Misplaced Pages

2025 in paleontology: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 12:40, 5 January 2025 editMacrochelys (talk | contribs)Extended confirmed users11,528 edits Other animal research← Previous edit Latest revision as of 23:23, 11 January 2025 edit undoMacrochelys (talk | contribs)Extended confirmed users11,528 edits Other animal research 
(31 intermediate revisions by 11 users not shown)
Line 6: Line 6:
===Plants=== ===Plants===
{{main|2025 in paleobotany}} {{main|2025 in paleobotany}}

==Cnidarians==
{| class="wikitable sortable" align="center" width="75%"
|-
! Name
! Novelty
! Status
! Authors
! Age
! Type locality
! Country
! Notes
! Images
|-
|
'']''<ref>{{Cite journal|last1=Krutykh |first1=A. A. |last2=Mirantsev |first2=G. V. |last3=Rozhnov |first3=S. V. |year=2025 |title=''Sutherlandia gzheliensis'' sp. nov.—a New Species of Favositid Coral from the Gzhelian Stage of the Moscow Syneclise |journal=Paleontological Journal |volume=58 |issue=11 |pages=1208–1215 |doi=10.1134/S0031030124601075 }}</ref>
|
Sp. nov
|
Valid
|
Krutykh, Mirantsev & Rozhnov
|
] (])
|
]
|
{{Flag|Russia}}
|
A favositid coral. Published online in 2025, but the issue date is listed as December 2024.
|
|-
|}


==Arthropods== ==Arthropods==
{{main|2025 in arthropod paleontology|2025 in paleoentomology}} {{main|2025 in arthropod paleontology|2025 in paleoentomology}}

==Brachiopods==
{| class="wikitable sortable" align="center" width="100%"
|-
! Name
! Novelty
! Status
! Authors
! Age
! Type locality
! Country
! Notes
! Images
|-
|
'']''<ref>{{Cite journal|last1=Baranov |first1=V. V. |last2=Kebrie-ee Zade |first2=M. R. |last3=Blodgett |first3=R. B. |year=2025 |title=New Late Devonian (Upper Famennian) Athyridids from the Khoshyeilagh Formation of Eastern Alborz Mountains, North-East Iran |journal=Paleontological Journal |volume=58 |issue=11 |pages=1232–1241 |doi=10.1134/S0031030124601105 }}</ref>
|
Gen. et sp. nov
|
Valid
|
Baranov, Kebrie-ee Zade & Blodgett
|
] (])
|
]
|
{{Flag|Iran}}
|
A member of the family ]. The type species is ''N. damganensis''. Published online in 2025, but the issue date is listed as December 2024.
|
|-
|}

==Molluscs==
{{Main|2025 in paleomalacology}}

==Echinoderms==
{| class="wikitable sortable" align="center" width="100%"
|-
! Name
! Novelty
! Status
! Authors
! Age
! Type locality
! Country
! Notes
! Images
|-
|
'']''<ref>{{Cite journal|last=Rozhnov |first=S. V. |year=2025 |title=''Kukrusecrinus stellatus'' gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position |journal=Paleontological Journal |volume=58 |issue=11 |pages=1266–1280 |doi=10.1134/S0031030124601129 }}</ref>
|
Gen. et sp. nov
|
Valid
|
Rozhnov
|
] (] and ])
|
|
{{Flag|Estonia}}
|
A crinoid belonging to group ] and to the family ]. The type species is ''K. stellatus''. Published online in 2025, but the issue date is listed as December 2024.
|
|-
|}

==Conodonts==
{| class="wikitable sortable" align="center" width="100%"
|-
! Name
! Novelty
! Status
! Authors
! Age
! Type locality
! Country
! Notes
! Images
|-
|
'']''<ref>{{Cite journal|last1=Tolmacheva |first1=T. Yu. |last2=Dronov |first2=A. V. |last3=Lykov |first3=N. A. |year=2025 |title=Multielement Conodonts from the Upper Ordovician of the Siberian Platform |journal=Paleontological Journal |volume=58 |issue=11 |pages=1242–1265 |doi=10.1134/S0031030124601117 }}</ref>
|
Gen. et comb. nov
|
Valid
|
Tolmacheva, Dronov & Lykov
|
Ordovician
|
|
{{Flag|Russia}}
|
The type species is ''"Scolopodus" consimilis'' Moskalenko, (1973); genus also includes ''A. compositus'' (Moskalenko, 1973). Published online in 2025, but the issue date is listed as December 2024.
|
|-
|}

===Conodont research===
* A study on the phylogenetic relationships, ] and ] of members of the genus '']'' is published by Wang, Hu & Wang (2025).<ref>{{Cite journal|last1=Wang |first1=W. |last2=Hu |first2=K. |last3=Wang |first3=X. |title=Temporal and spatial evolution of Mississippian conodont: A case study |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |at=112701 |doi=10.1016/j.palaeo.2024.112701 }}</ref>


==Fish== ==Fish==
{{main|2025 in paleoichthyology}} {{main|2025 in paleoichthyology}}

==Amphibians==

===Amphibian research===
* Jenkins et al. (2025) redescribe the skull of '']'', consider '']'' to represent a ] of this species, and reevaluate the affinities of ]ns, recovering them as a clade of ]-]s.<ref>{{Cite journal|last1=Jenkins |first1=X. A. |last2=Sues |first2=H.-D. |last3=Webb |first3=S. |last4=Schepis |first4=Z. |last5=Peecook |first5=B. R. |last6=Mann |first6=A. |year=2025 |title=The recumbirostran ''Hapsidopareion lepton'' from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem |journal=Papers in Palaeontology |volume=11 |issue=1 |at=e1610 |doi=10.1002/spp2.1610 }}</ref>


==Reptiles== ==Reptiles==
Line 23: Line 164:
==Other animals== ==Other animals==
===Other animal research=== ===Other animal research===
* A study on fossil material of the ] '']'' from the Cambrian strata in Australia is published by Bicknell et al. (2025), who report evidence of increase of thickness of ]s of ''L. fasciculata'' and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.<ref>{{Cite journal|last1=Bicknell |first1=R. D. C. |last2=Campione |first2=N. E. |last3=Brock |first3=G. A. |last4=Paterson |first4=J. R. |title=Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals |year=2025 |journal=Current Biology |doi=10.1016/j.cub.2024.12.007 |pmid=39755119 }}</ref> * Evidence from the study of Cambrian ]n fossils, interpreted as indicating that the ] was ancestrally unpaired in scalidophorans, ] and possibly ]ns in general, is presented by Wang et al. (2025).<ref>{{Cite journal|last1=Wang |first1=D. |last2=Vannier |first2=J. |last3=Martín-Durán |first3=J. M. |last4=Herranz |first4=M. |last5=Yu |first5=C. |title=Preservation and early evolution of scalidophoran ventral nerve cord |year=2025 |journal=Science Advances |volume=11 |issue=2 |at=eadr0896 |doi=10.1126/sciadv.adr0896 |pmid=39792685 |pmc=11721716 |doi-access=free }}</ref>
* A study on fossil material of the ] '']'' from the ] strata in ] is published by Bicknell et al. (2025), who report evidence of increase of thickness of ] of ''L. fasciculata'' and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.<ref>{{Cite journal|last1=Bicknell |first1=R. D. C. |last2=Campione |first2=N. E. |last3=Brock |first3=G. A. |last4=Paterson |first4=J. R. |title=Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals |year=2025 |journal=Current Biology |doi=10.1016/j.cub.2024.12.007 |pmid=39755119 }}</ref>


==Foraminifera== ==Foraminifera==
Line 47: Line 189:
Kaminski & Korin Kaminski & Korin
| |
Eocene ]
| |
Rashrashiyah Formation ]
| |
{{Flag|Saudi Arabia}} {{Flag|Saudi Arabia}}
Line 57: Line 199:
|- |-
|} |}

==Other organisms==

===Research on other organisms===
* Saint Martin et al. (2025) identify body fossils of '']'' in the ] ] (]), providing evidence of the ] age of the studied formation.<ref>{{Cite journal|last1=Saint Martin |first1=J.-P. |last2=Charbonnier |first2=S. |last3=Saint Martin |first3=S. |last4=Cazes |first4=L. |last5=André |first5=J.-P. |year=2025 |title=New records of ''Palaeopaschichnus'' Palij, 1976 from the Ediacaran of Romania |journal=Geodiversitas |volume=47 |issue=1 |pages=1–16 |doi=10.5252/geodiversitas2025v47a1 |url=https://sciencepress.mnhn.fr/en/periodiques/geodiversitas/47/1 }}</ref>


==History of life in general== ==History of life in general==
* Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the Silurian (]) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.<ref>{{Cite journal|last1=Zong |first1=R. |last2=Liu |first2=Y. |last3=Liu |first3=Q. |last4=Ma |first4=J. |last5=Liu |first5=S. |title=A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction |year=2025 |journal=Geology |doi=10.1130/G53042.1 }}</ref> * Maletz et al. (2025) revise ] fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.<ref>{{Cite journal|last1=Maletz |first1=J. |last2=Zhu |first2=X.-J. |last3=Zhang |first3=Y.-D. |last4=Gutiérrez-Marco |first4=J. C. |title=The identification of 'feather-like' fossils in the Palaeozoic: Algae, hydroids, or graptolites? |year=2025 |journal=Palaeoworld |doi=10.1016/j.palwor.2025.200909 |doi-access=free }}</ref>
* Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the ] (]) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.<ref>{{Cite journal|last1=Zong |first1=R. |last2=Liu |first2=Y. |last3=Liu |first3=Q. |last4=Ma |first4=J. |last5=Liu |first5=S. |title=A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction |year=2025 |journal=Geology |doi=10.1130/G53042.1 |url=https://figshare.com/articles/journal_contribution/28074485 }}</ref>
* A study on the assemblage of fossil teeth from the Middle Triassic (]) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).<ref>{{Cite journal |last1=Riccetto |first1=M. |last2=Mujal |first2=E. |last3=Bolet |first3=A. |last4=De Jaime-Soguero |first4=C. |last5=De Esteban-Trivigno |first5=S. |last6=Fortuny |first6=J. |title=Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe) |year=2025 |journal=Rivista Italiana di Paleontologia e Stratigrafia |volume=131 |issue=1 |pages=39–62 |doi=10.54103/2039-4942/22340 |url=https://riviste.unimi.it/index.php/RIPS/article/view/22340 |doi-access=free }}</ref>


==Other research== ==Other research==
* Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.<ref>{{Cite journal|last1=Cowen |first1=M. B. |last2=de Rafélis |first2=M. |last3=Ségalen |first3=L. |last4=Kear |first4=B. P. |last5=Dumont |first5=M. |last6=Žigaitė |first6=Ž. |title=Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains |year=2025 |journal=PeerJ |volume=13 |at=e18763 |doi=10.7717/peerj.18763 |doi-access=free }}</ref> * Evidence of a link between marine ] and stability of the ] throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).<ref>{{Cite journal|last1=Liu |first1=J. |last2=Hardisty |first2=D. S. |last3=Kasting |first3=J. F. |last4=Fakhraee |first4=M. |last5=Planavsky |first5=N. J. |year=2025 |title=Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=2 |at=e2412898121 |doi=10.1073/pnas.2412898121 |pmid=39761407 }}</ref>
* Evidence of slow accumulation of Australian sediments preserving ] mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower ] in Archean than in present times.<ref>{{Cite journal|last1=Lotem |first1=N. |last2=Rasmussen |first2=B. |last3=Zi |first3=J.-W. |last4=Zeichner |first4=S. S. |last5=Present |first5=T. M. |last6=Bar-On |first6=Y. M. |last7=Fischer |first7=W. W. |year=2025 |title=Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=2 |at=e2417673121 |pmid=39761395 |doi=10.1073/pnas.2417673121 }}</ref>
* Cowen et al. (2025) study the geochemistry of dental tissue of ] ] fossils from ] (]) and ] ] and ] fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.<ref>{{Cite journal|last1=Cowen |first1=M. B. |last2=de Rafélis |first2=M. |last3=Ségalen |first3=L. |last4=Kear |first4=B. P. |last5=Dumont |first5=M. |last6=Žigaitė |first6=Ž. |title=Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains |year=2025 |journal=PeerJ |volume=13 |at=e18763 |doi=10.7717/peerj.18763 |pmid=39763693 |pmc=11700492 |doi-access=free }}</ref>


===Paleoclimate=== ===Paleoclimate===
* Evidence of low atmospheric CO<sub>2</sub> levels throughout the main phase of the ], and of rapid increase in atmospheric CO<sub>2</sub> between 296 and 291 million years ago, is presented by Jurikova et al. (2025).<ref>{{cite journal|last1=Jurikova |first1=H. |last2=Garbelli |first2=C. |last3=Whiteford |first3=R. |last4=Reeves |first4=T. |last5=Laker |first5=G. M. |last6=Liebetrau |first6=V. |last7=Gutjahr |first7=M. |last8=Eisenhauer |first8=A. |last9=Savickaite |first9=K. |last10=Leng |first10=M. J. |last11=Iurino |first11=D. A. |last12=Viaretti |first12=M. |last13=Tomašových |first13=A. |last14=Zhang |first14=Y. |last15=Wang |first15=W. |last16=Shi |first16=G. R. |last17=Shen |first17=S. |last18=Rae |first18=J. W. B. |last19=Angiolini |first19=L. |year=2025 |title=Rapid rise in atmospheric CO<sub>2</sub> marked the end of the Late Palaeozoic Ice Age |journal=Nature Geoscience |pages=1–7 |doi=10.1038/s41561-024-01610-2 |doi-access=free }}</ref>
* Evidence indicating that abrupt climate changes during the ] increased pyrogenic ] emissions and global wildfire extent is presented by Riddell-Young et al. (2025).<ref>{{Cite journal|last1=Riddell-Young |first1=B. |last2=Lee |first2=J. E. |last3=Brook |first3=E. J. |last4=Schmitt |first4=J. |last5=Fischer |first5=H. |last6=Bauska |first6=T. K. |last7=Menking |first7=J. A. |last8=Iseli |first8=R. |last9=Clark |first9=J. R. |year=2025 |title=Abrupt changes in biomass burning during the last glacial period |journal=Nature |volume=637 |issue=8044 |pages=91–96 |doi=10.1038/s41586-024-08363-3 |pmid=39743610 }}</ref> * Evidence indicating that abrupt climate changes during the ] increased pyrogenic ] emissions and global wildfire extent is presented by Riddell-Young et al. (2025).<ref>{{Cite journal|last1=Riddell-Young |first1=B. |last2=Lee |first2=J. E. |last3=Brook |first3=E. J. |last4=Schmitt |first4=J. |last5=Fischer |first5=H. |last6=Bauska |first6=T. K. |last7=Menking |first7=J. A. |last8=Iseli |first8=R. |last9=Clark |first9=J. R. |year=2025 |title=Abrupt changes in biomass burning during the last glacial period |journal=Nature |volume=637 |issue=8044 |pages=91–96 |doi=10.1038/s41586-024-08363-3 |pmid=39743610 }}</ref>



Latest revision as of 23:23, 11 January 2025

Overview of the events of 2025 in paleontology
List of years in paleontology (table)
In paleobotany
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In reptile paleontology
2022
2023
2024
2025
2026
2027
2028
In archosaur paleontology
2022
2023
2024
2025
2026
2027
2028
In paleomammalogy
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2025.

2025 in science
20242026
Fields
Technology
Social sciences
Paleontology
Extraterrestrial environment
Terrestrial environment
Other/related

Flora

Plants

Main article: 2025 in paleobotany

Cnidarians

Name Novelty Status Authors Age Type locality Country Notes Images

Sutherlandia gzheliensis

Sp. nov

Valid

Krutykh, Mirantsev & Rozhnov

Carboniferous (Gzhelian)

Moscow Syneclise

 Russia

A favositid coral. Published online in 2025, but the issue date is listed as December 2024.

Arthropods

Main articles: 2025 in arthropod paleontology and 2025 in paleoentomology

Brachiopods

Name Novelty Status Authors Age Type locality Country Notes Images

Nalivkinathyris

Gen. et sp. nov

Valid

Baranov, Kebrie-ee Zade & Blodgett

Devonian (Famennian)

Khoshyeilagh Formation

 Iran

A member of the family Athyrididae. The type species is N. damganensis. Published online in 2025, but the issue date is listed as December 2024.

Molluscs

Main article: 2025 in paleomalacology

Echinoderms

Name Novelty Status Authors Age Type locality Country Notes Images

Kukrusecrinus

Gen. et sp. nov

Valid

Rozhnov

Ordovician (Darriwilian and Sandbian)

 Estonia

A crinoid belonging to group Camerata and to the family Colpodecrinidae. The type species is K. stellatus. Published online in 2025, but the issue date is listed as December 2024.

Conodonts

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthodistacodus

Gen. et comb. nov

Valid

Tolmacheva, Dronov & Lykov

Ordovician

 Russia

The type species is "Scolopodus" consimilis Moskalenko, (1973); genus also includes A. compositus (Moskalenko, 1973). Published online in 2025, but the issue date is listed as December 2024.

Conodont research

Fish

Main article: 2025 in paleoichthyology

Amphibians

Amphibian research

Reptiles

Main articles: 2025 in reptile paleontology and 2025 in archosaur paleontology

Synapsids

Mammals

Main article: 2025 in paleomammalogy

Other animals

Other animal research

  • Evidence from the study of Cambrian scalidophoran fossils, interpreted as indicating that the ventral nerve cord was ancestrally unpaired in scalidophorans, priapulids and possibly ecdysozoans in general, is presented by Wang et al. (2025).
  • A study on fossil material of the tommotiid Lapworthella fasciculata from the Cambrian strata in Australia is published by Bicknell et al. (2025), who report evidence of increase of thickness of sclerites of L. fasciculata and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.

Foraminifera

Name Novelty Status Authors Age Type locality Location Notes Images

Flabellogaudryina

Gen. et sp. nov

Valid

Kaminski & Korin

Eocene

Rashrashiyah Formation

 Saudi Arabia

A member of Pseudogaudryininae. The type species is F. sirhanensis.

Other organisms

Research on other organisms

History of life in general

  • Maletz et al. (2025) revise Paleozoic fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.
  • Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the Silurian (Rhuddanian) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.
  • A study on the assemblage of fossil teeth from the Middle Triassic (Anisian) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).

Other research

  • Evidence of a link between marine iodine cycle and stability of the ozone layer throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).
  • Evidence of slow accumulation of Australian sediments preserving Archean mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower primary productivity in Archean than in present times.
  • Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.

Paleoclimate

  • Evidence of low atmospheric CO2 levels throughout the main phase of the late Paleozoic icehouse, and of rapid increase in atmospheric CO2 between 296 and 291 million years ago, is presented by Jurikova et al. (2025).
  • Evidence indicating that abrupt climate changes during the Last Glacial Period increased pyrogenic methane emissions and global wildfire extent is presented by Riddell-Young et al. (2025).

References

  1. Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. Krutykh, A. A.; Mirantsev, G. V.; Rozhnov, S. V. (2025). "Sutherlandia gzheliensis sp. nov.—a New Species of Favositid Coral from the Gzhelian Stage of the Moscow Syneclise". Paleontological Journal. 58 (11): 1208–1215. doi:10.1134/S0031030124601075.
  3. Baranov, V. V.; Kebrie-ee Zade, M. R.; Blodgett, R. B. (2025). "New Late Devonian (Upper Famennian) Athyridids from the Khoshyeilagh Formation of Eastern Alborz Mountains, North-East Iran". Paleontological Journal. 58 (11): 1232–1241. doi:10.1134/S0031030124601105.
  4. Rozhnov, S. V. (2025). "Kukrusecrinus stellatus gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position". Paleontological Journal. 58 (11): 1266–1280. doi:10.1134/S0031030124601129.
  5. Tolmacheva, T. Yu.; Dronov, A. V.; Lykov, N. A. (2025). "Multielement Conodonts from the Upper Ordovician of the Siberian Platform". Paleontological Journal. 58 (11): 1242–1265. doi:10.1134/S0031030124601117.
  6. Wang, W.; Hu, K.; Wang, X. (2025). "Temporal and spatial evolution of Mississippian conodont: A case study". Palaeogeography, Palaeoclimatology, Palaeoecology. 112701. doi:10.1016/j.palaeo.2024.112701.
  7. Jenkins, X. A.; Sues, H.-D.; Webb, S.; Schepis, Z.; Peecook, B. R.; Mann, A. (2025). "The recumbirostran Hapsidopareion lepton from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem". Papers in Palaeontology. 11 (1). e1610. doi:10.1002/spp2.1610.
  8. Wang, D.; Vannier, J.; Martín-Durán, J. M.; Herranz, M.; Yu, C. (2025). "Preservation and early evolution of scalidophoran ventral nerve cord". Science Advances. 11 (2). eadr0896. doi:10.1126/sciadv.adr0896. PMC 11721716. PMID 39792685. {{cite journal}}: Check |pmc= value (help)
  9. Bicknell, R. D. C.; Campione, N. E.; Brock, G. A.; Paterson, J. R. (2025). "Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals". Current Biology. doi:10.1016/j.cub.2024.12.007. PMID 39755119.
  10. Kaminski, M. A.; Korin, A. (2025). "Flabellogaudryina n.gen, a new agglutinated foraminiferal genus from the Eocene of Saudi Arabia". Micropaleontology. 71 (1): 93–100. doi:10.47894/mpal.71.1.04.
  11. Saint Martin, J.-P.; Charbonnier, S.; Saint Martin, S.; Cazes, L.; André, J.-P. (2025). "New records of Palaeopaschichnus Palij, 1976 from the Ediacaran of Romania". Geodiversitas. 47 (1): 1–16. doi:10.5252/geodiversitas2025v47a1.
  12. Maletz, J.; Zhu, X.-J.; Zhang, Y.-D.; Gutiérrez-Marco, J. C. (2025). "The identification of 'feather-like' fossils in the Palaeozoic: Algae, hydroids, or graptolites?". Palaeoworld. doi:10.1016/j.palwor.2025.200909.
  13. Zong, R.; Liu, Y.; Liu, Q.; Ma, J.; Liu, S. (2025). "A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction". Geology. doi:10.1130/G53042.1.
  14. Riccetto, M.; Mujal, E.; Bolet, A.; De Jaime-Soguero, C.; De Esteban-Trivigno, S.; Fortuny, J. (2025). "Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 39–62. doi:10.54103/2039-4942/22340.
  15. Liu, J.; Hardisty, D. S.; Kasting, J. F.; Fakhraee, M.; Planavsky, N. J. (2025). "Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2412898121. doi:10.1073/pnas.2412898121. PMID 39761407.
  16. Lotem, N.; Rasmussen, B.; Zi, J.-W.; Zeichner, S. S.; Present, T. M.; Bar-On, Y. M.; Fischer, W. W. (2025). "Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2417673121. doi:10.1073/pnas.2417673121. PMID 39761395.
  17. Cowen, M. B.; de Rafélis, M.; Ségalen, L.; Kear, B. P.; Dumont, M.; Žigaitė, Ž. (2025). "Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains". PeerJ. 13. e18763. doi:10.7717/peerj.18763. PMC 11700492. PMID 39763693. {{cite journal}}: Check |pmc= value (help)
  18. Jurikova, H.; Garbelli, C.; Whiteford, R.; Reeves, T.; Laker, G. M.; Liebetrau, V.; Gutjahr, M.; Eisenhauer, A.; Savickaite, K.; Leng, M. J.; Iurino, D. A.; Viaretti, M.; Tomašových, A.; Zhang, Y.; Wang, W.; Shi, G. R.; Shen, S.; Rae, J. W. B.; Angiolini, L. (2025). "Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age". Nature Geoscience: 1–7. doi:10.1038/s41561-024-01610-2.
  19. Riddell-Young, B.; Lee, J. E.; Brook, E. J.; Schmitt, J.; Fischer, H.; Bauska, T. K.; Menking, J. A.; Iseli, R.; Clark, J. R. (2025). "Abrupt changes in biomass burning during the last glacial period". Nature. 637 (8044): 91–96. doi:10.1038/s41586-024-08363-3. PMID 39743610.
Category: