Revision as of 16:10, 4 January 2025 editKevmin (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers48,006 edits see note on 2025 in paleobotany edit← Previous edit | Latest revision as of 23:23, 11 January 2025 edit undoMacrochelys (talk | contribs)Extended confirmed users11,528 edits →Other animal research | ||
(32 intermediate revisions by 11 users not shown) | |||
Line 6: | Line 6: | ||
===Plants=== | ===Plants=== | ||
{{main|2025 in paleobotany}} | {{main|2025 in paleobotany}} | ||
==Cnidarians== | |||
{| class="wikitable sortable" align="center" width="75%" | |||
|- | |||
! Name | |||
! Novelty | |||
! Status | |||
! Authors | |||
! Age | |||
! Type locality | |||
! Country | |||
! Notes | |||
! Images | |||
|- | |||
| | |||
'']''<ref>{{Cite journal|last1=Krutykh |first1=A. A. |last2=Mirantsev |first2=G. V. |last3=Rozhnov |first3=S. V. |year=2025 |title=''Sutherlandia gzheliensis'' sp. nov.—a New Species of Favositid Coral from the Gzhelian Stage of the Moscow Syneclise |journal=Paleontological Journal |volume=58 |issue=11 |pages=1208–1215 |doi=10.1134/S0031030124601075 }}</ref> | |||
| | |||
Sp. nov | |||
| | |||
Valid | |||
| | |||
Krutykh, Mirantsev & Rozhnov | |||
| | |||
] (]) | |||
| | |||
] | |||
| | |||
{{Flag|Russia}} | |||
| | |||
A favositid coral. Published online in 2025, but the issue date is listed as December 2024. | |||
| | |||
|- | |||
|} | |||
==Arthropods== | ==Arthropods== | ||
{{main|2025 in arthropod paleontology|2025 in paleoentomology}} | {{main|2025 in arthropod paleontology|2025 in paleoentomology}} | ||
==Brachiopods== | |||
{| class="wikitable sortable" align="center" width="100%" | |||
|- | |||
! Name | |||
! Novelty | |||
! Status | |||
! Authors | |||
! Age | |||
! Type locality | |||
! Country | |||
! Notes | |||
! Images | |||
|- | |||
| | |||
'']''<ref>{{Cite journal|last1=Baranov |first1=V. V. |last2=Kebrie-ee Zade |first2=M. R. |last3=Blodgett |first3=R. B. |year=2025 |title=New Late Devonian (Upper Famennian) Athyridids from the Khoshyeilagh Formation of Eastern Alborz Mountains, North-East Iran |journal=Paleontological Journal |volume=58 |issue=11 |pages=1232–1241 |doi=10.1134/S0031030124601105 }}</ref> | |||
| | |||
Gen. et sp. nov | |||
| | |||
Valid | |||
| | |||
Baranov, Kebrie-ee Zade & Blodgett | |||
| | |||
] (]) | |||
| | |||
] | |||
| | |||
{{Flag|Iran}} | |||
| | |||
A member of the family ]. The type species is ''N. damganensis''. Published online in 2025, but the issue date is listed as December 2024. | |||
| | |||
|- | |||
|} | |||
==Molluscs== | |||
{{Main|2025 in paleomalacology}} | |||
==Echinoderms== | |||
{| class="wikitable sortable" align="center" width="100%" | |||
|- | |||
! Name | |||
! Novelty | |||
! Status | |||
! Authors | |||
! Age | |||
! Type locality | |||
! Country | |||
! Notes | |||
! Images | |||
|- | |||
| | |||
'']''<ref>{{Cite journal|last=Rozhnov |first=S. V. |year=2025 |title=''Kukrusecrinus stellatus'' gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position |journal=Paleontological Journal |volume=58 |issue=11 |pages=1266–1280 |doi=10.1134/S0031030124601129 }}</ref> | |||
| | |||
Gen. et sp. nov | |||
| | |||
Valid | |||
| | |||
Rozhnov | |||
| | |||
] (] and ]) | |||
| | |||
| | |||
{{Flag|Estonia}} | |||
| | |||
A crinoid belonging to group ] and to the family ]. The type species is ''K. stellatus''. Published online in 2025, but the issue date is listed as December 2024. | |||
| | |||
|- | |||
|} | |||
==Conodonts== | |||
{| class="wikitable sortable" align="center" width="100%" | |||
|- | |||
! Name | |||
! Novelty | |||
! Status | |||
! Authors | |||
! Age | |||
! Type locality | |||
! Country | |||
! Notes | |||
! Images | |||
|- | |||
| | |||
'']''<ref>{{Cite journal|last1=Tolmacheva |first1=T. Yu. |last2=Dronov |first2=A. V. |last3=Lykov |first3=N. A. |year=2025 |title=Multielement Conodonts from the Upper Ordovician of the Siberian Platform |journal=Paleontological Journal |volume=58 |issue=11 |pages=1242–1265 |doi=10.1134/S0031030124601117 }}</ref> | |||
| | |||
Gen. et comb. nov | |||
| | |||
Valid | |||
| | |||
Tolmacheva, Dronov & Lykov | |||
| | |||
Ordovician | |||
| | |||
| | |||
{{Flag|Russia}} | |||
| | |||
The type species is ''"Scolopodus" consimilis'' Moskalenko, (1973); genus also includes ''A. compositus'' (Moskalenko, 1973). Published online in 2025, but the issue date is listed as December 2024. | |||
| | |||
|- | |||
|} | |||
===Conodont research=== | |||
* A study on the phylogenetic relationships, ] and ] of members of the genus '']'' is published by Wang, Hu & Wang (2025).<ref>{{Cite journal|last1=Wang |first1=W. |last2=Hu |first2=K. |last3=Wang |first3=X. |title=Temporal and spatial evolution of Mississippian conodont: A case study |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |at=112701 |doi=10.1016/j.palaeo.2024.112701 }}</ref> | |||
==Fish== | ==Fish== | ||
{{main|2025 in paleoichthyology}} | {{main|2025 in paleoichthyology}} | ||
==Amphibians== | |||
===Amphibian research=== | |||
* Jenkins et al. (2025) redescribe the skull of '']'', consider '']'' to represent a ] of this species, and reevaluate the affinities of ]ns, recovering them as a clade of ]-]s.<ref>{{Cite journal|last1=Jenkins |first1=X. A. |last2=Sues |first2=H.-D. |last3=Webb |first3=S. |last4=Schepis |first4=Z. |last5=Peecook |first5=B. R. |last6=Mann |first6=A. |year=2025 |title=The recumbirostran ''Hapsidopareion lepton'' from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem |journal=Papers in Palaeontology |volume=11 |issue=1 |at=e1610 |doi=10.1002/spp2.1610 }}</ref> | |||
==Reptiles== | ==Reptiles== | ||
Line 23: | Line 164: | ||
==Other animals== | ==Other animals== | ||
===Other animal research=== | ===Other animal research=== | ||
* |
* Evidence from the study of Cambrian ]n fossils, interpreted as indicating that the ] was ancestrally unpaired in scalidophorans, ] and possibly ]ns in general, is presented by Wang et al. (2025).<ref>{{Cite journal|last1=Wang |first1=D. |last2=Vannier |first2=J. |last3=Martín-Durán |first3=J. M. |last4=Herranz |first4=M. |last5=Yu |first5=C. |title=Preservation and early evolution of scalidophoran ventral nerve cord |year=2025 |journal=Science Advances |volume=11 |issue=2 |at=eadr0896 |doi=10.1126/sciadv.adr0896 |pmid=39792685 |pmc=11721716 |doi-access=free }}</ref> | ||
* A study on fossil material of the ] '']'' from the ] strata in ] is published by Bicknell et al. (2025), who report evidence of increase of thickness of ] of ''L. fasciculata'' and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.<ref>{{Cite journal|last1=Bicknell |first1=R. D. C. |last2=Campione |first2=N. E. |last3=Brock |first3=G. A. |last4=Paterson |first4=J. R. |title=Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals |year=2025 |journal=Current Biology |doi=10.1016/j.cub.2024.12.007 |pmid=39755119 }}</ref> | |||
==Foraminifera== | ==Foraminifera== | ||
Line 47: | Line 189: | ||
Kaminski & Korin | Kaminski & Korin | ||
| | | | ||
Eocene | ] | ||
| | | | ||
Rashrashiyah Formation | ] | ||
| | | | ||
{{Flag|Saudi Arabia}} | {{Flag|Saudi Arabia}} | ||
Line 57: | Line 199: | ||
|- | |- | ||
|} | |} | ||
==Other organisms== | |||
===Research on other organisms=== | |||
* Saint Martin et al. (2025) identify body fossils of '']'' in the ] ] (]), providing evidence of the ] age of the studied formation.<ref>{{Cite journal|last1=Saint Martin |first1=J.-P. |last2=Charbonnier |first2=S. |last3=Saint Martin |first3=S. |last4=Cazes |first4=L. |last5=André |first5=J.-P. |year=2025 |title=New records of ''Palaeopaschichnus'' Palij, 1976 from the Ediacaran of Romania |journal=Geodiversitas |volume=47 |issue=1 |pages=1–16 |doi=10.5252/geodiversitas2025v47a1 |url=https://sciencepress.mnhn.fr/en/periodiques/geodiversitas/47/1 }}</ref> | |||
==History of life in general== | ==History of life in general== | ||
* |
* Maletz et al. (2025) revise ] fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.<ref>{{Cite journal|last1=Maletz |first1=J. |last2=Zhu |first2=X.-J. |last3=Zhang |first3=Y.-D. |last4=Gutiérrez-Marco |first4=J. C. |title=The identification of 'feather-like' fossils in the Palaeozoic: Algae, hydroids, or graptolites? |year=2025 |journal=Palaeoworld |doi=10.1016/j.palwor.2025.200909 |doi-access=free }}</ref> | ||
* Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the ] (]) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.<ref>{{Cite journal|last1=Zong |first1=R. |last2=Liu |first2=Y. |last3=Liu |first3=Q. |last4=Ma |first4=J. |last5=Liu |first5=S. |title=A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction |year=2025 |journal=Geology |doi=10.1130/G53042.1 |url=https://figshare.com/articles/journal_contribution/28074485 }}</ref> | |||
* A study on the assemblage of fossil teeth from the Middle Triassic (]) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).<ref>{{Cite journal |last1=Riccetto |first1=M. |last2=Mujal |first2=E. |last3=Bolet |first3=A. |last4=De Jaime-Soguero |first4=C. |last5=De Esteban-Trivigno |first5=S. |last6=Fortuny |first6=J. |title=Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe) |year=2025 |journal=Rivista Italiana di Paleontologia e Stratigrafia |volume=131 |issue=1 |pages=39–62 |doi=10.54103/2039-4942/22340 |url=https://riviste.unimi.it/index.php/RIPS/article/view/22340 |doi-access=free }}</ref> | |||
==Other research== | ==Other research== | ||
* |
* Evidence of a link between marine ] and stability of the ] throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).<ref>{{Cite journal|last1=Liu |first1=J. |last2=Hardisty |first2=D. S. |last3=Kasting |first3=J. F. |last4=Fakhraee |first4=M. |last5=Planavsky |first5=N. J. |year=2025 |title=Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=2 |at=e2412898121 |doi=10.1073/pnas.2412898121 |pmid=39761407 }}</ref> | ||
* Evidence of slow accumulation of Australian sediments preserving ] mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower ] in Archean than in present times.<ref>{{Cite journal|last1=Lotem |first1=N. |last2=Rasmussen |first2=B. |last3=Zi |first3=J.-W. |last4=Zeichner |first4=S. S. |last5=Present |first5=T. M. |last6=Bar-On |first6=Y. M. |last7=Fischer |first7=W. W. |year=2025 |title=Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=2 |at=e2417673121 |pmid=39761395 |doi=10.1073/pnas.2417673121 }}</ref> | |||
* Cowen et al. (2025) study the geochemistry of dental tissue of ] ] fossils from ] (]) and ] ] and ] fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.<ref>{{Cite journal|last1=Cowen |first1=M. B. |last2=de Rafélis |first2=M. |last3=Ségalen |first3=L. |last4=Kear |first4=B. P. |last5=Dumont |first5=M. |last6=Žigaitė |first6=Ž. |title=Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains |year=2025 |journal=PeerJ |volume=13 |at=e18763 |doi=10.7717/peerj.18763 |pmid=39763693 |pmc=11700492 |doi-access=free }}</ref> | |||
===Paleoclimate=== | ===Paleoclimate=== | ||
* Evidence of low atmospheric CO<sub>2</sub> levels throughout the main phase of the ], and of rapid increase in atmospheric CO<sub>2</sub> between 296 and 291 million years ago, is presented by Jurikova et al. (2025).<ref>{{cite journal|last1=Jurikova |first1=H. |last2=Garbelli |first2=C. |last3=Whiteford |first3=R. |last4=Reeves |first4=T. |last5=Laker |first5=G. M. |last6=Liebetrau |first6=V. |last7=Gutjahr |first7=M. |last8=Eisenhauer |first8=A. |last9=Savickaite |first9=K. |last10=Leng |first10=M. J. |last11=Iurino |first11=D. A. |last12=Viaretti |first12=M. |last13=Tomašových |first13=A. |last14=Zhang |first14=Y. |last15=Wang |first15=W. |last16=Shi |first16=G. R. |last17=Shen |first17=S. |last18=Rae |first18=J. W. B. |last19=Angiolini |first19=L. |year=2025 |title=Rapid rise in atmospheric CO<sub>2</sub> marked the end of the Late Palaeozoic Ice Age |journal=Nature Geoscience |pages=1–7 |doi=10.1038/s41561-024-01610-2 |doi-access=free }}</ref> | |||
* Evidence indicating that abrupt climate changes during the ] increased pyrogenic ] emissions and global wildfire extent is presented by Riddell-Young et al. (2025).<ref>{{Cite journal|last1=Riddell-Young |first1=B. |last2=Lee |first2=J. E. |last3=Brook |first3=E. J. |last4=Schmitt |first4=J. |last5=Fischer |first5=H. |last6=Bauska |first6=T. K. |last7=Menking |first7=J. A. |last8=Iseli |first8=R. |last9=Clark |first9=J. R. |year=2025 |title=Abrupt changes in biomass burning during the last glacial period |journal=Nature |volume=637 |issue=8044 |pages=91–96 |doi=10.1038/s41586-024-08363-3 |pmid=39743610 }}</ref> | * Evidence indicating that abrupt climate changes during the ] increased pyrogenic ] emissions and global wildfire extent is presented by Riddell-Young et al. (2025).<ref>{{Cite journal|last1=Riddell-Young |first1=B. |last2=Lee |first2=J. E. |last3=Brook |first3=E. J. |last4=Schmitt |first4=J. |last5=Fischer |first5=H. |last6=Bauska |first6=T. K. |last7=Menking |first7=J. A. |last8=Iseli |first8=R. |last9=Clark |first9=J. R. |year=2025 |title=Abrupt changes in biomass burning during the last glacial period |journal=Nature |volume=637 |issue=8044 |pages=91–96 |doi=10.1038/s41586-024-08363-3 |pmid=39743610 }}</ref> | ||
Latest revision as of 23:23, 11 January 2025
Overview of the events of 2025 in paleontology
| |||
---|---|---|---|
Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2025.
2025 in science |
---|
20242026 |
Fields |
Technology |
Social sciences |
Paleontology |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
Flora
Plants
Main article: 2025 in paleobotanyCnidarians
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Krutykh, Mirantsev & Rozhnov |
A favositid coral. Published online in 2025, but the issue date is listed as December 2024. |
Arthropods
Main articles: 2025 in arthropod paleontology and 2025 in paleoentomologyBrachiopods
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Baranov, Kebrie-ee Zade & Blodgett |
A member of the family Athyrididae. The type species is N. damganensis. Published online in 2025, but the issue date is listed as December 2024. |
Molluscs
Main article: 2025 in paleomalacologyEchinoderms
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Rozhnov |
Ordovician (Darriwilian and Sandbian) |
A crinoid belonging to group Camerata and to the family Colpodecrinidae. The type species is K. stellatus. Published online in 2025, but the issue date is listed as December 2024. |
Conodonts
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et comb. nov |
Valid |
Tolmacheva, Dronov & Lykov |
Ordovician |
The type species is "Scolopodus" consimilis Moskalenko, (1973); genus also includes A. compositus (Moskalenko, 1973). Published online in 2025, but the issue date is listed as December 2024. |
Conodont research
- A study on the phylogenetic relationships, biogeography and biostratigraphy of members of the genus Gnathodus is published by Wang, Hu & Wang (2025).
Fish
Main article: 2025 in paleoichthyologyAmphibians
Amphibian research
- Jenkins et al. (2025) redescribe the skull of Hapsidopareion lepton, consider Llistrofus pricei to represent a junior synonym of this species, and reevaluate the affinities of recumbirostrans, recovering them as a clade of stem-amniotes.
Reptiles
Main articles: 2025 in reptile paleontology and 2025 in archosaur paleontologySynapsids
Mammals
Main article: 2025 in paleomammalogyOther animals
Other animal research
- Evidence from the study of Cambrian scalidophoran fossils, interpreted as indicating that the ventral nerve cord was ancestrally unpaired in scalidophorans, priapulids and possibly ecdysozoans in general, is presented by Wang et al. (2025).
- A study on fossil material of the tommotiid Lapworthella fasciculata from the Cambrian strata in Australia is published by Bicknell et al. (2025), who report evidence of increase of thickness of sclerites of L. fasciculata and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.
Foraminifera
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Kaminski & Korin |
A member of Pseudogaudryininae. The type species is F. sirhanensis. |
Other organisms
Research on other organisms
- Saint Martin et al. (2025) identify body fossils of Palaeopascichnus in the Neoproterozoic Histria Formation (Romania), providing evidence of the Ediacaran age of the studied formation.
History of life in general
- Maletz et al. (2025) revise Paleozoic fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.
- Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the Silurian (Rhuddanian) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.
- A study on the assemblage of fossil teeth from the Middle Triassic (Anisian) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).
Other research
- Evidence of a link between marine iodine cycle and stability of the ozone layer throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).
- Evidence of slow accumulation of Australian sediments preserving Archean mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower primary productivity in Archean than in present times.
- Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.
Paleoclimate
- Evidence of low atmospheric CO2 levels throughout the main phase of the late Paleozoic icehouse, and of rapid increase in atmospheric CO2 between 296 and 291 million years ago, is presented by Jurikova et al. (2025).
- Evidence indicating that abrupt climate changes during the Last Glacial Period increased pyrogenic methane emissions and global wildfire extent is presented by Riddell-Young et al. (2025).
References
- Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- Krutykh, A. A.; Mirantsev, G. V.; Rozhnov, S. V. (2025). "Sutherlandia gzheliensis sp. nov.—a New Species of Favositid Coral from the Gzhelian Stage of the Moscow Syneclise". Paleontological Journal. 58 (11): 1208–1215. doi:10.1134/S0031030124601075.
- Baranov, V. V.; Kebrie-ee Zade, M. R.; Blodgett, R. B. (2025). "New Late Devonian (Upper Famennian) Athyridids from the Khoshyeilagh Formation of Eastern Alborz Mountains, North-East Iran". Paleontological Journal. 58 (11): 1232–1241. doi:10.1134/S0031030124601105.
- Rozhnov, S. V. (2025). "Kukrusecrinus stellatus gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position". Paleontological Journal. 58 (11): 1266–1280. doi:10.1134/S0031030124601129.
- Tolmacheva, T. Yu.; Dronov, A. V.; Lykov, N. A. (2025). "Multielement Conodonts from the Upper Ordovician of the Siberian Platform". Paleontological Journal. 58 (11): 1242–1265. doi:10.1134/S0031030124601117.
- Wang, W.; Hu, K.; Wang, X. (2025). "Temporal and spatial evolution of Mississippian conodont: A case study". Palaeogeography, Palaeoclimatology, Palaeoecology. 112701. doi:10.1016/j.palaeo.2024.112701.
- Jenkins, X. A.; Sues, H.-D.; Webb, S.; Schepis, Z.; Peecook, B. R.; Mann, A. (2025). "The recumbirostran Hapsidopareion lepton from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem". Papers in Palaeontology. 11 (1). e1610. doi:10.1002/spp2.1610.
- Wang, D.; Vannier, J.; Martín-Durán, J. M.; Herranz, M.; Yu, C. (2025). "Preservation and early evolution of scalidophoran ventral nerve cord". Science Advances. 11 (2). eadr0896. doi:10.1126/sciadv.adr0896. PMC 11721716. PMID 39792685.
{{cite journal}}
: Check|pmc=
value (help) - Bicknell, R. D. C.; Campione, N. E.; Brock, G. A.; Paterson, J. R. (2025). "Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals". Current Biology. doi:10.1016/j.cub.2024.12.007. PMID 39755119.
- Kaminski, M. A.; Korin, A. (2025). "Flabellogaudryina n.gen, a new agglutinated foraminiferal genus from the Eocene of Saudi Arabia". Micropaleontology. 71 (1): 93–100. doi:10.47894/mpal.71.1.04.
- Saint Martin, J.-P.; Charbonnier, S.; Saint Martin, S.; Cazes, L.; André, J.-P. (2025). "New records of Palaeopaschichnus Palij, 1976 from the Ediacaran of Romania". Geodiversitas. 47 (1): 1–16. doi:10.5252/geodiversitas2025v47a1.
- Maletz, J.; Zhu, X.-J.; Zhang, Y.-D.; Gutiérrez-Marco, J. C. (2025). "The identification of 'feather-like' fossils in the Palaeozoic: Algae, hydroids, or graptolites?". Palaeoworld. doi:10.1016/j.palwor.2025.200909.
- Zong, R.; Liu, Y.; Liu, Q.; Ma, J.; Liu, S. (2025). "A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction". Geology. doi:10.1130/G53042.1.
- Riccetto, M.; Mujal, E.; Bolet, A.; De Jaime-Soguero, C.; De Esteban-Trivigno, S.; Fortuny, J. (2025). "Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 39–62. doi:10.54103/2039-4942/22340.
- Liu, J.; Hardisty, D. S.; Kasting, J. F.; Fakhraee, M.; Planavsky, N. J. (2025). "Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2412898121. doi:10.1073/pnas.2412898121. PMID 39761407.
- Lotem, N.; Rasmussen, B.; Zi, J.-W.; Zeichner, S. S.; Present, T. M.; Bar-On, Y. M.; Fischer, W. W. (2025). "Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2417673121. doi:10.1073/pnas.2417673121. PMID 39761395.
- Cowen, M. B.; de Rafélis, M.; Ségalen, L.; Kear, B. P.; Dumont, M.; Žigaitė, Ž. (2025). "Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains". PeerJ. 13. e18763. doi:10.7717/peerj.18763. PMC 11700492. PMID 39763693.
{{cite journal}}
: Check|pmc=
value (help) - Jurikova, H.; Garbelli, C.; Whiteford, R.; Reeves, T.; Laker, G. M.; Liebetrau, V.; Gutjahr, M.; Eisenhauer, A.; Savickaite, K.; Leng, M. J.; Iurino, D. A.; Viaretti, M.; Tomašových, A.; Zhang, Y.; Wang, W.; Shi, G. R.; Shen, S.; Rae, J. W. B.; Angiolini, L. (2025). "Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age". Nature Geoscience: 1–7. doi:10.1038/s41561-024-01610-2.
- Riddell-Young, B.; Lee, J. E.; Brook, E. J.; Schmitt, J.; Fischer, H.; Bauska, T. K.; Menking, J. A.; Iseli, R.; Clark, J. R. (2025). "Abrupt changes in biomass burning during the last glacial period". Nature. 637 (8044): 91–96. doi:10.1038/s41586-024-08363-3. PMID 39743610.