite web|url=http://www.world-nuclear.org/info/inf62.html|title=Thorium|accessdate=2006-11-09|publisher=World Nuclear Assosciation|year=2006|work=Information and Issue Briefs}}</ref> Unlike the breeding of U-238 into plutonium, fast breeder reactors are not necessary — it can be performed satisfactorily in more conventional plants. | |||
{{main|Nuclear waste}} | |||
] fuel before and after approximately three years in the ] of a ]<ref name="jaif">{{cite web|url=http://www.jaif.or.jp/ja/wnu_si_intro/document/08-07-16-finck_philip.pdf | title=Current Options for the Nuclear Fuel Cycle |publisher=JAIF |author=Finck, Philip| archive-url=https://web.archive.org/web/20120412130546/http://www.jaif.or.jp/ja/wnu_si_intro/document/08-07-16-finck_philip.pdf | archive-date=2012-04-12 }}</ref>]] | |||
The normal operation of nuclear power plants and facilities produce ], or nuclear waste. This type of waste is also produced during plant decommissioning. There are two broad categories of nuclear waste: low-level waste and high-level waste.<ref name=nrc_waste/> The first has low radioactivity and includes contaminated items such as clothing, which poses limited threat. High-level waste is mainly the spent fuel from nuclear reactors, which is very radioactive and must be cooled and then safely disposed of or reprocessed.<ref name=nrc_waste>{{cite web |title=Backgrounder on Radioactive Waste |url=https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html |website=NRC |publisher=] |access-date=20 April 2021 |archive-date=13 November 2017 |archive-url=https://web.archive.org/web/20171113004118/https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html |url-status=live }}</ref> | |||
=== |
==== High-level waste ==== | ||
{{ |
{{main|High-level waste|Spent nuclear fuel}} | ||
] over time<ref name="m.phys.org">{{Cite web | url=https://m.phys.org/news/2017-11-fast-reactor-shorten-lifetime-long-lived.html |title = A fast reactor system to shorten the lifetime of long-lived fission products}}</ref><ref name="jaif"/>]] | |||
] vessels storing spent nuclear fuel assemblies]] | |||
The most important waste stream from nuclear power reactors is ], which is considered ]. For Light Water Reactors (LWRs), spent fuel is typically composed of 95% uranium, 4% ]s, and about 1% ] ] (mostly ], ] and ]).<ref>{{cite web |title=Radioactivity: Minor Actinides |url=http://www.radioactivity.eu.com/site/pages/Minor_Actinides.htm |website=www.radioactivity.eu.com |access-date=2018-12-23 |archive-date=2018-12-11 |archive-url=https://web.archive.org/web/20181211042617/http://www.radioactivity.eu.com/site/pages/Minor_Actinides.htm |url-status=dead }}</ref> The fission products are responsible for the bulk of the short-term radioactivity, whereas the plutonium and other transuranics are responsible for the bulk of the long-term radioactivity.<ref>{{cite book |last1=Ojovan |first1=Michael I. |title=An introduction to nuclear waste immobilisation, second edition |date=2014 |publisher=Elsevier |location=Kidlington, Oxford, U.K. |isbn=978-0-08-099392-8 |edition=2nd}}</ref> | |||
The predominant waste stream from nuclear power plants is spent fuel. A large nuclear reactor produces 3 cubic metres (25-30 tonnes) of spent fuel each year.<ref name="uic-waste">{{Cite web|url=http://www.uic.com.au/wast.htm|title=Radioactive Waste Management|accessdate=2006-11-09|publisher=Uranium & Nuclear Power Information Centre|year=2002}}</ref> It is primarily composed of unconverted uranium as well as significant quantities of transuranic actinides (plutonium and curium, mostly). In addition, about 3% of it is made of ]s. The actinides (uranium, plutonium, and curium) are responsible for the bulk of the long term radioactivity, whereas the fission products are responsible for the bulk of the short term radioactivity. | |||
High-level waste (HLW) must be stored isolated from the ] with sufficient shielding so as to limit radiation exposure. After being removed from the reactors, used fuel bundles are stored for six to ten years in ]s, which provide cooling and shielding against radiation. After that, the fuel is cool enough that it can be safely transferred to ].<ref>{{Cite web|url=http://nuclearsafety.gc.ca/eng/waste/high-level-waste/index.cfm|title=High-level radioactive waste|publisher=Canadian Nuclear Safety Commission|date=February 3, 2014|website=nuclearsafety.gc.ca|access-date=April 19, 2022|archive-date=April 14, 2022|archive-url=https://web.archive.org/web/20220414190417/http://nuclearsafety.gc.ca/eng/waste/high-level-waste/index.cfm|url-status=dead}}</ref> The radioactivity decreases exponentially with time, such that it will have decreased by 99.5% after 100 years.<ref>{{cite tech report |last1=Hedin |first1=A. |title=Spent nuclear fuel - how dangerous is it? A report from the project 'Description of risk' |date=1997 |url=https://www.osti.gov/etdeweb/biblio/587853 |publisher=Energy Technology Data Exchange}}</ref> The more intensely radioactive short-lived ] (SLFPs) decay into stable elements in approximately 300 years, and after about 100,000 years, the spent fuel becomes less radioactive than natural uranium ore.<ref name="jaif"/><ref>{{cite book |last1=Bruno |first1=Jordi |last2=Duro |first2=Laura |last3=Diaz-Maurin |first3=François |date=2020 |title=Advances in Nuclear Fuel Chemistry |chapter=Chapter 13 – Spent nuclear fuel and disposal |series=Woodhead Publishing Series in Energy |pages=527–553 |chapter-url=https://www.sciencedirect.com/science/article/pii/B9780081025710000148 |publisher=Woodhead Publishing |doi=10.1016/B978-0-08-102571-0.00014-8 |isbn=978-0-08-102571-0 |s2cid=216544356 |access-date=2021-09-20 |archive-date=2021-09-20 |archive-url=https://web.archive.org/web/20210920212807/https://www.sciencedirect.com/science/article/pii/B9780081025710000148 |url-status=live }}</ref> | |||
Spent fuel is highly radioactive and needs to be handled with great care and forethought. Fresh from the reactor, it is so radioactive that less than a minute's exposure to it will cause death. However, spent nuclear fuel becomes less radioactive over time. After 40 years, the ] is 99.9% lower than it was the moment the spent fuel was removed, although still dangerously radioactive.<ref name="wna-wmitnfc"/> | |||
Commonly suggested methods to isolate LLFP waste from the biosphere include separation and ],<ref name="jaif"/> ] treatments, or deep geological storage.<ref>{{cite book |last1=Ojovan |first1=M. I. |title=An Introduction to Nuclear Waste Immobilisation |last2=Lee |first2=W. E. |publisher=Elsevier Science Publishers |year=2005 |isbn=978-0-08-044462-8 |location=Amsterdam, Netherlands |page=315}}</ref><ref>{{cite book |title=Technical Bases for Yucca Mountain Standards |author=National Research Council |year=1995 |publisher=National Academy Press |location=Washington, DC |isbn=978-0-309-05289-4|url=https://books.google.com/books?id=1DLyAtgVPy0C&pg=PA91|page=91}}</ref><ref>{{cite web |url=http://www.aps.org/units/fps/newsletters/2006/january/article1.html |title=The Status of Nuclear Waste Disposal |date=January 2006 |publisher=The American Physical Society |access-date=2008-06-06 |archive-date=2008-05-16 |archive-url=https://web.archive.org/web/20080516010935/http://www.aps.org/units/fps/newsletters/2006/january/article1.html |url-status=live }}</ref><ref>{{cite web |url=http://www.epa.gov/radiation/docs/yucca/70fr49013.pdf |title=Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule |date=2005-08-22 |publisher=United States Environmental Protection Agency |access-date=2008-06-06 |archive-date=2008-06-26 |archive-url=https://web.archive.org/web/20080626191551/http://www.epa.gov/radiation/docs/yucca/70fr49013.pdf |url-status=live }}</ref> | |||
The safe storage and disposal of nuclear waste is a significant challenge. Because of potential harm from radiation, spent nuclear fuel must be stored in shielded basins of water (]s), and usually subsequently in dry storage vaults or ] until its radioactivity decreases naturally ("decays") to levels safe enough for other processing. This interim stage spans years or decades, depending on the type of fuel. Most U.S. waste is currently stored in temporary storage sites requiring oversight, while suitable permanent disposal methods are discussed. ], the ] had accumulated about 49,000 metric tons of spent nuclear fuel from nuclear reactors. Underground storage at ] in U.S. has been proposed as permanent storage. After 10,000 years of radioactive decay, according to ] standards, the spent nuclear fuel will no longer pose a threat to public health and safety. See the article on the ] for more information. | |||
]s, which presently constitute the majority of the world fleet, cannot burn up the ] that is generated during the reactor operation. This limits the life of nuclear fuel to a few years. In some countries, such as the United States, spent fuel is classified in its entirety as a nuclear waste.<ref>{{cite web |url=https://fas.org/sgp/crs/misc/RL32163.pdf |title=CRS Report for Congress. Radioactive Waste Streams: Waste Classification for Disposal |quote=The Nuclear Waste Policy Act of 1982 (NWPA) defined irradiated fuel as spent nuclear fuel, and the byproducts as high-level waste. |access-date=2018-12-22 |archive-date=2017-08-29 |archive-url=https://web.archive.org/web/20170829231541/https://fas.org/sgp/crs/misc/RL32163.pdf |url-status=live }}</ref> In other countries, such as France, it is largely reprocessed to produce a partially recycled fuel, known as mixed oxide fuel or ]. For spent fuel that does not undergo reprocessing, the most concerning isotopes are the medium-lived ]s, which are led by reactor-grade plutonium (half-life 24,000 years).<ref>{{harvnb|Vandenbosch|2007|p=21.|Ref=none}}</ref> Some proposed reactor designs, such as the ] and ]s, can use as fuel the plutonium and other actinides in spent fuel from light water reactors, thanks to their ] spectrum. This offers a potentially more attractive alternative to deep geological disposal.<ref>{{cite news |author=Clark |first=Duncan |date=2012-07-09 |title=Nuclear waste-burning reactor moves a step closer to reality | Environment | guardian.co.uk |url=https://www.theguardian.com/environment/2012/jul/09/nuclear-waste-burning-reactor |url-status=live |archive-url=https://web.archive.org/web/20221008223126/https://www.theguardian.com/environment/2012/jul/09/nuclear-waste-burning-reactor |archive-date=2022-10-08 |access-date=2013-06-14 |newspaper=Guardian |location=London, England}}</ref><ref>{{cite web |author=Monbiot |first=George |date=5 December 2011 |title=A Waste of Waste |url=http://www.monbiot.com/2011/12/05/a-waste-of-waste/ |url-status=live |archive-url=https://web.archive.org/web/20130601052759/http://www.monbiot.com/2011/12/05/a-waste-of-waste/ |archive-date=2013-06-01 |access-date=2013-06-14 |publisher=Monbiot.com}}</ref><ref>{{cite web|url=https://www.youtube.com/watch?v=AZR0UKxNPh8 |archive-url=https://ghostarchive.org/varchive/youtube/20211211/AZR0UKxNPh8| archive-date=2021-12-11 |url-status=live|title=Energy From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor |publisher=YouTube |date=2009-07-23 |access-date=2013-06-14}}{{cbignore}}</ref> | |||
The amount of waste can be reduced in several ways, particularly ]. Even so, the remaining waste will be substantially radioactive for at least 300 years even if the actinides are removed, and for up to thousands of years if the actinides are left in. Even with separation of all actinides, and using ]s to destroy by ] some of the longer-lived non-actinides as well, the waste must be segregated from the environment for one to a few hundred years, and therefore this is properly categorized as a long-term problem. ]s or ] could also reduce the time the waste has to be stored.<ref name="wna-adne">{{Cite web|url=http://www.world-nuclear.org/info/inf35.htm|title=Accelerator-driven Nuclear Energy|accessdate=2006-11-09|publisher=World Nuclear Association|year=2003|work=Information and Issue Briefs}}</ref> It has been argued that the best solution for the nuclear waste is above ground temporary storage since technology is rapidly changing. The current waste may well become a valuable resource in the future. | |||
The ] results in similar fission products, though creates a much smaller proportion of transuranic elements from ] events within a reactor. Spent thorium fuel, although more difficult to handle than spent uranium fuel, may present somewhat lower proliferation risks.<ref>{{cite web |title=Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems |url=https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1540_web.pdf |publisher=IAEA |access-date=7 April 2021 |date=2012 |quote=Once irradiated in a reactor, the fuel of a thorium–uranium cycle contains an admixture of 232U (half-life 68.9 years) whose radioactive decay chain includes emitters (particularly 208Tl) of high energy gamma radiation (2.6{{nbsp}}MeV). This makes spent thorium fuel treatment more difficult, requires remote handling/control during reprocessing and during further fuel fabrication, but on the other hand, may be considered as an additional non-proliferation barrier. |archive-date=6 May 2021 |archive-url=https://web.archive.org/web/20210506123715/https://www-pub.iaea.org/MTCD/publications/PDF/Pub1540_web.pdf |url-status=live }}</ref> | |||
The nuclear industry also produces a volume of low-level radioactive waste in the form of contaminated items like clothing, hand tools, water purifier resins, and (upon decommissioning) the materials of which the reactor itself is built. In the United States, the ] has repeatedly attempted to allow low-level materials to be handled as normal waste: landfilled, recycled into consumer items, etc. Most low-level waste releases very low levels of radioactivity and is only considered radioactive waste because of its history. For example, according to the standards of the NRC, the radiation released by coffee is enough to treat it as low level waste. | |||
==== Low-level waste ==== | |||
In countries with nuclear power, radioactive wastes comprise less than 1% of total industrial toxic wastes, which remain hazardous indefinitely unless they decompose or are treated so that they are less toxic or, ideally, completely non-toxic.<ref name="wna-wmitnfc"/> Overall, nuclear power produces far less waste material than fossil-fuel based power plants. ]-burning plants are particularly noted for producing large amounts of toxic and mildly radioactive ash due to concentrating naturally occurring metals and radioactive material from the coal. | |||
{{main|Low-level waste}} | |||
The nuclear industry also produces a large volume of ], with low radioactivity, in the form of contaminated items like clothing, hand tools, water purifier resins, and (upon decommissioning) the materials of which the reactor itself is built. Low-level waste can be stored on-site until radiation levels are low enough to be disposed of as ordinary waste, or it can be sent to a low-level waste disposal site.<ref>{{cite web |title=NRC: Low-Level Waste |url=https://www.nrc.gov/waste/low-level-waste.html |website=www.nrc.gov |access-date=28 August 2018 |language=en |archive-date=17 August 2018 |archive-url=https://web.archive.org/web/20180817193533/https://www.nrc.gov/waste/low-level-waste.html |url-status=live }}</ref> | |||
=== Reprocessing === | |||
{{see details|Nuclear reprocessing}} | |||
==== Waste relative to other types ==== | |||
Reprocessing can recover up to 95% of the remaining uranium and plutonium in spent nuclear fuel, putting it into new ]. This also produces a reduction in long term radioactivity within the remaining waste, since this is largely short-lived fission products, and reduces its volume by over 90%. Reprocessing of civilian fuel from power reactors is currently done on large scale in Britain, France and (formerly) Russia, will be in China and perhaps India, and is being done on an expanding scale in Japan. ] has announced its intention to complete the nuclear fuel cycle via reprocessing, a move which has led to criticism from the United States and the International Atomic Energy Agency.<ref name="bbc-iranstandoff">{{Cite web|url=http://news.bbc.co.uk/1/hi/world/middle_east/4031603.stm|title=Q&A: Iran Nuclear Stand-Off|accessdate=2006-11-09|publisher=BBC News|year=2006}}</ref> Unlike other countries, U.S. policy at one stage forbade recycling of used fuel; although this policy was reversed, spent fuel is all currently treated as waste.<ref>{{cite journal |quotes= |last=Baker |first=Peter |authorlink= |coauthors=Linzer, Dafna |year= |month= |title= Nuclear Energy Plan Would Use Spent Fuel|journal= Washington Post|volume= |issue=] |pages= |id= |url= http://www.washingtonpost.com/wp-dyn/content/article/2006/01/25/AR2006012502229.html|accessdate=2007-01-31 }}</ref> | |||
{{See also|Radioactive waste#Naturally occurring radioactive material}} | |||
In countries with nuclear power, radioactive wastes account for less than 1% of total industrial toxic wastes, much of which remains hazardous for long periods.<ref name="wna-wmitnfc" /> Overall, nuclear power produces far less waste material by volume than fossil-fuel based power plants.<ref>{{cite web|url=http://nuclearinfo.net/Nuclearpower/TheRisksOfNuclearPower|title=The Challenges of Nuclear Power|access-date=2013-01-04|archive-date=2017-05-10|archive-url=https://web.archive.org/web/20170510092527/http://nuclearinfo.net/Nuclearpower/TheRisksOfNuclearPower}}</ref> Coal-burning plants, in particular, produce large amounts of toxic and mildly radioactive ash resulting from the concentration of ]s in coal.<ref>{{cite journal |date=2007-12-13 |title=Coal Ash Is More Radioactive than Nuclear Waste |url=http://www.scientificamerican.com/article.cfm?id=coal-ash-is-more-radioactive-than-nuclear-waste |journal=Scientific American |access-date=2012-09-11 |archive-date=2013-06-12 |archive-url=https://web.archive.org/web/20130612103809/http://www.scientificamerican.com/article.cfm?id=coal-ash-is-more-radioactive-than-nuclear-waste |url-status=live }}</ref> A 2008 report from ] concluded that coal power actually results in more radioactivity being released into the environment than nuclear power operation, and that the population ] from radiation from coal plants is 100 times that from the operation of nuclear plants.<ref name="colmain">{{cite web |author=Gabbard |first=Alex |date=2008-02-05 |title=Coal Combustion: Nuclear Resource or Danger |url=http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html |url-status=dead |archive-url=https://web.archive.org/web/20070205103749/http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html |archive-date=February 5, 2007 |access-date=2008-01-31 |publisher=Oak Ridge National Laboratory}}</ref> Although coal ash is much less radioactive than spent nuclear fuel by weight, coal ash is produced in much higher quantities per unit of energy generated. It is also released directly into the environment as ], whereas nuclear plants use shielding to protect the environment from radioactive materials.<ref name="cejournal">{{cite journal |date=2008-12-31 |title=Coal ash is ''not'' more radioactive than nuclear waste |url= http://www.cejournal.net/?p=410 |journal=CE Journal |archive-url=https://web.archive.org/web/20090827045039/http://www.cejournal.net/?p=410 |archive-date=2009-08-27 }}</ref> | |||
Nuclear waste volume is small compared to the energy produced. For example, at ], which generated 44 billion ] of electricity when in service, its complete spent fuel inventory is contained within sixteen casks.<ref>{{cite web |url=http://www.yankeerowe.com/ |title=Yankee Nuclear Power Plant |publisher=Yankeerowe.com |access-date=2013-06-22 |archive-date=2006-03-03 |archive-url=https://web.archive.org/web/20060303073110/http://www.yankeerowe.com/ |url-status=live }}</ref> It is estimated that to produce a lifetime supply of energy for a person at a western ] (approximately 3{{nbsp}}]) would require on the order of the volume of a ] of ], resulting in a similar volume of spent fuel generated.<ref name="Generation Atomic">{{cite web|url=https://www.generationatomic.org/why-nuclear|title=Why nuclear energy|work=Generation Atomic|date=26 January 2021|access-date=22 December 2018|archive-date=23 December 2018|archive-url=https://web.archive.org/web/20181223073651/https://www.generationatomic.org/why-nuclear|url-status=live}}</ref><ref name="npr.org">{{cite news | url=https://www.npr.org/templates/story/story.php?storyId=125740818 | title=NPR Nuclear Waste May Get A Second Life | work=NPR | access-date=2018-12-22 | archive-date=2018-12-23 | archive-url=https://web.archive.org/web/20181223030055/https://www.npr.org/templates/story/story.php?storyId=125740818 | url-status=live }}</ref><ref>{{Cite web|url=https://hypertextbook.com/facts/1998/TommyZhou.shtml|title=Energy Consumption of the United States - The Physics Factbook|website=hypertextbook.com|access-date=2018-12-22|archive-date=2018-12-23|archive-url=https://web.archive.org/web/20181223073750/https://hypertextbook.com/facts/1998/TommyZhou.shtml|url-status=live}}</ref> | |||
== Economy == | |||
Nuclear power plants typically have relatively high capital costs for building the plant but relatively low operating and maintenance costs (which typically include the full cost of spent fuel processing and disposal). As such, comparison with other power generation methods is strongly dependent on assumptions about capital financing and construction timescales for nuclear. | |||
==== Waste disposal ==== | |||
A comparision of the 'real' cost of various energy sources is complicated by several issues: | |||
{{See also|List of radioactive waste treatment technologies}} | |||
*The cost of climate change through emissions of ]es is hard to estimate. | |||
] generated by the United States during the Cold War are stored underground at the ] (WIPP) in ]. The facility is seen as a potential demonstration for storing spent fuel from civilian reactors.]] | |||
*The future cost or even possible benefits of nuclear waste. | |||
Following interim storage in a ], the bundles of used fuel rod assemblies of a typical nuclear power station are often stored on site in ] vessels.<ref>{{cite web |url=https://www.nrc.gov/waste/spent-fuel-storage/dry-cask-storage.html |title=NRC: Dry Cask Storage |publisher=Nrc.gov |date=2013-03-26 |access-date=2013-06-22 |archive-date=2013-06-02 |archive-url=https://web.archive.org/web/20130602195818/http://www.nrc.gov/waste/spent-fuel-storage/dry-cask-storage.html |url-status=live }}</ref> Presently, waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate. | |||
*The fact that climate change and nuclear waste may have an effect over thousands of years, which makes it difficult to determine the total cost and when they should be calculated in. | |||
*The uneven distribution of invested money. The money that has gone into the development of ], ] and ]s is only a fraction of the money that has been invested in nuclear power and fossil fuels and related technologies. Roughly speaking, fossil fuel technologies are fully developed, nuclear energy is under development and ] solar power is a new, as yet underdeveloped technology. What the total costs will be when each one is fully developed is difficult to estimate. | |||
Disposal of nuclear waste is often considered the most politically divisive aspect in the lifecycle of a nuclear power facility.<ref name=mont2011>Montgomery, Scott L. (2010). ''The Powers That Be'', University of Chicago Press, p. 137.</ref> The lack of movement of nuclear waste in the 2 billion year old ]s in ], ] is cited as "a source of essential information today."<ref>{{cite web |url= http://www.efn.org.au/NucWaste-Comby.pdf |title= international Journal of Environmental Studies, The Solutions for Nuclear waste, December 2005 |access-date= 2013-06-22 |archive-date= 2013-04-26 |archive-url= https://web.archive.org/web/20130426083758/http://www.efn.org.au/NucWaste-Comby.pdf |url-status= dead }}</ref><ref>{{cite web |url= http://www.ocrwm.doe.gov/factsheets/doeymp0010.shtml |title=Oklo: Natural Nuclear Reactors |publisher=U.S. Department of Energy Office of Civilian Radioactive Waste Management, Yucca Mountain Project, DOE/YMP-0010|date=November 2004 |access-date=2009-09-15 |archive-url=https://web.archive.org/web/20090825013752/http://www.ocrwm.doe.gov/factsheets/doeymp0010.shtml |archive-date=2009-08-25 }}</ref> Experts suggest that centralized underground repositories which are well-managed, guarded, and monitored, would be a vast improvement.<ref name=mont2011 /> There is an "international consensus on the advisability of storing nuclear waste in ]".<ref name=go /> With the advent of new technologies, other methods including ] into geologically inactive areas have been proposed.<ref>{{Cite journal|title=Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes|date=May 29, 2019|journal=Energies|doi=10.3390/en12112052|last1=Muller|first1=Richard A.|last2=Finsterle|first2=Stefan|last3=Grimsich|first3=John|last4=Baltzer|first4=Rod|last5=Muller|first5=Elizabeth A.|last6=Rector|first6=James W.|last7=Payer|first7=Joe|last8=Apps|first8=John|volume=12|issue=11|page=2052|doi-access=free}}</ref><ref>{{Cite journal|title=The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste|date=February 14, 2020|journal=Energies|doi=10.3390/en13040833|last1=Mallants|first1=Dirk|last2=Travis|first2=Karl|last3=Chapman|first3=Neil|last4=Brady|first4=Patrick V.|last5=Griffiths|first5=Hefin|volume=13|issue=4|page=833|doi-access=free}}</ref> | |||
In a comparison between nuclear power and fossil fuels, opponents of nuclear power argue that the costs related to construction and operation of nuclear power plants, including costs for spent-fuel disposal and plant retirement, outweigh the environmental benefits. Proponents of nuclear power respond that nuclear energy is the only power source which explicitly factors the estimated costs for waste containment and plant decommissioning into its overall cost, and that the quoted cost of fossil fuel plants is deceptively low for this reason. | |||
] refinement is conducted within remote-handled ]s.]] | |||
A UK Royal Academy of Engineering report in 2004 looked at electricity generation costs from new plants in the UK. In particular it aimed to develop "a robust approach to compare directly the costs of intermittent generation with more dependable sources of generation". This meant adding the cost of standby capacity for wind, as well as carbon values up to £30 (€45.44) per tonne CO<sub>2</sub> <!--(£110/tC)--> for coal and gas. Wind power was calculated to be more than twice as expensive as nuclear power. Without a carbon tax, the cost of production through coal, nuclear and gas ranged £0.022-0.026/] and coal gasification was £0.032/kWh. When carbon tax was added (up to £0.025) coal came close to onshore wind (including back-up power) at £0.054/kWh — offshore wind is £0.072/kWh. | |||
There are no commercial scale purpose built underground high-level waste repositories in operation.<ref name="go">{{cite book |last=Gore |first=Al |url=https://archive.org/details/ourchoiceplantos00gore/page/165 |title=Our Choice: A Plan to Solve the Climate Crisis |date=2009 |publisher=Rodale |isbn=978-1-59486-734-7 |location=Emmaus, Pennsylvania |pages= |url-access=registration}}</ref><ref>{{cite magazine| url= http://www.sciam.com/article.cfm?id=a-nuclear-renaissance&print=true| archive-url= https://wayback.archive-it.org/all/20170525170540/https://www.scientificamerican.com/article/a-nuclear-renaissance/| archive-date= 2017-05-25| title= A Nuclear Power Renaissance?| date= 2008-04-28| magazine= ]| access-date= 2008-05-15}}</ref><ref>{{cite magazine | url= http://www.sciam.com/article.cfm?id=rethinking-nuclear-fuel-recycling | title= Nuclear Fuel Recycling: More Trouble Than It's Worth | last= von Hippel | first= Frank N. | author-link= Frank N. von Hippel | date= April 2008 | magazine= Scientific American | access-date= 2008-05-15 | archive-date= 2008-11-19 | archive-url= https://web.archive.org/web/20081119112436/http://www.sciam.com/article.cfm?id=rethinking-nuclear-fuel-recycling | url-status= live }}</ref> However, in Finland the ] of the ] was under construction as of 2015.<ref>{{Cite web|url=http://www.world-nuclear-news.org/WR-Licence-granted-for-Finnish-used-fuel-repository-1211155.html|title=Licence granted for Finnish used fuel repository|date=2015-11-12|website=World Nuclear News|access-date=2018-11-18|archive-date=2015-11-24|archive-url=https://web.archive.org/web/20151124025533/http://world-nuclear-news.org/WR-Licence-granted-for-Finnish-used-fuel-repository-1211155.html|url-status=live}}</ref> | |||
=== Reprocessing === | |||
Nuclear power remained at £0.023/kWh either way, as it produces negligible amounts of CO<sub>2</sub>. Nuclear figures included decommissioning costs.<ref name="countryguardian">{{Cite web|url=http://www.countryguardian.net/generation_costs_report.pdf|title=The Costs of Generating Electricity|accessdate=2006-11-10|publisher=The Royal Academy of Engineering|year=2004|format=PDF}}</ref><ref name="wna-teonp">{{Cite web|url=http://www.world-nuclear.org/info/inf02.html|title=The Economics of Nuclear Power|accessdate=2006-11-10|publisher=World Nuclear Association|year=2006|work=Information and Issue Briefs}}</ref><ref name="mit">{{Cite web|url=http://web.mit.edu/nuclearpower/|title=The Future of Nuclear Power|accessdate=2006-11-10|publisher=Massachusetts Institute of Technology|year=2003}}</ref> | |||
{{main|Nuclear reprocessing}} | |||
{{see also|Plutonium Management and Disposition Agreement}} | |||
Most ]s run on a ], mainly due to the low price of fresh uranium. However, many reactors are also fueled with recycled fissionable materials that remain in spent nuclear fuel. The most common fissionable material that is recycled is the ] (RGPu) that is extracted from spent fuel. It is mixed with uranium oxide and fabricated into mixed-oxide or ]. Because thermal LWRs remain the most common reactor worldwide, this type of recycling is the most common. It is considered to increase the sustainability of the nuclear fuel cycle, reduce the attractiveness of spent fuel to theft, and lower the volume of high level nuclear waste.<ref>{{Cite journal|doi=10.1016/j.energy.2014.02.069|title=Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles|journal=Energy|volume=69|pages=199–211|date=May 2014|last1=Poinssot|first1=Ch.|last2=Bourg|first2=S.|last3=Ouvrier|first3=N.|last4=Combernoux|first4=N.|last5=Rostaing|first5=C.|last6=Vargas-Gonzalez|first6=M.|last7=Bruno|first7=J.|doi-access=free|bibcode=2014Ene....69..199P }}</ref> Spent MOX fuel cannot generally be recycled for use in thermal-neutron reactors. This issue does not affect ]s, which are therefore preferred in order to achieve the full energy potential of the original uranium.<ref name="berrytoll" /><ref name="IEEE Spectrum">{{cite news|last1=Fairley|first1=Peter|title=Nuclear Wasteland|url=https://spectrum.ieee.org/feb07/4891|work=IEEE Spectrum|date=February 2007|access-date=2020-02-02|archive-date=2020-08-05|archive-url=https://web.archive.org/web/20200805214749/https://spectrum.ieee.org/feb07/4891|url-status=dead}}</ref> | |||
In one study, certain ] ] plants were calculated to be three to four times more cost-effective than nuclear power, if all the heat produced was used onsite or in a local heating system. However, the study estimated only 25 year plant lifetimes (60 is now common), 68% capacity factors were assumed (above 90% is now common), other conservatisms were applied, and nuclear power also produces heat which could be used in similar ways (although most nuclear power plants are located in remote areas). The study then found similar costs for nuclear power and most other forms of generation if not including external costs (such as back-up power).<ref name="oko">{{Cite web|url=http://www.oeko.de/service/gemis/files/info/nuke_co2_en.pdf|title=Comparing Greenhouse-Gas Emissions and Abatement Costs of Nuclear and Alternative Energy Options from a Life-Cycle Perspective|accessdate=2006-11-10|publisher=Oko-Institut|year=1997|author=Uwe R. Fritsche}}</ref> | |||
The main constituent of spent fuel from LWRs is slightly ]. This can be recycled into ] (RepU), which can be used in a fast reactor, used directly as fuel in ] reactors, or re-enriched for another cycle through an LWR. Re-enriching of reprocessed uranium is common in France and Russia.<ref name="WNA3">{{cite web |url=http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx |title=Processing of Used Nuclear Fuel |date=2018 |publisher=World Nuclear Association |access-date=2018-12-26 |archive-date=2018-12-25 |archive-url=https://web.archive.org/web/20181225154511/http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx |url-status=live }}</ref> Reprocessed uranium is also safer in terms of nuclear proliferation potential.<ref>{{cite tech report|url=https://www.osti.gov/biblio/6743129-proliferation-resistant-nuclear-fuel-cycles-spiking-plutonium-sup-pu|title=Proliferation-resistant nuclear fuel cycles. |publisher=Oak Ridge National Laboratory|year=1978|doi=10.2172/6743129|osti=6743129|last1=Campbell|first1=D. O.|last2=Gift|first2=E. H.|via=Office of Scientific and Technical Information}}</ref><ref>{{cite journal |last1=Fedorov |first1=M. I. |last2=Dyachenko |first2=A. I. |last3=Balagurov |first3=N. A. |last4=Artisyuk |first4=V. V. |year=2015 |title=Formation of proliferation-resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries |journal=Nuclear Energy and Technology |volume=1 |issue=2 |pages=111–116 |doi=10.1016/j.nucet.2015.11.023 |doi-access=free|bibcode=2015NEneT...1..111F }}</ref><ref>{{cite journal|title=Proliferation resistant plutonium: An updated analysis|journal=Nuclear Engineering and Design|volume=330|pages=297–302|doi=10.1016/j.nucengdes.2018.02.012|year=2018|last1=Lloyd|first1=Cody|last2=Goddard|first2=Braden|bibcode=2018NuEnD.330..297L }}</ref> | |||
===Capital costs=== | |||
Generally, a nuclear power plant is significantly more expensive to build than an equivalent coal-fuelled or gas-fuelled plant. Coal is significantly more expensive than nuclear fuel, and natural gas significantly more expensive than coal — thus, capital costs aside, natural gas-generated power is the most expensive. However, servicing the capital costs for a nuclear power plant dominate the costs of nuclear-generated electricity, contributing about 70% of costs (assuming a 10% ]).<ref>{{Cite paper|url=http://www.chathamhouse.org.uk/pdf/research/sdp/Dec05nuclear.pdf#page=40|title=The Importance of Politics to Nuclear New Build|author=Malcolm Grimston|date=December 2005|publisher=]|pages=34|accessdate=2006-11-17}}</ref> | |||
Reprocessing has the potential to recover up to 95% of the uranium and plutonium fuel in spent nuclear fuel, as well as reduce long-term radioactivity within the remaining waste. However, reprocessing has been politically controversial because of the potential for ] and varied perceptions of increasing the vulnerability to ].<ref name=berrytoll/><ref name=bas2011/> Reprocessing also leads to higher fuel cost compared to the once-through fuel cycle.<ref name=berrytoll>R. Stephen Berry and George S. Tolley, {{Webarchive|url=https://web.archive.org/web/20170525170152/http://franke.uchicago.edu/energy2013/group6.pdf |date=2017-05-25 }}, The University of Chicago, 2013.</ref><ref name="bas2011">{{cite web |author=Feiveson |first=Harold |display-authors=etal |year=2011 |title=Managing nuclear spent fuel: Policy lessons from a 10-country study |url=http://www.thebulletin.org/web-edition/features/managing-nuclear-spent-fuel-policy-lessons-10-country-study |url-status=dead |archive-url=https://web.archive.org/web/20120426011518/http://www.thebulletin.org/web-edition/features/managing-nuclear-spent-fuel-policy-lessons-10-country-study |archive-date=2012-04-26 |access-date=2016-07-18 |website=Bulletin of the Atomic Scientists}}</ref> While reprocessing reduces the volume of high-level waste, it does not reduce the ]s that are the primary causes of residual heat generation and radioactivity for the first few centuries outside the reactor. Thus, reprocessed waste still requires an almost identical treatment for the initial first few hundred years. | |||
The recent liberalisation of the ] in many countries has made the economics of nuclear power generation less attractive. Previously a monopolistic provider could guarantee output requirements decades into the future. Private generating companies have to accept shorter output contracts and the risks of future competition, so desire a shorter return on investment period which favours generation plants with lower capital costs.<ref>{{Cite paper|url=http://www.parliament.uk/documents/upload/poste13.pdf#page=31|title=What does it mean to keep the nuclear option open in the UK?|author=Till Stenzel|date=September 2003|publisher=]|pages=16|accessdate=2006-11-17}}</ref> | |||
Reprocessing of civilian fuel from power reactors is currently done in France, the United Kingdom, Russia, Japan, and India. In the United States, spent nuclear fuel is currently not reprocessed.<ref name="WNA3" /> The ] in France has operated commercially since 1976 and is responsible for half the world's reprocessing as of 2010.<ref>{{cite book|last=Kok|first=Kenneth D.|title=Nuclear Engineering Handbook|year=2010|publisher=CRC Press|page=332|isbn=978-1-4200-5391-3|url=https://books.google.com/books?id=EMy2OyUrqbUC&pg=PA332}}</ref> It produces MOX fuel from spent fuel derived from several countries. More than 32,000 tonnes of spent fuel had been reprocessed as of 2015, with the majority from France, 17% from Germany, and 9% from Japan.<ref>{{cite news |author=Jarry |first=Emmanuel |date=6 May 2015 |title=Crisis for Areva's plant as clients shun nuclear |url=http://www.mineweb.com/news/energy/crisis-for-arevas-plant-as-clients-shun-nuclear/ |url-status=dead |archive-url=https://web.archive.org/web/20150723193237/http://www.mineweb.com/news/energy/crisis-for-arevas-plant-as-clients-shun-nuclear/ |archive-date=23 July 2015 |access-date=6 May 2015 |newspaper=Moneyweb |agency=Reuters}}</ref> | |||
In many countries, licensing, inspection and certification of nuclear power plants has added delays and construction costs to their construction. In the U.S. many new regulations were put in place after the ] partial meltdown. Gas-fired and coal-fired plants do not face such regulations. Because a power plant does not yield profits during construction, longer construction times translate directly into higher interest charges on borrowed construction funds. However, the regulatory processes for siting, licensing, and constructing have been standardized since their introduction, to make construction of newer and safer designs more attractive to companies. | |||
=== Breeding === | |||
In ] and ], construction costs and delays are significantly diminished because of streamlined government licensing and certification procedures. In France, one model of reactor was type-certified, using a ] process similar to the process used to certify aircraft models for safety. That is, rather than licensing individual reactors, the regulatory agency certified a particular design and its construction process to produce safe reactors. U.S. law permits type-licensing of reactors, a process which is about to be used.<ref name="nustart">{{Cite web|url=http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/01-11-2006/0004246911&EDATE=|title=NuStart Energy Picks Enercon for New Nuclear Power Plant License Applications for a GE ESBWR and a Westinghouse AP 1000|accessdate=2006-11-10|publisher=PRNewswire|year=2006}}</ref> | |||
] assemblies being inspected before entering a ] in the United States]] | |||
{{Main|Breeder reactor|Nuclear power proposed as renewable energy}} | |||
Breeding is the process of converting non-fissile material into fissile material that can be used as nuclear fuel. The non-fissile material that can be used for this process is called ], and constitute the vast majority of current nuclear waste. This breeding process occurs naturally in ]s. As opposed to light water thermal-neutron reactors, which use uranium-235 (0.7% of all natural uranium), fast-neutron breeder reactors use uranium-238 (99.3% of all natural uranium) or thorium. A number of fuel cycles and breeder reactor combinations are considered to be sustainable or renewable sources of energy.<ref>{{cite journal|title=Future Scenarios for Fission Based Reactors|journal=Nuclear Physics A|volume=751|pages=429–441|bibcode=2005NuPhA.751..429D|last1=David|first1=S.|year=2005|doi=10.1016/j.nuclphysa.2005.02.014}}</ref><ref name="Brundtland">{{cite web|title=Chapter 7: Energy: Choices for Environment and Development|url=http://www.un-documents.net/ocf-07.htm|work=Our Common Future: Report of the World Commission on Environment and Development|first=Gro Harlem|last=Brundtland|location=Oslo|date=20 March 1987|access-date=27 March 2013|quote=Today's primary sources of energy are mainly non-renewable: natural gas, oil, coal, peat, and conventional nuclear power. There are also renewable sources, including wood, plants, dung, falling water, geothermal sources, solar, tidal, wind, and wave energy, as well as human and animal muscle-power. Nuclear reactors that produce their own fuel ('breeders') and eventually fusion reactors are also in this category|archive-date=21 January 2013|archive-url=https://web.archive.org/web/20130121175926/http://www.un-documents.net/ocf-07.htm|url-status=live}}</ref> In 2006 it was estimated that with seawater extraction, there was likely five billion years' worth of uranium resources for use in breeder reactors.<ref name="stanford-cohen">{{cite web |url=http://www-formal.stanford.edu/jmc/progress/cohen.html |title=Facts From Cohen and Others |access-date=2006-11-09 |publisher=Stanford |year=2006 |author=John McCarthy |author-link=John McCarthy (computer scientist) |website=Progress and its Sustainability |archive-url=https://web.archive.org/web/20070410165316/http://www-formal.stanford.edu/jmc/progress/cohen.html |archive-date=2007-04-10 }} Citing: {{cite journal |last1=Cohen |first1=Bernard L. |s2cid=119587950 |title=Breeder reactors: A renewable energy source |journal=American Journal of Physics |date=January 1983 |volume=51 |issue=1 |pages=75–76 |doi=10.1119/1.13440 |bibcode=1983AmJPh..51...75C }}</ref> | |||
Breeder technology has been used in several reactors, but as of 2006, the high cost of reprocessing fuel safely requires uranium prices of more than US$200/kg before becoming justified economically.<ref name="wna-anpr">{{cite web |url=http://www.world-nuclear.org/info/inf08.html |title=Advanced Nuclear Power Reactors |access-date=2006-11-09 |publisher=World Nuclear Association |year=2006 |website=Information and Issue Briefs |archive-date=2010-06-15 |archive-url=https://web.archive.org/web/20100615004046/http://www.world-nuclear.org/info/inf08.html |url-status=dead }}</ref> Breeder reactors are however being developed for their potential to burn all of the actinides (the most active and dangerous components) in the present inventory of nuclear waste, while also producing power and creating additional quantities of fuel for more reactors via the breeding process.<ref>{{cite web |url=http://www.worldenergy.org/documents/p001515.pdf |title=Synergy between Fast Reactors and Thermal Breeders for Safe, Clean, and Sustainable Nuclear Power |website=World Energy Council |archive-url=https://web.archive.org/web/20110110121245/http://worldenergy.org/documents/p001515.pdf |archive-date=2011-01-10 |access-date=2013-02-03 |url-status=dead }}</ref><ref>{{cite web |author=Kessler |first=Rebecca |title=Are Fast-Breeder Reactors A Nuclear Power Panacea? by Fred Pearce: Yale Environment 360 |url=http://e360.yale.edu/feature/are_fast-breeder_reactors_a_nuclear_power_panacea/2557/ |url-status=live |archive-url=https://web.archive.org/web/20130605235042/http://e360.yale.edu/feature/are_fast-breeder_reactors_a_nuclear_power_panacea/2557/ |archive-date=2013-06-05 |access-date=2013-06-14 |publisher=E360.yale.edu}}</ref> As of 2017, there are two breeders producing commercial power, ] and the ], both in Russia.<ref name=WNAfast>{{cite web |title=Fast Neutron Reactors {{!}} FBR – World Nuclear Association |url=http://www.world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx |website=www.world-nuclear.org |access-date=7 October 2018 |archive-date=23 December 2017 |archive-url=https://web.archive.org/web/20171223183305/http://world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx |url-status=live }}</ref> The ] breeder reactor in France was powered down in 2009 after 36 years of operation.<ref name=WNAfast /> Both China and India are building breeder reactors. The Indian 500 MWe ] is in the commissioning phase,<ref>{{cite news |title=Prototype fast breeder reactor to be commissioned in two months: IGCAR director |url=https://timesofindia.indiatimes.com/city/chennai/prototype-fast-breeder-reactor-to-be-commissioned-in-two-months-igcar-director/articleshow/61968967.cms |access-date=28 August 2018 |work=The Times of India |archive-date=15 September 2018 |archive-url=https://web.archive.org/web/20180915114720/https://timesofindia.indiatimes.com/city/chennai/prototype-fast-breeder-reactor-to-be-commissioned-in-two-months-igcar-director/articleshow/61968967.cms |url-status=live }}</ref> with plans to build more.<ref>{{cite news |url=http://www.hindustantimes.com/India-news/NewDelhi/India-s-breeder-reactor-to-be-commissioned-in-2013/Article1-814183.aspx |title=India's breeder reactor to be commissioned in 2013 |newspaper=Hindustan Times |access-date=2013-06-14 |archive-url=https://web.archive.org/web/20130426141852/http://www.hindustantimes.com/India-news/NewDelhi/India-s-breeder-reactor-to-be-commissioned-in-2013/Article1-814183.aspx |archive-date=2013-04-26 |url-status=dead }}</ref> | |||
To encourage development of nuclear power, under the ] the ] (DOE) has offered interested parties the opportunity to introduce France's model for licensing and to subsidize 25% to 50% of the construction cost overruns due to delays for the first six new plants. Several applications were made, two sites have been chosen to receive new plants, and other projects are pending.{{Fact|date=February 2007}} | |||
Another alternative to fast-neutron breeders are thermal-neutron breeder reactors that use uranium-233 bred from ] as fission fuel in the ].<ref name="wna-thorium" /> Thorium is about 3.5 times more common than uranium in the Earth's crust, and has different geographic characteristics.<ref name="wna-thorium">{{cite web |url=http://www.world-nuclear.org/info/inf62.html |title=Thorium |access-date=2006-11-09 |publisher=World Nuclear Association |year=2006 |website=Information and Issue Briefs |archive-date=2013-02-16 |archive-url=https://web.archive.org/web/20130216102005/http://www.world-nuclear.org/info/inf62.html |url-status=dead }}</ref> ] features the use of a thorium fuel cycle in the third stage, as it has abundant thorium reserves but little uranium.<ref name="wna-thorium" /> | |||
===Operating costs=== | |||
{{Unreferenced|date=November 2006}} | |||
{{globalize}} | |||
In general, coal and nuclear plants have the same types of operating costs (operations and maintenance plus fuel costs). However, nuclear and coal differ in the relative size of those costs. Nuclear has lower fuel costs but higher operating and maintenance costs.<ref name="NRC Information Digest 2006-2007">{{Cite web|url=http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1350/|title=NUREG-1350 Vol. 18: NRC Information Digest 2006-2007|accessdate=2007-1-22|publisher=Nuclear Regulatory Commission|year=2006|format=PDF}}</ref> In recent times in the United States savings due to lower fuel cost have not been low enough for nuclear to repay its higher investment cost. Thus no new nuclear reactors have been ordered in the United States since the 1970s. Coal's operating cost advantages have only rarely been sufficient to encourage the construction of new coal based power generation. Around 90 to 95 percent of new power plant construction in the United States has been natural gas-fired. | |||
== Decommissioning == | |||
To be competitive in the current market, both the nuclear and coal industries must reduce new plant investment costs and construction time. The burden is clearly greater for nuclear producers than for coal producers, because investment costs are higher for nuclear plants. Operation and maintenance costs are particularly important because they represent a large portion of costs for nuclear power. | |||
{{Main|Nuclear decommissioning}} | |||
Nuclear decommissioning is the process of dismantling a ] to the point that it no longer requires measures for radiation protection,<ref>{{Cite journal|date=2020-09-01|title=Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning|journal=Energy Policy|language=en|volume=144|page=111677|doi=10.1016/j.enpol.2020.111677|issn=0301-4215|doi-access=free|last1=Invernizzi|first1=Diletta Colette|last2=Locatelli|first2=Giorgio|last3=Velenturf|first3=Anne|last4=Love|first4=Peter ED.|last5=Purnell|first5=Phil|last6=Brookes|first6=Naomi J.|bibcode=2020EnPol.14411677I |hdl=11311/1204791|hdl-access=free}}</ref> returning the facility and its parts to a safe enough level to be entrusted for other uses.<ref name="iaea_decommissioning">{{cite web |title=Decommissioning of nuclear installations |url=https://www.iaea.org/topics/decommissioning |website=www.iaea.org |access-date=19 April 2021 |language=en |date=17 October 2016 |archive-date=21 April 2021 |archive-url=https://web.archive.org/web/20210421073553/https://www.iaea.org/topics/decommissioning |url-status=live }}</ref> Due to the presence of radioactive materials, nuclear decommissioning presents technical and economic challenges.<ref>{{Cite journal|last1=Invernizzi|first1=Diletta Colette|last2=Locatelli|first2=Giorgio|last3=Brookes|first3=Naomi J.|date=2017-08-01|title=How benchmarking can support the selection, planning and delivery of nuclear decommissioning projects|journal=Progress in Nuclear Energy|volume=99|pages=155–164|doi=10.1016/j.pnucene.2017.05.002|bibcode=2017PNuE...99..155I |url=http://eprints.whiterose.ac.uk/117185/1/Copy%20to%20deposit.pdf|access-date=2021-04-19|archive-date=2021-06-14|archive-url=https://web.archive.org/web/20210614050809/https://eprints.whiterose.ac.uk/117185/1/Copy%20to%20deposit.pdf|url-status=live}}</ref> The costs of decommissioning are generally spread over the lifetime of a facility and saved in a decommissioning fund.<ref>{{cite web |url=https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/decommissioning.html |title=Backgrounder on Decommissioning Nuclear Power Plants |publisher=United States Nuclear Regulatory Commission |access-date=27 August 2021 |quote=Before a nuclear power plant begins operations, the licensee must establish or obtain a financial mechanism – such as a trust fund or a guarantee from its parent company – to ensure there will be sufficient money to pay for the ultimate decommissioning of the facility |archive-date=3 May 2021 |archive-url=https://web.archive.org/web/20210503213818/http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/decommissioning.html |url-status=live }}</ref> | |||
== Production == | |||
One of the primary reasons for the uncompetitiveness of the U.S. nuclear industry has been the lack of any measure that provides an economic incentive to reduce carbon emissions (]). Many economists and environmentalists have called for a mechanism to take into account the negative externalities of coal and gas consumption. In such an environment, it is argued that nuclear will become cost-competitive in the United States. | |||
{{Further|Nuclear power by country|List of nuclear reactors}} | |||
] | |||
] | |||
{{Latest pie chart of world power by source}} | |||
Civilian nuclear power supplied 2,602 ]s (TWh) of electricity in 2023, equivalent to about 9% of ],<ref name=PerformanceReport /> and was the second largest ] source after ].<ref name="IEA2019">{{Cite web|url=https://www.iea.org/newsroom/news/2019/may/steep-decline-in-nuclear-power-would-threaten-energy-security-and-climate-goals.html|title=Steep decline in nuclear power would threaten energy security and climate goals|publisher=International Energy Agency|date=2019-05-28|access-date=2019-07-08|archive-date=2019-10-12|archive-url=https://web.archive.org/web/20191012154515/https://www.iea.org/newsroom/news/2019/may/steep-decline-in-nuclear-power-would-threaten-energy-security-and-climate-goals.html|url-status=live}}</ref> Nuclear power's contribution to global energy production was about 4% in 2023. This is a little more than wind power, which provided 3.5% of global energy in 2023.<ref>{{Cite web|url=https://ourworldindata.org/grapher/energy-consumption-by-source-and-country|title=Energy consumption by source, World|publisher=Our World in Data|access-date=2024-11-10}}</ref> Nuclear power's share of global electricity production has fallen from 16.5% in 1997, in large part because the economics of nuclear power have become more difficult.<ref name=ft-20180903>{{cite news |url=https://www.ft.com/content/fa6ca7ac-ab9a-11e8-89a1-e5de165fa619 |archive-url=https://ghostarchive.org/archive/20221210/https://www.ft.com/content/fa6ca7ac-ab9a-11e8-89a1-e5de165fa619 |archive-date=2022-12-10 |url-access=subscription |url-status=live |title=The challenge for nuclear is to recover its competitive edge |last=Butler |first=Nick |newspaper=Financial Times |date=3 September 2018 |access-date=9 September 2018}}</ref> | |||
{{As of|2024|11|post=,}} there are ], with a combined electrical capacity of 374 ] (GW).<ref name=":3" /> There are also 66 nuclear power reactors under construction and 87 reactors planned, with a combined capacity of 72{{nbsp}}GW and 84{{nbsp}}GW, respectively.<ref name="WNA">{{cite web|title=World Nuclear Power Reactors & Uranium Requirements|publisher=World Nuclear Association|url=https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx|access-date=2024-11-10}}</ref> The United States has the largest fleet of nuclear reactors, generating over 800{{nbsp}}TWh per year with an average ] of 92%.<ref name=":2">{{Cite web|title=What's the Lifespan for a Nuclear Reactor? Much Longer Than You Might Think|url=https://www.energy.gov/ne/articles/whats-lifespan-nuclear-reactor-much-longer-you-might-think|access-date=2020-06-09|website=Energy.gov|language=en|archive-date=2020-06-09|archive-url=https://web.archive.org/web/20200609230342/https://www.energy.gov/ne/articles/whats-lifespan-nuclear-reactor-much-longer-you-might-think|url-status=live}}</ref> Most reactors under construction are ]s in Asia.<ref>{{cite web |url=https://pris.iaea.org/PRIS/WorldStatistics/UnderConstructionReactorsByCountry.aspx |title=Under Construction Reactors |publisher=International Atomic Energy Agency |access-date=2019-12-15 |archive-date=2018-11-22 |archive-url=https://web.archive.org/web/20181122202635/https://pris.iaea.org/PRIS/WorldStatistics/UnderConstructionReactorsByCountry.aspx |url-status=live }}</ref> | |||
===Insurance=== | |||
Insurance for nuclear or radiological incidents in the ] is organized by the ] (in July 2005, ] extended this Act to newer facilities). In the ], the ] of 1965 governs liability for nuclear damage for which a UK nuclear licensee is responsible. The ] puts in place an international framework for nuclear liability. | |||
Regional differences in the use of nuclear power are large. The United States produces the most nuclear energy in the world, with nuclear power providing 19% of the electricity it consumes, while France produces the highest percentage of its electrical energy from nuclear reactors{{mdash}}65% in 2023.<ref name=":0">{{Cite web|url=https://pris.iaea.org/PRIS/WorldStatistics/NuclearShareofElectricityGeneration.aspx|title=Nuclear Share of Electricity Generation in 2023|website=Power Reactor Information System|publisher=International Atomic Energy Agency|access-date=2024-11-11}}</ref> In the ], nuclear power provides 22% of the electricity as of 2022.<ref name=WNA-EU>{{Cite web |title=Nuclear Power in the European Union |url=https://world-nuclear.org/information-library/country-profiles/others/european-union |date=2024-08-13 |access-date=2024-11-11 |publisher=World Nuclear Association}}</ref> | |||
===Subsidies=== | |||
Nuclear power is the single largest low-carbon electricity source in the United States,<ref name=issues>{{Cite web|url=https://issues.org/apt-3/|archive-url=https://web.archive.org/web/20130927013232/http://www.issues.org/23.3/apt.html |title=Promoting Low-Carbon Electricity Production|first1=Jay|last1=Apt|first2=David W.|last2=Keith|first3=M. Granger|last3=Morgan|date=January 1, 1970|archive-date=September 27, 2013}}</ref> and accounts for about half of the European Union's low-carbon electricity.<ref name=WNA-EU /> ] differs among European Union countries, and some, such as Austria, ], Ireland and ], have no active nuclear power stations. | |||
Critics of nuclear power claim that it is the beneficiary of inappropriately large economic subsidies — mainly taking the forms of taxpayer-funded research and development and limitations on disaster liability — and that these subsidies, being subtle and indirect, are often overlooked when comparing the economics of nuclear against other forms of power generation. However, competing energy sources also receive subsidies. Fossil fuels receive large direct and indirect subsidies, such as tax benefits and not having to pay for the ]es they emit. Renewables receive large direct production subsidies and tax breaks in many nations.<ref name="wna-esaec">{{Cite web|url=http://www.world-nuclear.org/info/inf68.html|title=Energy Subsidies and External Costs|accessdate=2006-11-10|publisher=World Nuclear Assosciation|year=2005|work=Information and Issue Briefs}}</ref> , but all renewables put together have received much fewer research funds than nuclear fission alone | |||
In addition, there were approximately 140 naval vessels using ] in operation, powered by about 180 reactors.<ref>{{cite web |url=http://www.engineersgarage.com/articles/nuclear-power-plants?page=2 |title=What is Nuclear Power Plant – How Nuclear Power Plants work | What is Nuclear Power Reactor – Types of Nuclear Power Reactors |publisher=EngineersGarage |access-date=2013-06-14 |archive-url=https://web.archive.org/web/20131004215527/http://www.engineersgarage.com/articles/nuclear-power-plants?page=2 |archive-date=2013-10-04 }}</ref><ref>{{cite web |author=Ragheb |first=Magdi |title=Naval Nuclear Propulsion |url=http://www.ewp.rpi.edu/hartford/~ernesto/F2010/EP2/Materials4Students/Misiaszek/NuclearMarinePropulsion.pdf |archive-url=https://web.archive.org/web/20150226055625/http://www.ewp.rpi.edu/hartford/~ernesto/F2010/EP2/Materials4Students/Misiaszek/NuclearMarinePropulsion.pdf |archive-date=2015-02-26 |access-date=2015-06-04 |quote=As of 2001, about 235 naval reactors had been built.}}</ref> These include military and some civilian ships, such as ]s.<ref>{{Cite news | url=http://www.bellona.org/english_import_area/international/russia/civilian_nuclear_vessels/icebreakers/30131 |title=Nuclear Icebreaker Lenin |publisher=Bellona |date=2003-06-20 |access-date=2007-11-01 |archive-url= https://web.archive.org/web/20071015031630/http://www.bellona.org/english_import_area/international/russia/civilian_nuclear_vessels/icebreakers/30131 |archive-date=October 15, 2007 }}</ref> | |||
Energy research and development (R&D) for nuclear power alone has and continues to receive much larger state subsidies than R&D for all renewable energy sources put together or for fossil fuels. However, today most of this takes places in Japan and France: in most other nations renewable R&D as a whole get more money. In the US, public research money for nuclear fission declined from 2,179 to 35 million dollars between 1980 and 2000.<ref name="wna-esaec"/> However, in order to restart the industry, the next six US reactors will receive subsidies equal to those of renewables and, in the event of cost overruns due to delays, at least partial compensation for the overruns (see ]). | |||
International research is continuing into additional uses of process heat such as ] (in support of a ]), for ] sea water, and for use in ] systems.<ref>{{cite book |title=Non-electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications |date=2007 |publisher=International Atomic Energy Agency |isbn=978-92-0-108808-6 |url=https://www.iaea.org/publications/7979/non-electric-applications-of-nuclear-power-seawater-desalination-hydrogen-production-and-other-industrial-applications |access-date=21 August 2018 |archive-date=27 March 2019 |archive-url=https://web.archive.org/web/20190327040900/https://www.iaea.org/publications/7979/non-electric-applications-of-nuclear-power-seawater-desalination-hydrogen-production-and-other-industrial-applications |url-status=live }}</ref> | |||
According to the ], the Price-Anderson Nuclear Industries Indemnity Act is a subsidy for US nuclear power.<ref name="eia_s.1766"/> | |||
== |
== Economics == | ||
{{Main|Economics of nuclear power plants|List of companies in the nuclear sector|cost of electricity by source}} | |||
Nuclear Power plants tend to be most competitive in areas where other fuel resources are not readily available — France, most notably, has almost no native supplies of fossil fuels.<ref name="pbs-french">{{Cite web|url=http://www.pbs.org/wgbh/pages/frontline/shows/reaction/readings/french.html|title=Why the French Like Nuclear Power|accessdate=2006-11-10|publisher=Public Broadcasting Service|author=Jon Palfreman|work=Frontline}}</ref> The province of ] is already using all of its best sites for hydroelectric power, and has minimal supplies of fossil fuels, so a number of nuclear plants have been built there. India is also building new nuclear plants to supplement its vast coal reserves and coal-generated electricity. Conversely, in the ], according to the government's ], no further nuclear power stations are to be built, due to the high cost per unit of nuclear power compared to fossil fuels. However, the British government's chief scientific advisor ] reports that building one more generation of nuclear power plants may be necessary. China tops the list of planned new plants, due to its rapidly expanding economy and fervent construction in many types of energy projects.<ref name="berkeley">{{Cite web|url=http://tauon.nuc.berkeley.edu/asia/2000/XuMi.pdf|title=Chinese Fast Reactor Technology Development|accessdate=2006-11-10|publisher=China Institute of Atomic Energy|year=1999|author=Xu Mi}}</ref> | |||
The economics of new nuclear power plants is a controversial subject and multi-billion-dollar investments depend on the choice of energy sources. Nuclear power plants typically have high capital costs for building the plant. For this reason, comparison with other power generation methods is strongly dependent on assumptions about construction timescales and capital financing for nuclear plants. Fuel costs account for about 30 percent of the operating costs, while prices are subject to the market.<ref name="cnnmoney"> {{Webarchive|url=https://web.archive.org/web/20211129103837/https://money.cnn.com/2007/04/19/markets/uranium/index.htm|date=2021-11-29}}, CNN, 19 April 2007.</ref> | |||
The high cost of construction is one of the biggest challenges for nuclear power plants. A new 1,100{{nbsp}}MW plant is estimated to cost between US$6 billion to US$9 billion.<ref>{{Cite web|title=Synapse Energy {{!}}|url=https://www.synapse-energy.com/|access-date=2020-12-29|website=www.synapse-energy.com|archive-date=2021-01-15|archive-url=https://web.archive.org/web/20210115164854/http://synapse-energy.com/|url-status=live}}</ref> Nuclear power cost trends show large disparity by nation, design, build rate and the establishment of familiarity in expertise. The only two nations for which data is available that saw cost decreases in the 2000s were India and South Korea.<ref name=Lovering2016>{{cite journal |doi=10.1016/j.enpol.2016.01.011 |title=Historical construction costs of global nuclear power reactors |journal=Energy Policy |volume=91 |pages=371–382 |year=2016 |last1=Lovering |first1=Jessica R. |last2=Yip |first2=Arthur |last3=Nordhaus |first3=Ted |doi-access=free |bibcode=2016EnPol..91..371L }}</ref> | |||
Most new gas-fired plants are intended for peak supply. The larger nuclear and coal plants cannot quickly adjust their instantaneous power production, and are generally intended for baseline supply. The market price for baseline power has not increased as rapidly as that for peak demand. Some new experimental reactors, notably ], are specifically designed for peaking power. | |||
Analysis of the economics of nuclear power must also take into account who bears the risks of future uncertainties. As of 2010, all operating nuclear power plants have been developed by state-owned or ] ] monopolies.<ref name="ft-20100912">{{cite news |author=Crooks |first=Ed |date=2010-09-12 |title=Nuclear: New dawn now seems limited to the east |url=http://www.ft.com/cms/s/0/ad15fcfe-bc71-11df-a42b-00144feab49a.html |url-access=subscription |archive-url=https://ghostarchive.org/archive/20221210/http://www.ft.com/cms/s/0/ad15fcfe-bc71-11df-a42b-00144feab49a.html |archive-date=2022-12-10 |access-date=2010-09-12 |newspaper=Financial Times |location=London, England}}</ref> Many countries have since liberalized the ] where these risks, and the risk of cheaper competitors emerging before capital costs are recovered, are borne by plant suppliers and operators rather than consumers, which leads to a significantly different evaluation of the economics of new nuclear power plants.<ref name=MIT-2003>{{Cite book |url=http://web.mit.edu/nuclearpower/ |title=The Future of Nuclear Power |publisher=] |year=2003 |isbn=978-0-615-12420-9 |access-date=2006-11-10 |archive-date=2017-05-18 |archive-url=https://web.archive.org/web/20170518215841/http://web.mit.edu/nuclearpower/ |url-status=live }}</ref> | |||
Any effort to construct a new nuclear facility around the world, whether an older design or a newer experimental design, must deal with ] and ] objections. Given the high profile of both the ] and ] accidents, few municipalities welcome a new nuclear reactor, processing plant, transportation route, or experimental nuclear burial ground within their borders, and many have issued local ordinances prohibiting the development of nuclear power. However, a few U.S. areas with nuclear units are campaigning for more (see ]). | |||
The ] (LCOE) from a new nuclear power plant is estimated to be 69{{nbsp}}USD/MWh, according to an analysis by the ] and the ] ]. This represents the median cost estimate for an nth-of-a-kind nuclear power plant to be completed in 2025, at a ] of 7%. Nuclear power was found to be the least-cost option among ].<ref name="IEA_LCOE_2020"/> ] can generate cheaper electricity: the median cost of onshore wind power was estimated to be 50{{nbsp}}USD/MWh, and utility-scale solar power 56{{nbsp}}USD/MWh.<ref name="IEA_LCOE_2020"/> At the assumed CO<sub>2</sub> emission cost of 30{{nbsp}}USD/ton, power from coal (88{{nbsp}}USD/MWh) and gas (71{{nbsp}}USD/MWh) is more expensive than low-carbon technologies. Electricity from long-term operation of nuclear power plants by lifetime extension was found to be the least-cost option, at 32{{nbsp}}USD/MWh.<ref name="IEA_LCOE_2020">{{cite web |title=Projected Costs of Generating Electricity 2020 |date=9 December 2020 |url=https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 |publisher=International Energy Agency & OECD Nuclear Energy Agency |access-date=12 December 2020 |archive-date=2 April 2022 |archive-url=https://web.archive.org/web/20220402003026/https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 |url-status=live }}</ref> | |||
Current nuclear reactors return around 40-60 times the invested energy when using life cycle analysis. This is better than coal, natural gas, and current renewables except hydropower.<ref name="wna-eaops">{{Cite web|url=http://www.world-nuclear.org/info/inf11.html|title=Energy Analysis of Power Systems|accessdate=2006-11-10|publisher=World Nuclear Association|year=2006|work=Information and Issue Briefs}}</ref> | |||
Measures to ], such as a ] or ], may favor the economics of nuclear power.<ref>{{cite book |title=Update of the MIT 2003 Future of Nuclear Power |date=2009 |publisher=Massachusetts Institute of Technology |url=http://web.mit.edu/nuclearpower/pdf/nuclearpower-update2009.pdf |access-date=21 August 2018 |archive-date=3 February 2023 |archive-url=https://web.archive.org/web/20230203232427/http://web.mit.edu/nuclearpower/pdf/nuclearpower-update2009.pdf |url-status=live }}</ref><ref>{{cite news |title=Splitting the cost |url=https://www.economist.com/britain/2009/11/12/splitting-the-cost |access-date=21 August 2018 |newspaper=The Economist |date=12 November 2009 |language=en |archive-date=21 August 2018 |archive-url=https://web.archive.org/web/20180821191849/https://www.economist.com/britain/2009/11/12/splitting-the-cost |url-status=live }}</ref> Extreme weather events, including events made more severe by climate change, are decreasing all energy source reliability including nuclear energy by a small degree, depending on location siting.<ref>{{cite news |title=Nuclear power's reliability is dropping as extreme weather increases |url=https://arstechnica.com/science/2021/07/climate-events-are-the-leading-cause-of-nuclear-power-outages/ |access-date=24 November 2021 |work=Ars Technica |date=24 July 2021 |language=en-us |archive-date=24 November 2021 |archive-url=https://web.archive.org/web/20211124190924/https://arstechnica.com/science/2021/07/climate-events-are-the-leading-cause-of-nuclear-power-outages/ |url-status=live }}</ref><ref>{{cite journal |last1=Ahmad |first1=Ali |title=Increase in frequency of nuclear power outages due to changing climate |journal=Nature Energy |date=July 2021 |volume=6 |issue=7 |pages=755–762 |doi=10.1038/s41560-021-00849-y |bibcode=2021NatEn...6..755A |s2cid=237818619 |language=en |issn=2058-7546}}</ref> | |||
Nuclear power, ], and ] are currently the only realistic large scale energy sources that would be able to replace oil and natural gas after a peak in global oil and gas production has been reached{{Fact|date=February 2007}} (see ]). However, The Rocky Mountain Institute claims that in the U.S. increases in transportation efficiency and stronger, lighter cars would replace most oil usage with what it calls ]s.<ref name="oilendgame">{{cite book | title=Winning the Oil Endgame| url=http://www.oilendgame.com| last=Lovins| first=Amory| coauthors=Kyle Datta, Jonathan Koomey, Nathan Glasglow| date=2004| publisher=Rocky Mountain Institute| id=ISBN 1881071103}}</ref> Biofuels can then substitute for a significant portion of the remaining oil use. Efficiency, insulation, solar thermal, and solar photovoltaic technologies can substitute for most natural gas usage after a peak in production. Most transportation experts rightly label bio-fuel claims as pie-in-the-sky as the amount of acreage needed to grow enough fuel for our automobiles even at today's demand would take most of the usable farmland in the country. | |||
New ], such as those developed by ], are aimed at reducing the investment costs for new construction by making the reactors smaller and modular, so that they can be built in a factory. | |||
Nuclear proponents often assert that renewable sources of power have not solved problems like intermittent output, high costs, and diffuse output which requires the use of large surface areas and much construction material and which increases distribution losses. For example, studies in Britain have shown that increasing wind power production contribution to 20% of all energy production, without costly pumped hydro or electrolysis/fuel cell storage, would only reduce coal or nuclear power plant capacity by 6.7% (from 59 to 55 GWe) since they must remain as backup in the absence of power storage. Nuclear proponents often claim that increasing the contribution of intermittent energy sources above that is not possible with current technology.<ref name="wna-ree">{{Cite web|url=http://www.world-nuclear.org/info/inf10.html|title=Renewable Energy and Electricity|accessdate=2006-11-10|publisher=World Nuclear Association|year=2006|work=Information and Issue Briefs}}</ref> Some renewable energy sources, such as solar, overlap well with peak electricial production and reduce the need of spare generating capacity. Future applications that use electricity when it is available (e.g. for pressurizing water systems, desalination, or hydrogen generation) would help to reduce the spare generation capacity required by both nuclear and renewable energy sources.<ref name="energy.ca.gov">{{Cite web|url=http://www.energy.ca.gov/2005_energypolicy/index.html|title=2005 Integrated Energy Policy Report|accessdate=2006-11-10|publisher=California Energy Commission|year=2005|work=Docket #04-IEP-1, et al}}</ref> | |||
Certain designs had considerable early positive economics, such as the ], which realized a much higher ] and reliability when compared to generation II light water reactors up to the 1990s.<ref>{{Cite web |title=The Canadian Nuclear FAQ – Section A: CANDU Technology |url=http://www.nuclearfaq.ca/cnf_sectionA.htm |archive-url=https://web.archive.org/web/20131101054647/http://nuclearfaq.ca/cnf_sectionA.htm |archive-date=2013-11-01 |access-date=2019-08-05}}</ref> | |||
==Concerns about nuclear power== | |||
{{Main|Nuclear power controversy}} | |||
Nuclear power plants, though capable of some grid-], are typically run as much as possible to keep the cost of the generated electrical energy as low as possible, supplying mostly ] electricity.<ref>{{cite web |url=https://www.oecd-nea.org/nea-news/2011/29-2/nea-news-29-2-load-following-e.pdf |title=Load-following with nuclear power plants |author=A. Lokhov |access-date=2016-03-12 |archive-date=2016-02-22 |archive-url=https://web.archive.org/web/20160222051312/http://www.oecd-nea.org/nea-news/2011/29-2/nea-news-29-2-load-following-e.pdf |url-status=live }}</ref> Due to the on-line refueling reactor design, ]s (of which the CANDU design is a part) continue to hold many world record positions for longest continual electricity generation, often over 800 days.<ref>{{Cite web | url=https://www.world-nuclear-news.org/Articles/Indian-reactor-breaks-operating-record | title=Indian reactor breaks operating record | work=World Nuclear News | date=25 October 2018 | access-date=4 August 2019 | archive-date=4 August 2019 | archive-url=https://web.archive.org/web/20190804075915/https://www.world-nuclear-news.org/Articles/Indian-reactor-breaks-operating-record | url-status=live }}</ref> The specific record as of 2019 is held by a PHWR at ], generating electricity continuously for 962 days.<ref>{{cite web |title=Indian-Designed Nuclear Reactor Breaks Record for Continuous Operation |url=https://www.powermag.com/indian-designed-nuclear-reactor-breaks-record-for-continuous-operation/ |website=POWER Magazine |access-date=28 March 2019 |date=1 February 2019 |archive-date=28 March 2019 |archive-url=https://web.archive.org/web/20190328211427/https://www.powermag.com/indian-designed-nuclear-reactor-breaks-record-for-continuous-operation/ |url-status=live }}</ref> | |||
{{globalize}} | |||
Costs not considered in LCOE calculations include funds for research and development, and disasters (the Fukushima disaster is estimated to cost taxpayers ≈$187 billion).<ref name=guardian-20170130/> In some cases, Governments were found to force "consumers to pay upfront for potential cost overruns"<ref name="mil1"/> or subsidize uneconomic nuclear energy<ref>{{cite news |last1=Gardner |first1=Timothy |title=Illinois approves $700 million in subsidies to Exelon, prevents nuclear plant closures |url=https://www.reuters.com/world/us/illinois-senate-close-providing-lifeline-3-nuclear-power-plants-2021-09-13/ |access-date=28 November 2021 |work=Reuters |date=13 September 2021 |language=en |archive-date=3 November 2021 |archive-url=https://web.archive.org/web/20211103015537/https://www.reuters.com/world/us/illinois-senate-close-providing-lifeline-3-nuclear-power-plants-2021-09-13/ |url-status=live }}</ref> or be required to do so.<ref name="francere"/> Nuclear operators are liable to pay for the waste management in the European Union.<ref name="euwastecosts"/> In the U.S., the Congress reportedly decided 40 years ago that the nation, and not private companies, would be responsible for storing radioactive waste with taxpayers paying for the costs.<ref>{{cite news |last1=Wade |first1=Will |title=Americans are paying more than ever to store deadly nuclear waste |url=https://www.latimes.com/business/la-fi-radioactive-nuclear-waste-storage-20190614-story.html |access-date=28 November 2021 |work=Los Angeles Times |date=14 June 2019 |archive-date=28 November 2021 |archive-url=https://web.archive.org/web/20211128121638/https://www.latimes.com/business/la-fi-radioactive-nuclear-waste-storage-20190614-story.html |url-status=live }}</ref> The World Nuclear Waste Report 2019 found that "even in countries in which the polluter-pays-principle is a legal requirement, it is applied incompletely" and notes the case of the German ], where the retrieval of large amounts of waste has to be paid for by taxpayers.<ref>{{cite web |title=The World Nuclear Waste Report 2019 |url=https://www.boell.de/sites/default/files/2019-11/World_Nuclear_Waste_Report_2019_summary.pdf |access-date=28 November 2021 |archive-date=29 November 2021 |archive-url=https://web.archive.org/web/20211129140256/https://www.boell.de/sites/default/files/2019-11/World_Nuclear_Waste_Report_2019_summary.pdf |url-status=live }}</ref> Similarly, other forms of energy, including fossil fuels and renewables, have a portion of their costs covered by governments.<ref> {{Webarchive|url=https://web.archive.org/web/20211204180955/https://world-nuclear.org/information-library/economic-aspects/energy-subsidies.aspx |date=2021-12-04 }}, World Nuclear Association, 2018.</ref> | |||
Nuclear power plants have a unique concern in that they have to contain and protect radioactive material. Extensive government regulation normally spells out the minimum requirements for this. | |||
== Use in space == | |||
Some other energy sources, such as hydropower plants and ]s, are more vulnerable to accidents and attacks (due to having no guard-patrolled protected zone, missile shield or ]), and may be more likely to be near major population centers. Nuclear power plants are normally located a minimum distance from large population centers, although there are locations where the populated area has grown out to the plant and (in Russia) some plants are co-used for district heating. | |||
] (MMRTG), used in several space missions such as the ] ]] | |||
{{Main|Nuclear power in space}} | |||
The most common use of nuclear power in space is the use of ]s, which use ] to generate power. These power generators are relatively small scale (few kW), and they are mostly used to power ]s and experiments for long periods where solar power is not available in sufficient quantity, such as in the '']'' space probe.<ref name=WNA_space/> A few space vehicles have been launched using ]s: 34 reactors belong to the Soviet ] series and one was the American ].<ref name="WNA_space">{{cite web |title=Nuclear Reactors for Space – World Nuclear Association |url=https://world-nuclear.org/information-library/non-power-nuclear-applications/transport/nuclear-reactors-for-space.aspx |url-status=live |archive-url=https://web.archive.org/web/20210417023904/https://world-nuclear.org/information-library/non-power-nuclear-applications/transport/nuclear-reactors-for-space.aspx |archive-date=17 April 2021 |access-date=17 April 2021 |website=world-nuclear.org}}</ref> | |||
Both ] and fusion appear promising for ] applications, generating higher mission velocities with less ].<ref name=WNA_space/><ref>{{cite news |last1=Patel |first1=Prachi |title=Nuclear-Powered Rockets Get a Second Look for Travel to Mars |url=https://spectrum.ieee.org/nuclear-powered-rockets-get-a-second-look-for-travel-to-mars |access-date=17 April 2021 |work=IEEE Spectrum |language=en |archive-date=10 April 2021 |archive-url=https://web.archive.org/web/20210410191445/https://spectrum.ieee.org/aerospace/space-flight/nuclear-powered-rockets-get-a-second-look-for-travel-to-mars |url-status=live }}</ref> | |||
Nuclear power is not easily scalable - it is best utilized in sizeable plants connected to a grid with sufficient spinning reserve. | |||
== |
== Safety == | ||
{{See also|Nuclear safety and security|Nuclear reactor safety system}} | |||
] | |||
Nuclear power plants have three unique characteristics that affect their safety, as compared to other power plants. Firstly, intensely ]s are present in a nuclear reactor. Their release to the environment could be hazardous. Secondly, the ]s, which make up most of the intensely radioactive substances in the reactor, continue to generate a significant amount of ] even after the fission ] has stopped. If the heat cannot be removed from the reactor, the fuel rods may overheat and release radioactive materials. Thirdly, a ] (a rapid increase of the reactor power) is possible in certain reactor designs if the chain reaction cannot be controlled. These three characteristics have to be taken into account when designing nuclear reactors.<ref name="IAEAsafety">{{Cite web |last=Deitrich |first=L. W. |title=Basic principles of nuclear safety |url=https://ansn.iaea.org/ansn.org/Common/Documents/apmd/asia251p4.pdf |url-status=live |archive-url=https://web.archive.org/web/20181119011032/https://ansn.iaea.org/ansn.org/Common/Documents/apmd/asia251p4.pdf |archive-date=2018-11-19 |access-date=2018-11-18 |publisher=International Atomic Energy Agency}}</ref> | |||
All modern reactors are designed so that an uncontrolled increase of the reactor power is prevented by natural feedback mechanisms, a concept known as negative ] of reactivity. If the temperature or the amount of steam in the reactor increases, the fission rate inherently decreases. The chain reaction can also be manually stopped by inserting ]s into the reactor core. ]s (ECCS) can remove the decay heat from the reactor if normal cooling systems fail.<ref>{{Cite web|url=https://www.nrc.gov/reading-rm/basic-ref/glossary/emergency-core-cooling-systems-eccs.html|title=Emergency core cooling systems (ECCS)|date=2018-07-06|publisher=United States Nuclear Regulatory Commission|access-date=2018-12-10|archive-date=2021-04-29|archive-url=https://web.archive.org/web/20210429133036/https://www.nrc.gov/reading-rm/basic-ref/glossary/emergency-core-cooling-systems-eccs.html|url-status=live}}</ref> If the ECCS fails, multiple physical barriers limit the release of radioactive materials to the environment even in the case of an accident. The last physical barrier is the large ].<ref name="IAEAsafety" /> | |||
Opponents argue that a major disadvantage of the use of nuclear reactors is the threat of another ] or terrorist attack and the possible resulting exposure to radiation and social disruption. | |||
With a death rate of 0.03 per ], nuclear power is the second safest energy source per unit of energy generated, after solar power, in terms of mortality when the historical track-record is considered.<ref>{{Cite web|title=What are the safest and cleanest sources of energy?|url=https://ourworldindata.org/safest-sources-of-energy|website=Our World in Data|access-date=2023-11-15|archive-date=2020-11-29|archive-url=https://web.archive.org/web/20201129205209/https://ourworldindata.org/safest-sources-of-energy|url-status=live}}</ref> Energy produced by coal, petroleum, natural gas and ] has caused more deaths per unit of energy generated due to ] and ]. This is found when comparing the immediate deaths from other energy sources to both the immediate and the latent, or predicted, indirect cancer deaths from nuclear energy accidents.<ref name="without the hot air">{{cite web |url= http://www.inference.phy.cam.ac.uk/withouthotair/c24/page_168.shtml |title= Dr. MacKay ''Sustainable Energy without the hot air'' |website= Data from studies by the ] including non EU data |page= 168 |access-date= 2012-09-15 |archive-date= 2012-09-02 |archive-url= https://web.archive.org/web/20120902001529/http://www.inference.phy.cam.ac.uk/withouthotair/c24/page_168.shtml |url-status= live }}</ref><ref name="theage2006">{{cite news |author=Nicholson |first=Brendan |date=2006-06-05 |title=Nuclear power 'cheaper, safer' than coal and gas |url=http://www.theage.com.au/news/national/nuclear-power-cheaper-safer-than-coal-and-gas/2006/06/04/1149359609052.html |url-status=live |archive-url=https://web.archive.org/web/20080208123433/http://www.theage.com.au/news/national/nuclear-power-cheaper-safer-than-coal-and-gas/2006/06/04/1149359609052.html |archive-date=2008-02-08 |access-date=2008-01-18 |newspaper=] |location=Melbourne}}</ref> When the direct and indirect fatalities (including fatalities resulting from the mining and air pollution) from nuclear power and fossil fuels are compared,<ref name="MarkandyaWilkinson2007">{{cite journal | doi = 10.1016/S0140-6736(07)61253-7 | last1 = Markandya | first1 = A. | last2 = Wilkinson | first2 = P. | title = Electricity generation and health | journal = Lancet | volume = 370 | issue = 9591 | pages = 979–990 | year = 2007 | pmid = 17876910| s2cid = 25504602 |quote=Nuclear power has lower electricity related health risks than Coal, Oil, & gas. ...the health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This study includes the latent or indirect fatalities, for example those caused by the inhalation of fossil fuel created particulate matter, smog induced cardiopulmonary events, black lung etc. in its comparison.}}</ref> the use of nuclear power has been calculated to have prevented about 1.84 million deaths from air pollution between 1971 and 2009, by reducing the proportion of energy that would otherwise have been generated by fossil fuels.<ref name="autogenerated1">{{cite web |url=http://cen.acs.org/articles/91/web/2013/04/Nuclear-Power-Prevents-Deaths-Causes.html |title=Nuclear Power Prevents More Deaths Than It Causes | Chemical & Engineering News |publisher=Cen.acs.org |access-date=2014-01-24 |archive-date=2014-03-01 |archive-url=https://web.archive.org/web/20140301145251/http://cen.acs.org/articles/91/web/2013/04/Nuclear-Power-Prevents-Deaths-Causes.html |url-status=live }}</ref><ref name="Kharecha Pushker A 2013 4889–4895">{{cite journal | last1=Kharecha | first1=Pushker A. | last2=Hansen | first2=James E. |title=Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power |doi=10.1021/es3051197 |pmid=23495839 |bibcode = 2013EnST...47.4889K |volume=47 |issue=9 |journal=Environmental Science & Technology |pages=4889–4895 |year=2013 |doi-access=free |hdl=2060/20140017100 |hdl-access=free }}</ref> Following the 2011 Fukushima nuclear disaster, it has been estimated that if Japan had never adopted nuclear power, accidents and pollution from coal or gas plants would have caused more lost years of life.<ref>{{cite journal |author=Normile |first=Dennis |date=2012-07-27 |title=Is Nuclear Power Good for You? |url=http://news.sciencemag.org/scienceinsider/2012/07/is-nuclear-power-good-for-you.html |journal=Science |volume=337 |issue=6093 |page=395 |doi=10.1126/science.337.6093.395-b |archive-url=https://web.archive.org/web/20130301082701/http://news.sciencemag.org/scienceinsider/2012/07/is-nuclear-power-good-for-you.html |archive-date=2013-03-01}}</ref> | |||
Proponents argue that the potential for a meltdown in well-designed reactors is very small due to the care taken in designing adequate safety systems, and that the nuclear industry has much better statistics regarding humans deaths from occupational accidents than coal or hydropower.<ref name="wna-sonpr">{{Cite web|url=http://www.world-nuclear.org/info/inf06.html|title=Safety of Nuclear Power Reactors|accessdate=2006-11-10|publisher=World Nuclear Association|year=2006|work=Information and Issue Briefs}}</ref> While the ] caused great negative health, economic, environmental and psychological effects in a widespread area, the accident at Chernobyl was caused by a combination of the faulty ] reactor design, the lack of a properly designed ], poorly trained operators, and a non-existent ]. The RBMK design, unlike nearly all designs used in the Western world, featured a ], meaning that a malfunction could result in ever-increasing generation of heat and radiation until the reactor was breached. Even with the ], the most severe civilian nuclear accident in the non-Soviet world, the reactor vessel and containment building were never breached, even though it had suffered a core meltdown, so that very little radiation (well below natural background radiation levels) was released into the environment.<ref name="usnrc-tmi">{{Cite web|url=http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html|title=Fact Sheet on the Accident at Three Mile Island|accessdate=2006-11-10|publisher=U.S. Nuclear Regulatory Commission}}</ref> | |||
Serious impacts of nuclear accidents are often not directly attributable to radiation exposure, but rather social and psychological effects. Evacuation and long-term displacement of affected populations created problems for many people, especially the elderly and hospital patients.<ref>{{cite journal |last1=Hasegawa |first1=Arifumi |last2=Tanigawa |first2=Koichi |last3=Ohtsuru |first3=Akira |last4=Yabe |first4=Hirooki |last5=Maeda |first5=Masaharu |last6=Shigemura |first6=Jun |last7=Ohira |first7=Tetsuya |last8=Tominaga |first8=Takako |last9=Akashi |first9=Makoto |last10=Hirohashi |first10=Nobuyuki |last11=Ishikawa |first11=Tetsuo |last12=Kamiya |first12=Kenji |last13=Shibuya |first13=Kenji |last14=Yamashita |first14=Shunichi |last15=Chhem |first15=Rethy K |title=Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima |journal=The Lancet |date=August 2015 |volume=386 |issue=9992 |pages=479–488 |doi=10.1016/S0140-6736(15)61106-0 |pmid=26251393 |s2cid=19289052 |url=http://ir.fmu.ac.jp/dspace/bitstream/123456789/1575/1/Lancet_386_p479.pdf |access-date=2021-08-05 |archive-date=2021-08-28 |archive-url=https://web.archive.org/web/20210828051002/https://ir.fmu.ac.jp/dspace/bitstream/123456789/1575/1/Lancet_386_p479.pdf |url-status=live }}</ref> Forced evacuation from a nuclear accident may lead to social isolation, anxiety, depression, psychosomatic medical problems, reckless behavior, and suicide. A comprehensive 2005 study on the aftermath of the Chernobyl disaster concluded that the mental health impact is the largest public health problem caused by the accident.<ref name="riv12">{{cite news |author=Revkin |first=Andrew C. |author-link=Andrew C. Revkin |date=2012-03-10 |title=Nuclear Risk and Fear, from Hiroshima to Fukushima |url=http://dotearth.blogs.nytimes.com/2012/03/10/nuclear-risk-and-fear-from-hiroshima-to-fukushima/ |url-status=live |archive-url=https://web.archive.org/web/20150905200055/http://dotearth.blogs.nytimes.com/2012/03/10/nuclear-risk-and-fear-from-hiroshima-to-fukushima/ |archive-date=2015-09-05 |access-date=2013-07-08 |newspaper=The New York Times}}</ref> ], an American scientist, commented that a disproportionate fear of ionizing radiation (]) could have long-term psychological effects on the population of contaminated areas following the Fukushima disaster.<ref name="Frank N. von Hippel 27–36">{{cite journal |author=von Hippel |first=Frank N. |date=September–October 2011 |title=The radiological and psychological consequences of the Fukushima Daiichi accident |url=http://bos.sagepub.com/content/67/5/27.full |url-status=live |journal=Bulletin of the Atomic Scientists |volume=67 |issue=5 |pages=27–36 |bibcode=2011BuAtS..67e..27V |doi=10.1177/0096340211421588 |s2cid=218769799 |archive-url=https://web.archive.org/web/20120113090511/http://bos.sagepub.com/content/67/5/27.full |archive-date=2012-01-13 |access-date=2013-07-08}}</ref> | |||
But design changes are being pursued to lessen the risks of fission reactors; in particular, ] plants <nowiki>]<nowiki>]</nowiki> are available to be built and ] designs are being pursued. Fusion reactors which may come to exist in the future theoretically have very little risk since the fuel contained in the reaction chamber is only enough to sustain the reaction for about a minute, whereas a fission reactor contains about a year's supply of fuel. Subcritical reactors never have a self-sustained nuclear chain reaction. | |||
=== Accidents === | |||
The question as to whether unsafe plants, such as the dozen ]s at Chernobyl and in the rest of the former Soviet Union, will continue to be built is addressed by the ], whose 144 member countries encompass the vast majority of significant electrical grids (except Taiwan) and all of the countries with reactor manufacturers. | |||
], the world's worst ] since 1986, 50,000 households were displaced after ] leaked into the air, soil and sea.<ref>{{cite news |last1=Yamazaki |first1=Tomoko |last2=Ozasa |first2=Shunichi |name-list-style=amp |date=2011-06-27 |title=Fukushima Retiree Leads Anti-Nuclear Shareholders at Tepco Annual Meeting |url=https://www.bloomberg.com/news/2011-06-26/fukushima-retiree-to-lead-anti-nuclear-motion.html |work=Bloomberg}}</ref> Radiation checks led to bans of some shipments of vegetables and fish.<ref>{{cite news |author=Saito |first=Mari |date=2011-05-07 |title=Japan anti-nuclear protesters rally after PM call to close plant |url=https://www.reuters.com/article/us-japan-nuclear-idUSTRE74610J20110507 |work=Reuters}}</ref>]] | |||
] as a fraction of full power after the reactor shutdown, using two different correlations. To remove the decay heat, reactors need cooling after the shutdown of the fission reactions. A loss of the ability to remove decay heat caused the ].]] | |||
{{See also|Energy accidents|Nuclear and radiation accidents and incidents|Lists of nuclear disasters and radioactive incidents}} | |||
Some serious ] have occurred. The severity of nuclear accidents is generally classified using the ] (INES) introduced by the ] (IAEA). The scale ranks anomalous events or accidents on a scale from 0 (a deviation from normal operation that poses no safety risk) to 7 (a major accident with widespread effects). There have been three accidents of level 5 or higher in the civilian nuclear power industry, two of which, the ] and the ], are ranked at level 7. | |||
According to the ], 20 states in the USA have requested stocks of ] which the NRC suggests should be available for those living within 10 miles of a nuclear power plant in the unlikely event of a severe accident.<ref name="nrc-copiiep">{{Cite web|url=http://www.nrc.gov/what-we-do/emerg-preparedness/protect-public/potassium-iodide.html|title=Consideration of Potassium Iodide in Emergency Planning|accessdate=2006-11-10|publisher=U.S. Nuclear Regulatory Commission}}</ref> | |||
The first major nuclear accidents were the ] in the Soviet Union and the ] in the United Kingdom, both in 1957. The first major accident at a nuclear reactor in the USA occurred in 1961 at the ], a ] experimental nuclear power reactor at the ]. An uncontrolled chain reaction resulted in a ] which killed the three crew members and caused a ].<ref name=ido19313>'''' {{webarchive|url=https://web.archive.org/web/20110927065809/http://www.id.doe.gov/foia/PDF/IDO-19313.pdf |date=2011-09-27 }} ''Final Report of Progress July through October 1962'', November 21, 1962, Flight Propulsion Laboratory Department, General Electric Company, Idaho Falls, Idaho, U.S. Atomic Energy Commission, Division of Technical Information.</ref><ref>{{cite book |last=McKeown |first=William |title=Idaho Falls: The Untold Story of America's First Nuclear Accident |publisher=ECW Press |year=2003 |isbn=978-1-55022-562-4 |location=Toronto, Canada |language=en}}</ref> Another serious accident happened in 1968, when one of the two ]s on board the {{ship|Soviet submarine|K-27}} underwent a ], with the emission of gaseous ]s into the surrounding air, resulting in 9 crew fatalities and 83 injuries.<ref name=johnston2007>{{cite web |url=http://www.johnstonsarchive.net/nuclear/radevents/radevents1.html |title=Deadliest radiation accidents and other events causing radiation casualties |author=Johnston, Robert |date=2007-09-23 |publisher=Database of Radiological Incidents and Related Events |access-date=2011-03-14 |archive-date=2007-10-23 |archive-url=https://web.archive.org/web/20071023104305/http://www.johnstonsarchive.net/nuclear/radevents/radevents1.html |url-status=live }}</ref> | |||
====Serious accidents which have occurred==== | |||
The Fukushima Daiichi nuclear accident was caused by the ]. The accident has not caused any radiation-related deaths but resulted in radioactive contamination of surrounding areas. The difficult ] is expected to cost tens of billions of dollars over 40 or more years.<ref name="Richard Schiffman">{{cite news |author=Schiffman |first=Richard |date=2013-03-12 |title=Two years on, America hasn't learned lessons of Fukushima nuclear disaster |url=https://www.theguardian.com/commentisfree/2013/mar/12/fukushima-nuclear-accident-lessons-for-us |url-status=live |archive-url=https://web.archive.org/web/20170202143654/https://www.theguardian.com/commentisfree/2013/mar/12/fukushima-nuclear-accident-lessons-for-us |archive-date=2017-02-02 |access-date=2016-12-12 |work=The Guardian |location=London, England}}</ref><ref name="Martin Fackler">{{cite news |author=Fackler |first=Martin |date=2011-06-01 |title=Report Finds Japan Underestimated Tsunami Danger |url=https://www.nytimes.com/2011/06/02/world/asia/02japan.html?_r=1&ref=world |url-status=live |archive-url=https://web.archive.org/web/20170205043423/http://www.nytimes.com/2011/06/02/world/asia/02japan.html?_r=1&ref=world |archive-date=2017-02-05 |access-date=2017-02-25 |newspaper=The New York Times}}</ref> The ] in 1979 was a smaller scale accident, rated at INES level 5. There were no direct or indirect deaths caused by the accident.<ref name="timenuke">{{cite magazine|url=http://www.time.com/time/photogallery/0,29307,1887705,00.html|archive-url=https://web.archive.org/web/20090328130544/http://www.time.com/time/photogallery/0,29307,1887705,00.html|archive-date=March 28, 2009|title=The Worst Nuclear Disasters|date=2009-03-25|access-date=2013-06-22|magazine=]|url-status=dead}}</ref> | |||
]]] | |||
The impact of nuclear accidents is controversial. According to ], fission ] ranked first among energy sources in terms of their total economic cost, accounting for 41% of all property damage attributed to energy accidents.<ref>{{Cite journal | last1 = Sovacool | first1 = B.K. | title = The costs of failure: A preliminary assessment of major energy accidents, 1907–2007 | doi = 10.1016/j.enpol.2008.01.040 | journal = Energy Policy | volume = 36 | issue = 5 | pages = 1802–1820 | year = 2008 | bibcode = 2008EnPol..36.1802S }}</ref> Another analysis found that coal, oil, ] and hydroelectric accidents (primarily due to the ]) have resulted in greater economic impacts than nuclear power accidents.<ref>{{cite journal |last1=Burgherr |first1=Peter |last2=Hirschberg |first2=Stefan |title=A Comparative Analysis of Accident Risks in Fossil, Hydro, and Nuclear Energy Chains |journal=Human and Ecological Risk Assessment |date=10 October 2008 |volume=14 |issue=5 |pages=947–973 |doi=10.1080/10807030802387556 |bibcode=2008HERA...14..947B |s2cid=110522982 }}</ref> The study compares latent cancer deaths attributable to nuclear power with immediate deaths from other energy sources per unit of energy generated, and does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident" (an accident with more than five fatalities) classification. The Chernobyl accident in 1986 caused approximately 50 deaths from direct and indirect effects, and some temporary serious injuries from ].<ref name=WHO2012>{{cite web|date=23 April 2011|title=Chernobyl at 25th anniversary – Frequently Asked Questions|publisher=World Health Organisation|access-date=14 April 2012|url=https://www.who.int/ionizing_radiation/chernobyl/20110423_FAQs_Chernobyl.pdf|archive-date=17 April 2012|archive-url=https://web.archive.org/web/20120417011209/http://www.who.int/ionizing_radiation/chernobyl/20110423_FAQs_Chernobyl.pdf|url-status=live}}</ref> The future predicted mortality from increases in cancer rates is estimated at 4000 in the decades to come.<ref>{{cite web |url=http://www.iaea.org/Publications/Magazines/Bulletin/Bull383/boxp6.html |title=Assessing the Chernobyl Consequences |website=International Atomic Energy Agency |archive-url=https://web.archive.org/web/20130830073635/http://www.iaea.org/Publications/Magazines/Bulletin/Bull383/boxp6.html |archive-date=30 August 2013 |df=dmy-all}}</ref><ref name=UNSCEAR_2008_D>{{cite web |url=http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf |title=UNSCEAR 2008 Report to the General Assembly, Annex D |website=United Nations Scientific Committee on the Effects of Atomic Radiation |year=2008 |access-date=2018-12-15 |archive-date=2011-08-04 |archive-url=https://web.archive.org/web/20110804232629/http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf |url-status=live }}</ref><ref>{{cite web |url=http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf |title=UNSCEAR 2008 Report to the General Assembly |website=United Nations Scientific Committee on the Effects of Atomic Radiation |year=2008 |access-date=2012-05-17 |archive-date=2019-01-05 |archive-url=https://web.archive.org/web/20190105222241/http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf |url-status=live }}</ref> However, the costs have been large and are increasing. | |||
The ] was a major accident at the ] near ] ] on ], ], consisting of an explosion at the plant and subsequent ] of the surrounding geographic area. It is regarded as the worst ] ever in the history of nuclear power. A plume of ] drifted over parts of the western Soviet Union, ] and ], ], the ], ] and eastern ]. Large areas of ], ], and ] were badly contaminated, resulting in the evacuation and resettlement of over 336,000 people.<ref name="Chernobyl.info">{{cite web ||title=Geographical location and extent of radioactive contamination| publisher=Swiss Agency for Development and Cooperation|url=http://www.chernobyl.info/index.php?navID=2}} (quoting the "Committee on the Problems of the Consequences of the Catastrophe at the Chernobyl NPP: 15 Years after Chernobyl Disaster", Minsk, 2001, p. 5/6 ff., and the "Chernobyl Interinform Agency, Kiev und", and "Chernobyl Committee: MailTable of official data on the reactor accident") </ref> | |||
Nuclear power works under an ] framework that limits or structures accident liabilities in accordance with national and international conventions.<ref>{{cite web | url=http://www.iaea.org/Publications/Documents/Conventions/liability.html | title=Publications: Vienna Convention on Civil Liability for Nuclear Damage | date=27 August 2014 | publisher=] | access-date=8 September 2016 | archive-date=3 March 2016 | archive-url=https://web.archive.org/web/20160303170113/http://www.iaea.org/Publications/Documents/Conventions/liability.html | url-status=live }}</ref> It is often argued that this potential shortfall in liability represents an external cost not included in the cost of nuclear electricity. This cost is small, amounting to about 0.1% of the ], according to a study by the ] in the United States.<ref>{{cite web|url= http://www.cbo.gov/sites/default/files/05-02-nuclear.pdf|title= Nuclear Power's Role in Generating Electricity|publisher= ]|date= May 2008|access-date= 2016-09-08|archive-date= 2014-11-29|archive-url= https://web.archive.org/web/20141129011143/http://www.cbo.gov/sites/default/files/05-02-nuclear.pdf|url-status= live}}</ref> These beyond-regular insurance costs for worst-case scenarios are not unique to nuclear power. ] plants are similarly not fully insured against a catastrophic event such as ]s. For example, the failure of the ] caused the death of an estimated 30,000 to 200,000 people, and 11 million people lost their homes. As private insurers base dam insurance premiums on limited scenarios, major disaster insurance in this sector is likewise provided by the state.<ref>{{cite web | url=http://www.damsafety.org/media/Documents/FEMA/AvailabilityOfDamInsurance.pdf | title=Availability of Dam Insurance | date=1999 | access-date=2016-09-08 | archive-date=2016-01-08 | archive-url=https://web.archive.org/web/20160108185336/http://www.damsafety.org/media/documents/fema/availabilityofdaminsurance.pdf | url-status=dead }}</ref> | |||
Following the Chernobyl accident, two hundred people were hospitalized immediately, of whom 31 died (28 of them died from acute radiation exposure - most of these were fire and rescue workers trying to bring the accident under control, not provided adequate protective clothing and respiratory gear, and who were each only allowed on the site for a very short period of time, also because proper protective clothing was insufficiently available. As a result, many people were exposed. They may also have been insufficiently aware of how dangerous the ] exposure from the smoke was {{Fact|date=February 2007}}. (For a discussion of the more important isotopes in fallout see ]). 135,000 people were evacuated from the area, including 50,000 from Pripyat. Health officials from the ] have predicted that over the next 70 years there will be a 0.01% increase in cancer rates above the base rate in much of the population that was exposed to the 5–12 (depending on source) E] of ] released from the reactor. So far three people have died of thyroid cancer as a result of the accident.<ref name="10yearson"> {{cite journal | last =Rippon|first =Simon| authorlink =| coauthors =| title =Chernobyl today - a tour of the site| journal =Nuclear News| volume =| issue =| pages =|publisher = American Nuclear Society|date=April 1996| url =http://www.ans.org/pi/matters/chernobyl/docs/nn-1996-4-chernobyl-lores.pdf| doi =| id =| accessdate = 2007-01-15 }}</ref> | |||
=== Attacks and sabotage === | |||
On ], ], in the ], the Unit 2 ] (a ]) on the ] in ] near ] suffered a partial core ]. The ] was the worst accident in ] commercial nuclear power generating history, even though it led to no deaths or injuries to plant workers or members of the nearby community.<ref name=FactSheet>U.S. Nuclear Regulatory Commission Fact Sheet on the Accident at Three Mile Island. Available at http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html/</ref> Importantly, the reactor vessel did not rupture. | |||
{{Main|Vulnerability of nuclear plants to attack|Nuclear terrorism|Nuclear safety in the United States}} | |||
Terrorists could target ]s in an attempt to release ] into the community. The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the ]. An attack on a reactor's ] could also be serious, as these pools are less protected than the reactor core. The release of radioactivity could lead to thousands of near-term deaths and greater numbers of long-term fatalities.<ref name="fas12">{{cite web |last1=Ferguson |first1=Charles D. |last2=Settle |first2=Frank A. |name-list-style=amp |year=2012 |title=The Future of Nuclear Power in the United States |url=https://fas.org/pubs/_docs/Nuclear_Energy_Report-lowres.pdf |url-status=live |archive-url=https://web.archive.org/web/20170525170528/https://fas.org/pubs/_docs/Nuclear_Energy_Report-lowres.pdf |archive-date=2017-05-25 |access-date=2016-07-07 |website=Federation of American Scientists}}</ref> | |||
In the United States, the Nuclear Regulatory Commission carries out "Force on Force" (FOF) exercises at all nuclear power plant sites at least once every three years.<ref name=fas12 /> In the United States, plants are surrounded by a double row of tall fences which are electronically monitored. The plant grounds are patrolled by a sizeable force of armed guards.<ref>{{cite web |title=Nuclear Security – Five Years After 9/11 |url=https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/security-enhancements.html |url-status=live |archive-url=https://web.archive.org/web/20070715045132/http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/security-enhancements.html |archive-date=15 July 2007 |access-date=23 July 2007 |publisher=U.S. Nuclear Regulatory Commission}}</ref> | |||
On ], ], the ] core of a British air-cooled plutonium producing ] (not a power station) at ], ], caught fire, releasing substantial amounts of ] into the surrounding area. The event, known as the ], was considered the world's worst nuclear accident until the ] in 1979. The fire itself released an estimated 20,000 ]s (700 ]) of radioactive material into the nearby countryside. Of particular concern was the radioactive isotope ]-131, which has a ] of only 8 days but is taken up by the human body and stored in the ]. As a result, consumption of iodine-131 often leads to ] of the thyroid. (see ] article). | |||
Insider sabotage is also a threat because insiders can observe and work around security measures. Successful insider crimes depended on the perpetrators' observation and knowledge of security vulnerabilities.<ref>{{cite web |author=Bunn |first1=Matthew |author-link=Matthew Bunn |last2=Sagan |first2=Scott |author2-link=Scott Sagan |name-list-style=amp |date=2014 |title=A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes |url=https://www.amacad.org/content/publications/pubContent.aspx?d=1427 |publisher=The American Academy of Arts & Sciences}}</ref> A fire caused 5–10 million dollars worth of damage to New York's ] in 1971.<ref>{{Cite news|url=https://www.nytimes.com/1971/11/14/archives/damage-is-put-at-millions-in-blaze-at-con-ed-plant-con-ed-damage.html|title=Damage Is Put at Millions In Blaze at Con Ed Plant|last=McFadden|first=Robert D.|date=1971-11-14|work=The New York Times|access-date=2020-01-15|language=en-US|issn=0362-4331|archive-date=2020-01-15|archive-url=https://web.archive.org/web/20200115181457/https://www.nytimes.com/1971/11/14/archives/damage-is-put-at-millions-in-blaze-at-con-ed-plant-con-ed-damage.html|url-status=live}}</ref> The arsonist was a plant maintenance worker.<ref>{{Cite news|url=https://www.nytimes.com/1972/01/30/archives/mechanic-seized-in-indian-pt-fire-con-ed-employe-accused-of-arson.html|title=Mechanic Seized in Indian Pt. Fire|last=Knight|first=Michael|date=1972-01-30|work=The New York Times|access-date=2020-01-15|language=en-US|issn=0362-4331|archive-date=2020-01-15|archive-url=https://web.archive.org/web/20200115181500/https://www.nytimes.com/1972/01/30/archives/mechanic-seized-in-indian-pt-fire-con-ed-employe-accused-of-arson.html|url-status=live}}</ref> | |||
] is the name of a ] between the towns of ] and ] 150 km northwest of ] in ]. Working conditions at Mayak resulted in severe health hazards and many accidents, including a serious accident in ]. The failure of the cooling system for a tank storing tens of thousands of tons of dissolved nuclear waste resulted in a non-nuclear explosion having a force estimated at about 75 tons of ] (310 ]), which released some 20 MCi (740 peta]s) of radiation. Subsequently, at least 200 people died of radiation sickness, 10,000 people were evacuated from their homes, and 470,000 people were exposed to radiation. (see ] article). | |||
== Proliferation == | |||
===Vulnerability to attack=== | |||
{{further|Nuclear proliferation}} | |||
{{see also|Plutonium Management and Disposition Agreement}} | |||
]/Russian ] stockpiles, 1945–2006. The ] was the main driving force behind the sharp reduction in the quantity of nuclear weapons worldwide since the cold war ended.<ref name="thebulletin.org" /><ref name="usec.com">{{cite web|url=http://www.usec.com/ |title=home |publisher=usec.com |date=2013-05-24 |access-date=2013-06-14 |archive-url=https://web.archive.org/web/20130621223711/http://www.usec.com/ |archive-date=2013-06-21 }}</ref>]] | |||
] | |||
Nuclear proliferation is the spread of ]s, fissionable material, and weapons-related nuclear technology to states that do not already possess nuclear weapons. Many technologies and materials associated with the creation of a nuclear power program have a dual-use capability, in that they can also be used to make nuclear weapons. For this reason, nuclear power presents proliferation risks. | |||
Nuclear power program can become a route leading to a nuclear weapon. An example of this is the concern over ].<ref name="dfall2009">{{cite journal |last1=Miller |first1=Steven E. |last2=Sagan |first2=Scott D. |name-list-style=amp |date=Fall 2009 |title=Nuclear power without nuclear proliferation? |journal=Dædalus |volume=138 |issue=4 |page=7 |doi=10.1162/daed.2009.138.4.7 |s2cid=57568427 |doi-access=free}}</ref> The re-purposing of civilian nuclear industries for military purposes would be a breach of the ], to which 190 countries adhere. As of April 2012, there are ] that have civil nuclear power plants,<ref>{{cite web |url=http://www.world-nuclear.org/info/inf01.html |title=Nuclear Power in the World Today |publisher=World-nuclear.org |access-date=2013-06-22 |archive-date=2013-02-12 |archive-url=https://web.archive.org/web/20130212224344/http://www.world-nuclear.org/info/inf01.html |url-status=live }}</ref> of which nine have nuclear weapons. The vast majority of these ]s have produced weapons before commercial nuclear power stations. | |||
Nuclear power plants are generally (although not always) considered "hard" targets. In the US, plants are surrounded by a double row of tall fences which are electronically monitored. The plant grounds are patrolled by a sizeable force of armed guards. The NRC's "Design Basis Threat" criteria for plants is a secret, and so what size attacking force the plants are able to protect against is unknown - however, to ] a plant takes less than 5 seconds while unimpeded restart takes hours, severely hampering a terrorist force in a goal to release radioactivity. | |||
A fundamental goal for global security is to minimize the nuclear proliferation risks associated with the expansion of nuclear power.<ref name=dfall2009 /> The ] was an international effort to create a distribution network in which developing countries in need of energy would receive ] at a discounted rate, in exchange for that nation agreeing to forgo their own indigenous development of a uranium enrichment program. The France-based ]/''European Gaseous Diffusion Uranium Enrichment Consortium'' is a program that successfully implemented this concept, with ] and other countries without enrichment facilities buying a share of the fuel produced at the French-controlled enrichment facility, but without a transfer of technology.<ref>{{cite web|url=http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Uranium-Enrichment/|title=Uranium Enrichment|publisher=World Nuclear Association|website=www.world-nuclear.org|access-date=2015-08-12|archive-date=2013-07-01|archive-url=https://web.archive.org/web/20130701071520/http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Uranium-Enrichment/|url-status=dead}}</ref> Iran was an early participant from 1974 and remains a shareholder of Eurodif via ]. | |||
Attack from the air is a more problematic concern. The most important barrier against the release of radioactivity in the event of an aircraft strike is the ] and its missile shield (for details, see that article). The NRC's Chairman has said "Nuclear power plants are inherently robust structures that our studies show provide adequate protection in a hypothetical attack by an airplane. The NRC has also taken actions that require nuclear power plant operators to be able to manage large fires or explosions - no matter what has caused them." <ref name="air attack">{{Cite web|url=http://www.nrc.gov/reading-rm/doc-collections/news/2007/07-013.html|title=STATEMENT FROM CHAIRMAN DALE KLEIN ON COMMISSION'S AFFIRMATION OF THE FINAL DBT RULE|accessdate=2007-04-07|publisher=Nuclear Regulatory Commission}}</ref> | |||
A 2009 United Nations report said that: | |||
Nuclear power plants are designed to withstand threats deemed credible at the time of licensing. However, as weapons evolve it cannot be said unequivocably that within the 60 year life of a plant it will not become vulnerable. ] bombs, for example, if obtainable by the public might be able to penetrate a containment building and do significant damage once inside. | |||
<blockquote>the revival of interest in nuclear power could result in the worldwide dissemination of uranium enrichment and spent fuel reprocessing technologies, which present obvious risks of proliferation as these technologies can produce fissile materials that are directly usable in nuclear weapons.<ref name="bks2011">{{cite book |last=Sovacool |first=Benjamin K. |author-link=Benjamin K. Sovacool |title=Contesting the Future of Nuclear Power: A Critical Global Assessment of Atomic Energy |title-link=Contesting the Future of Nuclear Power |date=2011 |publisher=] |isbn=978-981-4322-75-1 |location=Hackensack, New Jersey |page=190 |language=en-us}}</ref></blockquote> | |||
On the other hand, power reactors can also reduce nuclear weapon arsenals when military-grade nuclear materials are reprocessed to be used as fuel in nuclear power plants. The ] is considered the single most successful ] program to date.<ref name="thebulletin.org">{{cite web |url=http://www.thebulletin.org/web-edition/op-eds/support-of-the-megatons-to-megawatts-program |title=The Bulletin of atomic scientists support the megatons to megawatts program |archive-url=https://web.archive.org/web/20110708162741/http://www.thebulletin.org/web-edition/op-eds/support-of-the-megatons-to-megawatts-program |archive-date=2011-07-08 |access-date=2012-09-15 |date=2008-10-23 |url-status=dead }}</ref> Up to 2005, the program had processed $8 billion of high enriched, weapons-grade uranium into ] suitable as nuclear fuel for commercial fission reactors by diluting it with ]. This corresponds to the elimination of 10,000 nuclear weapons.<ref>{{cite web |url=http://www.usec.com/news/megatons-megawatts-eliminates-equivalent-10000-nuclear-warheads |title=Megatons to Megawatts Eliminates Equivalent of 10,000 Nuclear Warheads |publisher=Usec.com |date=2005-09-21 |access-date=2013-06-22 |archive-url=https://web.archive.org/web/20130426130245/http://www.usec.com/news/megatons-megawatts-eliminates-equivalent-10000-nuclear-warheads |archive-date=2013-04-26 |url-status=dead }}</ref> For approximately two decades, this material generated nearly 10 percent of all the electricity consumed in the United States, or about half of all U.S. nuclear electricity, with a total of around 7,000{{nbsp}}] of electricity produced.<ref name="ReferenceB">{{cite journal |author=Stover |first=Dawn |date=2014-02-21 |title=More megatons to megawatts |url=http://thebulletin.org/more-megatons-megawatts |url-status=dead |journal=The Bulletin |archive-url=https://web.archive.org/web/20170504175156/http://thebulletin.org/more-megatons-megawatts |archive-date=2017-05-04 |access-date=2015-08-11}}</ref> In total it is estimated to have cost $17 billion, a "bargain for US ratepayers", with Russia profiting $12 billion from the deal.<ref name="ReferenceB" /> Much needed profit for the Russian nuclear oversight industry, which after the collapse of the ], had difficulties paying for the maintenance and security of the Russian Federations highly enriched uranium and warheads.<ref name="A Farewell to Arms, 2014">{{cite web|url=http://www.technologyreview.com/article/529861/a-farewell-to-arms/|title=Against Long Odds, MIT's Thomas Neff Hatched a Plan to Turn Russian Warheads into American Electricity|first=Anne-Marie|last=Corley|access-date=2015-08-11|archive-date=2015-09-04|archive-url=https://web.archive.org/web/20150904010100/http://www.technologyreview.com/article/529861/a-farewell-to-arms/|url-status=live}}</ref> The Megatons to Megawatts Program was hailed as a major success by anti-nuclear weapon advocates as it has largely been the driving force behind the sharp reduction in the number of nuclear weapons worldwide since the cold war ended.<ref name="thebulletin.org" /> However, without an increase in nuclear reactors and greater demand for fissile fuel, the cost of dismantling and down blending has dissuaded Russia from continuing their disarmament. As of 2013, Russia appears to not be interested in extending the program.<ref>{{cite news |date=2009-12-05 |title=Future Unclear For 'Megatons To Megawatts' Program |url=https://www.npr.org/templates/story/story.php?storyId=121125743 |url-status=live |archive-url=https://web.archive.org/web/20150112002945/http://www.npr.org/templates/story/story.php?storyId=121125743 |archive-date=2015-01-12 |access-date=2013-06-22 |work=All Things Considered |publisher=National Public Radio |language=en-us |publication-place=United States}}</ref> | |||
===Protection of nuclear waste=== | |||
== Environmental impact{{anchor|Environmental_issues}} == | |||
Opponents of nuclear power express concerns that nuclear waste is not well protected, and that it can be released in the event of terrorist attack, quoting a 1999 Russian incident where workers were caught trying to sell 5 grams of radioactive material on the open market,<ref name="nti-nwfu">{{Cite web|url=http://www.nti.org/db/nistraff/1999/19990670.htm|title=Neutron Weapon from Underground|accessdate=2006-11-10|publisher=Nuclear Threat Initiative|year=1999|author=Vadim Nesvizhskiy|work=Research Library}}</ref> or the incident in 1993 where Russian workers were caught selling 4.5 kilograms of enriched uranium.<ref name="aa-ionsi">{{Cite web|url=http://www.atomicarchive.com/Almanac/Smuggling_details.shtml#4|title=Infomation on Nuclear Smuggling Incidents|accessdate=2006-11-10|publisher=Nuclear Threat Initiative|work=Nuclear Almanac}}</ref><ref name="gu-wgus">{{Cite web|url=http://www.guardian.co.uk/international/story/0,3604,526856,00.html|title=Weapons-grade Uranium Seized|accessdate=2006-11-10|publisher=Guardian Unlimited|year=2001|author=Amelia Gentleman and Ewen MacAskill}}</ref><ref name="ag-trutiosftt">{{Cite web|url=http://www.axisglobe.com/article.asp?article=328|title=The Russian Uranium That is on Sale for the Terrorists|accessdate=2006-11-10|publisher=Axis|year=2005|author=Pavel Simonov|work=Global Challenges Research}}</ref> The ] has since called upon world leaders to improve security in order to prevent radioactive material falling into the hands of terrorists,<ref name="bbc-acodbt">{{Cite web|url=http://news.bbc.co.uk/1/hi/world/europe/2838743.stm|title=Action Call Over Dirty Bomb Threat|accessdate=2006-11-10|publisher=BBC News|year=2003}}</ref> sometimes leading to the guarding of nuclear shipments by thousands of police.<ref name="bbc-tgns">{{Cite web|url=http://news.bbc.co.uk/1/hi/world/europe/4454932.stm|title=Thousands Guard Nuclear Shipment|accessdate=2006-11-10|publisher=BBC News|year=2005}}</ref> | |||
{{Main|Environmental impact of nuclear power}} | |||
], a ] that cools by using a secondary coolant ] with a large body of water, an alternative cooling approach to large ]]] | |||
Being a low-carbon energy source with relatively little land-use requirements, nuclear energy can have a positive environmental impact. It also requires a constant supply of significant amounts of water and affects the environment through mining and milling.<ref>{{cite web |title=Life Cycle Assessment of Electricity Generation Options |url=https://unece.org/sites/default/files/2021-10/LCA-2.pdf |access-date=24 November 2021 |archive-date=10 May 2022 |archive-url=https://web.archive.org/web/20220510044223/https://unece.org/sites/default/files/2021-10/LCA-2.pdf |url-status=live }}</ref><ref>{{cite web |title=Nuclear energy and water use in the columbia river basin |url=https://www.umt.edu/bridges/resources/Documents/Blog-Items/C1-Nuclear-Energy-Water.pdf |access-date=24 November 2021 |archive-date=24 November 2021 |archive-url=https://web.archive.org/web/20211124190925/https://www.umt.edu/bridges/resources/Documents/Blog-Items/C1-Nuclear-Energy-Water.pdf |url-status=live }}</ref><ref name="10.1016/j.enpol.2016.03.012"/><ref name="10.3390/ijerph13070700">{{cite journal |last1=Kyne |first1=Dean |last2=Bolin |first2=Bob |title=Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination |journal=International Journal of Environmental Research and Public Health |date=July 2016 |volume=13 |issue=7 |page=700 |doi=10.3390/ijerph13070700 |pmid=27420080 |pmc=4962241 |language=en|doi-access=free }}</ref> Its largest potential negative impacts on the environment may arise from its transgenerational risks for nuclear weapons proliferation that may increase risks of their use in the future, risks for problems associated with the management of the radioactive waste such as groundwater contamination, risks for accidents and for risks for various forms of attacks on waste storage sites or reprocessing- and power-plants.<ref name="repr"/><ref name="wi1"/><ref name="worldnuclearwastereport"/><ref name="risks"/><ref name="plane1"/><ref name="10.3390/ijerph13070700"/><ref>{{cite journal |last1=Ahearne |first1=John F. |title=Intergenerational Issues Regarding Nuclear Power, Nuclear Waste, and Nuclear Weapons |journal=Risk Analysis |date=2000 |volume=20 |issue=6 |pages=763–770 |doi=10.1111/0272-4332.206070 |pmid=11314726 |bibcode=2000RiskA..20..763A |s2cid=23395683 |language=en |issn=1539-6924}}</ref><ref name="dont"/> However, these remain mostly only risks as historically there have only been few disasters at nuclear power plants with known relatively substantial environmental impacts. | |||
=== Carbon emissions === | |||
Proponents of nuclear power contend, however, that nuclear waste is already well protected, and state their argument that there has been no accident involving any form of nuclear waste from a civilian program worldwide. In addition, they point to large studies carried out by NRC and other agencies that tested the robustness of both reactor and waste fuel storage, and found that they should be able to sustain a terrorist attack comparable to the ] in the USA.<ref name="wna-sonpr"/> Spent fuel is usually housed inside the plant's "protected zone"<ref name="wna-tnfc">{{Cite web|url=http://www.world-nuclear.org/info/inf03.html|title=The Nuclear Fuel Cycle|accessdate=2006-11-10|publisher=World Nuclear Association|year=2005|work=Information and Issue Briefs}}</ref> or a ]; stealing it for use in a "dirty bomb" is extremely difficult. Exposure to the intense radiation would almost certainly quickly incapacitate or kill any terrorists who attempt to do so.<ref name="tbotas-dbdj">{{Cite web|url=http://www.thebulletin.org/article.php?art_ofn=jf04koch|title=Dirty Bomber? Dirty Justice|accessdate=2006-11-10|publisher=Bulletin of the Atomic Scientists|year=2004|author=Lewis Z Kock}}</ref> | |||
{{See also|Life-cycle greenhouse gas emissions of energy sources}} | |||
{{Further|#Historic effect on carbon emissions}} | |||
{{climate change mitigation|Energy}} | |||
]<ref name="IPCC 2014 Annex III" />]] | |||
However, these refer to accidents and attacks that could take place with modern technology. Safety against airplanes became an issue only ''after'' the 11 September 2001 attacks. There is no knowing what other methods will be thought of over the next few hundreds or even thousands of years. The airplane itself is only one century old. Also, storage sites may be well protected now, but if that remains the case will strongly depend on political developments which are impossible to predict. | |||
Nuclear power is one of the leading ] methods of producing ], and in terms of ], has emission values comparable to or lower than ].<ref name="Nrel.gov">{{cite web |url=http://www.nrel.gov/analysis/sustain_lca_nuclear.html | title=Nuclear Power Results – Life Cycle Assessment Harmonization| quote=Collectively, life cycle assessment literature shows that nuclear power is similar to other renewable and much lower than fossil fuel in total life cycle GHG emissions. |publisher=nrel.gov |author= ] (NREL) |date=2013-01-24 |access-date=2013-06-22 |archive-url=https://web.archive.org/web/20130702205635/http://www.nrel.gov/analysis/sustain_lca_nuclear.html |archive-date=2013-07-02 }}</ref><ref>{{cite web | url=http://www.nrel.gov/analysis/sustain_lca_results.html | title=Life Cycle Assessment Harmonization Results and Findings. Figure 1 | publisher=NREL | access-date=2016-09-08 | archive-date=2017-05-06 | archive-url=https://web.archive.org/web/20170506114117/http://www.nrel.gov/analysis/sustain_lca_results.html }}</ref> A 2014 analysis of the ] literature by the ] (IPCC) reported that the embodied ] ] of nuclear power has a median value of 12{{nbsp}}g {{CO2}}]/], which is the lowest among all commercial ] energy sources.<ref name="IPCC 2014 Annex III">{{cite web |url=https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf |title=IPCC Working Group III – Mitigation of Climate Change, Annex III: Technology–specific cost and performance parameters |year=2014 |publisher=IPCC |at=table A.III.2 |access-date=2019-01-19 |archive-date=2018-12-14 |archive-url=https://web.archive.org/web/20181214164438/https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf |url-status=live }}</ref><ref name="report.mitigation2014.org">{{cite web |url=https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-ii.pdf |title=IPCC Working Group III – Mitigation of Climate Change, Annex II Metrics & Methodology. |year=2014 |publisher=IPCC |at=section A.II.9.3 |access-date=2019-01-19 |archive-date=2021-04-23 |archive-url=https://web.archive.org/web/20210423212531/https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-ii.pdf |url-status=live }}</ref> This is contrasted with ] and ] at 820 and 490 g {{CO2}} eq/kWh.<ref name="IPCC 2014 Annex III" /><ref name="report.mitigation2014.org" /> As of 2021, nuclear reactors worldwide have helped avoid the emission of 72 billion tonnes of carbon dioxide since 1970, compared to coal-fired electricity generation, according to a report.<ref name="Kharecha Pushker A 2013 4889–4895" /><ref>{{cite web |url=https://world-nuclear.org/getmedia/264c91d4-d443-4edb-bc08-f5175c0ac6ba/performance-report-2021-cop26.pdf.aspx |title=World nuclear performance report 2021 |publisher=World Nuclear Association |access-date=2022-04-19 |archivedate=2022-04-03 |archiveurl=https://web.archive.org/web/20220403142850/https://world-nuclear.org/getmedia/264c91d4-d443-4edb-bc08-f5175c0ac6ba/performance-report-2021-cop26.pdf.aspx |url-status=deviated }}</ref> | |||
=== |
=== Radiation === | ||
The average dose from natural ] is 2.4 ] per year (mSv/a) globally. It varies between 1{{nbsp}}mSv/a and 13{{nbsp}}mSv/a, depending mostly on the geology of the location. According to the United Nations (]), regular nuclear power plant operations, including the nuclear fuel cycle, increases this amount by 0.0002{{nbsp}}mSv/a of public exposure as a global average. The average dose from operating nuclear power plants to the local populations around them is less than 0.0001{{nbsp}}mSv/a.<ref name=UNSCEAR_GA>{{cite web |url=http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf |title=UNSCEAR 2008 Report to the General Assembly |publisher=United Nations Scientific Committee on the Effects of Atomic Radiation |year=2008 |access-date=2012-05-17 |archive-date=2019-01-05 |archive-url=https://web.archive.org/web/20190105222241/http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf |url-status=live }}</ref> For comparison, the average dose to those living within {{convert|50|miles}} of a ] is over three times this dose, at 0.0003{{nbsp}}mSv/a.<ref>{{cite web |url=http://www.nsc.org/resources/issues/rad/exposure.aspx |title=National Safety Council |publisher=Nsc.org |access-date=18 June 2013 |url-status=live |archive-url= https://web.archive.org/web/20091012025401/http://www.nsc.org/resources/issues/rad/exposure.aspx |archive-date=12 October 2009 }}</ref> | |||
Most of the human exposure to radiation comes from natural ]. Most of the remaining exposure comes from medical procedures. Several large studies in the U.S., Canada, and Europe have found no evidence of any increase in cancer mortality among people living near nuclear facilities. For example, in 1990, the ] (NCI) of the ] announced that, after doing a large-scale study which evaluated the mortality rates from 16 types of cancer, no increased incidence of cancer mortality was found for people living near 62 nuclear installations in the United States. The study also showed no increase in the incidence of childhood ] mortality in the study of surrounding counties after the start-up of the nuclear facilities. The NCI study, the broadest of its kind ever conducted, surveyed 900,000 cancer deaths in counties near nuclear facilities. | |||
Chernobyl resulted in the most affected surrounding populations and male recovery personnel receiving an average initial 50 to 100{{nbsp}}mSv over a few hours to weeks, while the remaining global legacy of the worst nuclear power plant accident in average exposure is 0.002{{nbsp}}mSv/a and is continuously dropping at the decaying rate, from the initial high of 0.04{{nbsp}}mSv per person averaged over the entire populace of the Northern Hemisphere in the year of the accident in 1986.<ref name=UNSCEAR_GA /> | |||
Aside from the immediate effects of the Chernobyl accident (see above), there is continuing impact from soils containing radioactivity in ] and ]. For this reason a ] was established around the Chernobyl plant. | |||
== Debate == | |||
In March, 2006, safety reviews found that several nuclear plants in the United States have been leaking water contaminated with ] into the ground.<ref name="truthout">{{Cite web|url=http://www.truthout.org/cgi-bin/artman/exec/view.cgi/58/18461|title=Nuclear Reactors Found to Be Leaking Radioactive Water|accessdate=2006-03-17|publisher=TruthOut|year=2006|format=HTML}}</ref> | |||
{{Main|Nuclear power debate}} | |||
(The discharges were intended to go through discharge pipes into rivers, at levels which would be below regulatory limits. However, by leaking into the ground, very low levels of tritium reached drinking water supplies.) The attorney general of Illinois announced that she was filing a lawsuit against ] because of six such leaks, demanding that the utility provide substitute water supplies to residents although no well outside company property shows levels that exceed drinking water standards.<ref name="illattgen">{{Cite web|url=http://www.illinoisattorneygeneral.gov/pressroom/2006_03/20060316.html|title=Madigan, Glasgow File Suit for Radioactive Leaks at Braidwood Nuclear Plant|accessdate=2006-03-17|publisher=Illinois Attorney General|year=2006|format=HTML}}</ref> According to the NRC, "The inspection determined that public health and safety has not been adversely affected and the dose consequence to the public that can be attributed to current onsite conditions is negligible with respect to NRC regulatory limits." However, the chairman of the ], said, "They're going to have to fix it." | |||
{{See also|Nuclear energy policy|Pro-nuclear movement|Anti-nuclear movement}} | |||
[[File:3-Learning-curves-for-electricity-prices.png|thumb|upright=2|A comparison of prices over time for energy from nuclear fission and from other sources. Over the presented time, thousands of wind turbines and similar were built on assembly lines in mass production resulting in an economy of scale. While nuclear remains bespoke, many first of their kind facilities added in the timeframe indicated and none are in serial production. | |||
''Our World in Data'' notes that this cost is the global ''average'', while the 2 projects that drove nuclear pricing upwards were in the US. The organization recognises that the ] cost of the most exported and produced nuclear energy facility in the 2010s the South Korean ], remained "constant", including in export.<ref>{{cite journal | url=https://ourworldindata.org/cheap-renewables-growth | title=Why did renewables become so cheap so fast? | journal=Our World in Data | date=1 December 2020 | last1=Roser | first1=Max }}</ref><br /><small>] is a measure of the average net present cost of electricity generation for a generating plant over its lifetime. As a metric, it remains controversial as the lifespan of units are not independent but manufacturer projections, not a demonstrated longevity.</small>]] | |||
The nuclear power debate concerns the controversy which has surrounded the deployment and use of nuclear fission reactors to generate electricity from nuclear fuel for civilian purposes.<ref name=eleven /><ref name="jstor.org">{{cite journal |author=MacKenzie |first=James J. |date=December 1977 |title=Review of The Nuclear Power Controversy by Arthur W. Murphy |journal=The Quarterly Review of Biology |volume=52 |pages=467–468 |doi=10.1086/410301 |jstor=2823429 |number=4}}</ref><ref name="marcuse.org" /> | |||
Proponents of nuclear energy regard it as a ] source that reduces ] and increases ] by decreasing dependence on other energy sources that are also<ref name="10.1016/j.enpol.2018.12.024">{{cite journal |last1=Jewell |first1=Jessica |last2=Vetier |first2=Marta |last3=Garcia-Cabrera |first3=Daniel |title=The international technological nuclear cooperation landscape: A new dataset and network analysis |journal=Energy Policy |date=1 May 2019 |volume=128 |pages=838–852 |doi=10.1016/j.enpol.2018.12.024 |bibcode=2019EnPol.128..838J |s2cid=159233075 |language=en |issn=0301-4215 |url=http://pure.iiasa.ac.at/id/eprint/15756/1/IR_nuclear_draft_180712.pdf |access-date=31 May 2022 |archive-date=28 May 2022 |archive-url=https://web.archive.org/web/20220528013710/https://pure.iiasa.ac.at/id/eprint/15756/1/IR_nuclear_draft_180712.pdf |url-status=live }}</ref><ref name="10.1016/j.anucene.2017.08.019">{{cite journal |last1=Xing |first1=Wanli |last2=Wang |first2=Anjian |last3=Yan |first3=Qiang |last4=Chen |first4=Shan |title=A study of China's uranium resources security issues: Based on analysis of China's nuclear power development trend |journal=Annals of Nuclear Energy |date=1 December 2017 |volume=110 |pages=1156–1164 |doi=10.1016/j.anucene.2017.08.019 |bibcode=2017AnNuE.110.1156X |language=en |issn=0306-4549}}</ref><ref name="10.1002/ente.201600444">{{cite journal |last1=Yue |first1=Qiang |last2=He |first2=Jingke |last3=Stamford |first3=Laurence |last4=Azapagic |first4=Adisa |title=Nuclear Power in China: An Analysis of the Current and Near-Future Uranium Flows |journal=Energy Technology |date=2017 |volume=5 |issue=5 |pages=681–691 |doi=10.1002/ente.201600444 |language=en |issn=2194-4296|doi-access=free }}</ref> often dependent on imports.<ref name="bloomberg.com">{{cite news |url=https://www.bloomberg.com/apps/news?pid=10000103&sid=aXb5iuqdZoD4&refer=us |title=U.S. Energy Legislation May Be 'Renaissance' for Nuclear Power |work=Bloomberg |access-date=2017-03-10 |archive-date=2009-06-26 |archive-url=https://web.archive.org/web/20090626182130/http://www.bloomberg.com/apps/news?pid=10000103 }}.</ref><ref>{{cite news |last=Patterson |first=Thom |date=2013-11-03 |title=Climate change warriors: It's time to go nuclear |url=http://www.cnn.com/2013/11/03/world/nuclear-energy-climate-change-scientists/index.html |newspaper=CNN |access-date=2013-11-05 |archive-date=2013-11-04 |archive-url=https://web.archive.org/web/20131104031820/http://www.cnn.com/2013/11/03/world/nuclear-energy-climate-change-scientists/index.html |url-status=live }}</ref><ref>{{cite web| url= http://www.world-nuclear.org/info/inf10.html| title= Renewable Energy and Electricity| date= June 2010| publisher= World Nuclear Association| access-date= 2010-07-04| archive-date= 2010-06-19| archive-url= https://web.archive.org/web/20100619061729/http://world-nuclear.org/info/inf10.html| url-status= dead}}</ref> For example, proponents note that annually, nuclear-generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels.<ref>{{cite web |title=Climate |url=https://www.nei.org/advantages/climate |access-date=18 February 2022 |archive-date=18 February 2022 |archive-url=https://web.archive.org/web/20220218141259/https://www.nei.org/advantages/climate |url-status=live }}</ref> Additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed/recycled for other energy uses.<ref>{{cite web |title=Radioactive Waste Management |url=https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/radioactive-waste-management.aspx |date=February 2022 |access-date=2022-02-18 |archive-date=2016-02-01 |archive-url=https://web.archive.org/web/20160201064831/http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Nuclear-Wastes/Radioactive-Waste-Management/ |url-status=live }}</ref> ], who popularized the concept of ], saw oil as a resource that would run out and considered nuclear energy its replacement.<ref>{{cite web |author=Hubbert |first=M. King |date=June 1956 |title=Nuclear Energy and the Fossil Fuels 'Drilling and Production Practice' |url=http://www.hubbertpeak.com/hubbert/1956/1956.pdf |archive-url=https://web.archive.org/web/20080527233843/http://www.hubbertpeak.com/hubbert/1956/1956.pdf |archive-date=2008-05-27 |access-date=2008-04-18 |publisher=] |page=36}}</ref> Proponents also claim that the present quantity of nuclear waste is small and can be reduced through the latest technology of newer reactors and that the operational safety record of fission-electricity in terms of deaths is so far "unparalleled".<ref name="Bernard L. Cohen 1990"/> Kharecha and ] estimated that "global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO<sub>2</sub>-equivalent (Gt{{CO2}}-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning" and, if continued, it could prevent up to 7 million deaths and 240{{nbsp}}Gt{{CO2}}-eq emissions by 2050.<ref name="Kharecha Pushker A 2013 4889–4895" /> | |||
=== Nuclear proliferation === | |||
{{see details|Nuclear proliferation}} | |||
Proponents also bring to attention the opportunity cost of using other forms of electricity. For example, the Environmental Protection Agency estimates that coal kills 30,000 people a year,<ref>{{cite journal |title=Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis |date=23 July 2019| doi=10.1371/journal.pmed.1002856 | last1=Bennett | first1=James E. | last2=Tamura-Wicks | first2=Helen | last3=Parks | first3=Robbie M. | last4=Burnett | first4=Richard T. | last5=Pope | first5=C. Arden | last6=Bechle | first6=Matthew J. | last7=Marshall | first7=Julian D. | last8=Danaei | first8=Goodarz | last9=Ezzati | first9=Majid | journal=PLOS Medicine | volume=16 | issue=7 | pages=e1002856 | pmid=31335874 | pmc=6650052 |doi-access=free }}</ref> as a result of its environmental impact, while 60 people died in the Chernobyl disaster.<ref>{{cite web |title=Nuclear Power and Energy Independence |url=https://reason.com/2008/10/22/nuclear-power-and-energy-indep/ |date=22 October 2008 |access-date=18 February 2022 |archive-date=18 February 2022 |archive-url=https://web.archive.org/web/20220218141253/https://reason.com/2008/10/22/nuclear-power-and-energy-indep/ |url-status=live }}</ref> A real world example of impact provided by proponents is the 650,000 ton increase in carbon emissions in the two months following the closure of the Vermont Yankee nuclear plant.<ref>{{cite web |title=Climate |url=https://www.nuclearmatters.com/climate |access-date=18 February 2022 |archive-date=18 February 2022 |archive-url=https://web.archive.org/web/20220218141249/https://www.nuclearmatters.com/climate |url-status=live }}</ref> | |||
Opponents of nuclear power point out that nuclear technology is often ], and much of the same materials and knowledge used in a civilian nuclear program can be used to develop ]s. This concern is known as nuclear proliferation and is a major reactor design criterion. | |||
Opponents believe that nuclear power poses many threats to people's health and environment<ref>{{cite book |author=Weart |first=Spencer R. |author-link=Spencer R. Weart |title=The Rise of Nuclear Fear |date=2012 |publisher=Harvard University Press |language=en-us}}</ref><ref name="Sturgis">{{cite web |url=http://www.southernstudies.org/2009/04/post-4.html |title=Investigation: Revelations about Three Mile Island disaster raise doubts over nuclear plant safety |last=Sturgis |first=Sue |publisher=] |access-date=2010-08-24 |archive-url=https://web.archive.org/web/20100418063024/http://www.southernstudies.org/2009/04/post-4.html |archive-date=2010-04-18 |url-status=dead }}</ref> such as the risk of nuclear weapons proliferation, long-term safe waste management and terrorism in the future.<ref name=gierec>{{cite web |publisher= Greenpeace International and European Renewable Energy Council |date= January 2007 |url= http://www.energyblueprint.info/fileadmin/media/documents/energy_revolution.pdf |title= Energy Revolution: A Sustainable World Energy Outlook |page= 7 |access-date= 2010-02-28 |archive-date= 2009-08-06 |archive-url= https://web.archive.org/web/20090806121526/http://www.energyblueprint.info/fileadmin/media/documents/energy_revolution.pdf |url-status= dead }}</ref><ref name=protest>{{cite book |last1=Giugni |first1=Marco |title=Social protest and policy change: ecology, antinuclear, and peace movements in comparative perspective |date=2004 |publisher=Rowman & Littlefield |location=Lanham |isbn=978-0-7425-1826-1 |url=https://books.google.com/books?id=Kn6YhNtyVigC&pg=PA44 |page=44 |access-date=2015-10-18 |archive-date=2023-12-24 |archive-url=https://web.archive.org/web/20231224045246/https://books.google.com/books?id=Kn6YhNtyVigC&pg=PA44#v=onepage&q&f=false |url-status=live }}</ref> They also contend that nuclear power plants are complex systems where many things can and have gone wrong.<ref name="bksenpol">{{cite journal |author=Sovacool |first=Benjamin K. |author-link=Benjamin K. Sovacool |year=2008 |title=The costs of failure: A preliminary assessment of major energy accidents, 1907–2007 |journal=] |volume=36 |issue=5 |pages=1802–1820 |bibcode=2008EnPol..36.1802S |doi=10.1016/j.enpol.2008.01.040}}</ref><ref>{{cite book |last1=Cooke |first1=Stephanie |title=] |date=2009 |publisher=Bloomsbury |location=New York |isbn=978-1-59691-617-3 |page=280 }}</ref> Costs of the ] amount to ≈$68 billion as of 2019 and are increasing,<ref name="OECD02-Ch2"/> the ] is estimated to cost taxpayers ~$187 billion,<ref name="guardian-20170130">{{cite news |author=McCurry |first=Justin |date=30 January 2017 |title=Possible nuclear fuel find raises hopes of Fukushima plant breakthrough |url=https://www.theguardian.com/environment/2017/jan/31/possible-nuclear-fuel-find-fukushima-plant |url-status=live |archive-url=https://web.archive.org/web/20170202190024/https://www.theguardian.com/environment/2017/jan/31/possible-nuclear-fuel-find-fukushima-plant |archive-date=2 February 2017 |access-date=3 February 2017 |newspaper=The Guardian}}</ref> and radioactive waste management is estimated to cost the Eureopean Union nuclear operators ~$250 billion by 2050.<ref name="euwastecosts">{{cite news |title=Europe faces €253bn nuclear waste bill |url=https://www.theguardian.com/environment/2016/apr/04/europe-faces-253bn-nuclear-waste-bill |access-date=24 November 2021 |work=The Guardian |date=4 April 2016 |language=en}}</ref> However, in countries that already use nuclear energy, when not considering reprocessing, intermediate nuclear waste disposal costs could be relatively fixed to certain but unknown degrees<ref>{{cite journal |last1=Rodriguez |first1=C. |last2=Baxter |first2=A. |last3=McEachern |first3=D. |last4=Fikani |first4=M. |last5=Venneri |first5=F. |title=Deep-Burn: making nuclear waste transmutation practical |journal=Nuclear Engineering and Design |date=1 June 2003 |volume=222 |issue=2 |pages=299–317 |doi=10.1016/S0029-5493(03)00034-7 |bibcode=2003NuEnD.222..299R |language=en |issn=0029-5493}}</ref> "as the main part of these costs stems from the operation of the intermediate storage facility".<ref>{{cite journal |last1=Geissmann |first1=Thomas |last2=Ponta |first2=Oriana |title=A probabilistic approach to the computation of the levelized cost of electricity |journal=Energy |date=1 April 2017 |volume=124 |pages=372–381 |doi=10.1016/j.energy.2017.02.078 |bibcode=2017Ene...124..372G |language=en |issn=0360-5442}}</ref> | |||
The military and civil purposes for nuclear energy are intertwined in most countries with nuclear capabilities. In the U.S., for example, the first goal of the Department of Energy is "to advance the national, economic, and energy security of the United States; to promote scientific and technological innovation in support of that mission; and to ensure the environmental cleanup of the national nuclear weapons complex."<ref name="doe-about">{{Cite web|url=http://www.energy.gov/about/index.htm|title=About DOE|accessdate=2006-11-10|publisher=U.S. Department of Energy}}</ref> | |||
Critics find that one of the largest drawbacks to building new nuclear fission power plants are the large construction and operating costs when compared to alternatives of sustainable energy sources.<ref name="cnnchina"/><ref name="10.1016/j.erss.2014.04.015">{{cite journal |last1=Ramana |first1=M. V. |last2=Mian |first2=Zia |title=One size doesn't fit all: Social priorities and technical conflicts for small modular reactors |journal=Energy Research & Social Science |date=1 June 2014 |volume=2 |pages=115–124 |doi=10.1016/j.erss.2014.04.015 |bibcode=2014ERSS....2..115R |language=en |issn=2214-6296}}</ref><ref name="10.5281/zenodo.5573718">{{cite periodical |title=Kernenergie und Klima |periodical=Diskussionsbeiträge der Scientists for Future |date=16 October 2021 |doi=10.5281/zenodo.5573718 |doi-access=free |language=de |last1=Wealer |first1=Ben |last2=Breyer |first2=Christian |last3=Hennicke |first3=Peter |last4=Hirsch |first4=Helmut |last5=von Hirschhausen |first5=Christian |last6=Klafka |first6=Peter |last7=Kromp-Kolb |first7=Helga |last8=Präger |first8=Fabian |last9=Steigerwald |first9=Björn |last10=Traber |first10=Thure |last11=Baumann |first11=Franz |last12=Herold |first12=Anke |last13=Kemfert |first13=Claudia |last14=Kromp |first14=Wolfgang |last15=Liebert |first15=Wolfgang |last16=Müschen |first16=Klaus }}</ref><ref name="10.1016/j.enpol.2016.03.012">{{cite journal |last1=Ramana |first1=M. V. |last2=Ahmad |first2=Ali |title=Wishful thinking and real problems: Small modular reactors, planning constraints, and nuclear power in Jordan |journal=Energy Policy |date=1 June 2016 |volume=93 |pages=236–245 |doi=10.1016/j.enpol.2016.03.012 |bibcode=2016EnPol..93..236R |language=en |issn=0301-4215}}</ref><ref name="10.1177/2399654418777765">{{cite journal |last1=Meckling |first1=Jonas |title=Governing renewables: Policy feedback in a global energy transition |journal=Environment and Planning C: Politics and Space |date=1 March 2019 |volume=37 |issue=2 |pages=317–338 |doi=10.1177/2399654418777765 |s2cid=169975439 |language=en |issn=2399-6544}}</ref> Further costs include ongoing research and development, expensive ] in cases where such is practiced<ref name="repr"/><ref name="future1"/><ref name="pluto"/><ref name="detect"/> and decommissioning.<ref> {{Webarchive|url=https://web.archive.org/web/20070714140023/http://www.nrc.gov/reading-rm/basic-ref/students/decommissioning.html |date=2007-07-14 }}, 2007-4-20, {{Webarchive|url=https://web.archive.org/web/20200406093326/https://www.nrc.gov/about-nrc.html |date=2020-04-06 }}, Retrieved 2007-6-12</ref><ref>{{cite web |url=http://www.world-nuclear-news.org/newsarticle.aspx?id=13304&LangType=2057 |title=Decommissioning at Chernobyl |publisher=World-nuclear-news.org |date=2007-04-26 |access-date=2015-11-01 |archive-date=2010-08-23 |archive-url=https://web.archive.org/web/20100823095416/http://www.world-nuclear-news.org/newsarticle.aspx?id=13304&LangType=2057 }}</ref><ref name="10.1016/j.rser.2021.110836">{{cite journal |last1=Wealer |first1=B. |last2=Bauer |first2=S. |last3=Hirschhausen |first3=C. v. |last4=Kemfert |first4=C. |last5=Göke |first5=L. |title=Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation |journal=Renewable and Sustainable Energy Reviews |date=1 June 2021 |volume=143 |page=110836 |doi=10.1016/j.rser.2021.110836 |bibcode=2021RSERv.14310836W |s2cid=233564525 |language=en |issn=1364-0321 |quote=We conclude that our numerical exercise confirms the literature review, i.e. the economics of nuclear power plants are not favorable to future investments, even though additional costs (decommissioning, long-term storage) and the social costs of accidents are not even considered.}}</ref> Proponents note that focussing on the ] (LCOE), however, ignores the value premium associated with 24/7 dispatchable electricity and the cost of storage and backup systems necessary to integrate variable energy sources into a reliable electrical grid.<ref>{{Cite web|url=https://www.reutersevents.com/nuclear/new-nuclear-lto-among-cheapest-low-carbon-options-report-shows|title=New nuclear, LTO among cheapest low carbon options, report shows|website=Reuters Events|access-date=2022-04-19|archive-date=2022-05-19|archive-url=https://web.archive.org/web/20220519113259/https://www.reutersevents.com/nuclear/new-nuclear-lto-among-cheapest-low-carbon-options-report-shows|url-status=live}}</ref> "Nuclear thus remains the dispatchable low-carbon technology with the lowest expected costs in 2025. Only large hydro reservoirs can provide a similar contribution at comparable costs but remain highly dependent on the natural endowments of individual countries."<ref>{{Cite web|url=https://www.iea.org/reports/projected-costs-of-generating-electricity-2020|title=Projected Costs of Generating Electricity 2020 – Analysis|website=IEA|date=9 December 2020 |access-date=2020-12-12|archive-date=2022-04-02|archive-url=https://web.archive.org/web/20220402003026/https://www.iea.org/reports/projected-costs-of-generating-electricity-2020|url-status=live}}</ref> | |||
The enriched uranium used in most nuclear reactors is not concentrated enough to build a bomb. Most nuclear reactors run on 4% enriched uranium; ] used 80% enriched uranium; while lower enrichment levels could be used, the minimum bomb size would rapidly become infeasibly large as the level was decreased. However, the same plants and technology used to enrich uranium for power generation can be used to make the highly enriched uranium needed to build a bomb.<ref name="wss-stsoet">{{Cite web|url=http://www.princeton.edu/~rskemp/Stemming_the_Spread_of_Enrichment_Plants.pdf|title=Stemming the Spread of Enrichment Technology|accessdate=2006-11-10|publisher=Woodrow Wilson School of Public and International Affairs|year=2006|author=Babur Habib et al|format=PDF}}</ref> | |||
] at ] in northern Germany]] | |||
Overall, many opponents find that nuclear energy cannot meaningfully contribute to climate change mitigation. In general, they find it to be, too dangerous, too expensive, to take too long for deployment, to be an obstacle to achieving a transition towards sustainability and carbon-neutrality,<ref name="10.5281/zenodo.5573718"/><ref>{{cite web |title=Empirically grounded technology forecasts and the energy transition |website=University of Oxford |url=https://www.inet.ox.ac.uk/files/energy_transition_paper-INET-working-paper.pdf |archive-url=https://web.archive.org/web/20211018072825/https://www.inet.ox.ac.uk/files/energy_transition_paper-INET-working-paper.pdf |archive-date=2021-10-18 |language=en}}</ref><ref name="slowexpensive">{{cite news |title=Nuclear energy too slow, too expensive to save climate: report |url=https://www.reuters.com/article/us-energy-nuclearpower-idUSKBN1W909J |access-date=24 November 2021 |work=Reuters |date=24 September 2019 |language=en |archive-date=16 March 2021 |archive-url=https://web.archive.org/web/20210316222844/https://www.reuters.com/article/us-energy-nuclearpower-idUSKBN1W909J |url-status=live }}</ref><ref>{{cite web |last1=Farmer |first1=J. Doyne |last2=Way |first2=Rupert |last3=Mealy |first3=Penny |title=Estimating the costs of energy transition scenarios using probabilistic forecasting methods |website=University of Oxford |date=December 2020 |url=https://www.inet.ox.ac.uk/files/energy_transition_paper-INET-working-paper.pdf |archive-url=https://web.archive.org/web/20211018072825/https://www.inet.ox.ac.uk/files/energy_transition_paper-INET-working-paper.pdf |archive-date=2021-10-18 |language=en}}</ref> effectively being a distracting<ref name="gates2">{{cite news |title=Scientists pour cold water on Bill Gates' nuclear plans {{!}} DW {{!}} 08.11.2021 |url=https://www.dw.com/en/scientists-pour-cold-water-on-bill-gates-nuclear-plans/a-59751405 |access-date=24 November 2021 |work=Deutsche Welle (www.dw.com) |archive-date=24 November 2021 |archive-url=https://web.archive.org/web/20211124073731/https://www.dw.com/en/scientists-pour-cold-water-on-bill-gates-nuclear-plans/a-59751405 |url-status=live }}</ref><ref name="cd1">{{cite web |title=Scientists Warn Experimental Nuclear Plant Backed by Bill Gates Is 'Outright Dangerous' |url=https://www.commondreams.org/news/2021/11/17/scientists-warn-experimental-nuclear-plant-backed-bill-gates-outright-dangerous |website=Common Dreams |access-date=24 November 2021 |language=en |archive-date=24 November 2021 |archive-url=https://web.archive.org/web/20211124190922/https://www.commondreams.org/news/2021/11/17/scientists-warn-experimental-nuclear-plant-backed-bill-gates-outright-dangerous |url-status=live }}</ref> competition for resources (i.e. human, financial, time, infrastructure and expertise) for the deployment and development of alternative, sustainable, ] technologies<ref name="mil1">{{cite web |title=Hidden military implications of 'building back' with new nuclear in the UK |url=https://www.sgr.org.uk/sites/default/files/2021-09/SGR_RS03_2021_Johnstone%2BStirling.pdf |access-date=24 November 2021 |archive-date=23 October 2021 |archive-url=https://web.archive.org/web/20211023044245/https://www.sgr.org.uk/sites/default/files/2021-09/SGR_RS03_2021_Johnstone%2BStirling.pdf |url-status=live }}</ref><ref name="cd1"/><ref name="10.5281/zenodo.5573718"/><ref>{{cite journal |last1=Szyszczak |first1=Erika |title=State aid for energy infrastructure and nuclear power projects |journal=ERA Forum |date=1 July 2015 |volume=16 |issue=1 |pages=25–38 |doi=10.1007/s12027-015-0371-6 |s2cid=154617833 |language=en |issn=1863-9038}}</ref> (such as for wind, ocean and solar<ref name="10.5281/zenodo.5573718"/> – including e.g. ] – as well as ways to manage ] other than nuclear baseload<ref name=MIT2018>{{cite web|url=http://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf|title=The Future of Nuclear Energy in a Carbon-Constrained World|date=2018|publisher=]|access-date=2019-01-05|archive-date=2019-03-27|archive-url=https://web.archive.org/web/20190327040903/http://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf|url-status=live}}</ref> generation such as ], renewables-diversification,<ref>{{cite journal |last1=Crespo |first1=Diego |title=STE can replace coal, nuclear and early gas as demonstrated in an hourly simulation over 4 years in the Spanish electricity mix |journal=AIP Conference Proceedings |series=SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems |date=25 July 2019 |volume=2126 |issue=1 |page=130003 |doi=10.1063/1.5117645 |bibcode=2019AIPC.2126m0003C |s2cid=201317957 |issn=0094-243X|doi-access=free }}</ref><ref name="10.1016/j.esr.2019.01.007">{{cite journal |last1=Benasla |first1=Mokhtar |last2=Hess |first2=Denis |last3=Allaoui |first3=Tayeb |last4=Brahami |first4=Mostefa |last5=Denaï |first5=Mouloud |title=The transition towards a sustainable energy system in Europe: What role can North Africa's solar resources play? |journal=Energy Strategy Reviews |date=1 April 2019 |volume=24 |pages=1–13 |doi=10.1016/j.esr.2019.01.007 |s2cid=169342098 |language=en |issn=2211-467X|doi-access=free |bibcode=2019EneSR..24....1B |hdl=2299/21546 |hdl-access=free }}</ref> ]s, flexible energy demand and supply regulating ]s and energy storage<ref>{{cite journal |last1=Haller |first1=Markus |last2=Ludig |first2=Sylvie |last3=Bauer |first3=Nico |title=Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation |journal=Energy Policy |date=1 August 2012 |volume=47 |pages=282–290 |doi=10.1016/j.enpol.2012.04.069 |bibcode=2012EnPol..47..282H |language=en |issn=0301-4215}}</ref><ref>{{cite journal |last1=Arbabzadeh |first1=Maryam |last2=Sioshansi |first2=Ramteen |last3=Johnson |first3=Jeremiah X. |last4=Keoleian |first4=Gregory A. |title=The role of energy storage in deep decarbonization of electricity production |journal=Nature Communications |date=30 July 2019 |volume=10 |issue=1 |page=3413 |doi=10.1038/s41467-019-11161-5 |pmid=31363084 |pmc=6667472 |bibcode=2019NatCo..10.3413A |language=en |issn=2041-1723}}</ref><ref>{{cite book |last1=Liu |first1=Jianing |last2=Zhang |first2=Weiqi |last3=Zhou |first3=Rui |last4=Zhong |first4=Jin |title=2012 IEEE Power and Energy Society General Meeting |chapter=Impacts of distributed renewable energy generations on smart grid operation and dispatch |date=July 2012 |pages=1–5 |doi=10.1109/PESGM.2012.6344997|isbn=978-1-4673-2729-9 |s2cid=25157226 }}</ref><ref>{{cite journal |last1=Ayodele |first1=T. R. |last2=Ogunjuyigbe |first2=A. S. O. |title=Mitigation of wind power intermittency: Storage technology approach |journal=Renewable and Sustainable Energy Reviews |date=1 April 2015 |volume=44 |pages=447–456 |doi=10.1016/j.rser.2014.12.034 |bibcode=2015RSERv..44..447A |language=en |issn=1364-0321}}</ref><ref name="natgeo"/> technologies).<ref name="10.1016/j.enpol.2016.04.013">{{cite journal |last1=Khatib |first1=Hisham |last2=Difiglio |first2=Carmine |title=Economics of nuclear and renewables |journal=Energy Policy |date=1 September 2016 |volume=96 |pages=740–750 |doi=10.1016/j.enpol.2016.04.013 |bibcode=2016EnPol..96..740K |language=en |issn=0301-4215}}</ref><ref>{{cite periodical |title=Klimaverträgliche Energieversorgung für Deutschland – 16 Orientierungspunkte |trans-title=Climate-friendly energy supply for Germany—16 points of orientation |periodical=Diskussionsbeiträge der Scientists for Future |date=22 April 2021 |doi=10.5281/zenodo.4409334 |doi-access=free |language=de |last1=Gerhards |first1=Christoph |last2=Weber |first2=Urban |last3=Klafka |first3=Peter |last4=Golla |first4=Stefan |last5=Hagedorn |first5=Gregor |last6=Baumann |first6=Franz |last7=Brendel |first7=Heiko |last8=Breyer |first8=Christian |last9=Clausen |first9=Jens |last10=Creutzig |first10=Felix |last11=Daub |first11=Claus-Heinrich |last12=Helgenberger |first12=Sebastian |last13=Hentschel |first13=Karl-Martin |last14=Hirschhausen |first14=Christian von |last15=Jordan |first15=Ulrike |last16=Kemfert |first16=Claudia |last17=Krause |first17=Harald |last18=Linow |first18=Sven |last19=Oei |first19=Pao-Yu |last20=Pehnt |first20=Martin |last21=Pfennig |first21=Andreas |last22=Präger |first22=Fabian |last23=Quaschning |first23=Volker |last24=Schneider |first24=Jens |last25=Spindler |first25=Uli |last26=Stelzer |first26=Volker |last27=Sterner |first27=Michael |last28=Wagener-Lohse |first28=Georg |last29=Weinsziehr |first29=Theresa }}</ref><ref>{{cite journal |last1=Lap |first1=Tjerk |last2=Benders |first2=René |last3=van der Hilst |first3=Floor |last4=Faaij |first4=André |title=How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050? |journal=Energy |date=15 March 2020 |volume=195 |page=116948 |doi=10.1016/j.energy.2020.116948 |s2cid=214336333 |language=en |issn=0360-5442|doi-access=free |bibcode=2020Ene...19516948L }}</ref><ref>{{cite journal |last1=Bustreo |first1=C. |last2=Giuliani |first2=U. |last3=Maggio |first3=D. |last4=Zollino |first4=G. |title=How fusion power can contribute to a fully decarbonized European power mix after 2050 |journal=] |date=1 September 2019 |volume=146 |pages=2189–2193 |doi=10.1016/j.fusengdes.2019.03.150 |bibcode=2019FusED.146.2189B |s2cid=133216477 |language=en |issn=0920-3796}}</ref><ref>{{cite journal |last1=McPherson |first1=Madeleine |last2=Tahseen |first2=Samiha |title=Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure |journal=Energy |date=15 February 2018 |volume=145 |pages=856–870 |doi=10.1016/j.energy.2018.01.002 |bibcode=2018Ene...145..856M |language=en |issn=0360-5442}}</ref><ref>{{cite journal |last1=Kan |first1=Xiaoming |last2=Hedenus |first2=Fredrik |last3=Reichenberg |first3=Lina |title=The cost of a future low-carbon electricity system without nuclear power – the case of Sweden |journal=Energy |date=15 March 2020 |volume=195 |page=117015 |doi=10.1016/j.energy.2020.117015| arxiv=2001.03679 |bibcode=2020Ene...19517015K |s2cid=213083726 |language=en |issn=0360-5442 |quote=There is little economic rationale for Sweden to reinvest in nuclear power. Abundant hydropower allows for a low-cost renewable power system without nuclear.}}</ref><ref>{{cite journal |last1=McPherson |first1=Madeleine |last2=Karney |first2=Bryan |title=A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model |journal=Energy |date=1 November 2017 |volume=138 |pages=185–196 |doi=10.1016/j.energy.2017.07.027 |bibcode=2017Ene...138..185M |language=en |issn=0360-5442 |quote=Several flexibility options have been proposed to facilitate VRE integration, including interconnecting geographically dispersed resources, interconnecting different VRE types, building flexible and dispatchable generation assets, shifting flexible loads through demand response, shifting electricity generation through storage, curtailing excess generation, interconnections to the transport or heating energy sectors, and improving VRE forecasting methodologies (Delucchi and Jacobson 2011). Previous VRE integration studies have considered different combinations of balancing options, but few have considered all flexibility options simultaneously.}}</ref><ref>{{cite web |title=Barriers to Renewable Energy Technologies {{!}} Union of Concerned Scientists |url=https://ucsusa.org/resources/barriers-renewable-energy-technologies |website=ucsusa.org |access-date=25 October 2021 |language=en |quote=Renewable energy opponents love to highlight the variability of the sun and wind as a way of bolstering support for coal, gas, and nuclear plants, which can more easily operate on-demand or provide "baseload" (continuous) power. The argument is used to undermine large investments in renewable energy, presenting a rhetorical barrier to higher rates of wind and solar adoption. But reality is much more favorable for clean energy. |archive-date=25 October 2021 |archive-url=https://web.archive.org/web/20211025160437/https://ucsusa.org/resources/barriers-renewable-energy-technologies |url-status=live }}</ref><ref name="dont">{{cite web |title=CoP 26 Statement {{!}} Don't nuke the Climate! |url=https://dont-nuke-the-climate.org/cop-26-statement |access-date=24 November 2021 |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125033418/https://www.dont-nuke-the-climate.org/cop-26-statement |url-status=dead }}</ref> | |||
Nevertheless, there is ongoing research and debate over costs of new nuclear, especially in regions where i.a. seasonal energy storage is difficult to provide and which aim to ] in favor of ] faster than the global average.<ref>{{cite news |title=Does Hitachi decision mean the end of UK's nuclear ambitions? |url=https://www.theguardian.com/business/2019/jan/17/does-the-hitachi-decision-mean-the-end-of-the-uks-nuclear-dream |work=The Guardian |date=17 January 2019}}</ref> Some find that financial transition costs for a 100% renewables-based European energy system that has completely phased out nuclear energy could be more costly by 2050 based on current technologies (i.e. not considering potential advances in e.g. ], transmission and flexibility capacities, ways to reduce energy needs, geothermal energy and fusion energy) when the grid only extends across Europe.<ref>{{cite journal |last1=Zappa |first1=William |last2=Junginger |first2=Martin |last3=van den Broek |first3=Machteld |title=Is a 100% renewable European power system feasible by 2050? |journal=Applied Energy |date=1 January 2019 |volume=233-234 |pages=1027–1050 |doi=10.1016/j.apenergy.2018.08.109 |s2cid=116855350 |language=en |issn=0306-2619|doi-access=free |bibcode=2019ApEn..233.1027Z }}</ref> Arguments of economics and safety are used by both sides of the debate. | |||
In addition, the plutonium produced in power reactors, if concentrated through reprocessing, can be used for a bomb. While the plutonium resulting from normal reactor fuelling cycles is less than ideal for weapons use because of the concentration of Pu-240, a usable weapon can be produced from it.<ref name="npec-afeotpdolwr">{{Cite web|url=http://www.npec-web.org/Reports/Report041022%20LWR.pdf|title=A Fresh Examination of the Proliferation Dangers of Light Water Reactors|accessdate=2006-11-10|publisher=Nonproliferation Policy Education Center|year=2004|author=Victor Galinsky, Marvin Miller & Harmon Hubbard|format=PDF}}</ref> If the reactor is operated on very short fuelling cycles, bomb-grade plutonium can be produced. However, such operation would be virtually impossible to camouflage in many reactor designs, as the frequent shutdowns for refuelling would be obvious, for instance in satellite photographs. | |||
It is widely believed that the nuclear programs of India and Pakistan used CANDU reactors to produce fissionable materials for their weapons; however, this is not accurate. Both Canada (by supplying the 40 MW research reactor) and the United States (by supplying 21 tons of heavy water) supplied India with the technology necessary to create a nuclear weapons programme, dubbed CIRUS (Canada-India Reactor, United States). Although both Canada and the US stipulated that the reactor be used only for peaceful purposes, India used the reactor to produce plutonium for their first nuclear explosion, Smiling Buddha.<ref name="nwa-inwptb">{{Cite web|url=http://nuclearweaponarchive.org/India/IndiaOrigin.html|title=The Beginning: 1944-1960|accessdate=2006-11-10|publisher=Nuclear Weapon Archive|year=2001|work=India's Nuclear Weapons Program}}</ref> Pakistan is believed to have produced the material for its weapons from an indigenous enrichment program.<ref name="fas-pnwac">{{Cite web|url=http://www.fas.org/nuke/guide/pakistan/nuke/chron.htm|title=Pakistan Nuclear Weapons — A Chronology|accessdate=2006-11-10|publisher=Federation of American Scientists|year=1998|work=WMD Around the World}}</ref> | |||
=== Comparison with renewable energy === | |||
To prevent weapons proliferation, safeguards on nuclear technology were published in the ] (NPT) and monitored since 1968 by the ] (IAEA). Nations signing the treaty are required to report to the IAEA what nuclear materials they hold and their location. They agree to accept visits by IAEA auditors and inspectors to verify independently their material reports and physically inspect the nuclear materials concerned to confirm physical inventories of them in exchange for access to nuclear materials and equipment on the global market. | |||
{{See also|Renewable energy debate}} | |||
Slowing ] requires a transition to a ], mainly by burning far less ]. Limiting global warming to 1.5{{nbsp}}°C is technically possible if no new fossil fuel power plants are built from 2019.<ref>{{cite journal |author=Smith|display-authors=etal|date=15 January 2019 |title=Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming |journal=Nature |volume=10|issue=1|page=101|bibcode=2019NatCo..10..101S|doi=10.1038/s41467-018-07999-w|pmid=30647408|pmc=6333788}}</ref> This has generated considerable interest and dispute in determining the best path forward to rapidly replace fossil-based fuels in the ],<ref>{{cite magazine|url=https://spectrum.ieee.org/what-it-would-really-take-to-reverse-climate-change|title=What It Would Really Take to Reverse Climate Change|magazine=IEEE Spectrum|author1=Ross Koningstein|author2=David Fork|date=18 November 2014|access-date=13 January 2019|archive-date=24 November 2016|archive-url=https://web.archive.org/web/20161124081052/https://spectrum.ieee.org/energy/renewables/what-it-would-really-take-to-reverse-climate-change|url-status=live}}</ref><ref>{{cite web |author=Johnson |first=Nathanael |date=2018 |title=Agree to Agree Fights over renewable standards and nuclear power can be vicious. Here's a list of things that climate hawks agree on. |url=https://grist.org/article/most-paths-to-a-clean-energy-future-start-the-same-way/ |url-status=live |archive-url=https://web.archive.org/web/20190116100151/https://grist.org/article/most-paths-to-a-clean-energy-future-start-the-same-way/ |archive-date=2019-01-16 |access-date=2019-01-16 |work=]}}</ref> with intense academic debate.<ref>{{cite news |url=https://www.utilitydive.com/news/whats-missing-from-the-100-renewable-energy-debate/447658/ |title=What's missing from the 100% renewable energy debate |work=Utility Dive |access-date=2019-01-05 |archive-date=2019-01-06 |archive-url=https://web.archive.org/web/20190106010934/https://www.utilitydive.com/news/whats-missing-from-the-100-renewable-energy-debate/447658/ |url-status=live }}</ref><ref name="GTM-NewFront">{{cite web |last1=Deign |first1=Jason |title=Renewables or Nuclear? A New Front in the Academic War Over Decarbonization |url=https://www.greentechmedia.com/articles/read/the-war-over-renewables-versus-nuclear |website=gtm |publisher=Greentech Media |date=March 30, 2018 |access-date=December 13, 2018 |archive-date=December 15, 2018 |archive-url=https://web.archive.org/web/20181215224058/https://www.greentechmedia.com/articles/read/the-war-over-renewables-versus-nuclear |url-status=live }}</ref> Sometimes the IEA says that countries without nuclear should develop it as well as their renewable power.<ref>{{Cite web|url=https://www.dailysabah.com/energy/2019/07/06/turkey-may-benefit-from-nuclear-power-in-its-bid-for-clean-energy|title=Turkey may benefit from nuclear power in its bid for clean energy|website=DailySabah|date=6 July 2019|access-date=2019-07-14|archive-date=2019-07-14|archive-url=https://web.archive.org/web/20190714182533/https://www.dailysabah.com/energy/2019/07/06/turkey-may-benefit-from-nuclear-power-in-its-bid-for-clean-energy|url-status=live}}</ref> | |||
Several states did not sign the treaty and were able to use international nuclear technology (often procured for civilian purposes) to develop nuclear weapons (], ], ], and ]). South Africa has since signed the NPT, and now holds the distinction of being the only known state to have indigenously produced nuclear weapons, and then verifiably dismantled them.<ref name="fas-sanwp">{{Cite web|url=http://www.fas.org/nuke/guide/rsa/nuke/|title=Nuclear Weapons Program|accessdate=2006-11-10|publisher=Federation of American Scientists|year=2000|work=WMD Around the World — South Africa}}</ref> Of those who have signed the treaty and received shipments of nuclear paraphernalia, many states have either claimed to, or been accused of, attempting to use supposedly civilian nuclear power plants for developing weapons, including ] and ]. Certain types of reactors are more conducive to producing nuclear weapons materials than others, and a number of international disputes over proliferation have centered on the specific model of reactor being contracted for in a country suspected of nuclear weapon ambitions. | |||
{{Pie chart | |||
| thumb = right | |||
| caption = World total primary energy supply of 162,494 ] (or 13,792 ]) by fuels in 2017 (IEA, 2019)<ref name="IEA-Report-keyworld-2019">{{cite web |title = 2019 Key World Energy Statistics |date = 2019 |publisher = IEA |url = https://webstore.iea.org/download/direct/2831?fileName=Key_World_Energy_Statistics_2019.pdf }}{{Dead link|date=August 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>{{rp|6,8}} | |||
| other = | |||
| label1 = Oil | |||
| value1 = 32 | |||
| color1 = #7C6250 | |||
| label2 = Coal/Peat/Shale | |||
| value2 = 27.1 | |||
| color2 = #313c42 | |||
| label3 = Natural Gas | |||
| value3 = 22.2 | |||
| color3 = #ef8e39 | |||
| label4 = Biofuels and waste | |||
| value4 = 9.5 | |||
| color4 = #ABFF57 | |||
| label5 = Nuclear | |||
| value5 = 4.9 | |||
| color5 = #de2821 | |||
| label6 = Hydro | |||
| value6 = 2.5 | |||
| color6 = #005CE6 | |||
| label7 = Others (]) | |||
| value7 = 1.8 | |||
| color7 = #00CC4B | |||
}} | |||
Several studies suggest that it might be theoretically possible to cover a majority of world energy generation with new renewable sources. The ] (IPCC) has said that if governments were supportive, renewable energy supply could account for close to 80% of the world's energy use by 2050.<ref name="ipccccc">{{cite news |author=Harvey |first=Fiona |author-link=Fiona Harvey |date=2011-05-09 |title=Renewable energy can power the world, says landmark IPCC study |url=https://www.theguardian.com/environment/2011/may/09/ipcc-renewable-energy-power-world |url-status=live |archive-url=https://web.archive.org/web/20190327090312/https://www.theguardian.com/environment/2011/may/09/ipcc-renewable-energy-power-world |archive-date=2019-03-27 |access-date=2016-12-12 |newspaper=The Guardian |location=London, England}}</ref> While in developed nations the economically feasible geography for new hydropower is lacking, with every geographically suitable area largely already exploited,<ref>{{cite web|url=https://water.usgs.gov/edu/wuhy.html|publisher=]|title=Hydroelectric power water use|access-date=2018-12-13|archive-date=2018-11-09|archive-url=https://web.archive.org/web/20181109085438/https://water.usgs.gov/edu/wuhy.html|url-status=live}}</ref> some proponents of wind and solar energy claim these resources alone could eliminate the need for nuclear power.<ref name="GTM-NewFront" /><ref>{{cite web |author=Stover |first=Dawn |date=January 30, 2014 |title=Nuclear vs. renewables: Divided they fall |url=https://thebulletin.org/2014/01/nuclear-vs-renewables-divided-they-fall/ |url-status=live |archive-url=https://web.archive.org/web/20190327040903/https://thebulletin.org/2014/01/nuclear-vs-renewables-divided-they-fall/ |archive-date=March 27, 2019 |access-date=January 30, 2019 |work=Bulletin of the Atomic Scientists}}</ref> | |||
New technology, like ], may lessen the risk of nuclear proliferation by providing sealed reactors with a limited self-contained fuel supply that could be remotely shut down in case of tampering. | |||
Nuclear power is comparable to, and in some cases lower, than many renewable energy sources in terms of lives lost in the past per unit of electricity delivered.<ref name="MarkandyaWilkinson2007" /><ref name="without the hot air" /><ref name="Starfelt">{{cite web |last1=Starfelt |first1=Nils |last2=Wikdahl |first2=Carl-Erik |title=Economic Analysis of Various Options of Electricity Generation – Taking into Account Health and Environmental Effects |url=http://manhaz.cyf.gov.pl/manhaz/strona_konferencja_EAE-2001/15%20-%20Polenp~1.pdf |url-status=dead |archive-url=https://web.archive.org/web/20070927230434/http://manhaz.cyf.gov.pl/manhaz/strona_konferencja_EAE-2001/15%20-%20Polenp~1.pdf |archive-date=2007-09-27 |access-date=2012-09-08}}</ref> Depending on recycling of renewable energy technologies, nuclear reactors may produce a much smaller volume of waste, although much more toxic, expensive to manage and longer-lived.<ref>{{cite journal |author=Biello |first=David |date=2009-01-28 |title=Spent Nuclear Fuel: A Trash Heap Deadly for 250,000 Years or a Renewable Energy Source? |url=http://www.scientificamerican.com/article.cfm?id=nuclear-waste-lethal-trash-or-renewable-energy-source |url-status=live |journal=Scientific American |archive-url=https://web.archive.org/web/20170903121314/https://www.scientificamerican.com/article.cfm?id=nuclear-waste-lethal-trash-or-renewable-energy-source |archive-date=2017-09-03 |access-date=2014-01-24}}</ref><ref name="worldnuclearwastereport"/> A nuclear plant also needs to be disassembled and removed and much of the disassembled nuclear plant needs to be stored as low-level nuclear waste for a few decades.<ref>{{cite web|url=http://www.unep.org/yearbook/2012/pdfs/UYB_2012_CH_3.pdf|title=Closing and Decommissioning Nuclear Power Plants|date=2012-03-07|website=United Nations Environment Programme|archive-url=http://arquivo.pt/wayback/20160518164428/http://www.unep.org/yearbook/2012/pdfs/UYB_2012_CH_3.pdf|archive-date=2016-05-18|access-date=2013-01-04|url-status=dead}}</ref> The disposal and management of the wide variety<ref>{{cite journal |last1=Ewing |first1=Rodney C. |last2=Whittleston |first2=Robert A. |last3=Yardley |first3=Bruce W. D. |date=1 August 2016 |title=Geological Disposal of Nuclear Waste: a Primer |url=http://eprints.whiterose.ac.uk/104498/3/YardleyGeological%20Disposal%20of%20Nuclear%20Waste.pdf |url-status=live |journal=Elements |volume=12 |issue=4 |pages=233–237 |bibcode=2016Eleme..12..233E |doi=10.2113/gselements.12.4.233 |issn=1811-5209 |archive-url=https://web.archive.org/web/20211216110251/https://eprints.whiterose.ac.uk/104498/3/YardleyGeological%20Disposal%20of%20Nuclear%20Waste.pdf |archive-date=16 December 2021 |access-date=1 December 2021}}</ref> of radioactive waste, of which there are over one quarter of a million tons as of 2018, can cause future damage and costs across the world ]<ref>{{cite web |last1=Stothard |first1=Michael |title=Nuclear waste: keep out for 100,000 years |url=https://www.ft.com/content/db87c16c-4947-11e6-b387-64ab0a67014c |archive-url=https://ghostarchive.org/archive/20221210/https://www.ft.com/content/db87c16c-4947-11e6-b387-64ab0a67014c |archive-date=2022-12-10 |url-access=subscription |url-status=live |website=Financial Times |access-date=28 November 2021 |date=14 July 2016}}</ref><ref>{{cite web |title=High-Level Waste |url=https://www.nrc.gov/waste/high-level-waste.html |website=NRC Web |access-date=28 November 2021 |archive-date=27 November 2021 |archive-url=https://web.archive.org/web/20211127082101/https://www.nrc.gov/waste/high-level-waste.html |url-status=live }}</ref><ref>{{cite journal |last1=Grambow |first1=Bernd |title=Mobile fission and activation products in nuclear waste disposal |journal=Journal of Contaminant Hydrology |date=12 December 2008 |volume=102 |issue=3 |pages=180–186 |doi=10.1016/j.jconhyd.2008.10.006 |pmid=19008015 |bibcode=2008JCHyd.102..180G |language=en |issn=0169-7722}}</ref> – possibly over a million years,<ref name="spektr">{{cite web |title=Kernkraft: 6 Fakten über unseren Atommüll und dessen Entsorgung |url=https://www.spektrum.de/wissen/6-fakten-ueber-unseren-atommuell-und-dessen-entsorgung/1342930 |website=www.spektrum.de |access-date=28 November 2021 |language=de |archive-date=28 November 2021 |archive-url=https://web.archive.org/web/20211128121629/https://www.spektrum.de/wissen/6-fakten-ueber-unseren-atommuell-und-dessen-entsorgung/1342930 |url-status=live }}</ref><ref>{{cite journal |last1=Rosborg |first1=B. |last2=Werme |first2=L. |title=The Swedish nuclear waste program and the long-term corrosion behaviour of copper |journal=Journal of Nuclear Materials |date=30 September 2008 |volume=379 |issue=1 |pages=142–153 |doi=10.1016/j.jnucmat.2008.06.025 |bibcode=2008JNuM..379..142R |language=en |issn=0022-3115}}</ref><ref>{{cite journal |last1=Shrader-Frechette |first1=Kristin |title=Mortgaging the future: Dumping ethics with nuclear waste |journal=Science and Engineering Ethics |date=1 December 2005 |volume=11 |issue=4 |pages=518–520 |doi=10.1007/s11948-005-0023-2 |pmid=16279752 |s2cid=43721467 |language=en |issn=1471-5546}}</ref><ref>{{cite journal |last1=Shrader-Frechette |first1=Kristin |title=Ethical Dilemmas and Radioactive Waste: A Survey of the Issues |journal=Environmental Ethics |date=1 November 1991 |volume=13 |issue=4 |pages=327–343 |doi=10.5840/enviroethics199113438 |language=en}}</ref> due to issues such as leakage,<ref>{{cite web |title=Radioactive waste leaking at German storage site: report {{!}} DW {{!}} 16.04.2018 |url=https://www.dw.com/en/radioactive-waste-leaking-at-german-storage-site-report/a-43399896 |website=DW.COM |publisher=Deutsche Welle (www.dw.com) |access-date=24 November 2021 |archive-date=24 November 2021 |archive-url=https://web.archive.org/web/20211124190921/https://www.dw.com/en/radioactive-waste-leaking-at-german-storage-site-report/a-43399896 |url-status=live }}</ref> malign retrieval, vulnerability to attacks (including of reprocessing<ref name="civlib"/><ref name="repr"/> and ]), groundwater contamination, radiation and leakage to above ground, brine leakage or bacterial corrosion.<ref>{{cite journal |last1=Libert |first1=Marie |last2=Schütz |first2=Marta Kerber |last3=Esnault |first3=Loïc |last4=Féron |first4=Damien |last5=Bildstein |first5=Olivier |title=Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes |journal=Bioelectrochemistry |date=June 2014 |volume=97 |pages=162–168 |doi=10.1016/j.bioelechem.2013.10.001 |pmid=24177136 |issn=1878-562X}}</ref><ref name="spektr"/><ref>{{cite journal |last1=Butler |first1=Declan |title=Nuclear-waste facility on high alert over risk of new explosions |journal=Nature |date=27 May 2014 |doi=10.1038/nature.2014.15290 |s2cid=130354940 |language=en |issn=1476-4687}}</ref><ref name="statusreport">{{cite web |title=World Nuclear Industry Status Report 2021 |url=https://www.worldnuclearreport.org/IMG/pdf/wnisr2021-lr.pdf |access-date=24 November 2021 |archive-date=7 December 2023 |archive-url=https://web.archive.org/web/20231207093553/https://www.worldnuclearreport.org/IMG/pdf/wnisr2021-lr.pdf |url-status=live }}</ref> The European Commission Joint Research Centre found that as of 2021 the necessary technologies for geological disposal of nuclear waste are now available and can be deployed.<ref>{{Cite web|url=https://ec.europa.eu/info/sites/default/files/business_economy_euro/banking_and_finance/documents/210329-jrc-report-nuclear-energy-assessment_en.pdf|title=Technical assessment of nuclear energy with respect to the 'do no significant harm' criteria of Regulation (EU) 2020/852 ('Taxonomy Regulation')|date=2021|access-date=2021-11-27|publisher=European Commission Joint Research Centre|page=8|archive-date=2021-04-26|archive-url=https://web.archive.org/web/20210426095255/https://ec.europa.eu/info/sites/default/files/business_economy_euro/banking_and_finance/documents/210329-jrc-report-nuclear-energy-assessment_en.pdf|url-status=live}}</ref> Corrosion experts noted in 2020 that putting the problem of storage off any longer "isn't good for anyone".<ref>{{cite web |title=As nuclear waste piles up, scientists seek the best long-term storage solutions |url=https://cen.acs.org/environment/pollution/nuclear-waste-pilesscientists-seek-best/98/i12 |website=cen.acs.org |access-date=28 November 2021 |archive-date=28 November 2021 |archive-url=https://web.archive.org/web/20211128121633/https://cen.acs.org/environment/pollution/nuclear-waste-pilesscientists-seek-best/98/i12 |url-status=live }}</ref> Separated ] and ] could be used for ]s, which – even with the current centralized control (e.g. state-level) and level of prevalence – are considered to be a difficult and ] for substantial future impacts on human health, lives, civilization and the environment.<ref name="repr">{{cite web|title=Nuclear Reprocessing: Dangerous, Dirty, and Expensive|url=https://www.ucsusa.org/resources/nuclear-reprocessing-dangerous-dirty-and-expensive|publisher=Union of Concerned Scientists|access-date=26 January 2020|archive-date=15 January 2021|archive-url=https://web.archive.org/web/20210115202035/https://www.ucsusa.org/resources/nuclear-reprocessing-dangerous-dirty-and-expensive|url-status=live}}</ref><ref name="wi1">{{cite web|title=Is nuclear power the answer to climate change?|url=https://wiseinternational.org/nuclear-energy/nuclear-power-answer-climate-change|publisher=World Information Service on Energy|access-date=1 February 2020|archive-date=22 April 2020|archive-url=https://web.archive.org/web/20200422202713/https://wiseinternational.org/nuclear-energy/nuclear-power-answer-climate-change|url-status=live}}</ref><ref name="worldnuclearwastereport">{{cite web |title=World Nuclear Waste Report |url=https://worldnuclearwastereport.org/ |access-date=25 October 2021 |archive-date=15 June 2023 |archive-url=https://web.archive.org/web/20230615183744/https://worldnuclearwastereport.org/ |url-status=live }}</ref><ref name="risks">{{cite web |last1=Smith |first1=Brice |title=Insurmountable Risks: The Dangers of Using Nuclear Power to Combat Global Climate Change – Institute for Energy and Environmental Research |url=https://ieer.org/resource/books/insurmountable-risks-dangers-nuclear/ |url-status=live |archive-url=https://web.archive.org/web/20230530034945/https://ieer.org/resource/books/insurmountable-risks-dangers-nuclear/ |archive-date=30 May 2023 |access-date=24 November 2021 |language=en}}</ref><ref name="plane1">{{cite journal |last1=Prăvălie |first1=Remus |last2=Bandoc |first2=Georgeta |title=Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications |journal=Journal of Environmental Management |date=1 March 2018 |volume=209 |pages=81–92 |doi=10.1016/j.jenvman.2017.12.043 |pmid=29287177 |bibcode=2018JEnvM.209...81P |issn=1095-8630}}</ref> | |||
One possible obstacle for expanding the use of nuclear power might be a limited supply of uranium ore, without which it would become necessary to build and operate breeder reactors. However, at current usage there is sufficient uranium for an extended period — "In summary, the actual recoverable uranium supply is likely to be enough to last several hundred (up to 1000) years, even using standard reactors."<ref name="aei-wur">{{Cite web|url=http://www.americanenergyindependence.com/uranium.html|title=World Uranium Reserves|accessdate=2006-11-10|publisher=American Energy Independence|year=2004|author=James Jopf}}</ref> Breeder reactors have been banned in the U.S. since President ]'s administration prohibited reprocessing because of what it regarded as the unacceptable risk of proliferation of weapons-grade materials. | |||
====Speed of transition and investment needed==== | |||
Some proponents of nuclear power agree that the risk of nuclear proliferation may be a reason to prevent nondemocratic developing nations from gaining any nuclear technology but argue that this is no reason for democratic developed nations to abandon their nuclear power plants, especially in the light of the ], which claims that democracies refrain from war against each other. There is, however, always the risk that information of new technologies will be stolen and made public (eg on the Internet), making it ever easier for any country to build its own nuclear facilities. | |||
Analysis in 2015 by professor ] and colleagues found that nuclear energy could displace or remove fossil fuels from the electric grid completely within 10 years. This finding was based on the historically modest and proven rate at which nuclear energy was added in France and Sweden during their building programs in the 1980s.<ref name="journals.plos.org">{{cite journal|title=Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data|first1=Staffan A.|last1=Qvist|first2=Barry W.|last2=Brook|date=13 May 2015|journal=PLOS ONE|volume=10|issue=5|pages=e0124074|doi=10.1371/journal.pone.0124074|pmid=25970621|pmc=4429979|bibcode=2015PLoSO..1024074Q|doi-access=free}}</ref><ref>{{cite web |url=https://www.discovery.com/dscovrd/tech/report-world-can-rid-itself-of-fossil-fuel-dependence-in-as-little-as-10-years/ |title=Report: World can Rid Itself of Fossil Fuel Dependence in as little as 10 years |work=Discovery |access-date=2019-01-31 |archive-date=2019-02-01 |archive-url=https://web.archive.org/web/20190201120207/http://www.discovery.com/dscovrd/tech/report-world-can-rid-itself-of-fossil-fuel-dependence-in-as-little-as-10-years/ |url-status=live }}</ref> In a similar analysis, Brook had earlier determined that 50% of all ], including transportation ] etc., could be generated within approximately 30 years if the global nuclear fission build rate was identical to historical proven installation rates calculated in ] per year per unit of global ] (GW/year/$).<ref name="brook_could_2012">{{cite journal |author=Brook |first=Barry W. |year=2012 |title=Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case |journal=Energy Policy |volume=42 |pages=4–8 |bibcode=2012EnPol..42....4B |doi=10.1016/j.enpol.2011.11.041}}</ref> This is in contrast to the conceptual studies for ] systems, which would require an order of magnitude more costly global investment per year, which has no historical precedent.<ref name="loftus_critical_2015">{{cite journal |last1=Loftus |first1=Peter J. |last2=Cohen |first2=Armond M. |last3=Long |first3=Jane C. S. |last4=Jenkins |first4=Jesse D. |date=January 2015 |title=A critical review of global decarbonization scenarios: what do they tell us about feasibility? |url=https://www.qualenergia.it/sites/default/files/articolo-doc/wcc324-1.pdf |url-status=dead |journal=WIREs Climate Change |volume=6 |issue=1 |pages=93–112 |bibcode=2015WIRCC...6...93L |doi=10.1002/wcc.324 |s2cid=4835733 |archive-url=https://web.archive.org/web/20190806203759/https://www.qualenergia.it/sites/default/files/articolo-doc/wcc324-1.pdf |archive-date=2019-08-06 |access-date=2019-12-01}}</ref> These renewable scenarios would also need far greater land devoted to onshore wind and onshore solar projects.<ref name="brook_could_2012" /><ref name="loftus_critical_2015" /> Brook notes that the "principal limitations on nuclear fission are not technical, economic or fuel-related, but are instead linked to complex issues of societal acceptance, fiscal and political inertia, and inadequate critical evaluation of the real-world constraints facing low-carbon alternatives."<ref name="brook_could_2012" /> | |||
Scientific data indicates that – assuming 2021 emissions levels – humanity only has a ] equivalent to 11 years of emissions left for limiting warming to 1.5{{nbsp}}°C<ref>{{cite news |last1=Neuman |first1=Scott |title=Earth has 11 years to cut emissions to avoid dire climate scenarios, a report says |url=https://www.npr.org/2021/11/04/1052267118/climate-change-carbon-dioxide-emissions-global-carbon-budget |access-date=9 November 2021 |work=NPR |date=4 November 2021 |language=en |archive-date=30 May 2022 |archive-url=https://web.archive.org/web/20220530100806/https://www.npr.org/2021/11/04/1052267118/climate-change-carbon-dioxide-emissions-global-carbon-budget |url-status=live }}</ref><ref>{{cite journal |author=Friedlingstein |first1=Pierre |last2=Jones |first2=Matthew W. |display-authors=etal |date=4 November 2021 |title=Global Carbon Budget 2021 |url=http://pure.iiasa.ac.at/id/eprint/17620/1/essd-2021-386.pdf |url-status=dead |journal=Earth System Science Data Discussions |pages=1–191 |doi=10.5194/essd-2021-386 |s2cid=240490309 |archive-url=https://web.archive.org/web/20211124190932/http://pure.iiasa.ac.at/id/eprint/17620/1/essd-2021-386.pdf |archive-date=24 November 2021 |access-date=26 November 2021 |doi-access=free}}</ref> while the construction of new nuclear reactors took a median of 7.2–10.9 years in 2018–2020<!--average time between the start of construction and grid connection was 10 years in the past decade-->,<ref name="statusreport"/> substantially longer than, alongside other measures, scaling up the deployment of wind and solar – especially for novel reactor types – as well as being more risky, often delayed and more dependent on state-support.<ref>{{cite journal |last1=Tromans |first1=Stephen |title=State support for nuclear new build |journal=The Journal of World Energy Law & Business |date=1 March 2019 |volume=12 |issue=1 |pages=36–51 |doi=10.1093/jwelb/jwy035}}</ref><ref>{{cite web |title=Nuclear power is too costly, too slow, so it's zero use to Australia's emissions plan |website=] |date=18 October 2021 |url=https://www.theguardian.com/business/grogonomics/2021/oct/19/nuclear-power-too-costly-too-slow-so-its-zero-use-to-australias-emissions-plan |access-date=24 November 2021}}</ref><ref name="slowexpensive"/><ref name="gates2"/><ref name="10.5281/zenodo.5573718"/><ref name="worldnuclearreport">{{cite web |title=Renewables vs. Nuclear: 256-0 |url=https://www.worldnuclearreport.org/Renewables-vs-Nuclear-256-0.html |website=World Nuclear Industry Status Report |access-date=24 November 2021 |language=en |date=12 October 2021 |archive-date=24 November 2021 |archive-url=https://web.archive.org/web/20211124190925/https://www.worldnuclearreport.org/Renewables-vs-Nuclear-256-0.html |url-status=live }}</ref><ref name="10.1016/j.enpol.2016.04.013"/>{{citekill|date=December 2024}} Researchers have cautioned that novel nuclear technologies – which have been in development since decades,<ref>{{cite news |title=UK poised to confirm funding for mini nuclear reactors for carbon-free energy |url=https://www.theguardian.com/business/2021/oct/15/uk-poised-to-confirm-funding-for-mini-nuclear-reactors-for-green-energy |access-date=24 November 2021 |work=The Guardian |date=15 October 2021 |language=en|quote=Small modular reactors were first developed in the 1950s for use in nuclear-powered submarines. Since then Rolls-Royce has designed reactors for seven classes of submarine and two separate land-based prototype reactors.}}</ref><ref name="10.5281/zenodo.5573718"/><ref name="10.1016/j.erss.2014.04.015"/> are less tested, have higher ], have more new safety problems, are often far from commercialization and are more expensive<ref name="10.1016/j.erss.2014.04.015"/><ref name="10.5281/zenodo.5573718"/><ref name="10.1016/j.enpol.2016.03.012"/><ref name="adva1">{{cite web |title="Advanced" Isn't Always Better {{!}} Union of Concerned Scientists |url=https://ucsusa.org/resources/advanced-isnt-always-better |website=ucsusa.org |access-date=25 November 2021 |language=en |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125145228/https://ucsusa.org/resources/advanced-isnt-always-better |url-status=live }}</ref> – are not available in time.<ref name="sol1">{{cite journal |last1=Muellner |first1=Nikolaus |last2=Arnold |first2=Nikolaus |last3=Gufler |first3=Klaus |last4=Kromp |first4=Wolfgang |last5=Renneberg |first5=Wolfgang |last6=Liebert |first6=Wolfgang |title=Nuclear energy - The solution to climate change? |journal=Energy Policy |date=1 August 2021 |volume=155 |page=112363 |doi=10.1016/j.enpol.2021.112363 |s2cid=236254316 |language=en |issn=0301-4215|doi-access=free |bibcode=2021EnPol.15512363M }}</ref><ref name="mil1"/><ref>{{cite web |title=Small Modular Reactors – Was ist von den neuen Reaktorkonzepten zu erwarten? |url=https://www.base.bund.de/DE/themen/kt/kta-deutschland/neue_reaktoren/neue-reaktoren_node.html |url-status=live |archive-url=https://web.archive.org/web/20220606000505/https://www.base.bund.de/DE/themen/kt/kta-deutschland/neue_reaktoren/neue-reaktoren_node.html |archive-date=6 June 2022 |access-date=24 November 2021 |website=BASE |language=de}}</ref><ref name="gates2"/><ref name="10.1080/00963402.2021.1941600">{{cite journal |last1=Makhijani |first1=Arjun |last2=Ramana |first2=M. V. |title=Can small modular reactors help mitigate climate change? |journal=Bulletin of the Atomic Scientists |date=4 July 2021 |volume=77 |issue=4 |pages=207–214 |doi=10.1080/00963402.2021.1941600 |bibcode=2021BuAtS..77d.207M |s2cid=236163222 |issn=0096-3402}}</ref><ref name="natgeo">{{cite news |title=The controversial future of nuclear power in the U.S. |url=https://www.nationalgeographic.com/environment/article/nuclear-plants-are-closing-in-the-us-should-we-build-more |archive-url=https://web.archive.org/web/20210504162222/https://www.nationalgeographic.com/environment/article/nuclear-plants-are-closing-in-the-us-should-we-build-more |url-status=dead |archive-date=May 4, 2021 |access-date=25 November 2021 |date=4 May 2021 |language=en}}</ref><ref>{{cite news |title=Can Sodium Save Nuclear Power? |url=https://www.scientificamerican.com/article/can-sodium-save-nuclear-power/ |access-date=24 November 2021 |work=Scientific American |language=en |archive-date=29 July 2021 |archive-url=https://web.archive.org/web/20210729090905/https://www.scientificamerican.com/article/can-sodium-save-nuclear-power/ |url-status=live }}</ref>{{citekill|date=December 2024}} Critics of nuclear energy often only oppose nuclear fission energy but not nuclear fusion; however, fusion energy is unlikely to be commercially widespread before 2050.<ref name="ITERorg"/><ref name="fusion2">{{cite news |title=A lightbulb moment for nuclear fusion? |url=https://www.theguardian.com/environment/2019/oct/27/nuclear-fusion-research-power-generation-iter-jet-step-carbon-neutral-2050-boris-johnson |access-date=25 November 2021 |work=The Guardian |date=27 October 2019 |language=en}}</ref><ref name="fusiongua">{{cite news |last1=Turrell |first1=Arthur |title=The race to give nuclear fusion a role in the climate emergency |url=https://www.theguardian.com/environment/2021/aug/28/the-race-to-give-nuclear-fusion-a-role-in-the-climate-emergency |access-date=26 November 2021 |work=The Guardian |date=28 August 2021 |language=en}}</ref><ref name="fusion3">{{cite journal |last1=Entler |first1=Slavomir |last2=Horacek |first2=Jan |last3=Dlouhy |first3=Tomas |last4=Dostal |first4=Vaclav |title=Approximation of the economy of fusion energy |journal=Energy |date=1 June 2018 |volume=152 |pages=489–497 |doi=10.1016/j.energy.2018.03.130 |s2cid=115968344 |language=en |issn=0360-5442|doi-access=free |bibcode=2018Ene...152..489E }}</ref><ref name="fusion4">{{cite journal |last1=Nam |first1=Hoseok |last2=Nam |first2=Hyungseok |last3=Konishi |first3=Satoshi |title=Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system |journal=International Journal of Energy Research |date=2021 |volume=45 |issue=8 |pages=11992–12012 |doi=10.1002/er.5994 |s2cid=228937388 |language=en |issn=1099-114X|doi-access=free |bibcode=2021IJER...4511992N }}</ref> | |||
Proponents also note that nuclear power, like some other power sources, provides steady energy at a consistent price without competing for energy resources from other countries, something that may contribute to wars. | |||
====Land use==== | |||
In February, 2006, a new U.S. initiative, the ] was announced. It would be an international effort to reprocess fuel in a manner making proliferation infeasible, while making nuclear power available to developing countries. | |||
The median land area used by US nuclear power stations per 1{{nbsp}}GW installed capacity is {{convert|1.3|sqmi|km2|lk=on}}.<ref name=NEI_news_2015>{{cite web |title=Land Needs for Wind, Solar Dwarf Nuclear Plant's Footprint |url=https://www.nei.org/news/2015/land-needs-for-wind-solar-dwarf-nuclear-plants |website=nei.org |publisher=NEI |date=July 9, 2015 |access-date=January 6, 2019 |archive-date=January 7, 2019 |archive-url=https://web.archive.org/web/20190107072153/https://www.nei.org/news/2015/land-needs-for-wind-solar-dwarf-nuclear-plants |url-status=live }}</ref><ref name=Energy_gov_Fast_Facts >{{cite web | url=https://www.energy.gov/sites/prod/files/2019/01/f58/Ultimate%20Fast%20Facts%20Guide-PRINT.pdf | title=THE ULTIMATE FAST FACTS GUIDE TO NUCLEAR ENERGY | last= | first= | work=] | date=2019-01-01 | access-date=2022-06-07 | archive-date=2022-06-07 | archive-url=https://web.archive.org/web/20220607221430/https://www.energy.gov/sites/prod/files/2019/01/f58/Ultimate%20Fast%20Facts%20Guide-PRINT.pdf | url-status=live }}</ref> To generate the same amount of electricity annually (taking into account ]s) from ] would require about {{convert|60|sqmi|km2}}, and from a wind farm about {{convert|310|sqmi|km2}}.{{ r | NEI_news_2015 | Energy_gov_Fast_Facts }} Not included in this, is land required for the associated transmission lines, water supply, rail lines, mining and processing of nuclear fuel, and for waste disposal.<ref>{{cite web|url=https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015-chapter10.pdf|title=Quadrennial technology review concepts in integrated analysis|date=September 2015|page=388|access-date=2019-01-12|archive-date=2020-03-07|archive-url=https://web.archive.org/web/20200307173725/https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015-chapter10.pdf|url-status=live}}</ref> | |||
==Research== | |||
==Environmental effects== | |||
=== |
===Advanced fission reactor designs=== | ||
{{Main|Generation IV reactor}} | |||
Non-radioactive water vapour is the significant operating emission from nuclear power plants.<ref name="nt-eeonp">{{Cite web|url=http://www.nucleartourist.com/basics/environ1.htm|title=Environmental Effects of Nuclear Power|accessdate=2006-11-10|publisher=The Virtual Nuclear Tourist|year=2005}}</ref> Fission produces gases such as ]-131 or ]-133. These primarily remain within the fuel rods, but with some postulated fuel failure, small amounts of the gases can be released in to the reactor coolant. The chemical control systems isolate the radioactive gases which have to be stored on-site for several half-lives until they have decayed to safe levels. Iodine-131 and Xenon-133 have halflives of 8.0 and 5.2 days respectively, and thus have to be stored for a few months to decay to safe levels. | |||
Current fission reactors in operation around the world are ] or ] systems, with most of the first-generation systems having been already retired. Research into advanced ] types was officially started by the Generation IV International Forum (GIF) based on eight technology goals, including to improve economics, safety, proliferation resistance, natural resource use and the ability to consume existing nuclear waste in the production of electricity. Most of these reactors differ significantly from current operating light water reactors, and are expected to be available for commercial construction after 2030.<ref>{{cite web |url=http://ossfoundation.us/projects/energy/nuclear |title=4th Generation Nuclear Power – OSS Foundation |publisher=Ossfoundation.us |access-date=2014-01-24 |archive-date=2014-02-01 |archive-url=https://web.archive.org/web/20140201171808/http://ossfoundation.us/projects/energy/nuclear }}</ref> | |||
Nuclear generation does not directly produce sulfur dioxide, nitrogen oxides, mercury or other pollutants associated with the combustion of fossil fuels (pollution from fossil fuels is blamed for many deaths each year in the U.S. alone<ref name="catf-dada">{{Cite web|url=http://www.catf.us/publications/view/24|title=Dirty Air, Dirty Power: Mortality and Health Damage Due to Air Pollution from Power Plants|accessdate=2006-11-10|publisher=Clean Air Task Force|year=2004}}</ref>). It also does not directly produce ], which has led some environmentalists to advocate increased reliance on nuclear energy as a means to reduce ] emissions (which contribute to ]). | |||
=== Hybrid fusion-fission === | |||
Like any power source (including renewables like wind and solar energy), the facilities to produce and distribute the electricity require energy to build and subsequently decommission. Mineral ores must be collected and processed to produce nuclear fuel. These processes are either directly powered by diesel and gasoline engines, or draw electricity from the power grid, which may be generated from fossil fuels. ] assess the amount of energy consumed by these processes (given today's mix of energy resources) and calculate, over the lifetime of a nuclear power plant, the amount of carbon dioxide saved (related to the amount of electricity produced by the plant) vs. the amount of carbon dioxide used (related to construction and fuel acquisition). | |||
{{Main|Nuclear fusion–fission hybrid}} | |||
Hybrid nuclear power is a proposed means of generating power by the use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s and was briefly advocated by ] during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to delays in the realization of pure fusion. When a sustained nuclear fusion power plant is built, it has the potential to be capable of extracting all the fission energy that remains in spent fission fuel, reducing the volume of nuclear waste by orders of magnitude, and more importantly, eliminating all actinides present in the spent fuel, substances which cause security concerns.<ref name="hybrid">{{cite journal | author = Gerstner, E. | title = Nuclear energy: The hybrid returns | year = 2009 | journal = ] | volume = 460 | issue = 7251 | pages = 25–28 | pmid = 19571861 | doi = 10.1038/460025a | s2cid = 205047403 | url = http://www.nature.com/news/2009/090701/pdf/460025a.pdf | doi-access = free | access-date = 2013-06-19 | archive-date = 2013-12-20 | archive-url = https://web.archive.org/web/20131220102840/http://www.nature.com/news/2009/090701/pdf/460025a.pdf | url-status = live }}</ref> | |||
=== Fusion === | |||
Several life cycle analyses show similar emissions per ] from nuclear power and from renewables such as wind power. According to one life cycle study by van Leeuwen and Smith from 2001–2005, carbon dioxide emissions from nuclear power per kilowatt hour could range from 20% to 120% of those for ]-fired power stations depending on the availability of high grade ores.<ref name="stormsmith">{{Cite web|url=http://www.stormsmith.nl/|title=Nuclear Power — The Energy Balance|accessdate=2006-11-10|year=2003|author=Jan Willem Storm van Leeuwen and Philip Smith}}</ref> The study was critiqued by ] (WNA), rebutted in 2003, then dismissed by the WNA in 2006 based on its own life-cycle-energy calculation (with comparisons).<ref name="wna-eaops"/> | |||
] ] under construction in France]] | |||
{{Main|Nuclear fusion|Fusion power}} | |||
] reactions have the potential to be safer and generate less radioactive waste than fission.<ref>{{cite book |last1=Roth |first1=J. Reece |title=Introduction to fusion energy |date=1986 |publisher=Ibis Pub |location=Charlottesville, Va. |isbn=978-0-935005-07-3}}</ref><ref name="WorldEnergyCouncil">{{cite web |last1=Hamacher |first1=T. |last2=Bradshaw |first2=A. M. |name-list-style=amp |date=October 2001 |title=Fusion as a Future Power Source: Recent Achievements and Prospects |url=http://www.worldenergy.org/wec-geis/publications/default/tech_papers/18th_Congress/downloads/ds/ds6/ds6_5.pdf |url-status=dead |archive-url=https://web.archive.org/web/20040506065141/http://www.worldenergy.org/wec-geis/publications/default/tech_papers/18th_Congress/downloads/ds/ds6/ds6_5.pdf |archive-date=2004-05-06 |access-date=2010-09-16 |publisher=World Energy Council}}</ref> These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under theoretical and experimental investigation since the 1950s. ] research is underway but fusion energy is not likely to be commercially widespread before 2050.<ref>{{cite news |date=27 October 2019 |title=A lightbulb moment for nuclear fusion? |language=en |work=The Guardian |url=https://www.theguardian.com/environment/2019/oct/27/nuclear-fusion-research-power-generation-iter-jet-step-carbon-neutral-2050-boris-johnson |access-date=25 November 2021}}</ref><ref>{{cite journal |last1=Entler |first1=Slavomir |last2=Horacek |first2=Jan |last3=Dlouhy |first3=Tomas |last4=Dostal |first4=Vaclav |date=1 June 2018 |title=Approximation of the economy of fusion energy |journal=Energy |language=en |volume=152 |pages=489–497 |doi=10.1016/j.energy.2018.03.130 |s2cid=115968344 |issn=0360-5442|doi-access=free |bibcode=2018Ene...152..489E }}</ref><ref>{{cite journal |last1=Nam |first1=Hoseok |last2=Nam |first2=Hyungseok |last3=Konishi |first3=Satoshi |date=2021 |title=Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system |journal=International Journal of Energy Research |language=en |volume=45 |issue=8 |pages=11992–12012 |doi=10.1002/er.5994 |issn=1099-114X |s2cid=228937388|doi-access=free |bibcode=2021IJER...4511992N }}</ref> | |||
Several experimental nuclear fusion reactors and facilities exist. The largest and most ambitious international nuclear fusion project currently in progress is ], a large ] under construction in France. ITER is planned to pave the way for commercial fusion power by demonstrating self-sustained nuclear fusion reactions with positive energy gain. Construction of the ITER facility began in 2007, but the project has run into many delays and budget overruns. The facility is now not expected to begin operations until the year 2027 – 11 years after initially anticipated.<ref>{{cite journal |author=Gibbs |first=W. Wayt |date=2013-12-30 |title=Triple-threat method sparks hope for fusion |journal=Nature |volume=505 |issue=7481 |pages=9–10 |bibcode=2014Natur.505....9G |doi=10.1038/505009a |pmid=24380935 |doi-access=free}}</ref> A follow on commercial nuclear fusion power station, ], has been proposed.<ref name="ITERorg">{{cite web |title=Beyond ITER |url=http://www.iter.org/Future-beyond.htm |archive-url=https://web.archive.org/web/20061107220145/http://www.iter.org/Future-beyond.htm |archive-date=2006-11-07 |access-date=2011-02-05 |website=The ITER Project |publisher=Information Services, Princeton Plasma Physics Laboratory}} – Projected fusion power timeline.</ref><ref name="EFDA_Activities">{{cite web|url=http://www.efda.org/about_efda/downloads/EFDAoverview.ppt |title=Overview of EFDA Activities |website=www.efda.org |publisher=] |archive-url=https://web.archive.org/web/20061001123645/http://www.efda.org/about_efda/downloads/EFDAoverview.ppt |archive-date=2006-10-01 |access-date=2006-11-11 }}</ref> There are also suggestions for a power plant based upon a different fusion approach, that of an ]. | |||
In 2006, a UK government advisory panel, The Sustainable Development Commission, concluded that if the UK's existing nuclear capacity were doubled, it would provide an 8% decrease in total UK CO<sub>2</sub> emissions by 2035. This can be compared to the country's goal to reduce greenhouse gas emissions by 60 % by 2050. As of 2006, the UK government was to publish its official findings later in the year.<ref name="bbc-nqffnp">{{Cite web|url=http://news.bbc.co.uk/1/hi/sci/tech/4778344.stm|title='No Quick Fix' From Nuclear Power|accessdate=2006-11-10|publisher=BBC News|year=2006}}</ref><ref>{{Cite web|url=http://www.sd-commission.org.uk/pages/060306.html|title=Is nuclear the answer?|accessdate=2006-12-22|publisher=Sustainable Development Commission|year=2006}}</ref> | |||
Fusion-powered electricity generation was initially believed to be readily achievable, as fission-electric power had been. However, the extreme requirements for continuous reactions and ] led to projections being extended by several decades. In 2020, more than 80 years after ], commercialization of fusion power production was thought to be unlikely before 2050.<ref name="ITERorg" /><ref name="fusion2"/><ref name="fusiongua"/><ref name="fusion3"/><ref name="fusion4"/> | |||
On ] ] the ] published a report, in the form of a memorandum to a committee of the ], which argued that, while nuclear plants may not generate ] while they operate, the other steps necessary to produce nuclear power, including the mining of ] and the storing of waste, result in substantial amounts of carbon dioxide pollution.<ref>{{cite web |url=http://www.oxfordresearchgroup.org.uk/programmes/nuclearissues/EAC210905.pdf |title=Memorandum by Oxford Research Group | |||
|accessdate=2007-03-26 |last=Barnaby | |||
|first=Frank |authorlink= |coauthors=Barnham, Keith; Savidge, Malcolm | |||
|date=]|year= |month= |format= |work= |publisher= |pages=p.9 |language= |archiveurl= |archivedate= |quote= }}</ref> | |||
To enhance and accelerate the development of fusion energy, the ] (DOE) granted $46 million to eight firms, including ] and ] Inc, in 2023. This ambitious initiative aims to introduce pilot-scale fusion within a decade.<ref>{{cite press release |url=https://www.reuters.com/business/energy/us-announces-46-million-funds-eight-nuclear-fusion-companies-2023-05-31/ |title=US announces $46 million in funds to eight nuclear fusion companies |date=31 May 2023 |access-date=13 June 2023 |archive-date=9 June 2023 |archive-url=https://web.archive.org/web/20230609110155/https://www.reuters.com/business/energy/us-announces-46-million-funds-eight-nuclear-fusion-companies-2023-05-31/ |url-status=live }}</ref> | |||
===Waste heat in water systems=== | |||
Nuclear reactors require cooling, typically with water (sometimes indirectly). The process of using water to extract energy from a heat source requires a cooling source, this process is described by the ]. There is a limitation on the amount of heat that can be converted into energy through the Rankine Cycle. The excess heat must be rejected as waste heat, this is where the cooling water is required. Rivers are the most common source of cooling water, as well as the destination for waste heat. The temperature of exhaust water must be regulated to avoid killing fish; long-term impact of hotter-than-natural water on ecosystems is an environmental concern. In most new facilities, this problem is solved by using ]s. This is true of all traditional power plant designs, including coal, oil, and natural gas plants, which also rely on the Rankine cycle to produce their energy. All four types of plants differ in their heat source, be it nuclear fission or burning fossil fuels. | |||
== See also == | |||
The need to regulate exhaust temperature can limit generation capacity. On extremely hot days, which is when demand can be at its highest, the capacity of a nuclear plant may go down because the incoming water is warmer to begin with and is thus less effective as a coolant, per unit volume. This was a significant factor during the ].{{Fact|date=February 2007}} Engineers consider this in making improved power plant designs because increased cooling capacity will increase capital costs. The global increase in average temperature has required some plants in the southeast ] to revise their technical specifications to allow operation with their cooling water sources at higher temperatures.{{Fact|date=February 2007}} | |||
{{Portal|Nuclear technology|Energy}} | |||
{{div col|colwidth=20em}} | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
{{div col end}} | |||
{{clear}} | |||
== References == | |||
==List of atomic energy groups== | |||
{{reflist}} | |||
* ] (United States) | |||
* ] (France) | |||
* ] (Canada) | |||
* ] (United States) | |||
* ] | |||
* ] (France) | |||
* ] (Ukraine) | |||
* ] (Europe) | |||
* ] (India) | |||
* ] (IAEA) | |||
* ] (Kazakhstan) | |||
* ] (Russia) | |||
* ] - CNEA (Argentina) | |||
* ] (United States) | |||
* ] (Pakistan) | |||
* ] (United Kingdom) | |||
* ] (International) | |||
== Further reading == | |||
==References== | |||
{{sister project|project=Wikiversity | |||
<div class="references-2column"><references/></div> | |||
|text=]}} | |||
* | |||
{{See also|List of books about nuclear issues|List of films about nuclear issues}} | |||
*, online book by Bernard L. Cohen. Pro nuclear power. Emphasis on risk estimates of nuclear. | |||
* AEC Atom Information Booklets, {{Webarchive|url=https://web.archive.org/web/20190107232902/https://www.osti.gov/opennet/aec_atom |date=2019-01-07 }}. A total of 75 booklets published by the U.S. Atomic Energy Commission (AEC) in the 1960s and 1970s, Authored by scientists and taken together, the booklets comprise the history of nuclear science and its applications at the time. | |||
*Oldberg, T. and R. Christensen (1995) ''NDE for the Energy Industry 1995,'' pp. 1-6, The American Society of Mechanical Engineers, New York, NY | |||
* Armstrong, Robert C., Catherine Wolfram, Robert Gross, Nathan S. Lewis, and ] et al. {{Webarchive|url=https://web.archive.org/web/20160523065903/http://www.nature.com/articles/nenergy201520 |date=2016-05-23 }}, ''Nature Energy'', Vol 1, 11 January 2016. | |||
*Oldberg, T. (2005) Address to the Golden Gate Chapter of the American Society for Nondestructive Testing, March 10, 2005 | |||
* Brown, Kate (2013). ], Oxford University Press. | |||
*Steve Thomas (2005), , PSIRU, ], UK | |||
* Clarfield, Gerald H. and Wiecek, William M. (1984). ''Nuclear America: Military and Civilian Nuclear Power in the United States 1940–1980'', Harper & Row. | |||
* | |||
* ] (2009). '']'', Black Inc. | |||
* A comprehensive yet controversial lifecycle assessment of nuclear power generation by Jan Willem Storm van Leeuwen and Philip Smith, update August 2005 | |||
* {{Cite book | last = Cravens | first = Gwyneth | title = Power to Save the World: the Truth about Nuclear Energy | publisher = Knopf | year = 2007 | location = New York | url = https://archive.org/details/powertosaveworld00gwyn_0 | isbn = 978-0-307-26656-9 | url-access = registration }} | |||
* Online book by Albert J. Fritsch, Arthur H. Purcell, and Mary Byrd Davis (2005), June 2006 | |||
* ] (2007). '']'', Palgrave. | |||
* Ferguson, Charles D., (2007). ''Nuclear Energy: Balancing Benefits and Risks'' ]. | |||
* Garwin, Richard L. and Charpak, Georges (2001) ] A Turning Point in the Nuclear Age?, Knopf. | |||
* Herbst, Alan M. and George W. Hopley (2007). ''Nuclear Energy Now: Why the Time has come for the World's Most Misunderstood Energy Source'', Wiley. | |||
* {{cite book |last1=Mahaffey |first1=James |title=Atomic accidents: a history of nuclear meltdowns and disasters: from the Ozark Mountains to Fukushima |date=2015 |publisher=Pegasus Books |isbn=978-1-60598-680-7 }} | |||
* {{cite journal |last1=Patterson |first1=Eann A. |last2=Taylor |first2=Richard J. |title=The commoditization of civil nuclear power |journal=] |date=2024 |volume=11 |issue=5 |pages=240021 |doi=10.1098/rsos.240021 |pmid=39076811 |doi-access=free |pmc=11285846|bibcode=2024RSOS...1140021P }} | |||
* ], "Breaking the Techno-Promise: We do not have enough time for nuclear power to save us from the ]", '']'', vol. 326, no. 2 (February 2022), p. 74. | |||
* ], ], ], Doug Koplow (2016). '']: World Nuclear Industry Status as of 1 January 2016''. | |||
* Walker, J. Samuel (1992). ''Containing the Atom: Nuclear Regulation in a Changing Environment, 1993–1971'', Berkeley, California: University of California Press. | |||
* ] ''The Rise of Nuclear Fear''. Cambridge, Massachusetts: Harvard University Press, 2012. {{ISBN|0-674-05233-1}}. | |||
== |
== External links == | ||
{{ |
{{Sister project links|Nuclear power}} | ||
* {{Webarchive|url=https://web.archive.org/web/20110708185026/http://www.eia.gov/ |date=2011-07-08 }} | |||
* {{Webarchive|url=https://web.archive.org/web/20220711190939/https://thebulletin.org/2015/05/introducing-the-nuclear-fuel-cycle-cost-calculator/ |date=2022-07-11 }} | |||
{{Nuclear power by country}} | |||
*] | |||
{{Nuclear technology}} | |||
*] | |||
{{Electricity generation}} | |||
*] | |||
{{Natural resources}} | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] for a table of radiation exposures | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
*] | |||
{{Authority control}} | |||
===Nuclear power by country=== | |||
{{main|Nuclear power by country}} | |||
*] | |||
===USAEC/USNRC studies of risk=== | |||
:''Note: See the NRC disclaimer for NUREG-1150 and CRAC-II for applicability.'' | |||
*] (1991) | |||
*] (1982), based on WASH-1400 results | |||
*] (1975) | |||
*] (1957) | |||
==External links== | |||
{{wikiquote}} | |||
<!--Please add new links sparingly and remove any links to websites that are dead, unreliable or not very useful for readers. You should usually link to the home page or an index page rather than having multiple links to the same site. If the site covers very similar material as one that is already linked to, only link to the best one. The links are alphabetized to avoid jockeying for position.--> | |||
* . | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* | |||
* (free book) | |||
* | |||
* | |||
* | |||
* | |||
* | |||
] | |||
] | ] | ||
] | ] | ||
] | ] | ||
] | ] | ||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] |
Latest revision as of 01:15, 4 January 2025
Power generated from nuclear reactions "Atomic power" redirects here. For the film, see Atomic Power (film). For countries with the power or ability to project nuclear weapons, see List of states with nuclear weapons.
Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Reactors producing controlled fusion power have been operated since 1958 but have yet to generate net power and are not expected to be commercially available in the near future.
The first nuclear power plant was built in the 1950s. The global installed nuclear capacity grew to 100 GW in the late 1970s, and then expanded during the 1980s, reaching 300 GW by 1990. The 1979 Three Mile Island accident in the United States and the 1986 Chernobyl disaster in the Soviet Union resulted in increased regulation and public opposition to nuclear power plants. Nuclear power plants supplied 2,602 terawatt hours (TWh) of electricity in 2023, equivalent to about 9% of global electricity generation, and were the second largest low-carbon power source after hydroelectricity. As of November 2024, there are 415 civilian fission reactors in the world, with overall capacity of 374 GW, 66 under construction and 87 planned, with a combined capacity of 72 GW and 84 GW, respectively. The United States has the largest fleet of nuclear reactors, generating almost 800 TWh of low-carbon electricity per year with an average capacity factor of 92%. The average global capacity factor is 89%. Most new reactors under construction are generation III reactors in Asia.
Nuclear power is a safe, sustainable energy source that reduces carbon emissions. This is because nuclear power generation causes one of the lowest levels of fatalities per unit of energy generated compared to other energy sources. "Economists estimate that each nuclear plant built could save more than 800,000 life years." Coal, petroleum, natural gas and hydroelectricity have each caused more fatalities per unit of energy due to air pollution and accidents. Nuclear power plants also emit no greenhouse gases and result in less life-cycle carbon emissions than common "renewables". The radiological hazards associated with nuclear power are the primary motivations of the anti-nuclear movement, which contends that nuclear power poses threats to people and the environment, citing the potential for accidents like the Fukushima nuclear disaster in Japan in 2011, and is too expensive to deploy when compared to alternative sustainable energy sources.
History
Main article: History of nuclear powerOrigins
The process of nuclear fission was discovered in 1938 after over four decades of work on the science of radioactivity and the elaboration of new nuclear physics that described the components of atoms. Soon after the discovery of the fission process, it was realized that neutrons released by a fissioning nucleus could, under the right conditions, induce fissions in nearby nuclei, thus initiating a self-sustaining chain reaction. Once this was experimentally confirmed in 1939, scientists in many countries petitioned their governments for support for nuclear fission research, just on the cusp of World War II, in order to develop a nuclear weapon.
In the United States, these research efforts led to the creation of the first human-made nuclear reactor, the Chicago Pile-1 under the Stagg Field stadium at the University of Chicago, which achieved criticality on December 2, 1942. The reactor's development was part of the Manhattan Project, the Allied effort to create atomic bombs during World War II. It led to the building of larger single-purpose production reactors for the production of weapons-grade plutonium for use in the first nuclear weapons. The United States tested the first nuclear weapon in July 1945, the Trinity test, and the atomic bombings of Hiroshima and Nagasaki happened one month later.
Despite the military nature of the first nuclear devices, there was strong optimism in the 1940s and 1950s that nuclear power could provide cheap and endless energy. Electricity was generated for the first time by a nuclear reactor on December 20, 1951, at the EBR-I experimental station near Arco, Idaho, which initially produced about 100 kW. In 1953, American President Dwight Eisenhower gave his "Atoms for Peace" speech at the United Nations, emphasizing the need to develop "peaceful" uses of nuclear power quickly. This was followed by the Atomic Energy Act of 1954 which allowed rapid declassification of U.S. reactor technology and encouraged development by the private sector.
First power generation
The first organization to develop practical nuclear power was the U.S. Navy, with the S1W reactor for the purpose of propelling submarines and aircraft carriers. The first nuclear-powered submarine, USS Nautilus, was put to sea in January 1954. The S1W reactor was a pressurized water reactor. This design was chosen because it was simpler, more compact, and easier to operate compared to alternative designs, thus more suitable to be used in submarines. This decision would result in the PWR being the reactor of choice also for power generation, thus having a lasting impact on the civilian electricity market in the years to come.
On June 27, 1954, the Obninsk Nuclear Power Plant in the USSR became the world's first nuclear power plant to generate electricity for a power grid, producing around 5 megawatts of electric power. The world's first commercial nuclear power station, Calder Hall at Windscale, England was connected to the national power grid on 27 August 1956. In common with a number of other generation I reactors, the plant had the dual purpose of producing electricity and plutonium-239, the latter for the nascent nuclear weapons program in Britain.
Expansion and first opposition
The total global installed nuclear capacity initially rose relatively quickly, rising from less than 1 gigawatt (GW) in 1960 to 100 GW in the late 1970s. During the 1970s and 1980s rising economic costs (related to extended construction times largely due to regulatory changes and pressure-group litigation) and falling fossil fuel prices made nuclear power plants then under construction less attractive. In the 1980s in the U.S. and 1990s in Europe, the flat electric grid growth and electricity liberalization also made the addition of large new baseload energy generators economically unattractive.
The 1973 oil crisis had a significant effect on countries, such as France and Japan, which had relied more heavily on oil for electric generation to invest in nuclear power. France would construct 25 nuclear power plants over the next 15 years, and as of 2019, 71% of French electricity was generated by nuclear power, the highest percentage by any nation in the world.
Some local opposition to nuclear power emerged in the United States in the early 1960s. In the late 1960s, some members of the scientific community began to express pointed concerns. These anti-nuclear concerns related to nuclear accidents, nuclear proliferation, nuclear terrorism and radioactive waste disposal. In the early 1970s, there were large protests about a proposed nuclear power plant in Wyhl, Germany. The project was cancelled in 1975. The anti-nuclear success at Wyhl inspired opposition to nuclear power in other parts of Europe and North America.
By the mid-1970s anti-nuclear activism gained a wider appeal and influence, and nuclear power began to become an issue of major public protest. In some countries, the nuclear power conflict "reached an intensity unprecedented in the history of technology controversies". The increased public hostility to nuclear power led to a longer license procurement process, more regulations and increased requirements for safety equipment, which made new construction much more expensive. In the United States, over 120 Light Water Reactor proposals were ultimately cancelled and the construction of new reactors ground to a halt. The 1979 accident at Three Mile Island with no fatalities, played a major part in the reduction in the number of new plant constructions in many countries.
Chernobyl and renaissance
During the 1980s one new nuclear reactor started up every 17 days on average. By the end of the decade, global installed nuclear capacity reached 300 GW. Since the late 1980s, new capacity additions slowed significantly, with the installed nuclear capacity reaching 366 GW in 2005.
The 1986 Chernobyl disaster in the USSR, involving an RBMK reactor, altered the development of nuclear power and led to a greater focus on meeting international safety and regulatory standards. It is considered the worst nuclear disaster in history both in total casualties, with 56 direct deaths, and financially, with the cleanup and the cost estimated at 18 billion Rbls (US$68 billion in 2019, adjusted for inflation). The international organization to promote safety awareness and the professional development of operators in nuclear facilities, the World Association of Nuclear Operators (WANO), was created as a direct outcome of the 1986 Chernobyl accident. The Chernobyl disaster played a major part in the reduction in the number of new plant constructions in the following years. Influenced by these events, Italy voted against nuclear power in a 1987 referendum, becoming the first country to completely phase out nuclear power in 1990.
In the early 2000s, nuclear energy was expecting a nuclear renaissance, an increase in the construction of new reactors, due to concerns about carbon dioxide emissions. During this period, newer generation III reactors, such as the EPR began construction.
- Net electrical generation by source and growth from 1980. In terms of energy generated between 1980 and 2010, the contribution from fission grew the fastest.
- Electricity production in France, showing the shift to nuclear power. thermofossil hydroelectric nuclear Other renewables
- The rate of new reactor constructions essentially halted in the late 1980s. Increased capacity factor in existing reactors was primarily responsible for the continuing increase in electrical energy produced during this period.
- Electricity generation trends in the top producing countries (Our World in Data)
Fukushima accident
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org. |
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org. |
Prospects of a nuclear renaissance were delayed by another nuclear accident. The 2011 Fukushima Daiichi nuclear accident was caused by the Tōhoku earthquake and tsunami, one of the largest earthquakes ever recorded. The Fukushima Daiichi Nuclear Power Plant suffered three core meltdowns due to failure of the emergency cooling system for lack of electricity supply. This resulted in the most serious nuclear accident since the Chernobyl disaster.
The accident prompted a re-examination of nuclear safety and nuclear energy policy in many countries. Germany approved plans to close all its reactors by 2022, and many other countries reviewed their nuclear power programs. Following the disaster, Japan shut down all of its nuclear power reactors, some of them permanently, and in 2015 began a gradual process to restart the remaining 40 reactors, following safety checks and based on revised criteria for operations and public approval.
In 2022, the Japanese government, under the leadership of Prime Minister Fumio Kishida, declared that 10 more nuclear power plants were to be reopened since the 2011 disaster. Kishida is also pushing for research and construction of new safer nuclear plants to safeguard Japanese consumers from the fluctuating price of the fossil fuel market and reduce Japan's greenhouse gas emissions. Kishida intends to have Japan become a significant exporter of nuclear energy and technology to developing countries around the world.
Current prospects
By 2015, the IAEA's outlook for nuclear energy had become more promising, recognizing the importance of low-carbon generation for mitigating climate change. As of 2015, the global trend was for new nuclear power stations coming online to be balanced by the number of old plants being retired. In 2016, the U.S. Energy Information Administration projected for its "base case" that world nuclear power generation would increase from 2,344 terawatt hours (TWh) in 2012 to 4,500 TWh in 2040. Most of the predicted increase was expected to be in Asia. As of 2018, there were over 150 nuclear reactors planned including 50 under construction. In January 2019, China had 45 reactors in operation, 13 under construction, and planned to build 43 more, which would make it the world's largest generator of nuclear electricity. As of 2021, 17 reactors were reported to be under construction. China built significantly fewer reactors than originally planned. Its share of electricity from nuclear power was 5% in 2019 and observers have cautioned that, along with the risks, the changing economics of energy generation may cause new nuclear energy plants to "no longer make sense in a world that is leaning toward cheaper, more reliable renewable energy".
In October 2021, the Japanese cabinet approved the new Plan for Electricity Generation to 2030 prepared by the Agency for Natural Resources and Energy (ANRE) and an advisory committee, following public consultation. The nuclear target for 2030 requires the restart of another ten reactors. Prime Minister Fumio Kishida in July 2022 announced that the country should consider building advanced reactors and extending operating licences beyond 60 years.
As of 2022, with world oil and gas prices on the rise, while Germany is restarting its coal plants to deal with loss of Russian gas that it needs to supplement its Energiewende, many other countries have announced ambitious plans to reinvigorate ageing nuclear generating capacity with new investments. French President Emmanuel Macron announced his intention to build six new reactors in coming decades, placing nuclear at the heart of France's drive for carbon neutrality by 2050. Meanwhile, in the United States, the Department of Energy, in collaboration with commercial entities, TerraPower and X-energy, is planning on building two different advanced nuclear reactors by 2027, with further plans for nuclear implementation in its long term green energy and energy security goals.
Power plants
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org. |
Nuclear power plants are thermal power stations that generate electricity by harnessing the thermal energy released from nuclear fission. A fission nuclear power plant is generally composed of: a nuclear reactor, in which the nuclear reactions generating heat take place; a cooling system, which removes the heat from inside the reactor; a steam turbine, which transforms the heat into mechanical energy; an electric generator, which transforms the mechanical energy into electrical energy.
When a neutron hits the nucleus of a uranium-235 or plutonium atom, it can split the nucleus into two smaller nuclei, which is a nuclear fission reaction. The reaction releases energy and neutrons. The released neutrons can hit other uranium or plutonium nuclei, causing new fission reactions, which release more energy and more neutrons. This is called a chain reaction. In most commercial reactors, the reaction rate is contained by control rods that absorb excess neutrons. The controllability of nuclear reactors depends on the fact that a small fraction of neutrons resulting from fission are delayed. The time delay between the fission and the release of the neutrons slows changes in reaction rates and gives time for moving the control rods to adjust the reaction rate.
Fuel cycle
Main articles: Nuclear fuel cycle and Integrated Nuclear Fuel Cycle Information SystemThe life cycle of nuclear fuel starts with uranium mining. The uranium ore is then converted into a compact ore concentrate form, known as yellowcake (U3O8), to facilitate transport. Fission reactors generally need uranium-235, a fissile isotope of uranium. The concentration of uranium-235 in natural uranium is low (about 0.7%). Some reactors can use this natural uranium as fuel, depending on their neutron economy. These reactors generally have graphite or heavy water moderators. For light water reactors, the most common type of reactor, this concentration is too low, and it must be increased by a process called uranium enrichment. In civilian light water reactors, uranium is typically enriched to 3.5–5% uranium-235. The uranium is then generally converted into uranium oxide (UO2), a ceramic, that is then compressively sintered into fuel pellets, a stack of which forms fuel rods of the proper composition and geometry for the particular reactor.
After some time in the reactor, the fuel will have reduced fissile material and increased fission products, until its use becomes impractical. At this point, the spent fuel will be moved to a spent fuel pool which provides cooling for the thermal heat and shielding for ionizing radiation. After several months or years, the spent fuel is radioactively and thermally cool enough to be moved to dry storage casks or reprocessed.
Uranium resources
Main articles: Uranium market, Uranium mining, and Energy development § NuclearUranium is a fairly common element in the Earth's crust: it is approximately as common as tin or germanium, and is about 40 times more common than silver. Uranium is present in trace concentrations in most rocks, dirt, and ocean water, but is generally economically extracted only where it is present in relatively high concentrations. Uranium mining can be underground, open-pit, or in-situ leach mining. An increasing number of the highest output mines are remote underground operations, such as McArthur River uranium mine, in Canada, which by itself accounts for 13% of global production. As of 2011 the world's known resources of uranium, economically recoverable at the arbitrary price ceiling of US$130/kg, were enough to last for between 70 and 100 years. In 2007, the OECD estimated 670 years of economically recoverable uranium in total conventional resources and phosphate ores assuming the then-current use rate.
Light water reactors make relatively inefficient use of nuclear fuel, mostly using only the very rare uranium-235 isotope. Nuclear reprocessing can make this waste reusable, and newer reactors also achieve a more efficient use of the available resources than older ones. With a pure fast reactor fuel cycle with a burn up of all the uranium and actinides (which presently make up the most hazardous substances in nuclear waste), there is an estimated 160,000 years worth of uranium in total conventional resources and phosphate ore at the price of 60–100 US$/kg. However, reprocessing is expensive, possibly dangerous and can be used to manufacture nuclear weapons. One analysis found that uranium prices could increase by two orders of magnitude between 2035 and 2100 and that there could be a shortage near the end of the century. A 2017 study by researchers from MIT and WHOI found that "at the current consumption rate, global conventional reserves of terrestrial uranium (approximately 7.6 million tonnes) could be depleted in a little over a century". Limited uranium-235 supply may inhibit substantial expansion with the current nuclear technology. While various ways to reduce dependence on such resources are being explored, new nuclear technologies are considered to not be available in time for climate change mitigation purposes or competition with alternatives of renewables in addition to being more expensive and require costly research and development. A study found it to be uncertain whether identified resources will be developed quickly enough to provide uninterrupted fuel supply to expanded nuclear facilities and various forms of mining may be challenged by ecological barriers, costs, and land requirements. Researchers also report considerable import dependence of nuclear energy.
Unconventional uranium resources also exist. Uranium is naturally present in seawater at a concentration of about 3 micrograms per liter, with 4.4 billion tons of uranium considered present in seawater at any time. In 2014 it was suggested that it would be economically competitive to produce nuclear fuel from seawater if the process was implemented at large scale. Like fossil fuels, over geological timescales, uranium extracted on an industrial scale from seawater would be replenished by both river erosion of rocks and the natural process of uranium dissolved from the surface area of the ocean floor, both of which maintain the solubility equilibria of seawater concentration at a stable level. Some commentators have argued that this strengthens the case for nuclear power to be considered a renewable energy.
Waste
Main article: Nuclear wasteThe normal operation of nuclear power plants and facilities produce radioactive waste, or nuclear waste. This type of waste is also produced during plant decommissioning. There are two broad categories of nuclear waste: low-level waste and high-level waste. The first has low radioactivity and includes contaminated items such as clothing, which poses limited threat. High-level waste is mainly the spent fuel from nuclear reactors, which is very radioactive and must be cooled and then safely disposed of or reprocessed.
High-level waste
Main articles: High-level waste and Spent nuclear fuelThe most important waste stream from nuclear power reactors is spent nuclear fuel, which is considered high-level waste. For Light Water Reactors (LWRs), spent fuel is typically composed of 95% uranium, 4% fission products, and about 1% transuranic actinides (mostly plutonium, neptunium and americium). The fission products are responsible for the bulk of the short-term radioactivity, whereas the plutonium and other transuranics are responsible for the bulk of the long-term radioactivity.
High-level waste (HLW) must be stored isolated from the biosphere with sufficient shielding so as to limit radiation exposure. After being removed from the reactors, used fuel bundles are stored for six to ten years in spent fuel pools, which provide cooling and shielding against radiation. After that, the fuel is cool enough that it can be safely transferred to dry cask storage. The radioactivity decreases exponentially with time, such that it will have decreased by 99.5% after 100 years. The more intensely radioactive short-lived fission products (SLFPs) decay into stable elements in approximately 300 years, and after about 100,000 years, the spent fuel becomes less radioactive than natural uranium ore.
Commonly suggested methods to isolate LLFP waste from the biosphere include separation and transmutation, synroc treatments, or deep geological storage.
Thermal-neutron reactors, which presently constitute the majority of the world fleet, cannot burn up the reactor grade plutonium that is generated during the reactor operation. This limits the life of nuclear fuel to a few years. In some countries, such as the United States, spent fuel is classified in its entirety as a nuclear waste. In other countries, such as France, it is largely reprocessed to produce a partially recycled fuel, known as mixed oxide fuel or MOX. For spent fuel that does not undergo reprocessing, the most concerning isotopes are the medium-lived transuranic elements, which are led by reactor-grade plutonium (half-life 24,000 years). Some proposed reactor designs, such as the integral fast reactor and molten salt reactors, can use as fuel the plutonium and other actinides in spent fuel from light water reactors, thanks to their fast fission spectrum. This offers a potentially more attractive alternative to deep geological disposal.
The thorium fuel cycle results in similar fission products, though creates a much smaller proportion of transuranic elements from neutron capture events within a reactor. Spent thorium fuel, although more difficult to handle than spent uranium fuel, may present somewhat lower proliferation risks.
Low-level waste
Main article: Low-level wasteThe nuclear industry also produces a large volume of low-level waste, with low radioactivity, in the form of contaminated items like clothing, hand tools, water purifier resins, and (upon decommissioning) the materials of which the reactor itself is built. Low-level waste can be stored on-site until radiation levels are low enough to be disposed of as ordinary waste, or it can be sent to a low-level waste disposal site.
Waste relative to other types
See also: Radioactive waste § Naturally occurring radioactive materialIn countries with nuclear power, radioactive wastes account for less than 1% of total industrial toxic wastes, much of which remains hazardous for long periods. Overall, nuclear power produces far less waste material by volume than fossil-fuel based power plants. Coal-burning plants, in particular, produce large amounts of toxic and mildly radioactive ash resulting from the concentration of naturally occurring radioactive materials in coal. A 2008 report from Oak Ridge National Laboratory concluded that coal power actually results in more radioactivity being released into the environment than nuclear power operation, and that the population effective dose equivalent from radiation from coal plants is 100 times that from the operation of nuclear plants. Although coal ash is much less radioactive than spent nuclear fuel by weight, coal ash is produced in much higher quantities per unit of energy generated. It is also released directly into the environment as fly ash, whereas nuclear plants use shielding to protect the environment from radioactive materials.
Nuclear waste volume is small compared to the energy produced. For example, at Yankee Rowe Nuclear Power Station, which generated 44 billion kilowatt hours of electricity when in service, its complete spent fuel inventory is contained within sixteen casks. It is estimated that to produce a lifetime supply of energy for a person at a western standard of living (approximately 3 GWh) would require on the order of the volume of a soda can of low enriched uranium, resulting in a similar volume of spent fuel generated.
Waste disposal
See also: List of radioactive waste treatment technologiesFollowing interim storage in a spent fuel pool, the bundles of used fuel rod assemblies of a typical nuclear power station are often stored on site in dry cask storage vessels. Presently, waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate.
Disposal of nuclear waste is often considered the most politically divisive aspect in the lifecycle of a nuclear power facility. The lack of movement of nuclear waste in the 2 billion year old natural nuclear fission reactors in Oklo, Gabon is cited as "a source of essential information today." Experts suggest that centralized underground repositories which are well-managed, guarded, and monitored, would be a vast improvement. There is an "international consensus on the advisability of storing nuclear waste in deep geological repositories". With the advent of new technologies, other methods including horizontal drillhole disposal into geologically inactive areas have been proposed.
There are no commercial scale purpose built underground high-level waste repositories in operation. However, in Finland the Onkalo spent nuclear fuel repository of the Olkiluoto Nuclear Power Plant was under construction as of 2015.
Reprocessing
Main article: Nuclear reprocessing See also: Plutonium Management and Disposition AgreementMost thermal-neutron reactors run on a once-through nuclear fuel cycle, mainly due to the low price of fresh uranium. However, many reactors are also fueled with recycled fissionable materials that remain in spent nuclear fuel. The most common fissionable material that is recycled is the reactor-grade plutonium (RGPu) that is extracted from spent fuel. It is mixed with uranium oxide and fabricated into mixed-oxide or MOX fuel. Because thermal LWRs remain the most common reactor worldwide, this type of recycling is the most common. It is considered to increase the sustainability of the nuclear fuel cycle, reduce the attractiveness of spent fuel to theft, and lower the volume of high level nuclear waste. Spent MOX fuel cannot generally be recycled for use in thermal-neutron reactors. This issue does not affect fast-neutron reactors, which are therefore preferred in order to achieve the full energy potential of the original uranium.
The main constituent of spent fuel from LWRs is slightly enriched uranium. This can be recycled into reprocessed uranium (RepU), which can be used in a fast reactor, used directly as fuel in CANDU reactors, or re-enriched for another cycle through an LWR. Re-enriching of reprocessed uranium is common in France and Russia. Reprocessed uranium is also safer in terms of nuclear proliferation potential.
Reprocessing has the potential to recover up to 95% of the uranium and plutonium fuel in spent nuclear fuel, as well as reduce long-term radioactivity within the remaining waste. However, reprocessing has been politically controversial because of the potential for nuclear proliferation and varied perceptions of increasing the vulnerability to nuclear terrorism. Reprocessing also leads to higher fuel cost compared to the once-through fuel cycle. While reprocessing reduces the volume of high-level waste, it does not reduce the fission products that are the primary causes of residual heat generation and radioactivity for the first few centuries outside the reactor. Thus, reprocessed waste still requires an almost identical treatment for the initial first few hundred years.
Reprocessing of civilian fuel from power reactors is currently done in France, the United Kingdom, Russia, Japan, and India. In the United States, spent nuclear fuel is currently not reprocessed. The La Hague reprocessing facility in France has operated commercially since 1976 and is responsible for half the world's reprocessing as of 2010. It produces MOX fuel from spent fuel derived from several countries. More than 32,000 tonnes of spent fuel had been reprocessed as of 2015, with the majority from France, 17% from Germany, and 9% from Japan.
Breeding
Main articles: Breeder reactor and Nuclear power proposed as renewable energyBreeding is the process of converting non-fissile material into fissile material that can be used as nuclear fuel. The non-fissile material that can be used for this process is called fertile material, and constitute the vast majority of current nuclear waste. This breeding process occurs naturally in breeder reactors. As opposed to light water thermal-neutron reactors, which use uranium-235 (0.7% of all natural uranium), fast-neutron breeder reactors use uranium-238 (99.3% of all natural uranium) or thorium. A number of fuel cycles and breeder reactor combinations are considered to be sustainable or renewable sources of energy. In 2006 it was estimated that with seawater extraction, there was likely five billion years' worth of uranium resources for use in breeder reactors.
Breeder technology has been used in several reactors, but as of 2006, the high cost of reprocessing fuel safely requires uranium prices of more than US$200/kg before becoming justified economically. Breeder reactors are however being developed for their potential to burn all of the actinides (the most active and dangerous components) in the present inventory of nuclear waste, while also producing power and creating additional quantities of fuel for more reactors via the breeding process. As of 2017, there are two breeders producing commercial power, BN-600 reactor and the BN-800 reactor, both in Russia. The Phénix breeder reactor in France was powered down in 2009 after 36 years of operation. Both China and India are building breeder reactors. The Indian 500 MWe Prototype Fast Breeder Reactor is in the commissioning phase, with plans to build more.
Another alternative to fast-neutron breeders are thermal-neutron breeder reactors that use uranium-233 bred from thorium as fission fuel in the thorium fuel cycle. Thorium is about 3.5 times more common than uranium in the Earth's crust, and has different geographic characteristics. India's three-stage nuclear power programme features the use of a thorium fuel cycle in the third stage, as it has abundant thorium reserves but little uranium.
Decommissioning
Main article: Nuclear decommissioningNuclear decommissioning is the process of dismantling a nuclear facility to the point that it no longer requires measures for radiation protection, returning the facility and its parts to a safe enough level to be entrusted for other uses. Due to the presence of radioactive materials, nuclear decommissioning presents technical and economic challenges. The costs of decommissioning are generally spread over the lifetime of a facility and saved in a decommissioning fund.
Production
Further information: Nuclear power by country and List of nuclear reactors2021 world electricity generation by source. Total generation was 28 petawatt-hours.
Coal (36%) Natural gas (23%) Hydro (15%) Nuclear (10%) Wind (7%) Solar (4%) Other (5%)Civilian nuclear power supplied 2,602 terawatt hours (TWh) of electricity in 2023, equivalent to about 9% of global electricity generation, and was the second largest low-carbon power source after hydroelectricity. Nuclear power's contribution to global energy production was about 4% in 2023. This is a little more than wind power, which provided 3.5% of global energy in 2023. Nuclear power's share of global electricity production has fallen from 16.5% in 1997, in large part because the economics of nuclear power have become more difficult.
As of November 2024, there are 415 civilian fission reactors in the world, with a combined electrical capacity of 374 gigawatt (GW). There are also 66 nuclear power reactors under construction and 87 reactors planned, with a combined capacity of 72 GW and 84 GW, respectively. The United States has the largest fleet of nuclear reactors, generating over 800 TWh per year with an average capacity factor of 92%. Most reactors under construction are generation III reactors in Asia.
Regional differences in the use of nuclear power are large. The United States produces the most nuclear energy in the world, with nuclear power providing 19% of the electricity it consumes, while France produces the highest percentage of its electrical energy from nuclear reactors—65% in 2023. In the European Union, nuclear power provides 22% of the electricity as of 2022. Nuclear power is the single largest low-carbon electricity source in the United States, and accounts for about half of the European Union's low-carbon electricity. Nuclear energy policy differs among European Union countries, and some, such as Austria, Estonia, Ireland and Italy, have no active nuclear power stations.
In addition, there were approximately 140 naval vessels using nuclear propulsion in operation, powered by about 180 reactors. These include military and some civilian ships, such as nuclear-powered icebreakers.
International research is continuing into additional uses of process heat such as hydrogen production (in support of a hydrogen economy), for desalinating sea water, and for use in district heating systems.
Economics
Main articles: Economics of nuclear power plants, List of companies in the nuclear sector, and cost of electricity by sourceThe economics of new nuclear power plants is a controversial subject and multi-billion-dollar investments depend on the choice of energy sources. Nuclear power plants typically have high capital costs for building the plant. For this reason, comparison with other power generation methods is strongly dependent on assumptions about construction timescales and capital financing for nuclear plants. Fuel costs account for about 30 percent of the operating costs, while prices are subject to the market.
The high cost of construction is one of the biggest challenges for nuclear power plants. A new 1,100 MW plant is estimated to cost between US$6 billion to US$9 billion. Nuclear power cost trends show large disparity by nation, design, build rate and the establishment of familiarity in expertise. The only two nations for which data is available that saw cost decreases in the 2000s were India and South Korea.
Analysis of the economics of nuclear power must also take into account who bears the risks of future uncertainties. As of 2010, all operating nuclear power plants have been developed by state-owned or regulated electric utility monopolies. Many countries have since liberalized the electricity market where these risks, and the risk of cheaper competitors emerging before capital costs are recovered, are borne by plant suppliers and operators rather than consumers, which leads to a significantly different evaluation of the economics of new nuclear power plants.
The levelized cost of electricity (LCOE) from a new nuclear power plant is estimated to be 69 USD/MWh, according to an analysis by the International Energy Agency and the OECD Nuclear Energy Agency. This represents the median cost estimate for an nth-of-a-kind nuclear power plant to be completed in 2025, at a discount rate of 7%. Nuclear power was found to be the least-cost option among dispatchable technologies. Variable renewables can generate cheaper electricity: the median cost of onshore wind power was estimated to be 50 USD/MWh, and utility-scale solar power 56 USD/MWh. At the assumed CO2 emission cost of 30 USD/ton, power from coal (88 USD/MWh) and gas (71 USD/MWh) is more expensive than low-carbon technologies. Electricity from long-term operation of nuclear power plants by lifetime extension was found to be the least-cost option, at 32 USD/MWh.
Measures to mitigate global warming, such as a carbon tax or carbon emissions trading, may favor the economics of nuclear power. Extreme weather events, including events made more severe by climate change, are decreasing all energy source reliability including nuclear energy by a small degree, depending on location siting.
New small modular reactors, such as those developed by NuScale Power, are aimed at reducing the investment costs for new construction by making the reactors smaller and modular, so that they can be built in a factory.
Certain designs had considerable early positive economics, such as the CANDU, which realized a much higher capacity factor and reliability when compared to generation II light water reactors up to the 1990s.
Nuclear power plants, though capable of some grid-load following, are typically run as much as possible to keep the cost of the generated electrical energy as low as possible, supplying mostly base-load electricity. Due to the on-line refueling reactor design, PHWRs (of which the CANDU design is a part) continue to hold many world record positions for longest continual electricity generation, often over 800 days. The specific record as of 2019 is held by a PHWR at Kaiga Atomic Power Station, generating electricity continuously for 962 days.
Costs not considered in LCOE calculations include funds for research and development, and disasters (the Fukushima disaster is estimated to cost taxpayers ≈$187 billion). In some cases, Governments were found to force "consumers to pay upfront for potential cost overruns" or subsidize uneconomic nuclear energy or be required to do so. Nuclear operators are liable to pay for the waste management in the European Union. In the U.S., the Congress reportedly decided 40 years ago that the nation, and not private companies, would be responsible for storing radioactive waste with taxpayers paying for the costs. The World Nuclear Waste Report 2019 found that "even in countries in which the polluter-pays-principle is a legal requirement, it is applied incompletely" and notes the case of the German Asse II deep geological disposal facility, where the retrieval of large amounts of waste has to be paid for by taxpayers. Similarly, other forms of energy, including fossil fuels and renewables, have a portion of their costs covered by governments.
Use in space
Main article: Nuclear power in spaceThe most common use of nuclear power in space is the use of radioisotope thermoelectric generators, which use radioactive decay to generate power. These power generators are relatively small scale (few kW), and they are mostly used to power space missions and experiments for long periods where solar power is not available in sufficient quantity, such as in the Voyager 2 space probe. A few space vehicles have been launched using nuclear reactors: 34 reactors belong to the Soviet RORSAT series and one was the American SNAP-10A.
Both fission and fusion appear promising for space propulsion applications, generating higher mission velocities with less reaction mass.
Safety
See also: Nuclear safety and security and Nuclear reactor safety systemNuclear power plants have three unique characteristics that affect their safety, as compared to other power plants. Firstly, intensely radioactive materials are present in a nuclear reactor. Their release to the environment could be hazardous. Secondly, the fission products, which make up most of the intensely radioactive substances in the reactor, continue to generate a significant amount of decay heat even after the fission chain reaction has stopped. If the heat cannot be removed from the reactor, the fuel rods may overheat and release radioactive materials. Thirdly, a criticality accident (a rapid increase of the reactor power) is possible in certain reactor designs if the chain reaction cannot be controlled. These three characteristics have to be taken into account when designing nuclear reactors.
All modern reactors are designed so that an uncontrolled increase of the reactor power is prevented by natural feedback mechanisms, a concept known as negative void coefficient of reactivity. If the temperature or the amount of steam in the reactor increases, the fission rate inherently decreases. The chain reaction can also be manually stopped by inserting control rods into the reactor core. Emergency core cooling systems (ECCS) can remove the decay heat from the reactor if normal cooling systems fail. If the ECCS fails, multiple physical barriers limit the release of radioactive materials to the environment even in the case of an accident. The last physical barrier is the large containment building.
With a death rate of 0.03 per TWh, nuclear power is the second safest energy source per unit of energy generated, after solar power, in terms of mortality when the historical track-record is considered. Energy produced by coal, petroleum, natural gas and hydropower has caused more deaths per unit of energy generated due to air pollution and energy accidents. This is found when comparing the immediate deaths from other energy sources to both the immediate and the latent, or predicted, indirect cancer deaths from nuclear energy accidents. When the direct and indirect fatalities (including fatalities resulting from the mining and air pollution) from nuclear power and fossil fuels are compared, the use of nuclear power has been calculated to have prevented about 1.84 million deaths from air pollution between 1971 and 2009, by reducing the proportion of energy that would otherwise have been generated by fossil fuels. Following the 2011 Fukushima nuclear disaster, it has been estimated that if Japan had never adopted nuclear power, accidents and pollution from coal or gas plants would have caused more lost years of life.
Serious impacts of nuclear accidents are often not directly attributable to radiation exposure, but rather social and psychological effects. Evacuation and long-term displacement of affected populations created problems for many people, especially the elderly and hospital patients. Forced evacuation from a nuclear accident may lead to social isolation, anxiety, depression, psychosomatic medical problems, reckless behavior, and suicide. A comprehensive 2005 study on the aftermath of the Chernobyl disaster concluded that the mental health impact is the largest public health problem caused by the accident. Frank N. von Hippel, an American scientist, commented that a disproportionate fear of ionizing radiation (radiophobia) could have long-term psychological effects on the population of contaminated areas following the Fukushima disaster.
Accidents
See also: Energy accidents, Nuclear and radiation accidents and incidents, and Lists of nuclear disasters and radioactive incidentsSome serious nuclear and radiation accidents have occurred. The severity of nuclear accidents is generally classified using the International Nuclear Event Scale (INES) introduced by the International Atomic Energy Agency (IAEA). The scale ranks anomalous events or accidents on a scale from 0 (a deviation from normal operation that poses no safety risk) to 7 (a major accident with widespread effects). There have been three accidents of level 5 or higher in the civilian nuclear power industry, two of which, the Chernobyl accident and the Fukushima accident, are ranked at level 7.
The first major nuclear accidents were the Kyshtym disaster in the Soviet Union and the Windscale fire in the United Kingdom, both in 1957. The first major accident at a nuclear reactor in the USA occurred in 1961 at the SL-1, a U.S. Army experimental nuclear power reactor at the Idaho National Laboratory. An uncontrolled chain reaction resulted in a steam explosion which killed the three crew members and caused a meltdown. Another serious accident happened in 1968, when one of the two liquid-metal-cooled reactors on board the Soviet submarine K-27 underwent a fuel element failure, with the emission of gaseous fission products into the surrounding air, resulting in 9 crew fatalities and 83 injuries.
The Fukushima Daiichi nuclear accident was caused by the 2011 Tohoku earthquake and tsunami. The accident has not caused any radiation-related deaths but resulted in radioactive contamination of surrounding areas. The difficult cleanup operation is expected to cost tens of billions of dollars over 40 or more years. The Three Mile Island accident in 1979 was a smaller scale accident, rated at INES level 5. There were no direct or indirect deaths caused by the accident.
The impact of nuclear accidents is controversial. According to Benjamin K. Sovacool, fission energy accidents ranked first among energy sources in terms of their total economic cost, accounting for 41% of all property damage attributed to energy accidents. Another analysis found that coal, oil, liquid petroleum gas and hydroelectric accidents (primarily due to the Banqiao Dam disaster) have resulted in greater economic impacts than nuclear power accidents. The study compares latent cancer deaths attributable to nuclear power with immediate deaths from other energy sources per unit of energy generated, and does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident" (an accident with more than five fatalities) classification. The Chernobyl accident in 1986 caused approximately 50 deaths from direct and indirect effects, and some temporary serious injuries from acute radiation syndrome. The future predicted mortality from increases in cancer rates is estimated at 4000 in the decades to come. However, the costs have been large and are increasing.
Nuclear power works under an insurance framework that limits or structures accident liabilities in accordance with national and international conventions. It is often argued that this potential shortfall in liability represents an external cost not included in the cost of nuclear electricity. This cost is small, amounting to about 0.1% of the levelized cost of electricity, according to a study by the Congressional Budget Office in the United States. These beyond-regular insurance costs for worst-case scenarios are not unique to nuclear power. Hydroelectric power plants are similarly not fully insured against a catastrophic event such as dam failures. For example, the failure of the Banqiao Dam caused the death of an estimated 30,000 to 200,000 people, and 11 million people lost their homes. As private insurers base dam insurance premiums on limited scenarios, major disaster insurance in this sector is likewise provided by the state.
Attacks and sabotage
Main articles: Vulnerability of nuclear plants to attack, Nuclear terrorism, and Nuclear safety in the United StatesTerrorists could target nuclear power plants in an attempt to release radioactive contamination into the community. The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the September 11, 2001 attacks. An attack on a reactor's spent fuel pool could also be serious, as these pools are less protected than the reactor core. The release of radioactivity could lead to thousands of near-term deaths and greater numbers of long-term fatalities.
In the United States, the Nuclear Regulatory Commission carries out "Force on Force" (FOF) exercises at all nuclear power plant sites at least once every three years. In the United States, plants are surrounded by a double row of tall fences which are electronically monitored. The plant grounds are patrolled by a sizeable force of armed guards.
Insider sabotage is also a threat because insiders can observe and work around security measures. Successful insider crimes depended on the perpetrators' observation and knowledge of security vulnerabilities. A fire caused 5–10 million dollars worth of damage to New York's Indian Point Energy Center in 1971. The arsonist was a plant maintenance worker.
Proliferation
Further information: Nuclear proliferation See also: Plutonium Management and Disposition AgreementNuclear proliferation is the spread of nuclear weapons, fissionable material, and weapons-related nuclear technology to states that do not already possess nuclear weapons. Many technologies and materials associated with the creation of a nuclear power program have a dual-use capability, in that they can also be used to make nuclear weapons. For this reason, nuclear power presents proliferation risks.
Nuclear power program can become a route leading to a nuclear weapon. An example of this is the concern over Iran's nuclear program. The re-purposing of civilian nuclear industries for military purposes would be a breach of the Non-Proliferation Treaty, to which 190 countries adhere. As of April 2012, there are thirty one countries that have civil nuclear power plants, of which nine have nuclear weapons. The vast majority of these nuclear weapons states have produced weapons before commercial nuclear power stations.
A fundamental goal for global security is to minimize the nuclear proliferation risks associated with the expansion of nuclear power. The Global Nuclear Energy Partnership was an international effort to create a distribution network in which developing countries in need of energy would receive nuclear fuel at a discounted rate, in exchange for that nation agreeing to forgo their own indigenous development of a uranium enrichment program. The France-based Eurodif/European Gaseous Diffusion Uranium Enrichment Consortium is a program that successfully implemented this concept, with Spain and other countries without enrichment facilities buying a share of the fuel produced at the French-controlled enrichment facility, but without a transfer of technology. Iran was an early participant from 1974 and remains a shareholder of Eurodif via Sofidif.
A 2009 United Nations report said that:
the revival of interest in nuclear power could result in the worldwide dissemination of uranium enrichment and spent fuel reprocessing technologies, which present obvious risks of proliferation as these technologies can produce fissile materials that are directly usable in nuclear weapons.
On the other hand, power reactors can also reduce nuclear weapon arsenals when military-grade nuclear materials are reprocessed to be used as fuel in nuclear power plants. The Megatons to Megawatts Program is considered the single most successful non-proliferation program to date. Up to 2005, the program had processed $8 billion of high enriched, weapons-grade uranium into low enriched uranium suitable as nuclear fuel for commercial fission reactors by diluting it with natural uranium. This corresponds to the elimination of 10,000 nuclear weapons. For approximately two decades, this material generated nearly 10 percent of all the electricity consumed in the United States, or about half of all U.S. nuclear electricity, with a total of around 7,000 TWh of electricity produced. In total it is estimated to have cost $17 billion, a "bargain for US ratepayers", with Russia profiting $12 billion from the deal. Much needed profit for the Russian nuclear oversight industry, which after the collapse of the Soviet economy, had difficulties paying for the maintenance and security of the Russian Federations highly enriched uranium and warheads. The Megatons to Megawatts Program was hailed as a major success by anti-nuclear weapon advocates as it has largely been the driving force behind the sharp reduction in the number of nuclear weapons worldwide since the cold war ended. However, without an increase in nuclear reactors and greater demand for fissile fuel, the cost of dismantling and down blending has dissuaded Russia from continuing their disarmament. As of 2013, Russia appears to not be interested in extending the program.
Environmental impact
Main article: Environmental impact of nuclear powerBeing a low-carbon energy source with relatively little land-use requirements, nuclear energy can have a positive environmental impact. It also requires a constant supply of significant amounts of water and affects the environment through mining and milling. Its largest potential negative impacts on the environment may arise from its transgenerational risks for nuclear weapons proliferation that may increase risks of their use in the future, risks for problems associated with the management of the radioactive waste such as groundwater contamination, risks for accidents and for risks for various forms of attacks on waste storage sites or reprocessing- and power-plants. However, these remain mostly only risks as historically there have only been few disasters at nuclear power plants with known relatively substantial environmental impacts.
Carbon emissions
See also: Life-cycle greenhouse gas emissions of energy sources Further information: § Historic effect on carbon emissionsNuclear power is one of the leading low carbon power generation methods of producing electricity, and in terms of total life-cycle greenhouse gas emissions per unit of energy generated, has emission values comparable to or lower than renewable energy. A 2014 analysis of the carbon footprint literature by the Intergovernmental Panel on Climate Change (IPCC) reported that the embodied total life-cycle emission intensity of nuclear power has a median value of 12 g CO2eq/kWh, which is the lowest among all commercial baseload energy sources. This is contrasted with coal and natural gas at 820 and 490 g CO2 eq/kWh. As of 2021, nuclear reactors worldwide have helped avoid the emission of 72 billion tonnes of carbon dioxide since 1970, compared to coal-fired electricity generation, according to a report.
Radiation
The average dose from natural background radiation is 2.4 millisievert per year (mSv/a) globally. It varies between 1 mSv/a and 13 mSv/a, depending mostly on the geology of the location. According to the United Nations (UNSCEAR), regular nuclear power plant operations, including the nuclear fuel cycle, increases this amount by 0.0002 mSv/a of public exposure as a global average. The average dose from operating nuclear power plants to the local populations around them is less than 0.0001 mSv/a. For comparison, the average dose to those living within 50 miles (80 km) of a coal power plant is over three times this dose, at 0.0003 mSv/a.
Chernobyl resulted in the most affected surrounding populations and male recovery personnel receiving an average initial 50 to 100 mSv over a few hours to weeks, while the remaining global legacy of the worst nuclear power plant accident in average exposure is 0.002 mSv/a and is continuously dropping at the decaying rate, from the initial high of 0.04 mSv per person averaged over the entire populace of the Northern Hemisphere in the year of the accident in 1986.
Debate
Main article: Nuclear power debate See also: Nuclear energy policy, Pro-nuclear movement, and Anti-nuclear movementThe nuclear power debate concerns the controversy which has surrounded the deployment and use of nuclear fission reactors to generate electricity from nuclear fuel for civilian purposes.
Proponents of nuclear energy regard it as a sustainable energy source that reduces carbon emissions and increases energy security by decreasing dependence on other energy sources that are also often dependent on imports. For example, proponents note that annually, nuclear-generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels. Additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed/recycled for other energy uses. M. King Hubbert, who popularized the concept of peak oil, saw oil as a resource that would run out and considered nuclear energy its replacement. Proponents also claim that the present quantity of nuclear waste is small and can be reduced through the latest technology of newer reactors and that the operational safety record of fission-electricity in terms of deaths is so far "unparalleled". Kharecha and Hansen estimated that "global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning" and, if continued, it could prevent up to 7 million deaths and 240 GtCO2-eq emissions by 2050.
Proponents also bring to attention the opportunity cost of using other forms of electricity. For example, the Environmental Protection Agency estimates that coal kills 30,000 people a year, as a result of its environmental impact, while 60 people died in the Chernobyl disaster. A real world example of impact provided by proponents is the 650,000 ton increase in carbon emissions in the two months following the closure of the Vermont Yankee nuclear plant.
Opponents believe that nuclear power poses many threats to people's health and environment such as the risk of nuclear weapons proliferation, long-term safe waste management and terrorism in the future. They also contend that nuclear power plants are complex systems where many things can and have gone wrong. Costs of the Chernobyl disaster amount to ≈$68 billion as of 2019 and are increasing, the Fukushima disaster is estimated to cost taxpayers ~$187 billion, and radioactive waste management is estimated to cost the Eureopean Union nuclear operators ~$250 billion by 2050. However, in countries that already use nuclear energy, when not considering reprocessing, intermediate nuclear waste disposal costs could be relatively fixed to certain but unknown degrees "as the main part of these costs stems from the operation of the intermediate storage facility".
Critics find that one of the largest drawbacks to building new nuclear fission power plants are the large construction and operating costs when compared to alternatives of sustainable energy sources. Further costs include ongoing research and development, expensive reprocessing in cases where such is practiced and decommissioning. Proponents note that focussing on the levelized cost of energy (LCOE), however, ignores the value premium associated with 24/7 dispatchable electricity and the cost of storage and backup systems necessary to integrate variable energy sources into a reliable electrical grid. "Nuclear thus remains the dispatchable low-carbon technology with the lowest expected costs in 2025. Only large hydro reservoirs can provide a similar contribution at comparable costs but remain highly dependent on the natural endowments of individual countries."
Overall, many opponents find that nuclear energy cannot meaningfully contribute to climate change mitigation. In general, they find it to be, too dangerous, too expensive, to take too long for deployment, to be an obstacle to achieving a transition towards sustainability and carbon-neutrality, effectively being a distracting competition for resources (i.e. human, financial, time, infrastructure and expertise) for the deployment and development of alternative, sustainable, energy system technologies (such as for wind, ocean and solar – including e.g. floating solar – as well as ways to manage their intermittency other than nuclear baseload generation such as dispatchable generation, renewables-diversification, super grids, flexible energy demand and supply regulating smart grids and energy storage technologies).
Nevertheless, there is ongoing research and debate over costs of new nuclear, especially in regions where i.a. seasonal energy storage is difficult to provide and which aim to phase out fossil fuels in favor of low carbon power faster than the global average. Some find that financial transition costs for a 100% renewables-based European energy system that has completely phased out nuclear energy could be more costly by 2050 based on current technologies (i.e. not considering potential advances in e.g. green hydrogen, transmission and flexibility capacities, ways to reduce energy needs, geothermal energy and fusion energy) when the grid only extends across Europe. Arguments of economics and safety are used by both sides of the debate.
Comparison with renewable energy
See also: Renewable energy debateSlowing global warming requires a transition to a low-carbon economy, mainly by burning far less fossil fuel. Limiting global warming to 1.5 °C is technically possible if no new fossil fuel power plants are built from 2019. This has generated considerable interest and dispute in determining the best path forward to rapidly replace fossil-based fuels in the global energy mix, with intense academic debate. Sometimes the IEA says that countries without nuclear should develop it as well as their renewable power.
World total primary energy supply of 162,494 TWh (or 13,792 Mtoe) by fuels in 2017 (IEA, 2019)
Oil (32%) Coal/Peat/Shale (27.1%) Natural Gas (22.2%) Biofuels and waste (9.5%) Nuclear (4.9%) Hydro (2.5%) Others (Renewables) (1.8%)Several studies suggest that it might be theoretically possible to cover a majority of world energy generation with new renewable sources. The Intergovernmental Panel on Climate Change (IPCC) has said that if governments were supportive, renewable energy supply could account for close to 80% of the world's energy use by 2050. While in developed nations the economically feasible geography for new hydropower is lacking, with every geographically suitable area largely already exploited, some proponents of wind and solar energy claim these resources alone could eliminate the need for nuclear power.
Nuclear power is comparable to, and in some cases lower, than many renewable energy sources in terms of lives lost in the past per unit of electricity delivered. Depending on recycling of renewable energy technologies, nuclear reactors may produce a much smaller volume of waste, although much more toxic, expensive to manage and longer-lived. A nuclear plant also needs to be disassembled and removed and much of the disassembled nuclear plant needs to be stored as low-level nuclear waste for a few decades. The disposal and management of the wide variety of radioactive waste, of which there are over one quarter of a million tons as of 2018, can cause future damage and costs across the world for over or during hundreds of thousands of years – possibly over a million years, due to issues such as leakage, malign retrieval, vulnerability to attacks (including of reprocessing and power plants), groundwater contamination, radiation and leakage to above ground, brine leakage or bacterial corrosion. The European Commission Joint Research Centre found that as of 2021 the necessary technologies for geological disposal of nuclear waste are now available and can be deployed. Corrosion experts noted in 2020 that putting the problem of storage off any longer "isn't good for anyone". Separated plutonium and enriched uranium could be used for nuclear weapons, which – even with the current centralized control (e.g. state-level) and level of prevalence – are considered to be a difficult and substantial global risk for substantial future impacts on human health, lives, civilization and the environment.
Speed of transition and investment needed
Analysis in 2015 by professor Barry W. Brook and colleagues found that nuclear energy could displace or remove fossil fuels from the electric grid completely within 10 years. This finding was based on the historically modest and proven rate at which nuclear energy was added in France and Sweden during their building programs in the 1980s. In a similar analysis, Brook had earlier determined that 50% of all global energy, including transportation synthetic fuels etc., could be generated within approximately 30 years if the global nuclear fission build rate was identical to historical proven installation rates calculated in GW per year per unit of global GDP (GW/year/$). This is in contrast to the conceptual studies for 100% renewable energy systems, which would require an order of magnitude more costly global investment per year, which has no historical precedent. These renewable scenarios would also need far greater land devoted to onshore wind and onshore solar projects. Brook notes that the "principal limitations on nuclear fission are not technical, economic or fuel-related, but are instead linked to complex issues of societal acceptance, fiscal and political inertia, and inadequate critical evaluation of the real-world constraints facing low-carbon alternatives."
Scientific data indicates that – assuming 2021 emissions levels – humanity only has a carbon budget equivalent to 11 years of emissions left for limiting warming to 1.5 °C while the construction of new nuclear reactors took a median of 7.2–10.9 years in 2018–2020, substantially longer than, alongside other measures, scaling up the deployment of wind and solar – especially for novel reactor types – as well as being more risky, often delayed and more dependent on state-support. Researchers have cautioned that novel nuclear technologies – which have been in development since decades, are less tested, have higher proliferation risks, have more new safety problems, are often far from commercialization and are more expensive – are not available in time. Critics of nuclear energy often only oppose nuclear fission energy but not nuclear fusion; however, fusion energy is unlikely to be commercially widespread before 2050.
Land use
The median land area used by US nuclear power stations per 1 GW installed capacity is 1.3 square miles (3.4 km). To generate the same amount of electricity annually (taking into account capacity factors) from solar PV would require about 60 square miles (160 km), and from a wind farm about 310 square miles (800 km). Not included in this, is land required for the associated transmission lines, water supply, rail lines, mining and processing of nuclear fuel, and for waste disposal.
Research
Advanced fission reactor designs
Main article: Generation IV reactorCurrent fission reactors in operation around the world are second or third generation systems, with most of the first-generation systems having been already retired. Research into advanced generation IV reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals, including to improve economics, safety, proliferation resistance, natural resource use and the ability to consume existing nuclear waste in the production of electricity. Most of these reactors differ significantly from current operating light water reactors, and are expected to be available for commercial construction after 2030.
Hybrid fusion-fission
Main article: Nuclear fusion–fission hybridHybrid nuclear power is a proposed means of generating power by the use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to delays in the realization of pure fusion. When a sustained nuclear fusion power plant is built, it has the potential to be capable of extracting all the fission energy that remains in spent fission fuel, reducing the volume of nuclear waste by orders of magnitude, and more importantly, eliminating all actinides present in the spent fuel, substances which cause security concerns.
Fusion
Main articles: Nuclear fusion and Fusion powerNuclear fusion reactions have the potential to be safer and generate less radioactive waste than fission. These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under theoretical and experimental investigation since the 1950s. Nuclear fusion research is underway but fusion energy is not likely to be commercially widespread before 2050.
Several experimental nuclear fusion reactors and facilities exist. The largest and most ambitious international nuclear fusion project currently in progress is ITER, a large tokamak under construction in France. ITER is planned to pave the way for commercial fusion power by demonstrating self-sustained nuclear fusion reactions with positive energy gain. Construction of the ITER facility began in 2007, but the project has run into many delays and budget overruns. The facility is now not expected to begin operations until the year 2027 – 11 years after initially anticipated. A follow on commercial nuclear fusion power station, DEMO, has been proposed. There are also suggestions for a power plant based upon a different fusion approach, that of an inertial fusion power plant.
Fusion-powered electricity generation was initially believed to be readily achievable, as fission-electric power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2020, more than 80 years after the first attempts, commercialization of fusion power production was thought to be unlikely before 2050.
To enhance and accelerate the development of fusion energy, the United States Department of Energy (DOE) granted $46 million to eight firms, including Commonwealth Fusion Systems and Tokamak Energy Inc, in 2023. This ambitious initiative aims to introduce pilot-scale fusion within a decade.
See also
- Atomic battery
- Nuclear power by country
- Nuclear weapons debate
- Pro-nuclear movement
- Thorium-based nuclear power
- Uranium mining debate
- World energy supply and consumption
References
- "Power: Radioisotope Thermoelectric Generators - NASA Science". science.nasa.gov. Retrieved 2024-10-01.
- Moynihan, M., & Bortz, A. B. (2023). Fusion’s Promise: How Technological Breakthroughs in Nuclear Fusion Can Conquer Climate Change on Earth (And Carry Humans To Mars, Too) . Springer International Publishing. https://doi.org/10.1007/978-3-031-22906-0
- ^ World Nuclear Performance Report 2024 (PDF) (Report). World Nuclear Association. 2024. pp. 3–5. Retrieved 2024-11-10.
- ^ "Power Reactor Information System". International Atomic Energy Agency. Retrieved 2024-11-10.
- ^ "World Nuclear Power Reactors & Uranium Requirements". World Nuclear Association. Retrieved 2024-11-10.
- Bailey, Ronald (2024-11-29). "Nuclear energy prevents air pollution and saves lives". Reason.com. Retrieved 2024-12-05.
- "Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology Legacy". www.ne.anl.gov. Retrieved 24 March 2021.
- Wellerstein, Alex (2008). "Inside the atomic patent office". Bulletin of the Atomic Scientists. 64 (2): 26–31. Bibcode:2008BuAtS..64b..26W. doi:10.2968/064002008. ISSN 0096-3402.
- "The Einstein Letter". Atomicarchive.com. Archived from the original on 2013-06-28. Retrieved 2013-06-22.
- "Nautilus (SSN-571)". US Naval History and Heritage Command (US Navy).
- Wendt, Gerald; Geddes, Donald Porter (1945). The Atomic Age Opens. New York: Pocket Books. Archived from the original on 2016-03-28. Retrieved 2017-11-03.
- "Reactors Designed by Argonne National Laboratory: Fast Reactor Technology". U.S. Department of Energy, Argonne National Laboratory. 2012. Archived from the original on 2021-04-18. Retrieved 2012-07-25.
- "Reactor Makes Electricity". Popular Mechanics. Hearst Magazines. March 1952. p. 105.
- ^ "50 Years of Nuclear Energy" (PDF). International Atomic Energy Agency. Archived (PDF) from the original on 2010-01-07. Retrieved 2006-11-09.
- "STR (Submarine Thermal Reactor) in "Reactors Designed by Argonne National Laboratory: Light Water Reactor Technology Development"". U.S. Department of Energy, Argonne National Laboratory. 2012. Archived from the original on 2012-06-22. Retrieved 2012-07-25.
- Rockwell, Theodore (1992). The Rickover Effect. Naval Institute Press. p. 162. ISBN 978-1-55750-702-0.
- "From Obninsk Beyond: Nuclear Power Conference Looks to Future". International Atomic Energy Agency. 2004-06-23. Archived from the original on 2006-11-15. Retrieved 2006-06-27.
- Hill, C. N. (2013). An atomic empire: a technical history of the rise and fall of the British atomic energy programme. London, England: Imperial College Press. ISBN 978-1-908977-43-4.
- ^ Bernard L. Cohen (1990). The Nuclear Energy Option: An Alternative for the 90s. New York: Plenum Press. ISBN 978-0-306-43567-6.
- Beder, Sharon (2006). "The Japanese Situation, English version of conclusion of Sharon Beder, "Power Play: The Fight to Control the World's Electricity"". Soshisha, Japan. Archived from the original on 2011-03-17. Retrieved 2009-05-15.
- Palfreman, Jon (1997). "Why the French Like Nuclear Energy". Frontline. Public Broadcasting Service. Archived from the original on 25 August 2007. Retrieved 25 August 2007.
- de Preneuf, Rene. "Nuclear Power in France – Why does it Work?". Archived from the original on 13 August 2007. Retrieved 25 August 2007.
- ^ "Nuclear Share of Electricity Generation in 2023". Power Reactor Information System. International Atomic Energy Agency. Retrieved 2024-11-11.
- Garb, Paula (1999). "Review of Critical Masses: Opposition to Nuclear Power in California, 1958–1978". Journal of Political Ecology. 6. Archived from the original on 2018-06-01. Retrieved 2011-03-14.
- ^ Rüdig, Wolfgang, ed. (1990). Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy. Detroit, Michigan: Longman Current Affairs. p. 1. ISBN 978-0-8103-9000-3.
- Martin, Brian (2007). "Opposing nuclear power: past and present". Social Alternatives. 26 (2): 43–47. Archived from the original on 2019-05-10. Retrieved 2011-03-14.
- Mills, Stephen; Williams, Roger (1986). Public acceptance of new technologies: an international review. London: Croom Helm. pp. 375–376. ISBN 978-0-7099-4319-8.
- Robert Gottlieb (2005). Forcing the Spring: The Transformation of the American Environmental Movement, Revised Edition, Island Press, p. 237.
- Falk, Jim (1982). Global Fission: The Battle Over Nuclear Power. Melbourne, Australia: Oxford University Press. pp. 95–96. ISBN 978-0-19-554315-5.
- ^ Walker, J. Samuel (2004). Three Mile Island: A Nuclear Crisis in Historical Perspective Archived 2023-03-23 at the Wayback Machine (Berkeley, California: University of California Press), pp. 10–11.
- ^ Herbert P. Kitschelt (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 57. doi:10.1017/s000712340000380x. S2CID 154479502. Archived (PDF) from the original on 2010-08-21. Retrieved 2010-02-28.
- Kitschelt, Herbert P. (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 71. doi:10.1017/s000712340000380x. S2CID 154479502. Archived (PDF) from the original on 2010-08-21. Retrieved 2010-02-28.
- "Costs of Nuclear Power Plants – What Went Wrong?". www.phyast.pitt.edu. Archived from the original on 2010-04-13. Retrieved 2007-12-04.
- Ginn, Vance; Raia, Elliott (August 18, 2017). "nuclear energy may soon be free from its tangled regulatory web". Washington Examiner. Archived from the original on January 6, 2019. Retrieved January 6, 2019.
- "Nuclear Power: Outlook for New U.S. Reactors" (PDF). p. 3. Archived (PDF) from the original on 2015-09-24. Retrieved 2015-10-18.
- Cook, James (1985-02-11). "Nuclear Follies". Forbes Magazine.
- Thorpe, Gary S. (2015). AP Environmental Science, 6th ed. Barrons Educational Series. ISBN 978-1-4380-6728-5. ISBN 1-4380-6728-3
- "Chernobyl Nuclear Accident". www.iaea.org. IAEA. 14 May 2014. Archived from the original on 11 June 2008. Retrieved 23 March 2021.
- ^ "Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter II – The release, dispersion and deposition of radionuclides" (PDF). OECD-NEA. 2002. Archived (PDF) from the original on 22 June 2015. Retrieved 3 June 2015.
- Johnson, Thomas (author/director) (2006). The battle of Chernobyl. Play Film / Discovery Channel. Archived from the original on 2021-03-07. Retrieved 2021-03-23. (see 1996 interview with Mikhail Gorbachev.)
- Sassoon, Donald (2014-06-03). Contemporary Italy: Politics, Economy and Society Since 1945. Routledge. ISBN 978-1-317-89377-6.
- ^ "Analysis: Nuclear renaissance could fizzle after Japan quake". Reuters. 2011-03-14. Archived from the original on 2015-12-08. Retrieved 2011-03-14.
- "Trend in Electricity Supplied". International Atomic Energy Agency. Archived from the original on 2021-01-11. Retrieved 2021-01-09.
- "Analysis: The legacy of the Fukushima nuclear disaster". Carbon Brief. 10 March 2016. Archived from the original on 8 March 2021. Retrieved 24 March 2021.
- Westall, Sylvia & Dahl, Fredrik (2011-06-24). "IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety". Scientific American. Archived from the original on 2011-06-25. Retrieved 2011-06-25.
- Chandler, Jo (2011-03-19). "Is this the end of the nuclear revival?". The Sydney Morning Herald. Sydney, Australia. Archived from the original on 2020-05-10. Retrieved 2020-02-20.
- Belford, Aubrey (2011-03-17). "Indonesia to Continue Plans for Nuclear Power". The New York Times. Archived from the original on 2020-05-10. Retrieved 2017-02-25.
- Morgan, Piers (2011-03-17). "Israel Prime Minister Netanyahu: Japan situation has "caused me to reconsider" nuclear power". CNN. Archived from the original on 2019-09-30. Retrieved 2011-03-17.
- "Israeli PM cancels plan to build nuclear plant". xinhuanet.com. 2011-03-18. Archived from the original on March 18, 2011. Retrieved 2011-03-17.
- "Startup of Sendai Nuclear Power Unit No.1". Kyushu Electric Power Company Inc. 2015-08-11. Archived from the original on 2017-05-25. Retrieved 2015-08-12.
- "Japan turns back to nuclear power in post-Fukushima shift". Financial Times. London, England. 24 August 2022. Archived from the original on 30 September 2022. Retrieved November 15, 2022.
- ^ "Japan Is Reopening Nuclear Power Plants and Planning To Build New Ones". August 25, 2022. Archived from the original on November 15, 2022. Retrieved November 26, 2022.
- "January: Taking a fresh look at the future of nuclear power". www.iea.org. Archived from the original on 2016-04-05. Retrieved 2016-04-18.
- "Plans for New Reactors Worldwide". World Nuclear Association. October 2015. Archived from the original on 2016-01-31. Retrieved 2016-01-05.
- "International Energy outlook 2016". US Energy Information Administration. Archived from the original on 15 August 2016. Retrieved 17 August 2016.
- "Plans for New Nuclear Reactors Worldwide". www.world-nuclear.org. World Nuclear Association. Archived from the original on 2018-09-28. Retrieved 2018-09-29.
- "Can China become a scientific superpower? – The great experiment". The Economist. 12 January 2019. Archived from the original on 25 January 2019. Retrieved 25 January 2019.
- "A global nuclear phaseout or renaissance? | DW | 04.02.2021". Deutsche Welle (www.dw.com). Archived from the original on 25 November 2021. Retrieved 25 November 2021.
- ^ Griffiths, James. "China's gambling on a nuclear future, but is it destined to lose?". CNN. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
- ^ "Building new nuclear plants in France uneconomical -environment agency". Reuters. 10 December 2018. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
- World Nuclear Association. "Nuclear Power in Japan". Archived from the original on 2020-04-01. Retrieved 2022-09-12.
- "Germany's Uniper to restart coal-fired power plant as Gazprom halts supply to Europe". Reuters. 22 August 2022. Archived from the original on 2022-09-09. Retrieved 2022-09-12.
- "Macron bets on nuclear in carbon-neutrality push, announces new reactors". Reuters. 10 February 2022. Archived from the original on 2022-09-14. Retrieved 2022-09-12.
- "Department of Energy picks two advanced nuclear reactors for demonstration projects, announces new reactors". Science.org. 16 October 2020. Archived from the original on 24 February 2023. Retrieved 3 March 2023.
- "Nuclear Power Reactors in the World – 2015 Edition" (PDF). International Atomic Energy Agency (IAEA). Archived (PDF) from the original on 16 November 2020. Retrieved 26 October 2017.
- ^ "How does a nuclear reactor make electricity?". www.world-nuclear.org. World Nuclear Association. Archived from the original on 24 August 2018. Retrieved 24 August 2018.
- Spyrou, Artemis; Mittig, Wolfgang (2017-12-03). "Atomic age began 75 years ago with the first controlled nuclear chain reaction". Scientific American. Archived from the original on 2018-11-18. Retrieved 2018-11-18.
- ^ "Stages of the Nuclear Fuel Cycle". NRC Web. Nuclear Regulatory Commission. Archived from the original on 20 April 2021. Retrieved 17 April 2021.
- ^ "Nuclear Fuel Cycle Overview". www.world-nuclear.org. World Nuclear Association. Archived from the original on 20 April 2021. Retrieved 17 April 2021.
- "uranium Facts, information, pictures | Encyclopedia.com articles about uranium". Encyclopedia.com. 2001-09-11. Archived from the original on 2016-09-13. Retrieved 2013-06-14.
- "Second Thoughts About Nuclear Power" (PDF). A Policy Brief – Challenges Facing Asia. January 2011. Archived from the original (PDF) on January 16, 2013. Retrieved September 11, 2012.
- "Uranium resources sufficient to meet projected nuclear energy requirements long into the future". Nuclear Energy Agency (NEA). 2008-06-03. Archived from the original on 2008-12-05. Retrieved 2008-06-16.
- Uranium 2007 – Resources, Production and Demand. Nuclear Energy Agency, Organisation for Economic Co-operation and Development. 2008. ISBN 978-92-64-04766-2. Archived from the original on 2009-01-30.
- "Energy Supply" (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and table 4.10.
- ^ "Waste Management in the Nuclear Fuel Cycle". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-11. Retrieved 2006-11-09.
- "Energy Supply" (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and figure 4.10.
- ^ "Nuclear Reprocessing: Dangerous, Dirty, and Expensive". Union of Concerned Scientists. Archived from the original on 15 January 2021. Retrieved 26 January 2020.
- ^ "Toward an Assessment of Future Proliferation Risk" (PDF). Archived (PDF) from the original on 25 November 2021. Retrieved 25 November 2021.
- ^ Zhang, Hui (1 July 2015). "Plutonium reprocessing, breeder reactors, and decades of debate: A Chinese response". Bulletin of the Atomic Scientists. 71 (4): 18–22. doi:10.1177/0096340215590790. ISSN 0096-3402. S2CID 145763632.
- ^ Martin, Brian (1 January 2015). "Nuclear power and civil liberties". Faculty of Law, Humanities and the Arts – Papers (Archive): 1–6. Archived from the original on 25 November 2021. Retrieved 26 November 2021.
- ^ Kemp, R. Scott (29 June 2016). "Environmental Detection of Clandestine Nuclear Weapon Programs". Annual Review of Earth and Planetary Sciences. 44 (1): 17–35. Bibcode:2016AREPS..44...17K. doi:10.1146/annurev-earth-060115-012526. hdl:1721.1/105171. ISSN 0084-6597. Archived from the original on 25 November 2021. Retrieved 26 November 2021.
Although commercial reprocessing involves large, expensive facilities, some of which are identifiable in structure, a small, makeshift operation using standard industrial supplies is feasible (Ferguson 1977, US GAO 1978). Such a plant could be constructed to have no visual signatures that would reveal its location by overhead imaging, could be built in several months, and once operational could produce weapon quantities of fissile material in several days
- Monnet, Antoine; Gabriel, Sophie; Percebois, Jacques (1 September 2017). "Long-term availability of global uranium resources" (PDF). Resources Policy. 53: 394–407. Bibcode:2017RePol..53..394M. doi:10.1016/j.resourpol.2017.07.008. ISSN 0301-4207. Archived (PDF) from the original on 31 October 2021. Retrieved 1 December 2021.
However, it can be seen that the simulation in scenario A3 stops in 2075 due to a shortage: the R/P ratio cancels itself out. The detailed calculations also show that even though it does not cancel itself out in scenario C2, the R/P ratio constantly deteriorates, falling from 130 years in 2013 to 10 years around 2100, which raises concerns of a shortage around that time. The exploration constraints thus affect the security of supply.
- Haji, Maha N.; Drysdale, Jessica; Buesseler, Ken; Slocum, Alexander H. (25 June 2017). "Ocean Testing of a Symbiotic Device to Harvest Uranium From Seawater Through the Use of Shell Enclosures". Proceedings of the 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar. Archived from the original on 26 November 2021. Retrieved 28 November 2021 – via OnePetro.
- ^ Muellner, Nikolaus; Arnold, Nikolaus; Gufler, Klaus; Kromp, Wolfgang; Renneberg, Wolfgang; Liebert, Wolfgang (1 August 2021). "Nuclear energy - The solution to climate change?". Energy Policy. 155: 112363. Bibcode:2021EnPol.15512363M. doi:10.1016/j.enpol.2021.112363. ISSN 0301-4215. S2CID 236254316.
- Chen, Yanxin; Martin, Guillaume; Chabert, Christine; Eschbach, Romain; He, Hui; Ye, Guo-an (1 March 2018). "Prospects in China for nuclear development up to 2050" (PDF). Progress in Nuclear Energy. 103: 81–90. Bibcode:2018PNuE..103...81C. doi:10.1016/j.pnucene.2017.11.011. ISSN 0149-1970. S2CID 126267852. Archived (PDF) from the original on 16 December 2021. Retrieved 1 December 2021.
- Gabriel, Sophie; Baschwitz, Anne; Mathonnière, Gilles; Eleouet, Tommy; Fizaine, Florian (1 August 2013). "A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets". Annals of Nuclear Energy. 58: 213–220. Bibcode:2013AnNuE..58..213G. doi:10.1016/j.anucene.2013.03.010. ISSN 0306-4549.
- Shang, Delei; Geissler, Bernhard; Mew, Michael; Satalkina, Liliya; Zenk, Lukas; Tulsidas, Harikrishnan; Barker, Lee; El-Yahyaoui, Adil; Hussein, Ahmed; Taha, Mohamed; Zheng, Yanhua; Wang, Menglai; Yao, Yuan; Liu, Xiaodong; Deng, Huidong; Zhong, Jun; Li, Ziying; Steiner, Gerald; Bertau, Martin; Haneklaus, Nils (1 April 2021). "Unconventional uranium in China's phosphate rock: Review and outlook". Renewable and Sustainable Energy Reviews. 140: 110740. Bibcode:2021RSERv.14010740S. doi:10.1016/j.rser.2021.110740. ISSN 1364-0321. S2CID 233577205.
- ^ Wealer, Ben; Breyer, Christian; Hennicke, Peter; Hirsch, Helmut; von Hirschhausen, Christian; Klafka, Peter; Kromp-Kolb, Helga; Präger, Fabian; Steigerwald, Björn; Traber, Thure; Baumann, Franz; Herold, Anke; Kemfert, Claudia; Kromp, Wolfgang; Liebert, Wolfgang; Müschen, Klaus (16 October 2021). "Kernenergie und Klima". Diskussionsbeiträge der Scientists for Future (in German). doi:10.5281/zenodo.5573718.
- ^ "Hidden military implications of 'building back' with new nuclear in the UK" (PDF). Archived (PDF) from the original on 23 October 2021. Retrieved 24 November 2021.
- "USGS Scientific Investigations Report 2012–5239: Critical Analysis of World Uranium Resources". pubs.usgs.gov. Archived from the original on 19 January 2022. Retrieved 28 November 2021.
- Barthel, F. H. (2007). "Thorium and unconventional uranium resources". International Atomic Energy Agency. Archived from the original on 2021-11-28. Retrieved 2021-11-28.
- Dungan, K.; Butler, G.; Livens, F. R.; Warren, L. M. (1 August 2017). "Uranium from seawater – Infinite resource or improbable aspiration?". Progress in Nuclear Energy. 99: 81–85. Bibcode:2017PNuE...99...81D. doi:10.1016/j.pnucene.2017.04.016. ISSN 0149-1970.
- Fang, Jianchun; Lau, Chi Keung Marco; Lu, Zhou; Wu, Wanshan (1 September 2018). "Estimating Peak uranium production in China – Based on a Stella model". Energy Policy. 120: 250–258. Bibcode:2018EnPol.120..250F. doi:10.1016/j.enpol.2018.05.049. ISSN 0301-4215. S2CID 158066671.
- ^ Jewell, Jessica; Vetier, Marta; Garcia-Cabrera, Daniel (1 May 2019). "The international technological nuclear cooperation landscape: A new dataset and network analysis" (PDF). Energy Policy. 128: 838–852. Bibcode:2019EnPol.128..838J. doi:10.1016/j.enpol.2018.12.024. ISSN 0301-4215. S2CID 159233075. Archived (PDF) from the original on 28 May 2022. Retrieved 31 May 2022.
- ^ Xing, Wanli; Wang, Anjian; Yan, Qiang; Chen, Shan (1 December 2017). "A study of China's uranium resources security issues: Based on analysis of China's nuclear power development trend". Annals of Nuclear Energy. 110: 1156–1164. Bibcode:2017AnNuE.110.1156X. doi:10.1016/j.anucene.2017.08.019. ISSN 0306-4549.
- ^ Yue, Qiang; He, Jingke; Stamford, Laurence; Azapagic, Adisa (2017). "Nuclear Power in China: An Analysis of the Current and Near-Future Uranium Flows". Energy Technology. 5 (5): 681–691. doi:10.1002/ente.201600444. ISSN 2194-4296.
- Ferronsky, V. I.; Polyakov, V. A. (2012). Isotopes of the Earth's Hydrosphere. Springer. p. 399. ISBN 978-94-007-2856-1.
- "Toxicological profile for thorium" (PDF). Agency for Toxic Substances and Disease Registry. 1990. p. 76. Archived (PDF) from the original on 2018-04-22. Retrieved 2018-10-09.
world average concentration in seawater is 0.05 μg/L (Harmsen and De Haan 1980)
- Huh, C. A.; Bacon, M. P. (2002). "Determination of thorium concentration in seawater by neutron activation analysis". Analytical Chemistry. 57 (11): 2138–2142. doi:10.1021/ac00288a030.
- ^ Seko, Noriaki (July 29, 2013). "The current state of promising research into extraction of uranium from seawater – Utilization of Japan's plentiful seas". Global Energy Policy Research. Archived from the original on October 9, 2018. Retrieved October 9, 2018.
- Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary (2014). "Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology". Journal of Marine Science and Engineering. 2 (1): 81–92. Bibcode:2014JMSE....2...81W. doi:10.3390/jmse2010081.
- Alexandratos SD, Kung S (April 20, 2016). "Uranium in Seawater". Industrial & Engineering Chemistry Research. 55 (15): 4101–4362. doi:10.1021/acs.iecr.6b01293.
- ^ Finck, Philip. "Current Options for the Nuclear Fuel Cycle" (PDF). JAIF. Archived from the original (PDF) on 2012-04-12.
- ^ "Backgrounder on Radioactive Waste". NRC. Nuclear Regulatory Commission. Archived from the original on 13 November 2017. Retrieved 20 April 2021.
- "A fast reactor system to shorten the lifetime of long-lived fission products".
- "Radioactivity: Minor Actinides". www.radioactivity.eu.com. Archived from the original on 2018-12-11. Retrieved 2018-12-23.
- Ojovan, Michael I. (2014). An introduction to nuclear waste immobilisation, second edition (2nd ed.). Kidlington, Oxford, U.K.: Elsevier. ISBN 978-0-08-099392-8.
- "High-level radioactive waste". nuclearsafety.gc.ca. Canadian Nuclear Safety Commission. February 3, 2014. Archived from the original on April 14, 2022. Retrieved April 19, 2022.
- Hedin, A. (1997). Spent nuclear fuel - how dangerous is it? A report from the project 'Description of risk' (Technical report). Energy Technology Data Exchange.
- Bruno, Jordi; Duro, Laura; Diaz-Maurin, François (2020). "Chapter 13 – Spent nuclear fuel and disposal". Advances in Nuclear Fuel Chemistry. Woodhead Publishing Series in Energy. Woodhead Publishing. pp. 527–553. doi:10.1016/B978-0-08-102571-0.00014-8. ISBN 978-0-08-102571-0. S2CID 216544356. Archived from the original on 2021-09-20. Retrieved 2021-09-20.
- Ojovan, M. I.; Lee, W. E. (2005). An Introduction to Nuclear Waste Immobilisation. Amsterdam, Netherlands: Elsevier Science Publishers. p. 315. ISBN 978-0-08-044462-8.
- National Research Council (1995). Technical Bases for Yucca Mountain Standards. Washington, DC: National Academy Press. p. 91. ISBN 978-0-309-05289-4.
- "The Status of Nuclear Waste Disposal". The American Physical Society. January 2006. Archived from the original on 2008-05-16. Retrieved 2008-06-06.
- "Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule" (PDF). United States Environmental Protection Agency. 2005-08-22. Archived (PDF) from the original on 2008-06-26. Retrieved 2008-06-06.
- "CRS Report for Congress. Radioactive Waste Streams: Waste Classification for Disposal" (PDF). Archived (PDF) from the original on 2017-08-29. Retrieved 2018-12-22.
The Nuclear Waste Policy Act of 1982 (NWPA) defined irradiated fuel as spent nuclear fuel, and the byproducts as high-level waste.
- Vandenbosch 2007, p. 21.
- Clark, Duncan (2012-07-09). "Nuclear waste-burning reactor moves a step closer to reality | Environment | guardian.co.uk". Guardian. London, England. Archived from the original on 2022-10-08. Retrieved 2013-06-14.
- Monbiot, George (5 December 2011). "A Waste of Waste". Monbiot.com. Archived from the original on 2013-06-01. Retrieved 2013-06-14.
- "Energy From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor". YouTube. 2009-07-23. Archived from the original on 2021-12-11. Retrieved 2013-06-14.
- "Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems" (PDF). IAEA. 2012. Archived (PDF) from the original on 6 May 2021. Retrieved 7 April 2021.
Once irradiated in a reactor, the fuel of a thorium–uranium cycle contains an admixture of 232U (half-life 68.9 years) whose radioactive decay chain includes emitters (particularly 208Tl) of high energy gamma radiation (2.6 MeV). This makes spent thorium fuel treatment more difficult, requires remote handling/control during reprocessing and during further fuel fabrication, but on the other hand, may be considered as an additional non-proliferation barrier.
- "NRC: Low-Level Waste". www.nrc.gov. Archived from the original on 17 August 2018. Retrieved 28 August 2018.
- "The Challenges of Nuclear Power". Archived from the original on 2017-05-10. Retrieved 2013-01-04.
- "Coal Ash Is More Radioactive than Nuclear Waste". Scientific American. 2007-12-13. Archived from the original on 2013-06-12. Retrieved 2012-09-11.
- Gabbard, Alex (2008-02-05). "Coal Combustion: Nuclear Resource or Danger". Oak Ridge National Laboratory. Archived from the original on February 5, 2007. Retrieved 2008-01-31.
- "Coal ash is not more radioactive than nuclear waste". CE Journal. 2008-12-31. Archived from the original on 2009-08-27.
- "Yankee Nuclear Power Plant". Yankeerowe.com. Archived from the original on 2006-03-03. Retrieved 2013-06-22.
- "Why nuclear energy". Generation Atomic. 26 January 2021. Archived from the original on 23 December 2018. Retrieved 22 December 2018.
- "NPR Nuclear Waste May Get A Second Life". NPR. Archived from the original on 2018-12-23. Retrieved 2018-12-22.
- "Energy Consumption of the United States - The Physics Factbook". hypertextbook.com. Archived from the original on 2018-12-23. Retrieved 2018-12-22.
- "NRC: Dry Cask Storage". Nrc.gov. 2013-03-26. Archived from the original on 2013-06-02. Retrieved 2013-06-22.
- ^ Montgomery, Scott L. (2010). The Powers That Be, University of Chicago Press, p. 137.
- "international Journal of Environmental Studies, The Solutions for Nuclear waste, December 2005" (PDF). Archived from the original (PDF) on 2013-04-26. Retrieved 2013-06-22.
- "Oklo: Natural Nuclear Reactors". U.S. Department of Energy Office of Civilian Radioactive Waste Management, Yucca Mountain Project, DOE/YMP-0010. November 2004. Archived from the original on 2009-08-25. Retrieved 2009-09-15.
- ^ Gore, Al (2009). Our Choice: A Plan to Solve the Climate Crisis. Emmaus, Pennsylvania: Rodale. pp. 165–166. ISBN 978-1-59486-734-7.
- Muller, Richard A.; Finsterle, Stefan; Grimsich, John; Baltzer, Rod; Muller, Elizabeth A.; Rector, James W.; Payer, Joe; Apps, John (May 29, 2019). "Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes". Energies. 12 (11): 2052. doi:10.3390/en12112052.
- Mallants, Dirk; Travis, Karl; Chapman, Neil; Brady, Patrick V.; Griffiths, Hefin (February 14, 2020). "The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste". Energies. 13 (4): 833. doi:10.3390/en13040833.
- "A Nuclear Power Renaissance?". Scientific American. 2008-04-28. Archived from the original on 2017-05-25. Retrieved 2008-05-15.
- von Hippel, Frank N. (April 2008). "Nuclear Fuel Recycling: More Trouble Than It's Worth". Scientific American. Archived from the original on 2008-11-19. Retrieved 2008-05-15.
- "Licence granted for Finnish used fuel repository". World Nuclear News. 2015-11-12. Archived from the original on 2015-11-24. Retrieved 2018-11-18.
- Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J. (May 2014). "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles". Energy. 69: 199–211. Bibcode:2014Ene....69..199P. doi:10.1016/j.energy.2014.02.069.
- ^ R. Stephen Berry and George S. Tolley, Nuclear Fuel Reprocessing Archived 2017-05-25 at the Wayback Machine, The University of Chicago, 2013.
- Fairley, Peter (February 2007). "Nuclear Wasteland". IEEE Spectrum. Archived from the original on 2020-08-05. Retrieved 2020-02-02.
- ^ "Processing of Used Nuclear Fuel". World Nuclear Association. 2018. Archived from the original on 2018-12-25. Retrieved 2018-12-26.
- Campbell, D. O.; Gift, E. H. (1978). Proliferation-resistant nuclear fuel cycles. [Spiking of plutonium with /sup 238/Pu] (Technical report). Oak Ridge National Laboratory. doi:10.2172/6743129. OSTI 6743129 – via Office of Scientific and Technical Information.
- Fedorov, M. I.; Dyachenko, A. I.; Balagurov, N. A.; Artisyuk, V. V. (2015). "Formation of proliferation-resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries". Nuclear Energy and Technology. 1 (2): 111–116. Bibcode:2015NEneT...1..111F. doi:10.1016/j.nucet.2015.11.023.
- Lloyd, Cody; Goddard, Braden (2018). "Proliferation resistant plutonium: An updated analysis". Nuclear Engineering and Design. 330: 297–302. Bibcode:2018NuEnD.330..297L. doi:10.1016/j.nucengdes.2018.02.012.
- ^ Feiveson, Harold; et al. (2011). "Managing nuclear spent fuel: Policy lessons from a 10-country study". Bulletin of the Atomic Scientists. Archived from the original on 2012-04-26. Retrieved 2016-07-18.
- Kok, Kenneth D. (2010). Nuclear Engineering Handbook. CRC Press. p. 332. ISBN 978-1-4200-5391-3.
- Jarry, Emmanuel (6 May 2015). "Crisis for Areva's plant as clients shun nuclear". Moneyweb. Reuters. Archived from the original on 23 July 2015. Retrieved 6 May 2015.
- David, S. (2005). "Future Scenarios for Fission Based Reactors". Nuclear Physics A. 751: 429–441. Bibcode:2005NuPhA.751..429D. doi:10.1016/j.nuclphysa.2005.02.014.
- Brundtland, Gro Harlem (20 March 1987). "Chapter 7: Energy: Choices for Environment and Development". Our Common Future: Report of the World Commission on Environment and Development. Oslo. Archived from the original on 21 January 2013. Retrieved 27 March 2013.
Today's primary sources of energy are mainly non-renewable: natural gas, oil, coal, peat, and conventional nuclear power. There are also renewable sources, including wood, plants, dung, falling water, geothermal sources, solar, tidal, wind, and wave energy, as well as human and animal muscle-power. Nuclear reactors that produce their own fuel ('breeders') and eventually fusion reactors are also in this category
- John McCarthy (2006). "Facts From Cohen and Others". Progress and its Sustainability. Stanford. Archived from the original on 2007-04-10. Retrieved 2006-11-09. Citing: Cohen, Bernard L. (January 1983). "Breeder reactors: A renewable energy source". American Journal of Physics. 51 (1): 75–76. Bibcode:1983AmJPh..51...75C. doi:10.1119/1.13440. S2CID 119587950.
- "Advanced Nuclear Power Reactors". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-15. Retrieved 2006-11-09.
- "Synergy between Fast Reactors and Thermal Breeders for Safe, Clean, and Sustainable Nuclear Power" (PDF). World Energy Council. Archived from the original (PDF) on 2011-01-10. Retrieved 2013-02-03.
- Kessler, Rebecca. "Are Fast-Breeder Reactors A Nuclear Power Panacea? by Fred Pearce: Yale Environment 360". E360.yale.edu. Archived from the original on 2013-06-05. Retrieved 2013-06-14.
- ^ "Fast Neutron Reactors | FBR – World Nuclear Association". www.world-nuclear.org. Archived from the original on 23 December 2017. Retrieved 7 October 2018.
- "Prototype fast breeder reactor to be commissioned in two months: IGCAR director". The Times of India. Archived from the original on 15 September 2018. Retrieved 28 August 2018.
- "India's breeder reactor to be commissioned in 2013". Hindustan Times. Archived from the original on 2013-04-26. Retrieved 2013-06-14.
- ^ "Thorium". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2013-02-16. Retrieved 2006-11-09.
- Invernizzi, Diletta Colette; Locatelli, Giorgio; Velenturf, Anne; Love, Peter ED.; Purnell, Phil; Brookes, Naomi J. (2020-09-01). "Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning". Energy Policy. 144: 111677. Bibcode:2020EnPol.14411677I. doi:10.1016/j.enpol.2020.111677. hdl:11311/1204791. ISSN 0301-4215.
- "Decommissioning of nuclear installations". www.iaea.org. 17 October 2016. Archived from the original on 21 April 2021. Retrieved 19 April 2021.
- Invernizzi, Diletta Colette; Locatelli, Giorgio; Brookes, Naomi J. (2017-08-01). "How benchmarking can support the selection, planning and delivery of nuclear decommissioning projects" (PDF). Progress in Nuclear Energy. 99: 155–164. Bibcode:2017PNuE...99..155I. doi:10.1016/j.pnucene.2017.05.002. Archived (PDF) from the original on 2021-06-14. Retrieved 2021-04-19.
- "Backgrounder on Decommissioning Nuclear Power Plants". United States Nuclear Regulatory Commission. Archived from the original on 3 May 2021. Retrieved 27 August 2021.
Before a nuclear power plant begins operations, the licensee must establish or obtain a financial mechanism – such as a trust fund or a guarantee from its parent company – to ensure there will be sufficient money to pay for the ultimate decommissioning of the facility
- "Share of electricity production from nuclear". Our World in Data. Retrieved 20 June 2024.
- "Yearly electricity data". ember-energy.org. 6 Dec 2023. Retrieved 23 Dec 2023.
- "Steep decline in nuclear power would threaten energy security and climate goals". International Energy Agency. 2019-05-28. Archived from the original on 2019-10-12. Retrieved 2019-07-08.
- "Energy consumption by source, World". Our World in Data. Retrieved 2024-11-10.
- Butler, Nick (3 September 2018). "The challenge for nuclear is to recover its competitive edge". Financial Times. Archived from the original on 2022-12-10. Retrieved 9 September 2018.
- "What's the Lifespan for a Nuclear Reactor? Much Longer Than You Might Think". Energy.gov. Archived from the original on 2020-06-09. Retrieved 2020-06-09.
- "Under Construction Reactors". International Atomic Energy Agency. Archived from the original on 2018-11-22. Retrieved 2019-12-15.
- ^ "Nuclear Power in the European Union". World Nuclear Association. 2024-08-13. Retrieved 2024-11-11.
- Apt, Jay; Keith, David W.; Morgan, M. Granger (January 1, 1970). "Promoting Low-Carbon Electricity Production". Archived from the original on September 27, 2013.
- "What is Nuclear Power Plant – How Nuclear Power Plants work | What is Nuclear Power Reactor – Types of Nuclear Power Reactors". EngineersGarage. Archived from the original on 2013-10-04. Retrieved 2013-06-14.
- Ragheb, Magdi. "Naval Nuclear Propulsion" (PDF). Archived from the original (PDF) on 2015-02-26. Retrieved 2015-06-04.
As of 2001, about 235 naval reactors had been built.
- "Nuclear Icebreaker Lenin". Bellona. 2003-06-20. Archived from the original on October 15, 2007. Retrieved 2007-11-01.
- Non-electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications. International Atomic Energy Agency. 2007. ISBN 978-92-0-108808-6. Archived from the original on 27 March 2019. Retrieved 21 August 2018.
- What's behind the red-hot uranium boom. Archived 2021-11-29 at the Wayback Machine, CNN, 19 April 2007.
- "Synapse Energy |". www.synapse-energy.com. Archived from the original on 2021-01-15. Retrieved 2020-12-29.
- Lovering, Jessica R.; Yip, Arthur; Nordhaus, Ted (2016). "Historical construction costs of global nuclear power reactors". Energy Policy. 91: 371–382. Bibcode:2016EnPol..91..371L. doi:10.1016/j.enpol.2016.01.011.
- Crooks, Ed (2010-09-12). "Nuclear: New dawn now seems limited to the east". Financial Times. London, England. Archived from the original on 2022-12-10. Retrieved 2010-09-12.
- The Future of Nuclear Power. Massachusetts Institute of Technology. 2003. ISBN 978-0-615-12420-9. Archived from the original on 2017-05-18. Retrieved 2006-11-10.
- ^ "Projected Costs of Generating Electricity 2020". International Energy Agency & OECD Nuclear Energy Agency. 9 December 2020. Archived from the original on 2 April 2022. Retrieved 12 December 2020.
- Update of the MIT 2003 Future of Nuclear Power (PDF). Massachusetts Institute of Technology. 2009. Archived (PDF) from the original on 3 February 2023. Retrieved 21 August 2018.
- "Splitting the cost". The Economist. 12 November 2009. Archived from the original on 21 August 2018. Retrieved 21 August 2018.
- "Nuclear power's reliability is dropping as extreme weather increases". Ars Technica. 24 July 2021. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
- Ahmad, Ali (July 2021). "Increase in frequency of nuclear power outages due to changing climate". Nature Energy. 6 (7): 755–762. Bibcode:2021NatEn...6..755A. doi:10.1038/s41560-021-00849-y. ISSN 2058-7546. S2CID 237818619.
- "The Canadian Nuclear FAQ – Section A: CANDU Technology". Archived from the original on 2013-11-01. Retrieved 2019-08-05.
- A. Lokhov. "Load-following with nuclear power plants" (PDF). Archived (PDF) from the original on 2016-02-22. Retrieved 2016-03-12.
- "Indian reactor breaks operating record". World Nuclear News. 25 October 2018. Archived from the original on 4 August 2019. Retrieved 4 August 2019.
- "Indian-Designed Nuclear Reactor Breaks Record for Continuous Operation". POWER Magazine. 1 February 2019. Archived from the original on 28 March 2019. Retrieved 28 March 2019.
- ^ McCurry, Justin (30 January 2017). "Possible nuclear fuel find raises hopes of Fukushima plant breakthrough". The Guardian. Archived from the original on 2 February 2017. Retrieved 3 February 2017.
- Gardner, Timothy (13 September 2021). "Illinois approves $700 million in subsidies to Exelon, prevents nuclear plant closures". Reuters. Archived from the original on 3 November 2021. Retrieved 28 November 2021.
- ^ "Europe faces €253bn nuclear waste bill". The Guardian. 4 April 2016. Retrieved 24 November 2021.
- Wade, Will (14 June 2019). "Americans are paying more than ever to store deadly nuclear waste". Los Angeles Times. Archived from the original on 28 November 2021. Retrieved 28 November 2021.
- "The World Nuclear Waste Report 2019" (PDF). Archived (PDF) from the original on 29 November 2021. Retrieved 28 November 2021.
- Energy Subsidies Archived 2021-12-04 at the Wayback Machine, World Nuclear Association, 2018.
- ^ "Nuclear Reactors for Space – World Nuclear Association". world-nuclear.org. Archived from the original on 17 April 2021. Retrieved 17 April 2021.
- Patel, Prachi. "Nuclear-Powered Rockets Get a Second Look for Travel to Mars". IEEE Spectrum. Archived from the original on 10 April 2021. Retrieved 17 April 2021.
- ^ Deitrich, L. W. "Basic principles of nuclear safety" (PDF). International Atomic Energy Agency. Archived (PDF) from the original on 2018-11-19. Retrieved 2018-11-18.
- "Emergency core cooling systems (ECCS)". United States Nuclear Regulatory Commission. 2018-07-06. Archived from the original on 2021-04-29. Retrieved 2018-12-10.
- "What are the safest and cleanest sources of energy?". Our World in Data. Archived from the original on 2020-11-29. Retrieved 2023-11-15.
- ^ "Dr. MacKay Sustainable Energy without the hot air". Data from studies by the Paul Scherrer Institute including non EU data. p. 168. Archived from the original on 2012-09-02. Retrieved 2012-09-15.
- Nicholson, Brendan (2006-06-05). "Nuclear power 'cheaper, safer' than coal and gas". The Age. Melbourne. Archived from the original on 2008-02-08. Retrieved 2008-01-18.
- ^ Markandya, A.; Wilkinson, P. (2007). "Electricity generation and health". Lancet. 370 (9591): 979–990. doi:10.1016/S0140-6736(07)61253-7. PMID 17876910. S2CID 25504602.
Nuclear power has lower electricity related health risks than Coal, Oil, & gas. ...the health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This study includes the latent or indirect fatalities, for example those caused by the inhalation of fossil fuel created particulate matter, smog induced cardiopulmonary events, black lung etc. in its comparison.
- "Nuclear Power Prevents More Deaths Than It Causes | Chemical & Engineering News". Cen.acs.org. Archived from the original on 2014-03-01. Retrieved 2014-01-24.
- ^ Kharecha, Pushker A.; Hansen, James E. (2013). "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power". Environmental Science & Technology. 47 (9): 4889–4895. Bibcode:2013EnST...47.4889K. doi:10.1021/es3051197. hdl:2060/20140017100. PMID 23495839.
- Normile, Dennis (2012-07-27). "Is Nuclear Power Good for You?". Science. 337 (6093): 395. doi:10.1126/science.337.6093.395-b. Archived from the original on 2013-03-01.
- Hasegawa, Arifumi; Tanigawa, Koichi; Ohtsuru, Akira; Yabe, Hirooki; Maeda, Masaharu; Shigemura, Jun; Ohira, Tetsuya; Tominaga, Takako; Akashi, Makoto; Hirohashi, Nobuyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Shibuya, Kenji; Yamashita, Shunichi; Chhem, Rethy K (August 2015). "Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima" (PDF). The Lancet. 386 (9992): 479–488. doi:10.1016/S0140-6736(15)61106-0. PMID 26251393. S2CID 19289052. Archived (PDF) from the original on 2021-08-28. Retrieved 2021-08-05.
- Revkin, Andrew C. (2012-03-10). "Nuclear Risk and Fear, from Hiroshima to Fukushima". The New York Times. Archived from the original on 2015-09-05. Retrieved 2013-07-08.
- von Hippel, Frank N. (September–October 2011). "The radiological and psychological consequences of the Fukushima Daiichi accident". Bulletin of the Atomic Scientists. 67 (5): 27–36. Bibcode:2011BuAtS..67e..27V. doi:10.1177/0096340211421588. S2CID 218769799. Archived from the original on 2012-01-13. Retrieved 2013-07-08.
- Yamazaki, Tomoko & Ozasa, Shunichi (2011-06-27). "Fukushima Retiree Leads Anti-Nuclear Shareholders at Tepco Annual Meeting". Bloomberg.
- Saito, Mari (2011-05-07). "Japan anti-nuclear protesters rally after PM call to close plant". Reuters.
- IDO-19313: Additional Analysis of the SL-1 Excursion Archived 2011-09-27 at the Wayback Machine Final Report of Progress July through October 1962, November 21, 1962, Flight Propulsion Laboratory Department, General Electric Company, Idaho Falls, Idaho, U.S. Atomic Energy Commission, Division of Technical Information.
- McKeown, William (2003). Idaho Falls: The Untold Story of America's First Nuclear Accident. Toronto, Canada: ECW Press. ISBN 978-1-55022-562-4.
- Johnston, Robert (2007-09-23). "Deadliest radiation accidents and other events causing radiation casualties". Database of Radiological Incidents and Related Events. Archived from the original on 2007-10-23. Retrieved 2011-03-14.
- Schiffman, Richard (2013-03-12). "Two years on, America hasn't learned lessons of Fukushima nuclear disaster". The Guardian. London, England. Archived from the original on 2017-02-02. Retrieved 2016-12-12.
- Fackler, Martin (2011-06-01). "Report Finds Japan Underestimated Tsunami Danger". The New York Times. Archived from the original on 2017-02-05. Retrieved 2017-02-25.
- "The Worst Nuclear Disasters". Time. 2009-03-25. Archived from the original on March 28, 2009. Retrieved 2013-06-22.
- Sovacool, B.K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. Bibcode:2008EnPol..36.1802S. doi:10.1016/j.enpol.2008.01.040.
- Burgherr, Peter; Hirschberg, Stefan (10 October 2008). "A Comparative Analysis of Accident Risks in Fossil, Hydro, and Nuclear Energy Chains". Human and Ecological Risk Assessment. 14 (5): 947–973. Bibcode:2008HERA...14..947B. doi:10.1080/10807030802387556. S2CID 110522982.
- "Chernobyl at 25th anniversary – Frequently Asked Questions" (PDF). World Health Organisation. 23 April 2011. Archived (PDF) from the original on 17 April 2012. Retrieved 14 April 2012.
- "Assessing the Chernobyl Consequences". International Atomic Energy Agency. Archived from the original on 30 August 2013.
- "UNSCEAR 2008 Report to the General Assembly, Annex D" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2011-08-04. Retrieved 2018-12-15.
- "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2019-01-05. Retrieved 2012-05-17.
- "Publications: Vienna Convention on Civil Liability for Nuclear Damage". International Atomic Energy Agency. 27 August 2014. Archived from the original on 3 March 2016. Retrieved 8 September 2016.
- "Nuclear Power's Role in Generating Electricity" (PDF). Congressional Budget Office. May 2008. Archived (PDF) from the original on 2014-11-29. Retrieved 2016-09-08.
- "Availability of Dam Insurance" (PDF). 1999. Archived from the original (PDF) on 2016-01-08. Retrieved 2016-09-08.
- ^ Ferguson, Charles D. & Settle, Frank A. (2012). "The Future of Nuclear Power in the United States" (PDF). Federation of American Scientists. Archived (PDF) from the original on 2017-05-25. Retrieved 2016-07-07.
- "Nuclear Security – Five Years After 9/11". U.S. Nuclear Regulatory Commission. Archived from the original on 15 July 2007. Retrieved 23 July 2007.
- Bunn, Matthew & Sagan, Scott (2014). "A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes". The American Academy of Arts & Sciences.
- McFadden, Robert D. (1971-11-14). "Damage Is Put at Millions In Blaze at Con Ed Plant". The New York Times. ISSN 0362-4331. Archived from the original on 2020-01-15. Retrieved 2020-01-15.
- Knight, Michael (1972-01-30). "Mechanic Seized in Indian Pt. Fire". The New York Times. ISSN 0362-4331. Archived from the original on 2020-01-15. Retrieved 2020-01-15.
- ^ "The Bulletin of atomic scientists support the megatons to megawatts program". 2008-10-23. Archived from the original on 2011-07-08. Retrieved 2012-09-15.
- "home". usec.com. 2013-05-24. Archived from the original on 2013-06-21. Retrieved 2013-06-14.
- ^ Miller, Steven E. & Sagan, Scott D. (Fall 2009). "Nuclear power without nuclear proliferation?". Dædalus. 138 (4): 7. doi:10.1162/daed.2009.138.4.7. S2CID 57568427.
- "Nuclear Power in the World Today". World-nuclear.org. Archived from the original on 2013-02-12. Retrieved 2013-06-22.
- "Uranium Enrichment". www.world-nuclear.org. World Nuclear Association. Archived from the original on 2013-07-01. Retrieved 2015-08-12.
- Sovacool, Benjamin K. (2011). Contesting the Future of Nuclear Power: A Critical Global Assessment of Atomic Energy. Hackensack, New Jersey: World Scientific. p. 190. ISBN 978-981-4322-75-1.
- "Megatons to Megawatts Eliminates Equivalent of 10,000 Nuclear Warheads". Usec.com. 2005-09-21. Archived from the original on 2013-04-26. Retrieved 2013-06-22.
- ^ Stover, Dawn (2014-02-21). "More megatons to megawatts". The Bulletin. Archived from the original on 2017-05-04. Retrieved 2015-08-11.
- Corley, Anne-Marie. "Against Long Odds, MIT's Thomas Neff Hatched a Plan to Turn Russian Warheads into American Electricity". Archived from the original on 2015-09-04. Retrieved 2015-08-11.
- "Future Unclear For 'Megatons To Megawatts' Program". All Things Considered. United States: National Public Radio. 2009-12-05. Archived from the original on 2015-01-12. Retrieved 2013-06-22.
- "Life Cycle Assessment of Electricity Generation Options" (PDF). Archived (PDF) from the original on 10 May 2022. Retrieved 24 November 2021.
- "Nuclear energy and water use in the columbia river basin" (PDF). Archived (PDF) from the original on 24 November 2021. Retrieved 24 November 2021.
- ^ Ramana, M. V.; Ahmad, Ali (1 June 2016). "Wishful thinking and real problems: Small modular reactors, planning constraints, and nuclear power in Jordan". Energy Policy. 93: 236–245. Bibcode:2016EnPol..93..236R. doi:10.1016/j.enpol.2016.03.012. ISSN 0301-4215.
- ^ Kyne, Dean; Bolin, Bob (July 2016). "Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination". International Journal of Environmental Research and Public Health. 13 (7): 700. doi:10.3390/ijerph13070700. PMC 4962241. PMID 27420080.
- ^ "Is nuclear power the answer to climate change?". World Information Service on Energy. Archived from the original on 22 April 2020. Retrieved 1 February 2020.
- ^ "World Nuclear Waste Report". Archived from the original on 15 June 2023. Retrieved 25 October 2021.
- ^ Smith, Brice. "Insurmountable Risks: The Dangers of Using Nuclear Power to Combat Global Climate Change – Institute for Energy and Environmental Research". Archived from the original on 30 May 2023. Retrieved 24 November 2021.
- ^ Prăvălie, Remus; Bandoc, Georgeta (1 March 2018). "Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications". Journal of Environmental Management. 209: 81–92. Bibcode:2018JEnvM.209...81P. doi:10.1016/j.jenvman.2017.12.043. ISSN 1095-8630. PMID 29287177.
- Ahearne, John F. (2000). "Intergenerational Issues Regarding Nuclear Power, Nuclear Waste, and Nuclear Weapons". Risk Analysis. 20 (6): 763–770. Bibcode:2000RiskA..20..763A. doi:10.1111/0272-4332.206070. ISSN 1539-6924. PMID 11314726. S2CID 23395683.
- ^ "CoP 26 Statement | Don't nuke the Climate!". Archived from the original on 25 November 2021. Retrieved 24 November 2021.
- ^ "IPCC Working Group III – Mitigation of Climate Change, Annex III: Technology–specific cost and performance parameters" (PDF). IPCC. 2014. table A.III.2. Archived (PDF) from the original on 2018-12-14. Retrieved 2019-01-19.
- National Renewable Energy Laboratory (NREL) (2013-01-24). "Nuclear Power Results – Life Cycle Assessment Harmonization". nrel.gov. Archived from the original on 2013-07-02. Retrieved 2013-06-22.
Collectively, life cycle assessment literature shows that nuclear power is similar to other renewable and much lower than fossil fuel in total life cycle GHG emissions.
- "Life Cycle Assessment Harmonization Results and Findings. Figure 1". NREL. Archived from the original on 2017-05-06. Retrieved 2016-09-08.
- ^ "IPCC Working Group III – Mitigation of Climate Change, Annex II Metrics & Methodology" (PDF). IPCC. 2014. section A.II.9.3. Archived (PDF) from the original on 2021-04-23. Retrieved 2019-01-19.
- "World nuclear performance report 2021". World Nuclear Association. Archived from the original on 2022-04-03. Retrieved 2022-04-19.
- ^ "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2019-01-05. Retrieved 2012-05-17.
- "National Safety Council". Nsc.org. Archived from the original on 12 October 2009. Retrieved 18 June 2013.
- Roser, Max (1 December 2020). "Why did renewables become so cheap so fast?". Our World in Data.
- MacKenzie, James J. (December 1977). "Review of The Nuclear Power Controversy by Arthur W. Murphy". The Quarterly Review of Biology. 52 (4): 467–468. doi:10.1086/410301. JSTOR 2823429.
- "U.S. Energy Legislation May Be 'Renaissance' for Nuclear Power". Bloomberg. Archived from the original on 2009-06-26. Retrieved 2017-03-10..
- Patterson, Thom (2013-11-03). "Climate change warriors: It's time to go nuclear". CNN. Archived from the original on 2013-11-04. Retrieved 2013-11-05.
- "Renewable Energy and Electricity". World Nuclear Association. June 2010. Archived from the original on 2010-06-19. Retrieved 2010-07-04.
- "Climate". Archived from the original on 18 February 2022. Retrieved 18 February 2022.
- "Radioactive Waste Management". February 2022. Archived from the original on 2016-02-01. Retrieved 2022-02-18.
- Hubbert, M. King (June 1956). "Nuclear Energy and the Fossil Fuels 'Drilling and Production Practice'" (PDF). API. p. 36. Archived from the original (PDF) on 2008-05-27. Retrieved 2008-04-18.
- Bennett, James E.; Tamura-Wicks, Helen; Parks, Robbie M.; Burnett, Richard T.; Pope, C. Arden; Bechle, Matthew J.; Marshall, Julian D.; Danaei, Goodarz; Ezzati, Majid (23 July 2019). "Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis". PLOS Medicine. 16 (7): e1002856. doi:10.1371/journal.pmed.1002856. PMC 6650052. PMID 31335874.
- "Nuclear Power and Energy Independence". 22 October 2008. Archived from the original on 18 February 2022. Retrieved 18 February 2022.
- "Climate". Archived from the original on 18 February 2022. Retrieved 18 February 2022.
- Weart, Spencer R. (2012). The Rise of Nuclear Fear. Harvard University Press.
- Sturgis, Sue. "Investigation: Revelations about Three Mile Island disaster raise doubts over nuclear plant safety". Institute for Southern Studies. Archived from the original on 2010-04-18. Retrieved 2010-08-24.
- "Energy Revolution: A Sustainable World Energy Outlook" (PDF). Greenpeace International and European Renewable Energy Council. January 2007. p. 7. Archived from the original (PDF) on 2009-08-06. Retrieved 2010-02-28.
- Giugni, Marco (2004). Social protest and policy change: ecology, antinuclear, and peace movements in comparative perspective. Lanham: Rowman & Littlefield. p. 44. ISBN 978-0-7425-1826-1. Archived from the original on 2023-12-24. Retrieved 2015-10-18.
- Sovacool, Benjamin K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. Bibcode:2008EnPol..36.1802S. doi:10.1016/j.enpol.2008.01.040.
- Cooke, Stephanie (2009). In Mortal Hands: A Cautionary History of the Nuclear Age. New York: Bloomsbury. p. 280. ISBN 978-1-59691-617-3.
- Rodriguez, C.; Baxter, A.; McEachern, D.; Fikani, M.; Venneri, F. (1 June 2003). "Deep-Burn: making nuclear waste transmutation practical". Nuclear Engineering and Design. 222 (2): 299–317. Bibcode:2003NuEnD.222..299R. doi:10.1016/S0029-5493(03)00034-7. ISSN 0029-5493.
- Geissmann, Thomas; Ponta, Oriana (1 April 2017). "A probabilistic approach to the computation of the levelized cost of electricity". Energy. 124: 372–381. Bibcode:2017Ene...124..372G. doi:10.1016/j.energy.2017.02.078. ISSN 0360-5442.
- ^ Ramana, M. V.; Mian, Zia (1 June 2014). "One size doesn't fit all: Social priorities and technical conflicts for small modular reactors". Energy Research & Social Science. 2: 115–124. Bibcode:2014ERSS....2..115R. doi:10.1016/j.erss.2014.04.015. ISSN 2214-6296.
- Meckling, Jonas (1 March 2019). "Governing renewables: Policy feedback in a global energy transition". Environment and Planning C: Politics and Space. 37 (2): 317–338. doi:10.1177/2399654418777765. ISSN 2399-6544. S2CID 169975439.
- Decommissioning a Nuclear Power Plant Archived 2007-07-14 at the Wayback Machine, 2007-4-20, U.S. Nuclear Regulatory Commission Archived 2020-04-06 at the Wayback Machine, Retrieved 2007-6-12
- "Decommissioning at Chernobyl". World-nuclear-news.org. 2007-04-26. Archived from the original on 2010-08-23. Retrieved 2015-11-01.
- Wealer, B.; Bauer, S.; Hirschhausen, C. v.; Kemfert, C.; Göke, L. (1 June 2021). "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation". Renewable and Sustainable Energy Reviews. 143: 110836. Bibcode:2021RSERv.14310836W. doi:10.1016/j.rser.2021.110836. ISSN 1364-0321. S2CID 233564525.
We conclude that our numerical exercise confirms the literature review, i.e. the economics of nuclear power plants are not favorable to future investments, even though additional costs (decommissioning, long-term storage) and the social costs of accidents are not even considered.
- "New nuclear, LTO among cheapest low carbon options, report shows". Reuters Events. Archived from the original on 2022-05-19. Retrieved 2022-04-19.
- "Projected Costs of Generating Electricity 2020 – Analysis". IEA. 9 December 2020. Archived from the original on 2022-04-02. Retrieved 2020-12-12.
- "Empirically grounded technology forecasts and the energy transition" (PDF). University of Oxford. Archived from the original (PDF) on 2021-10-18.
- ^ "Nuclear energy too slow, too expensive to save climate: report". Reuters. 24 September 2019. Archived from the original on 16 March 2021. Retrieved 24 November 2021.
- Farmer, J. Doyne; Way, Rupert; Mealy, Penny (December 2020). "Estimating the costs of energy transition scenarios using probabilistic forecasting methods" (PDF). University of Oxford. Archived from the original (PDF) on 2021-10-18.
- ^ "Scientists pour cold water on Bill Gates' nuclear plans | DW | 08.11.2021". Deutsche Welle (www.dw.com). Archived from the original on 24 November 2021. Retrieved 24 November 2021.
- ^ "Scientists Warn Experimental Nuclear Plant Backed by Bill Gates Is 'Outright Dangerous'". Common Dreams. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
- Szyszczak, Erika (1 July 2015). "State aid for energy infrastructure and nuclear power projects". ERA Forum. 16 (1): 25–38. doi:10.1007/s12027-015-0371-6. ISSN 1863-9038. S2CID 154617833.
- "The Future of Nuclear Energy in a Carbon-Constrained World" (PDF). Massachusetts Institute of Technology. 2018. Archived (PDF) from the original on 2019-03-27. Retrieved 2019-01-05.
- Crespo, Diego (25 July 2019). "STE can replace coal, nuclear and early gas as demonstrated in an hourly simulation over 4 years in the Spanish electricity mix". AIP Conference Proceedings. SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems. 2126 (1): 130003. Bibcode:2019AIPC.2126m0003C. doi:10.1063/1.5117645. ISSN 0094-243X. S2CID 201317957.
- Benasla, Mokhtar; Hess, Denis; Allaoui, Tayeb; Brahami, Mostefa; Denaï, Mouloud (1 April 2019). "The transition towards a sustainable energy system in Europe: What role can North Africa's solar resources play?". Energy Strategy Reviews. 24: 1–13. Bibcode:2019EneSR..24....1B. doi:10.1016/j.esr.2019.01.007. hdl:2299/21546. ISSN 2211-467X. S2CID 169342098.
- Haller, Markus; Ludig, Sylvie; Bauer, Nico (1 August 2012). "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation". Energy Policy. 47: 282–290. Bibcode:2012EnPol..47..282H. doi:10.1016/j.enpol.2012.04.069. ISSN 0301-4215.
- Arbabzadeh, Maryam; Sioshansi, Ramteen; Johnson, Jeremiah X.; Keoleian, Gregory A. (30 July 2019). "The role of energy storage in deep decarbonization of electricity production". Nature Communications. 10 (1): 3413. Bibcode:2019NatCo..10.3413A. doi:10.1038/s41467-019-11161-5. ISSN 2041-1723. PMC 6667472. PMID 31363084.
- Liu, Jianing; Zhang, Weiqi; Zhou, Rui; Zhong, Jin (July 2012). "Impacts of distributed renewable energy generations on smart grid operation and dispatch". 2012 IEEE Power and Energy Society General Meeting. pp. 1–5. doi:10.1109/PESGM.2012.6344997. ISBN 978-1-4673-2729-9. S2CID 25157226.
- Ayodele, T. R.; Ogunjuyigbe, A. S. O. (1 April 2015). "Mitigation of wind power intermittency: Storage technology approach". Renewable and Sustainable Energy Reviews. 44: 447–456. Bibcode:2015RSERv..44..447A. doi:10.1016/j.rser.2014.12.034. ISSN 1364-0321.
- ^ "The controversial future of nuclear power in the U.S." 4 May 2021. Archived from the original on May 4, 2021. Retrieved 25 November 2021.
- ^ Khatib, Hisham; Difiglio, Carmine (1 September 2016). "Economics of nuclear and renewables". Energy Policy. 96: 740–750. Bibcode:2016EnPol..96..740K. doi:10.1016/j.enpol.2016.04.013. ISSN 0301-4215.
- Gerhards, Christoph; Weber, Urban; Klafka, Peter; Golla, Stefan; Hagedorn, Gregor; Baumann, Franz; Brendel, Heiko; Breyer, Christian; Clausen, Jens; Creutzig, Felix; Daub, Claus-Heinrich; Helgenberger, Sebastian; Hentschel, Karl-Martin; Hirschhausen, Christian von; Jordan, Ulrike; Kemfert, Claudia; Krause, Harald; Linow, Sven; Oei, Pao-Yu; Pehnt, Martin; Pfennig, Andreas; Präger, Fabian; Quaschning, Volker; Schneider, Jens; Spindler, Uli; Stelzer, Volker; Sterner, Michael; Wagener-Lohse, Georg; Weinsziehr, Theresa (22 April 2021). "Klimaverträgliche Energieversorgung für Deutschland – 16 Orientierungspunkte" [Climate-friendly energy supply for Germany—16 points of orientation]. Diskussionsbeiträge der Scientists for Future (in German). doi:10.5281/zenodo.4409334.
- Lap, Tjerk; Benders, René; van der Hilst, Floor; Faaij, André (15 March 2020). "How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?". Energy. 195: 116948. Bibcode:2020Ene...19516948L. doi:10.1016/j.energy.2020.116948. ISSN 0360-5442. S2CID 214336333.
- Bustreo, C.; Giuliani, U.; Maggio, D.; Zollino, G. (1 September 2019). "How fusion power can contribute to a fully decarbonized European power mix after 2050". Fusion Engineering and Design. 146: 2189–2193. Bibcode:2019FusED.146.2189B. doi:10.1016/j.fusengdes.2019.03.150. ISSN 0920-3796. S2CID 133216477.
- McPherson, Madeleine; Tahseen, Samiha (15 February 2018). "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure". Energy. 145: 856–870. Bibcode:2018Ene...145..856M. doi:10.1016/j.energy.2018.01.002. ISSN 0360-5442.
- Kan, Xiaoming; Hedenus, Fredrik; Reichenberg, Lina (15 March 2020). "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden". Energy. 195: 117015. arXiv:2001.03679. Bibcode:2020Ene...19517015K. doi:10.1016/j.energy.2020.117015. ISSN 0360-5442. S2CID 213083726.
There is little economic rationale for Sweden to reinvest in nuclear power. Abundant hydropower allows for a low-cost renewable power system without nuclear.
- McPherson, Madeleine; Karney, Bryan (1 November 2017). "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model". Energy. 138: 185–196. Bibcode:2017Ene...138..185M. doi:10.1016/j.energy.2017.07.027. ISSN 0360-5442.
Several flexibility options have been proposed to facilitate VRE integration, including interconnecting geographically dispersed resources, interconnecting different VRE types, building flexible and dispatchable generation assets, shifting flexible loads through demand response, shifting electricity generation through storage, curtailing excess generation, interconnections to the transport or heating energy sectors, and improving VRE forecasting methodologies (Delucchi and Jacobson 2011). Previous VRE integration studies have considered different combinations of balancing options, but few have considered all flexibility options simultaneously.
- "Barriers to Renewable Energy Technologies | Union of Concerned Scientists". ucsusa.org. Archived from the original on 25 October 2021. Retrieved 25 October 2021.
Renewable energy opponents love to highlight the variability of the sun and wind as a way of bolstering support for coal, gas, and nuclear plants, which can more easily operate on-demand or provide "baseload" (continuous) power. The argument is used to undermine large investments in renewable energy, presenting a rhetorical barrier to higher rates of wind and solar adoption. But reality is much more favorable for clean energy.
- "Does Hitachi decision mean the end of UK's nuclear ambitions?". The Guardian. 17 January 2019.
- Zappa, William; Junginger, Martin; van den Broek, Machteld (1 January 2019). "Is a 100% renewable European power system feasible by 2050?". Applied Energy. 233–234: 1027–1050. Bibcode:2019ApEn..233.1027Z. doi:10.1016/j.apenergy.2018.08.109. ISSN 0306-2619. S2CID 116855350.
- Smith; et al. (15 January 2019). "Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming". Nature. 10 (1): 101. Bibcode:2019NatCo..10..101S. doi:10.1038/s41467-018-07999-w. PMC 6333788. PMID 30647408.
- Ross Koningstein; David Fork (18 November 2014). "What It Would Really Take to Reverse Climate Change". IEEE Spectrum. Archived from the original on 24 November 2016. Retrieved 13 January 2019.
- Johnson, Nathanael (2018). "Agree to Agree Fights over renewable standards and nuclear power can be vicious. Here's a list of things that climate hawks agree on". Grist. Archived from the original on 2019-01-16. Retrieved 2019-01-16.
- "What's missing from the 100% renewable energy debate". Utility Dive. Archived from the original on 2019-01-06. Retrieved 2019-01-05.
- ^ Deign, Jason (March 30, 2018). "Renewables or Nuclear? A New Front in the Academic War Over Decarbonization". gtm. Greentech Media. Archived from the original on December 15, 2018. Retrieved December 13, 2018.
- "Turkey may benefit from nuclear power in its bid for clean energy". DailySabah. 6 July 2019. Archived from the original on 2019-07-14. Retrieved 2019-07-14.
- "2019 Key World Energy Statistics" (PDF). IEA. 2019.
- Harvey, Fiona (2011-05-09). "Renewable energy can power the world, says landmark IPCC study". The Guardian. London, England. Archived from the original on 2019-03-27. Retrieved 2016-12-12.
- "Hydroelectric power water use". USGS. Archived from the original on 2018-11-09. Retrieved 2018-12-13.
- Stover, Dawn (January 30, 2014). "Nuclear vs. renewables: Divided they fall". Bulletin of the Atomic Scientists. Archived from the original on March 27, 2019. Retrieved January 30, 2019.
- Starfelt, Nils; Wikdahl, Carl-Erik. "Economic Analysis of Various Options of Electricity Generation – Taking into Account Health and Environmental Effects" (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2012-09-08.
- Biello, David (2009-01-28). "Spent Nuclear Fuel: A Trash Heap Deadly for 250,000 Years or a Renewable Energy Source?". Scientific American. Archived from the original on 2017-09-03. Retrieved 2014-01-24.
- "Closing and Decommissioning Nuclear Power Plants" (PDF). United Nations Environment Programme. 2012-03-07. Archived from the original (PDF) on 2016-05-18. Retrieved 2013-01-04.
- Ewing, Rodney C.; Whittleston, Robert A.; Yardley, Bruce W. D. (1 August 2016). "Geological Disposal of Nuclear Waste: a Primer" (PDF). Elements. 12 (4): 233–237. Bibcode:2016Eleme..12..233E. doi:10.2113/gselements.12.4.233. ISSN 1811-5209. Archived (PDF) from the original on 16 December 2021. Retrieved 1 December 2021.
- Stothard, Michael (14 July 2016). "Nuclear waste: keep out for 100,000 years". Financial Times. Archived from the original on 2022-12-10. Retrieved 28 November 2021.
- "High-Level Waste". NRC Web. Archived from the original on 27 November 2021. Retrieved 28 November 2021.
- Grambow, Bernd (12 December 2008). "Mobile fission and activation products in nuclear waste disposal". Journal of Contaminant Hydrology. 102 (3): 180–186. Bibcode:2008JCHyd.102..180G. doi:10.1016/j.jconhyd.2008.10.006. ISSN 0169-7722. PMID 19008015.
- ^ "Kernkraft: 6 Fakten über unseren Atommüll und dessen Entsorgung". www.spektrum.de (in German). Archived from the original on 28 November 2021. Retrieved 28 November 2021.
- Rosborg, B.; Werme, L. (30 September 2008). "The Swedish nuclear waste program and the long-term corrosion behaviour of copper". Journal of Nuclear Materials. 379 (1): 142–153. Bibcode:2008JNuM..379..142R. doi:10.1016/j.jnucmat.2008.06.025. ISSN 0022-3115.
- Shrader-Frechette, Kristin (1 December 2005). "Mortgaging the future: Dumping ethics with nuclear waste". Science and Engineering Ethics. 11 (4): 518–520. doi:10.1007/s11948-005-0023-2. ISSN 1471-5546. PMID 16279752. S2CID 43721467.
- Shrader-Frechette, Kristin (1 November 1991). "Ethical Dilemmas and Radioactive Waste: A Survey of the Issues". Environmental Ethics. 13 (4): 327–343. doi:10.5840/enviroethics199113438.
- "Radioactive waste leaking at German storage site: report | DW | 16.04.2018". DW.COM. Deutsche Welle (www.dw.com). Archived from the original on 24 November 2021. Retrieved 24 November 2021.
- Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier (June 2014). "Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes". Bioelectrochemistry. 97: 162–168. doi:10.1016/j.bioelechem.2013.10.001. ISSN 1878-562X. PMID 24177136.
- Butler, Declan (27 May 2014). "Nuclear-waste facility on high alert over risk of new explosions". Nature. doi:10.1038/nature.2014.15290. ISSN 1476-4687. S2CID 130354940.
- ^ "World Nuclear Industry Status Report 2021" (PDF). Archived (PDF) from the original on 7 December 2023. Retrieved 24 November 2021.
- "Technical assessment of nuclear energy with respect to the 'do no significant harm' criteria of Regulation (EU) 2020/852 ('Taxonomy Regulation')" (PDF). European Commission Joint Research Centre. 2021. p. 8. Archived (PDF) from the original on 2021-04-26. Retrieved 2021-11-27.
- "As nuclear waste piles up, scientists seek the best long-term storage solutions". cen.acs.org. Archived from the original on 28 November 2021. Retrieved 28 November 2021.
- Qvist, Staffan A.; Brook, Barry W. (13 May 2015). "Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data". PLOS ONE. 10 (5): e0124074. Bibcode:2015PLoSO..1024074Q. doi:10.1371/journal.pone.0124074. PMC 4429979. PMID 25970621.
- "Report: World can Rid Itself of Fossil Fuel Dependence in as little as 10 years". Discovery. Archived from the original on 2019-02-01. Retrieved 2019-01-31.
- ^ Brook, Barry W. (2012). "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case". Energy Policy. 42: 4–8. Bibcode:2012EnPol..42....4B. doi:10.1016/j.enpol.2011.11.041.
- ^ Loftus, Peter J.; Cohen, Armond M.; Long, Jane C. S.; Jenkins, Jesse D. (January 2015). "A critical review of global decarbonization scenarios: what do they tell us about feasibility?" (PDF). WIREs Climate Change. 6 (1): 93–112. Bibcode:2015WIRCC...6...93L. doi:10.1002/wcc.324. S2CID 4835733. Archived from the original (PDF) on 2019-08-06. Retrieved 2019-12-01.
- Neuman, Scott (4 November 2021). "Earth has 11 years to cut emissions to avoid dire climate scenarios, a report says". NPR. Archived from the original on 30 May 2022. Retrieved 9 November 2021.
- Friedlingstein, Pierre; Jones, Matthew W.; et al. (4 November 2021). "Global Carbon Budget 2021" (PDF). Earth System Science Data Discussions: 1–191. doi:10.5194/essd-2021-386. S2CID 240490309. Archived from the original (PDF) on 24 November 2021. Retrieved 26 November 2021.
- Tromans, Stephen (1 March 2019). "State support for nuclear new build". The Journal of World Energy Law & Business. 12 (1): 36–51. doi:10.1093/jwelb/jwy035.
- "Nuclear power is too costly, too slow, so it's zero use to Australia's emissions plan". TheGuardian.com. 18 October 2021. Retrieved 24 November 2021.
- "Renewables vs. Nuclear: 256-0". World Nuclear Industry Status Report. 12 October 2021. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
- "UK poised to confirm funding for mini nuclear reactors for carbon-free energy". The Guardian. 15 October 2021. Retrieved 24 November 2021.
Small modular reactors were first developed in the 1950s for use in nuclear-powered submarines. Since then Rolls-Royce has designed reactors for seven classes of submarine and two separate land-based prototype reactors.
- ""Advanced" Isn't Always Better | Union of Concerned Scientists". ucsusa.org. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
- "Small Modular Reactors – Was ist von den neuen Reaktorkonzepten zu erwarten?". BASE (in German). Archived from the original on 6 June 2022. Retrieved 24 November 2021.
- Makhijani, Arjun; Ramana, M. V. (4 July 2021). "Can small modular reactors help mitigate climate change?". Bulletin of the Atomic Scientists. 77 (4): 207–214. Bibcode:2021BuAtS..77d.207M. doi:10.1080/00963402.2021.1941600. ISSN 0096-3402. S2CID 236163222.
- "Can Sodium Save Nuclear Power?". Scientific American. Archived from the original on 29 July 2021. Retrieved 24 November 2021.
- ^ "Beyond ITER". The ITER Project. Information Services, Princeton Plasma Physics Laboratory. Archived from the original on 2006-11-07. Retrieved 2011-02-05. – Projected fusion power timeline.
- ^ "A lightbulb moment for nuclear fusion?". The Guardian. 27 October 2019. Retrieved 25 November 2021.
- ^ Turrell, Arthur (28 August 2021). "The race to give nuclear fusion a role in the climate emergency". The Guardian. Retrieved 26 November 2021.
- ^ Entler, Slavomir; Horacek, Jan; Dlouhy, Tomas; Dostal, Vaclav (1 June 2018). "Approximation of the economy of fusion energy". Energy. 152: 489–497. Bibcode:2018Ene...152..489E. doi:10.1016/j.energy.2018.03.130. ISSN 0360-5442. S2CID 115968344.
- ^ Nam, Hoseok; Nam, Hyungseok; Konishi, Satoshi (2021). "Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system". International Journal of Energy Research. 45 (8): 11992–12012. Bibcode:2021IJER...4511992N. doi:10.1002/er.5994. ISSN 1099-114X. S2CID 228937388.
- ^ "Land Needs for Wind, Solar Dwarf Nuclear Plant's Footprint". nei.org. NEI. July 9, 2015. Archived from the original on January 7, 2019. Retrieved January 6, 2019.
- ^ "THE ULTIMATE FAST FACTS GUIDE TO NUCLEAR ENERGY" (PDF). United States Department of Energy. 2019-01-01. Archived (PDF) from the original on 2022-06-07. Retrieved 2022-06-07.
- "Quadrennial technology review concepts in integrated analysis" (PDF). September 2015. p. 388. Archived (PDF) from the original on 2020-03-07. Retrieved 2019-01-12.
- "4th Generation Nuclear Power – OSS Foundation". Ossfoundation.us. Archived from the original on 2014-02-01. Retrieved 2014-01-24.
- Gerstner, E. (2009). "Nuclear energy: The hybrid returns" (PDF). Nature. 460 (7251): 25–28. doi:10.1038/460025a. PMID 19571861. S2CID 205047403. Archived (PDF) from the original on 2013-12-20. Retrieved 2013-06-19.
- Roth, J. Reece (1986). Introduction to fusion energy. Charlottesville, Va.: Ibis Pub. ISBN 978-0-935005-07-3.
- Hamacher, T. & Bradshaw, A. M. (October 2001). "Fusion as a Future Power Source: Recent Achievements and Prospects" (PDF). World Energy Council. Archived from the original (PDF) on 2004-05-06. Retrieved 2010-09-16.
- "A lightbulb moment for nuclear fusion?". The Guardian. 27 October 2019. Retrieved 25 November 2021.
- Entler, Slavomir; Horacek, Jan; Dlouhy, Tomas; Dostal, Vaclav (1 June 2018). "Approximation of the economy of fusion energy". Energy. 152: 489–497. Bibcode:2018Ene...152..489E. doi:10.1016/j.energy.2018.03.130. ISSN 0360-5442. S2CID 115968344.
- Nam, Hoseok; Nam, Hyungseok; Konishi, Satoshi (2021). "Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system". International Journal of Energy Research. 45 (8): 11992–12012. Bibcode:2021IJER...4511992N. doi:10.1002/er.5994. ISSN 1099-114X. S2CID 228937388.
- Gibbs, W. Wayt (2013-12-30). "Triple-threat method sparks hope for fusion". Nature. 505 (7481): 9–10. Bibcode:2014Natur.505....9G. doi:10.1038/505009a. PMID 24380935.
- "Overview of EFDA Activities". www.efda.org. European Fusion Development Agreement. Archived from the original on 2006-10-01. Retrieved 2006-11-11.
- "US announces $46 million in funds to eight nuclear fusion companies" (Press release). 31 May 2023. Archived from the original on 9 June 2023. Retrieved 13 June 2023.
Further reading
See also: List of books about nuclear issues and List of films about nuclear issues- AEC Atom Information Booklets, Both series, "Understanding the Atom" and "The World of the Atom" Archived 2019-01-07 at the Wayback Machine. A total of 75 booklets published by the U.S. Atomic Energy Commission (AEC) in the 1960s and 1970s, Authored by scientists and taken together, the booklets comprise the history of nuclear science and its applications at the time.
- Armstrong, Robert C., Catherine Wolfram, Robert Gross, Nathan S. Lewis, and M.V. Ramana et al. The Frontiers of Energy Archived 2016-05-23 at the Wayback Machine, Nature Energy, Vol 1, 11 January 2016.
- Brown, Kate (2013). Plutopia: Nuclear Families, Atomic Cities, and the Great Soviet and American Plutonium Disasters, Oxford University Press.
- Clarfield, Gerald H. and Wiecek, William M. (1984). Nuclear America: Military and Civilian Nuclear Power in the United States 1940–1980, Harper & Row.
- Cooke, Stephanie (2009). In Mortal Hands: A Cautionary History of the Nuclear Age, Black Inc.
- Cravens, Gwyneth (2007). Power to Save the World: the Truth about Nuclear Energy. New York: Knopf. ISBN 978-0-307-26656-9.
- Elliott, David (2007). Nuclear or Not? Does Nuclear Power Have a Place in a Sustainable Energy Future?, Palgrave.
- Ferguson, Charles D., (2007). Nuclear Energy: Balancing Benefits and Risks Council on Foreign Relations.
- Garwin, Richard L. and Charpak, Georges (2001) Megawatts and Megatons A Turning Point in the Nuclear Age?, Knopf.
- Herbst, Alan M. and George W. Hopley (2007). Nuclear Energy Now: Why the Time has come for the World's Most Misunderstood Energy Source, Wiley.
- Mahaffey, James (2015). Atomic accidents: a history of nuclear meltdowns and disasters: from the Ozark Mountains to Fukushima. Pegasus Books. ISBN 978-1-60598-680-7.
- Patterson, Eann A.; Taylor, Richard J. (2024). "The commoditization of civil nuclear power". Royal Society Open Science. 11 (5): 240021. Bibcode:2024RSOS...1140021P. doi:10.1098/rsos.240021. PMC 11285846. PMID 39076811.
- Oreskes, Naomi, "Breaking the Techno-Promise: We do not have enough time for nuclear power to save us from the climate crisis", Scientific American, vol. 326, no. 2 (February 2022), p. 74.
- Schneider, Mycle, Steve Thomas, Antony Froggatt, Doug Koplow (2016). The World Nuclear Industry Status Report: World Nuclear Industry Status as of 1 January 2016.
- Walker, J. Samuel (1992). Containing the Atom: Nuclear Regulation in a Changing Environment, 1993–1971, Berkeley, California: University of California Press.
- Weart, Spencer R. The Rise of Nuclear Fear. Cambridge, Massachusetts: Harvard University Press, 2012. ISBN 0-674-05233-1.
External links
- U.S. Energy Information Administration Archived 2011-07-08 at the Wayback Machine
- Nuclear Fuel Cycle Cost Calculator Archived 2022-07-11 at the Wayback Machine
Nuclear power by country | |
---|---|
GWe > 10 | |
GWe > 5 | |
GWe > 2 | |
GWe > 1 | |
GWe < 1 | |
Planned | |
Abandoned plans for new plants | |
Phasing-out | |
Nuclear technology | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||
Electricity delivery | |||||
---|---|---|---|---|---|
Concepts |
| ||||
Sources |
| ||||
Generation | |||||
Transmission and distribution |
| ||||
Failure modes | |||||
Protective devices | |||||
Economics and policies |
| ||||
Statistics and production | |||||
Natural resources | |||||||
---|---|---|---|---|---|---|---|
Air |
| ||||||
Energy | |||||||
Land | |||||||
Life | |||||||
Water |
| ||||||
Related |
| ||||||