Misplaced Pages

G-force: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 06:39, 21 January 2009 editGreg L (talk | contribs)Extended confirmed users, Pending changes reviewers31,897 edits You didn’t read what your reference says. It says that accelerometers can’t distinguish between inertial and gravitational acceleration. see talk here← Previous edit Revision as of 06:44, 21 January 2009 edit undoWolfkeeper (talk | contribs)31,832 edits rv: sorry, no, that's not what it says; reverted to reliable sourceNext edit →
Line 1: Line 1:
{{Disputed|date=January 2009}}
{{lowercase|g-force}} {{lowercase|g-force}}
{{This|a measure of acceleration|G force (disambiguation)}} {{This|a measure of acceleration|G force (disambiguation)}}
] ]
The measurement of '''g-force''' (or '''g-load''') is the measure of an object's ]—]al and ]. The unit of measure is informally but commonly known as the “gee” (symbol: g), {{pronEng|ˈdʒiː}}. The measurement of '''g-force''' (or '''g-load''') can be performed using an ] which gives a measurement of an object's non-gravitational acceleration.<ref name=Eshbach>Eshbach's Handbook of Engineering Fundamentals By Ovid W. Eshbach, Byron pg 9</ref> The unit of measure is informally but commonly known as the “gee” (symbol: g), {{pronEng|ˈdʒiː}}.


The gee is a non-] unit that was first used in aeronautical and space engineering and is equal to one ] (symbol: ''g''<sub>n</sub>), which is defined as precisely {{val|9.80665}}&nbsp;] (m/s<sup>2</sup>), or 980.665&nbsp;] (≈32.174&nbsp;ft/s<sup>2</sup>).<ref name="ESA">ESA: GOCE, ''''</ref><ref name="3rd CGPM">BIPM: </ref> The unit symbol for the gee, g, is usually lowercase and roman (upright)<ref name="ESA"/><ref>NASA: '''', Astronautix: '''', Honeywell: '''', Sensr LLC: '''', Farnell: '''', NASA: '''', Jet Propulsion Laboratory: ''''</ref> (the same symbol as for the ]), but may also be uppercase roman G.<ref>Lyndon B. Johnson Space Center: '''', Honywell: ''''</ref> The gee is a non-] unit that was first used in aeronautical and space engineering and is equal to one ] (symbol: ''g''<sub>n</sub>), which is defined as precisely {{val|9.80665}}&nbsp;] (m/s<sup>2</sup>), or 980.665&nbsp;] (≈32.174&nbsp;ft/s<sup>2</sup>).<ref name="ESA">ESA: GOCE, ''''</ref><ref name="3rd CGPM">BIPM: </ref> The unit symbol for the gee, g, is usually lowercase and roman (upright)<ref name="ESA"/><ref>NASA: '''', Astronautix: '''', Honeywell: '''', Sensr LLC: '''', Farnell: '''', NASA: '''', Jet Propulsion Laboratory: ''''</ref> (the same symbol as for the ]), but may also be uppercase roman G.<ref>Lyndon B. Johnson Space Center: '''', Honywell: ''''</ref>
Line 17: Line 16:
== Gravitational and inertial acceleration == == Gravitational and inertial acceleration ==
] ]
An ] measures acceleration in one or more axis. It responds to both ]al and ] acceleration. If you orient a stationary, single-axis accelerometer so its measuring axis is horizontal, its output will show zero gee. Yet, if you rotate the accelerometer 90° so its axis points upwards, it will read +1&nbsp;g ''upwards'' even though still stationary. If you mount the accelerometer in an automobile with its axis aligned forward with the vehicle’s direction of travel, and drive down the road at a constant speed, it will read 0&nbsp;g. Yet, if you hit the brakes, it will read about −0.9&nbsp;g. Accelerometers respond equally to gravity and inertial acceleration. An ] measures acceleration in one or more axis. It responds to only non gravitational acceleration.<ref name=Eschbach/> If you orient a stationary, single-axis accelerometer so its measuring axis is horizontal, its output will show zero gee. Yet, if you rotate the accelerometer 90° so its axis points upwards, it will read +1&nbsp;g ''upwards'' even though still stationary. If you mount the accelerometer in an automobile with its axis aligned forward with the vehicle’s direction of travel, and drive down the road at a constant speed, it will read 0&nbsp;g. Yet, if you hit the brakes, it will read about −0.9&nbsp;g. Accelerometers respond equally to gravity and inertial acceleration.


The connection between inertial and gravitational acceleration is profound. ] showed in his 1916 paper on ] that gravitational and inertial accelerations are identical and indistinguishable. According to general relativity, the ] of gravity is a consequence of the curvature of ]. Consequently, a stationary object on earth’s<!-- EDITORS NOTE: The names of celestial bodies are normally capitalized. However, our solar system’s planets are not capitalized when in isolation. It is “The four, innermost planets are Mercury, Venus, Earth, and Mars.” and “The earth is not perfectly spherical.” See --> surface is perpetually being accelerated by earth’s surface ''upwards'' through spacetime at 1&nbsp;g, which causes all stationary objects on the earth’s surface to generate a force—]—downwards that is proportional to their ]. A one‑] mass on the earth’s surface has a weight of between 9.76 ]s (N) to 9.83&nbsp;N (see also '']''&thinsp;). In 1901, the ] (known also by its French-language intials “BIPM”) set the value of ], ''g''<sub>n</sub>, at {{val|9.80665|u=m/s<sup>2</sup>.}} This established the standard force (weight) of a one-kilogram mass as being {{val|9.80665|u=N.}} The ] ], the unit of mass still used with ], has a standard weight of one ]. The connection between inertial and gravitational acceleration is profound. ] showed in his 1916 paper on ] that gravitational and inertial accelerations are identical and indistinguishable. According to general relativity, the ] of gravity is a consequence of the curvature of ]. Consequently, a stationary object on earth’s<!-- EDITORS NOTE: The names of celestial bodies are normally capitalized. However, our solar system’s planets are not capitalized when in isolation. It is “The four, innermost planets are Mercury, Venus, Earth, and Mars.” and “The earth is not perfectly spherical.” See --> surface is perpetually being accelerated by earth’s surface ''upwards'' through spacetime at 1&nbsp;g, which causes all stationary objects on the earth’s surface to generate a force—]—downwards that is proportional to their ]. A one‑] mass on the earth’s surface has a weight of between 9.76 ]s (N) to 9.83&nbsp;N (see also '']''&thinsp;). In 1901, the ] (known also by its French-language intials “BIPM”) set the value of ], ''g''<sub>n</sub>, at {{val|9.80665|u=m/s<sup>2</sup>.}} This established the standard force (weight) of a one-kilogram mass as being {{val|9.80665|u=N.}} The ] ], the unit of mass still used with ], has a standard weight of one ].

Revision as of 06:44, 21 January 2009

This article is about a measure of acceleration. For G force (disambiguation), see G-force (disambiguation).
A top-fuel dragster can accelerate from zero to 100 mph (161 km/hr) in 0.86 second. This is an acceleration of 5.3 g.

The measurement of g-force (or g-load) can be performed using an accelerometer which gives a measurement of an object's non-gravitational acceleration. The unit of measure is informally but commonly known as the “gee” (symbol: g), Template:PronEng.

The gee is a non-SI unit that was first used in aeronautical and space engineering and is equal to one standard gravity (symbol: gn), which is defined as precisely 9.80665 meters per second per second (m/s), or 980.665 gal (≈32.174 ft/s). The unit symbol for the gee, g, is usually lowercase and roman (upright) (the same symbol as for the gram), but may also be uppercase roman G.

The gee and its symbol, g (or G) should not be confused with the universal gravitational constant, (symbol G), which is a physical constant that fundamentally relates mass and gravitational attraction.

Nature of the measure

An automobile and its driver undergoing lateral acceleration

Acceleration is a phenomenon familiar to anyone who has ridden in an automobile, as it is the rate at which speed or velocity changes. Whenever a vehicle changes direction or speed, one feels lateral (side to side) and longitudinal (forward and backwards) forces. The value of one gee, 9.80665 meter per second per second, might be expressed in terms of m/s or in scientific literature as m s.

Acceleration and the gee can be expressed in more familiar terms: an acceleration of 1 g is a rate of change in velocity of approximately 35 km/hr for each second that elapses (22 mph per second). A high-performance automobile can brake (decelerate) at around 1 g. Accordingly, a high-performance automobile that is traveling at a speed of 35 km/hr can brake at 1 g to a stop in one second. An automobile traveling at three times this speed, 66 mph, can brake to a stop in about three seconds. The expression “1 g = 9.80665 m s ” means that for every second that elapses, velocity changes 9.80665 meters per second (≡35.30394 km/hr). This rate of change in velocity can also be denoted as 9.80665 (meter per second) per second, or 9.80665 m/s.

Gravitational and inertial acceleration

Six Flags’ “Superman: The Escape” amusement ride provides 6.5 seconds of ballistic weightlessness.

An accelerometer measures acceleration in one or more axis. It responds to only non gravitational acceleration. If you orient a stationary, single-axis accelerometer so its measuring axis is horizontal, its output will show zero gee. Yet, if you rotate the accelerometer 90° so its axis points upwards, it will read +1 g upwards even though still stationary. If you mount the accelerometer in an automobile with its axis aligned forward with the vehicle’s direction of travel, and drive down the road at a constant speed, it will read 0 g. Yet, if you hit the brakes, it will read about −0.9 g. Accelerometers respond equally to gravity and inertial acceleration.

The connection between inertial and gravitational acceleration is profound. Albert Einstein showed in his 1916 paper on general theory of relativity that gravitational and inertial accelerations are identical and indistinguishable. According to general relativity, the force of gravity is a consequence of the curvature of spacetime. Consequently, a stationary object on earth’s surface is perpetually being accelerated by earth’s surface upwards through spacetime at 1 g, which causes all stationary objects on the earth’s surface to generate a force—weight—downwards that is proportional to their mass. A one‑kilogram mass on the earth’s surface has a weight of between 9.76 newtons (N) to 9.83 N (see also Mass versus weight ). In 1901, the International Bureau of Weights and Measures (known also by its French-language intials “BIPM”) set the value of standard gravity, gn, at 9.80665 m/s. This established the standard force (weight) of a one-kilogram mass as being 9.80665 N. The avoirdupois pound, the unit of mass still used with U.S. customary units, has a standard weight of one pound-force.

An acrobatic airplane in a competition air race is pulling up in a +g maneuver. The pilot is experiencing several gees of inertial acceleration as well as the force of gravity. The cumulative acceleration forces acting upon his body make him momentarily weigh many times more than normal.

The effect of gravity means that all stationary masses generate a downward force of about 9.8 newtons per kilogram and all stationary accelerometers aligned with earth’s barycenter indicate that they are being accelerated upwards at about 9.8 m/s. Unless one is an astronaut, there are only two ways to make a three-axis accelerometer output zero‑g on all three axes: drop it, or put it into a ballistic trajectory. Some notable amusement park rides can provide several seconds at near-zero g. Riding NASA’s “Vomit Comet” provides near-zero g for about 25 seconds at a time.

A single-axis accelerometer mounted in an airplane with its measurement axis oriented vertically reads +1 g when the plane is parked. When flying at a stable altitude (or at a constant rate of climb or descent), the accelerometer will continue to indicate 1 g. Under such conditions, the downward force acting upon the pilot’s body is the normal value of about 9.8 newtons per kilogram (N/kg) (one pound-force per pound). If the pilot pulls back on the stick until the accelerometer indicates 2 g, his weight (the force acting downwards on him) will double to 19.6 N/kg. A spring-based weighing scale, for the duration of a 2 g pitch-up maneuver, would reveal that his weight has truly doubled; a pilot who normally weighs 160 pounds would momentarily weigh 320 pounds.

Human tolerance

Human tolerances depend on the magnitude of the g-force, the length of time it is applied, the direction it acts, the location of application, and the posture of the body.

The human body is flexible and deformable, particularly the softer tissues. A hard slap on the face may briefly impose hundreds of g locally but not produce any real damage; a constant 16 g for a minute, however, may be deadly. When vibration is experienced, relatively low peak g levels can be severely damaging if they are at the resonance frequency of organs and connective tissues.

To some degree, g-tolerance can be trainable, and there is also considerable variation in innate ability between individuals. In addition, some illnesses, particularly cardiovascular problems, reduce g-tolerance.

Vertical axis g-force

Aircraft, in particular, exert g-force along the axis aligned with the spine. This causes significant variation in blood pressure along the length of the subject's body, which limits the maximum g-forces that can be tolerated.

In aircraft, g-forces are often towards the feet, which forces blood away from the head; this causes problems with the eyes and brain in particular. As g-forces increase brownout/greyout can occur, where the vision loses hue. If g-force is increased further tunnel vision will appear, and then at still higher g, loss of vision, while consciousness is maintained. This is termed "blacking out". Beyond this point loss of consciousness will occur, sometimes known as "G-LOC" ("loc" stands for "loss of consciousness"). While tolerance varies, a typical person can handle about 5 g (49m/s²) before g-loc, but through the combination of special g-suits and efforts to strain muscles—both of which act to force blood back into the brain—modern pilots can typically handle 9 g (88 m/s²) sustained (for a period of time) or more (see High-G training).

Resistance to "negative" or upward g's, which drive blood to the head, is much lower. This limit is typically in the −2 to −3 g (−20 m/s² to −30 m/s²) range. The subject's vision turns red, referred to as a red out. This is probably because capillaries in the eyes swell or burst under the increased blood pressure.

Humans can survive up to about 20 to 35 g instantaneously (for a very short period of time). Any exposure to around 100 g or more, even if momentary, is likely to be lethal, although the record is 179.8 g.

Horizontal axis g-force

The human body is better at surviving g-forces that are perpendicular to the spine. In general when the acceleration is forwards, so that the g-force pushes the body backwards (colloquially known as "eyeballs in") a much higher tolerance is shown than when the acceleration is backwards, and the g-force is pushing the body forwards ("eyeballs out") since blood vessels in the retina appear more sensitive in the latter direction.

Early experiments showed that untrained humans were able to tolerate 17 g eyeballs-in (compared to 12 g eyeballs-out) for several minutes without loss of consciousness or apparent long-term harm.

Notable accelerations

File:StappSled.jpg
John Stapp was subjected to 15 g for 0.6 second and a peak of 22 g during a 19 March 1954 rocket sled test.
Value
(or range)
The gyro rotors in Gravity Probe B and the free-floating
proof masses in the TRIAD I navigation satellite
0 g
Moon surface at equator 0.1654 g
Earth surface, sea level – standard 1 g
Saturn V moon rocket just after launch 1.14 g
Space Shuttle, maximum during launch and reentry 3 g
High-g roller coasters 3.5–5 g
Apollo 16 on reentry 7.19 g
Typical max. turn in an aerobatic plane or fighter jet turn 9 g
Maximum for human on a rocket sled 46.2 g
Sprint missile 100 g
Brief human exposure survived in crash 180 g
Shock capability of mechanical
wrist watches
5,000–7,500 g
Rating of electronics built into military artillery shells 15,500 g
9 × 19 Parabellum handgun bullet
(average along the length of the barrel)
31,000 g
9 × 19 Parabellum handgun bullet, peak 190,000 g

See also

References

  1. Eshbach's Handbook of Engineering Fundamentals By Ovid W. Eshbach, Byron pg 9
  2. ^ ESA: GOCE, Basic Measurement Units
  3. BIPM: Declaration on the unit of mass and on the definition of weight; conventional value of gn
  4. NASA: Multiple G, Astronautix: Stapp, Honeywell: Accelerometers, Sensr LLC: GP1 Programmable Accelerometer, Farnell: accelometers, NASA: CONSTANTS AND EQUATIONS FOR CALCULATIONS, Jet Propulsion Laboratory: A Discussion of Various Measures of Altitude
  5. Lyndon B. Johnson Space Center: ENVIRONMENTAL FACTORS: BIOMEDICAL RESULTS OF APOLLO, Section II, Chapter 5, Honywell: Model JTF, General Purpose Accelerometer
  6. Cite error: The named reference Eschbach was invoked but never defined (see the help page).
  7. Beyond the Black Box: the Forensics of Airplane Crashes; George Bibel, John Hopkins University Press, 2008 (ISBN 0-8018-8631-7), p350
  8. ^ Formula One racing car driver David Purley survived an estimated 179.8 g in 1977 when he decelerated from 173 km/h (108 mph) to rest over a distance of 66 cm (26 inches) after his throttle got stuck wide open and he hit a wall. Anton Sukup (1977). "David PURLEY Silverstone crash". Retrieved July 31. {{cite web}}: Check date values in: |accessdate= (help); Unknown parameter |accessyear= ignored (|access-date= suggested) (help)
  9. NASA Physiological Acceleration Systems
  10. NASA Technical note D-337, Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance, by Brent Y. Creer, Captain Harald A. Smedal, USN (MC), and Rodney C. Vtlfngrove
  11. The Ejection Site: The Story of John Paul Stapp
  12. Stanford University: Gravity Probe B, Payload & Spacecraft, and NASA: Investigation of Drag-Free Control Technology for Earth Science Constellation Missions. The TRIAD 1 satellite was a later, more advanced navigation satellite that was part of the U.S. Navy’s Transit, or NAVSAT system.
  13. Beyond the Black Box: the Forensics of Airplane Crashes; George Bibel, John Hopkins University Press, 2008 (ISBN 0-8018-8631-7), p340
  14. NASA: Table 2: Apollo Manned Space Flight Reentry G Levels
  15. Omega FAQ, Ball Watch Technology
  16. "L-3 Communication's IEC Awarded Contract with Raytheon for Common Air Launched Navigation System".
  17. Assuming a 124 grain (8.04 gram) bullet, a muzzle velocity of 1,150 ft/s (350 m/s), and a 4‑inch (102 mm) barrel.
  18. Assuming a 124 grain (8.04 gram) bullet, a peak pressure of 35,000 psi (241 MPa) and 100 pounds (440 N) of friction.

External links

Categories: