Misplaced Pages

Talk:Power factor: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 22:03, 15 January 2014 editSineBot (talk | contribs)Bots2,555,947 editsm Signing comment by 50.58.26.98 - "Not consistent: new section"← Previous edit Revision as of 17:27, 16 January 2014 edit undo86.171.45.200 (talk) Not consistentNext edit →
Line 731: Line 731:


Not sure if this is by design, but note that on this page you say apparent power is simply S but in the wikipedia article for ], you define apparent power as the magnitude of S, i.e. |S|, while S is defined as the complex power. It would be nice if these two entries were more consistent -- i.e. |S| is apparent power (the magnitude of the complex power, |S| = sqrt(P^2 + Q^2)) and S is complex power for both this article as well as the article for apparent power. <span style="font-size: smaller;" class="autosigned">— Preceding ] comment added by ] (]) 22:02, 15 January 2014 (UTC)</span><!-- Template:Unsigned IP --> <!--Autosigned by SineBot--> Not sure if this is by design, but note that on this page you say apparent power is simply S but in the wikipedia article for ], you define apparent power as the magnitude of S, i.e. |S|, while S is defined as the complex power. It would be nice if these two entries were more consistent -- i.e. |S| is apparent power (the magnitude of the complex power, |S| = sqrt(P^2 + Q^2)) and S is complex power for both this article as well as the article for apparent power. <span style="font-size: smaller;" class="autosigned">— Preceding ] comment added by ] (]) 22:02, 15 January 2014 (UTC)</span><!-- Template:Unsigned IP --> <!--Autosigned by SineBot-->

:Apparent power can be quantified either way. It can be quantified as simply its magnitude (and often is), or it can be quantified in complex form. Which is chosen by engineers is based on what he proposes to do with it. In this article, the magnitude is sufficient for the discussion at hand and going into complex notation only serves to obfuscate the points beng made. The ] article, by necessity has to go into more detail and needs to reflect that apparent power is, in reality, a complex quantity. ] (]) 17:27, 16 January 2014 (UTC)

Revision as of 17:27, 16 January 2014

WikiProject iconEnergy Start‑class
WikiProject iconThis article is within the scope of WikiProject Energy, a collaborative effort to improve the coverage of Energy on Misplaced Pages. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.EnergyWikipedia:WikiProject EnergyTemplate:WikiProject Energyenergy
StartThis article has been rated as Start-class on Misplaced Pages's content assessment scale.
???This article has not yet received a rating on the project's importance scale.
Archiving icon
Archives
Archive 1Archive 2Archive 3
Archive 4

Confusing

The article is confusing. What do the various values of the power factor mean? Are they the same (just magnitude) for both sources and sinks? A diagram with at least -1, 0, and +1 would be helpful. How does leading and trailing play into this? Do only sinks have leading or trailing characteristics or do sources too? Does the utilization depend on matching them, or is +1 always desirable for sinks no matter what the value of the source?

If this isn't the right place for comments about the entry I apologise in advance. Please direct me to the proper place.

Power factor is confusing and is difficult to explain in simple terms. I don't fully understand it myself so the following should be treated with caution. When the PF is 1 it does not have a sign. If the PF is (say) 0.9, it can be "0.9 trailing" (-0.9) for a reactive load, or "0.9 leading" (+0.9) for a capacitative load. The question about sources is a good one but I don't know the answer. Biscuittin (talk) 09:35, 2 November 2009 (UTC)
Don't think so. Power factor meters in my experience say "lead" or "lag" and never "+" or "-" - this has been discussed quite a lot in connection with this page (see below under "Sign"). Where does the article get confusing to follow? --Wtshymanski (talk) 19:32, 2 November 2009 (UTC)
My mistake. I saw the + and - signs elsewhere on this page and assumed they referred to leading or trailing power factor. Biscuittin (talk) 19:55, 2 November 2009 (UTC)

energy returns to the source

I think that this sentence could do with a bit more explanation: "Since this stored energy returns to the source and is not available to do work at the load" - why is this exactly? --TimSmall 13:16, 1 September 2006 (UTC)

The energy does not go into the load; it is reflected back (down the power lines) to the source, and so is wasted. — Omegatron 13:53, 1 September 2006 (UTC)
Current that is not in step with the voltage does not transfer energy from the source to the load but continually circulates energy back and forth between the source and the load. This energy circulation is not 100% efficient. During each "trip" from source to load or load to source, some energy is lost as heat in the wires and other parts of the power generation, transmission and distribution equipment. Does that help? --C J Cowie 14:24, 1 September 2006 (UTC)
Sorry, but this is still not clear. Why would any current not be in step with the voltage? Utilities control the voltage, don't they? I understand some energy is lost as heat, etc., but if we are talking about energy that circulates back and forth, then clearly what is being talked about is something different from that. Or is it? Is reactive power merely the additional amount needed to allow for power lost to heat on the wires etc.? And, why would a device send ANY energy back? I doubt most devices are even designed to do that. And why would wave forms have anything to do with this? 216.239.88.89 (talk) 04:36, 8 October 2010 (UTC)
Could you look at the part that goes

In a purely resistive AC circuit, voltage and current waveforms are in step (or in phase), changing polarity at the same instant in each cycle. All the power entering the loads is consumed. Where reactive loads are present, such as with capacitors or inductors, energy storage in the loads result in a time difference between the current and voltage waveforms. During each cycle of the AC voltage, extra energy, in addition to any energy consumed in the load, is temporarily stored in the load in electric or magnetic fields, and then returned to the power grid a fraction of a second later in the cycle.

and tell us what is unclear in it? --Wtshymanski (talk) 15:07, 8 October 2010 (UTC)

For what it's worth, I found the paragraph above to be exceptionally clear.
The problem User 216.239.88.89 is having is, in my opinion, not caused by the article being unclear but rather from some misconceptions he has picked up along the way. The question "Why would any current not be in step with the voltage? Utilities control the voltage, don't they?" shows this. If a utility outputs a sinewave at a fixed voltage, that means it has it has zero control over the current. Alas, this sort of misconception is not something that can be addressed in a Misplaced Pages article about power factor. He needs to go back and get a good understanding of Ohm's law, first in a DC circuit with a resistive load, then in an AC circuit with a resistive load, then in an AC circuit with a capacitive load. Ohm's law covers all of this quite nicely. Guy Macon 02:50, 9 October 2010 (UTC)

Perhaps ignorance rather than misconceptions. See, for example, I don't understand about a utility outputting a sine wave. I think they output a fairly controlled range of voltages and currents, matching output with load fairly closely. Anyway, I don't have all that education and I suppose it is unrealistic to expect the explanation to make sense when I don't have that. 216.239.78.204 (talk) 22:19, 10 October 2010 (UTC)

What I would hope for is the article having links that lead you to the science that the article is based upon. For an example, look at the article on string theory; it of course cannot explain string theory to someone who has no knowledge of physics or math, but in theory you could drill down through the many links and gain enough knowledge to understand it. I think that the same is true here; power factor links to real power, which in on the page explaining AC power, which links to Mains electricity, which links to Voltage, which links to Ohm's law, which will explain why it is that your belief that utilities "output a fairly controlled range of voltages and currents" is completely and utterly wrong. You will never understand power factor unless you abandon your basic misconception that it is possible to control both the voltage and the current into a varying load. That is simply not possible.
BTW, saying that you don't understand what utilities output would be ignorance. Saying that utilities control voltage and current is not ignorance; it is a misconception. It is the difference between not knowing something and knowing something that isn't true. No shame in either, of course; only a fool thinks that having technical knowledge of a particular topic or never being in error makes them somehow superior. Guy Macon 01:51, 11 October 2010 (UTC)
The energy doesn't necessarily get bounced back and forth, either. It can disappear into the source. — Omegatron 14:42, 1 September 2006 (UTC)
Most of the reactive power flows back and forth between the source and load such that "On one half-cycle, the source supplies energy to the energy-storage element, and on the next half-cycle the energy-storage element returns energy to the source....currents required to supply the stored energy produce losses in the generating and transmission system..." Scott, Ronald E. (1960). Linear Circuits. Reading, MA: Addison-Wesley. {{cite book}}: Cite has empty unknown parameter: |coauthors= (help) “Low power factor means more current and greater I 2 R {\displaystyle I^{2}R} losses in the generating and transmitting equipment.” Fitzgerald, A. E. (1983). Electric Machinery (4th ed. ed.). Mc-Graw-Hill, Inc. ISBN 0-07-021145-0. {{cite book}}: |edition= has extra text (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
Again, I would have to say that it must be ignorance on my part, rather than any misconception. I do believe that utilities try to control the voltage, current, and frequency of the electricity. They deliberately change the voltage at various points, to achieve efficiencies in transmission. They must keep the supply and load reasonably closely matched, so that generators aren't over or under loaded. I know they do try to keep frequency aligned in the grid. So I'm not at all clear why that's a misconception. As for 'apparent power' and 'reactive power', I think it is something you have all learned about so long ago, that it isn't at all obvious to you that the explanation isn't clear to anyone without all that education. Why would a device, say a radio or toaster, reflect any power back? I'm sure it wasn't designed to do that. It might be something inherent in any electrical device, but what? Or, for that matter, why would a device temporarily store the apparent power when no doubt it wasn't designed to do that. They draw a certain amount of real power to do the work they need to do. Where does the other power come in? Obviously there is something called apparent power and reactive power, but it seems it needs a lot of education to be able to understand it. I'm not sure why that is the case. I would have liked a clear explanation. But if it isn't possible, it isn't possible. What, I wonder causes the reactive power to be at various levels? 216.239.77.231 (talk) 04:36, 6 November 2010 (UTC)


216.239.77.231, This is a bit over simplified, but perhaps it will help you. Loads other than 100% resistive loads such as electric heaters or incandescent lights require reactance. A standard motor or capacitor need an injection of energy before they will perform the intended function. For a capacitor it needs to be charged up. For a motor the stator and rotor coils will need to absorb an electrical field. A motor will not turn until all the coils internally are charged up. When you shut off a motor all the store energy in the coils discharge back into the system. This energy is not useful power, but rather a temporary electric field. —Preceding unsigned comment added by 158.106.48.10 (talk) 13:54, 21 November 2010 (UTC)

Merge from Distortion power factor

Distortion power factor should be merged here, it's small and it needs to be given a contenxt which this article already supplies. --Wtshymanski (talk) 15:45, 16 March 2010 (UTC)

Agree --Chetvorno 22:20, 17 March 2010 (UTC)
Agree, and note that the merge has been done. Guy Macon 01:40, 22 November 2010 (UTC)


Power Factor for the Modern World

Wtshymanski has removed the section I added with no adequate response to my explanation. I am new to contributing to Misplaced Pages pages and am trying to learn the ropes quickly. I appreciate the spirit and goals of Misplaced Pages and do not want to degrade their mission. I am a physicist who has probably spent more hours over the last 30 years designing and experimenting with active power factor compensation than anyone else. I have founded 3 companies that design, manufacture and market this equipment and am currently the CEO of one of these companies so conflict of interest is definitely a possibility here. I am a recognized expert and innovator on this subject and was recently asked to give a presentation at EPRI's annual conference which took place in Quebec last June. My work is mostly a labor of love as I am genuinely trying to contribute to solving the world's electrical power problems so that we evolve into something that is more sustainable. To do this, my companies have to become very successful financially and that has certainly been the case with Heart Interface, Trace and Xantrex (now Schneider) which all just reeks of conflict of interest. However, the world has changed and power factor, which used to be a more esoteric engineering subject, has become something that is effecting most people's lives in ways they don't understand. Understanding this, by people with no engineering background, is a legitimate function of Misplaced Pages. Although the grid is a complex mix of loads, each load, by itself, consumes some small amount of power and creates some small amount of transmission loss in the entire system, including the windings of the massive grid generators and transformers. The grid has to pay for all of this energy and the losses so you can see that low power factor loads cost the grid more per kWh to provide than do high power factor loads. With the massive migration to CFL lighting and the great abundance of computer power supplies the grid is having to absorb increased costs which they ultimately pass on to the customer. There are some articles about this that appear in EDN and EETIMES and other engineering publications but the general public is generally not aware that this is even an issue yet they are the ones who are buying and installing these low power factor devices. Since they are ignorant of the issue they do not create any pressure to address it. So, if they somehow hear that it might be an issue and don't even know what "power factor" means they might go to Misplaced Pages. If all they get is a very technical, engineering and very correct and precise article, they will most likely not even read it. So, what might seem redundant to someone educated in electronics, might be the only thing that a non-engineer even reads.

What are the guidelines to adding external links and references at the end of the article? Please respond. Heart141 (talk) 14:05, 27 July 2010 (UTC)

Wtshymanski's comment on his talk page is revealing: "Blanked the page again; tired of getting S*T upon by strangers." He makes quite a few deletions that make people angry, and has limited interest in engaging with them about the deletions. The thing is, most if not all of his deletions make Misplaced Pages better, and a lot of people really are unreasonable when they find their material deleted, so it is hard to find fault.
I reviewed the material that you added and he removed, and I would have removed it had I noticed it first. For example, "This power factor issue is so critical that the Transverter remote panel continuously displays power factor and the included software uses the internal data acquisition to display real time pictures of the wave shapes" sounds like an ad for the Transverter PS, not like an encyclopedia article about power factor. If you work for the company that makes the Transverter PS, you should avoid adding info about the Transverter PS to Misplaced Pages pages. Instead you should go to the talk page and say "I am considering adding the following..." and ask for discussion. Another clue is that your essay goes on for quite a while without any citations, and is written in a folksy manner. Example: "t doesn’t have to be this way..." That's an editorial opinion, not an encyclopedic fact supported by a reference to a reliable source.
Experts on a particular subject matter can be a huge help in improving Misplaced Pages articles, and I don't want to discourage you in any way, but you need to learn how to do things the Misplaced Pages way. Here is a great place to start:
http://en.wikipedia.org/Wikipedia:List_of_guidelines
If you are interested in discussing any of this with me, I welcome cold telephone calls from other folks who work in the area of product development. My phone number is on my webpage (www.guymacon.com). Guy Macon 10:25, 4 August 2010 (UTC)
I've made many edits, 95+% of which were without controversy. I'm interested in editing articles, not in carrying on debates. We don't debate on Misplaced Pages, we find references. I have finite time to spend, as do we all. Everyone who contributes to Misplaced Pages gets the notice that their contributions will be ruthlessly edited by strangers. "If you can't stand the heat...", etc. - I certainly have had edits I've made ruthlessly altered by others; and often for the better. --Wtshymanski (talk) 13:43, 4 August 2010 (UTC)
I agree with all of the above, which is why I wrote " most if not all of deletions make Misplaced Pages better, and a lot of people really are unreasonable when they find their material deleted, so it is hard to find fault " What you do and how you do it is very valuable, and I wouldn't change you even if I could.
I, on the other hand, am willing to take the time to try to educate well-meaning newbies who don't understand why Misplaced Pages is the way it is in the hope of turning them into valuable contributors. To do this I had to address Heart141's stated objection that "Wtshymanski has removed the section I added with no adequate response to my explanation." Heart141 needs to learn that you have no responsibility to respond to him, but rather it is his responsibility to learn and follow the Misplaced Pages guideline that he violated, leading to you removing his edit. I am sure he means well, and could become a valuable contributor if he is willing to learn what is and is not acceptable here. Guy Macon 22:12, 14 August 2010 (UTC)

Cosinus phi mentioned in image caption

Cosinus phi mentioned in image caption, but nowhere in the article (unless I missed it). Can someone clean this up? Thanks. --Xerces8 (talk) 09:15, 8 September 2010 (UTC)

It's "cosine" in English, and it's described under the heading "Definition and calculation". --Wtshymanski (talk) 13:43, 8 September 2010 (UTC)

Archived threads

Anything that hasn't had any commentary for more than a few months, I've moved to an archive page. Re-reading old comments sometimes is useful as a check on the "progress" of the article's contents. --Wtshymanski (talk) 15:45, 8 October 2010 (UTC)

The section on Negative Power Factor is probably ripe for archiving. No consensus was reached, and nobody new has chimed in with any input, so the article remains as it is. (That's fine by me, BTW; it's how Misplaced Pages works.) Anyone disagree? Guy Macon 01:59, 11 October 2010 (UTC)

Just in case any more contributors had something to add, I left it here. I was more concerned about stuff that in some cases was years old. --Wtshymanski (talk) 16:20, 11 October 2010 (UTC)

Splatco

So what does Splatco tell us that's not already in the article and that can't be written into the article? External links are not a substitute for encyclopedia articles - everybody knows how to use Google already. --Wtshymanski (talk) 14:50, 21 February 2011 (UTC)

First, the edit comments are upside down on the burden of proof. The person who wants to add material to an article needs to justify it -- not the person who challenges material.
Second, the SPLat EL does not add to a technical understanding of the article. Most topics are already addressed, so the link is largely redundant. The "It ain't necessarily so!" nonlinear load section is problematic. I would exclude the link on technical grounds.
Third, the SPLat EL has a consumer-related discussion at the bottom (Power factor, consumer electricity costs, and scams) that the current article does not address. That is the EL's advantage (an EL should have material that is not yet included in an article). The section is short and has some issues. The EL page's first link is circular: the SPLat page refers to the open4energy page and open4energy refers to the SPLat page. They even have some identical text and figures. Consequently, I'd be leery of including either - but I'd prefer the open4energy page because it doesn't have the nonlinear load problems. The consumer issue, however, would be adequately served by including the NIST page as an EL, and I've added the NIST link to the article.
Consequently, there is no reason to include the SPLat EL.
Glrx (talk) 17:03, 21 February 2011 (UTC)

Load

The article would benefit by adding a definition of or explanation of 'LOAD'.-- 11:59, 7 March 2011 Twinkletoos

Misleading Statement

"Correction equipment may be installed by individual electrical customers to reduce the costs charged to them by their electricity supplier" I believe this statement is very misleading, Implying that if you increase your pf to unity you will reduce your current consumption. Whole current meters, which are generally used in residential installations measure only active power. Any change in power factor does not change the active power measured by the meter, therefore there is no increased cost in having a low pf. Some utility might charge you for having a low pf, but generally only applies to industrial installations. What are other peoples thoughts? --202.168.24.162 (talk) 02:15, 5 April 2011 (UTC)

Costs, not current consumption. For the sort of customer that gets charged for reactive power, power factor improvement also reduces costs. If you're being billed only for kwh, your consumption is so small that the utility doesn't care (within broad limits) what your power factor is. If you're an industrial customer whose bill includes kva as well as kwh, then you have incentive to improve power factor. --Wtshymanski (talk) 03:04, 5 April 2011 (UTC)
as it reads, one might think "me being a individual electrical customer, i therefore can reduce my electrical costs by installing correction equipment" which is incorrect. I believe the statement needs to be reworked to incorperate that as an electrical customer being billed for kVA, generally industrial, it is beneficial to correct your pf above the minimum outline by the utility to avoid penalties (increased costs). Just recently in Australia power factor equipment was being advertised to the residential consumer as a means to reduce your power bill. It came out in the wash after an investigation from TV show, Today Tonight that active power consumption, which is what was being billed, did not change and that power factor correction did not reduce power consumption. Misleading, i think so --Mpleets (talk) 04:05, 5 April 2011 (UTC)
You should only watch television for the jokes. We should probably rely on electrical customers being able to read their bills - if they aren't paying for low power factor, then they don't get any cost saving from improving it. People who don't edit encyclopedia articles are amazingly pragmatic about not doing things that don't matter. --Wtshymanski (talk) 14:21, 5 April 2011 (UTC)

about Synchronous condensors

In the paragraph "Power factor correction of linear loads", the Synchronous condensors are mentioned "Synchronous condensors are often used in connection with high-voltage direct-current transmission projects......". Is the power factor (and power factor correction) valid for the DC power network ?--Wolfch (talk) 15:08, 5 June 2012 (UTC)

You cannot correct power factor in a DC circuit, because there is no power factor to correct (which I suspect you had already figured out). However, where the DC is produced from AC using a rectifier station, it is often necessary to correct the power factor for the load provided by the rectifier to the AC supply. 86.159.159.194 (talk) 13:03, 14 October 2012 (UTC)

An illustration of distortion power factor

Current probe facing the light socket. The load draws 29 watts at 0.61 pf
Current probe facing away from the socket. Shock, horror, the load is drawing minus 29 watts, but still 0.61 power factor

Evidently whoever did the firmware for the Fluke 192C thinks power factor only goes from 0 to 1 inclusive. I had a chance to try one out and set up this demonstration mostly because I was curious about CFL lamps and also curious as to what happens when the current is reversed. I was delighted at the results, of course. (My wall plug power shows some flat-topping - about 2.5% 3rd harmonic according to the Fluke.) --Wtshymanski (talk) 02:11, 17 October 2012 (UTC)

I suspect that you have hit the nail on the head. The most obvious and simplest way of designing the firmware is to multiply the instantaneous voltage by the instantaneous current at each sampling point and average over the cycle (this gives the actual power). Then calculate the RMS voltage and RMS current over the cycle. Multiplying these together gives the VA. Dividing the former by the later gives the power factor. Now the only problem with this arrangement is that power will become negative if it flows 'the wrong way', but VA will remain positive. Thus the power factor will also be negative.
But if instead you substitute an algorithm that will report a negative VA if the power flows the wrong way (the one above will never do so), then the power factor will always come out positive. Having the sign of the VA matching that of the power makes more sense than having a mismatch and the power factor reporting as negative.
Trying a similar experiment to you, I tried it with one of those plug in power and energy monitors. At first, I thought it was not going to tell me anything because: why would it have a negative sign in the display? But it does. Lashing it up the wrong way round, it displays negative power, but positive VA. It displays negative power factor and thus (perhaps not so unsurprisingly) negative energy. At least it didn't display negative time! The specification sheet does not mention its ability to indicate negative quantities. But: this is all original research. 86.159.159.194 (talk) 11:41, 17 October 2012 (UTC)
Two excellent examples above! In the upper example, we have a firmware engineer who mistakenly designed an instrument that only reports PF in the range 0-1, despite reporting correct negative power and correct positive volt-amps. Clearly, that firmware engineer didn't use the correct formula PF=W/VA; perhaps he was mislead by the opening line in this Misplaced Pages article that says PF is in the range 0-1? Myself,m I have had to correct young instrumentation firmware engineers who have cited this article... In the second example, the instrument is behaving exactly as it should. The discussion, though, is incorrect. There's no such thing as negative volt-amps. Volt-amps is defined as RMS volts times RMS amps, and RMS values are always positive. The concept of volt-amps is, roughly speaking, the maximum possible rate of energy transfer in either direction. A not-very-precise analogy: you can have water flowing into a bucket -- let's call that positive flow -- and you can have water flowing out of that bucket -- let's call that negative flow. But the capacity of the bucket can only be positive. Not a perfect analogy, but maybe helpful in explaining why VA is always positive, but W can be either positive or negative. AMcEachern (talk) 14:42, 18 October 2012 (UTC)
And just a few screens above this one, some annonymous Fluke programmer was being cited as the authority for the existence of negative power factor. Which Fluke instruments were programmed by the guys with the right definition? --Wtshymanski (talk) 22:02, 14 November 2012 (UTC)
Well, we don't seem to have got the part the problem of exactly which is the right definition nailed down. All that has been established is that opinion is divided on the subject. I managed to get my hands on a Tektronix 2014B which has the ability to multiply the A and B channels together. I was initially disappointed to discover that it only gave the result from my illicit 100 Watt light bulb as 98.5 VA. However, turning the current clamp the other way around gave an indication of -98.9 VA. Hmm! The reality was revealed when a compact fluorescent lamp was used instead. What the instrument labels as VA is in reality the average of the instantaneous values of current * voltage over the samples in one cycle (or in other words - Power in Watts). This was confirmed when a capacitive load drew as near 0 VA as makes no difference. The user manual adds nothing over that the result is VA. Not helpful at all. 86.159.159.194 (talk) 16:52, 15 November 2012 (UTC)

Negative Power Factor?

I'm having great difficulty with the following wording: The power factor of an AC electric power system is defined as the ratio of the real power to the apparent power, and is a number between -1 and 1 (frequently expressed as a percentage, e.g. 0.5 pf = 50% pf). Real power is the capacity of the circuit for performing work in a particular time; it can be either positive or negative, depending on whether the power is flowing from the nominal source to the nominal load, or vice versa. Apparent power is the product of the RMS current and RMS voltage of the circuit, which, by definition, is always positive. Which power flow then determines the sign of the power factor? Real or reactive? Apparent power is always positive? Why? Supposing I'm watching the Manitoba to Minnesota tie line and suddenly one of the Nelson River Bipole lines trips...suddenly instead of exporting mumblety-mumble megavoltamperes, the utility is importing mumble megavoltamperes. Would be very tempting to say the sign of the apparent power flow has reversed. Maybe I've been talking to t0o many transmission people, they seem to be more worried about vars than watts. "Lead" and "Lag" I can sort-of understand, I don't know what a negative power factor means in the case of distortion. --Wtshymanski (talk)

If my learned co-editor is in fact who he says he is, I am presuming greatly - but at least I have some references, whereas so far I've seen no references defining 'negative' power factor as 'power factor with watts flowing back into the source'. --Wtshymanski (talk) 04:22, 16 December 2008 (UTC)
I've never seen power factor expressed as a percentage. Could this be a UK/US difference? Biscuittin (talk) 19:59, 2 November 2009 (UTC)

From the Fluke 434 Power Quality Analyzer manual (which agrees with my experience as a working Electrical Engineer):

"Interpretation of Power Factor when measured at a device:"

"PF = 1: all supplied power is consumed by the device. Voltage and current are in phase."

"PF = 0 to 1: not all supplied power is consumed, a certain amount of reactive power is present. Current leads (capacitive load) or lags (inductive load)."

"PF = -1 to 0: device is generating power. Current leads or lags."

"PF = -1: device generates power. Current and voltage are in phase."

In most areas of electrical engineering a negative power factor is rare - so rare that some EEs have never heard of it. There are two areas where negative power factors come into play a lot; electric motors that are braking a massive load (this includes regenerative braking on electric vehicles) and devices that source or sink power so as to correct for overvoltages/undervoltages in a poorly regulated line.

BTW, this has nothing to do with the practice of displaying leading/lagging of a positive power factor with a minus or plus sign. I have seen meters that do this (there is no consistency as to whether leading or lagging gets the plus sign) and it can confuse a technician who also has access to a Fluke 434 that uses a plus sign for both. Guy Macon 17:22, 15 July 2010 (UTC)

We don't usually alter previous editor's headings on talk pages. I would appreciate an authoritative reference for "negative" power factor defined as your meter manual suggests. Those two areas you talk about are pretty darn common in electrical engineering and if there was a wide-spread convention that "negative" power factor means "power flowing back to the source", surely it would be well documented? "Negative" power factor is not described at all in IEE Std. 100, which is a pretty good overview of IEEE standards practice. And there is IEEE Std. 1459, which says (Note 1, section 3.1.1.1) real power only flows to the load and can never be negative. Leading and lagging PF I've seen marked on scales, but "negative" PF is not something I've seen displayed on a power factor meter. There are 4-quadrant electrodymometer type meters, but they don't seem to mark the scaled as "negative". --Wtshymanski (talk) 18:11, 15 July 2010 (UTC)


Re: IEEE Std. 1459, I don't have it in front of me (I am at home) but I suspect that it defines "load" in a way that precludes generators of electrical power.

Re: "Those two areas you talk about are pretty darn common in electrical engineering and if there was a wide-spread convention that 'negative' power factor means 'power flowing back to the source', surely it would be well documented?", you appear to have missed what I wrote: "In most areas of electrical engineering a negative power factor is rare - so rare that some EEs have never heard of it." Again, AC loads that are energy sources are rare, not common.

Re: "but 'negative' PF is not something I've seen displayed on a power factor meter", the Fluke 434 Power Quality Analyzer does exist. I assume that you have only used the usual low-cost PF meters and have never needed something more sophisticated. IIRC, Hotektech, Dranetz and Extech power analyzers also measure negative power factor.

Re: "I would appreciate an authoritative reference for 'negative' power factor defined as your meter manual suggests", here are three, two from the dawn of electrical engineering and one modern. Plus, of course the Fluke manual, which I consider to be authoritative.


From The Electric Journal, Volume 5 (1908):

"Negative Power-factor: When a generator is connected to a circuit having in series only resistance, inductance and capacity, the current cannot be more than 90 degrees out of phase with the e.m.f., but if a synchronous motor (or a rotary converter or another generator) is in the circuit, the difference of the e.m.f.'s of the two machines sends current from the generator through the other machine. the generator is not delivering positive power to the other machine which, therefore, cannot run continuously without changing phase relation, or receiving power from some other source."

http://books.google.com/books?pg=PA480&dq=%22negative%20power%20factor%22&ei=imQ_TLywFpK4sQOZ-cH2CA&ct=result&id=lrESAAAAYAAJ&output=text


From the Philosophical Transactions of the Royal Society of London, Volume 203 (1904):

"The fact that the solid arc has a negative power-factor at frequencies below the critical frequency of 1950 indicates that the arc is under these conditions supplying power to the alternating current circuit, and that this is the fact can easily be shown experimentally by connecting a wattmeter so as to measure the power supplied to the solid arc by the alternating current, when it will be found that at low frequencies the solid arc is actually supplying power to the alternate-current circuit, while at frequencies above the critical value the alternate-current circuit supplies power to the arc. This observation is of course not in any way at variance with the principle of conservation of energy, since the alternating energy given out by the arc is derived from the direct-current energy supplied to it, the arc acting as a converter."

http://books.google.com/books?dq=%22negative%20power%20factor%22&pg=PA322&id=eG0OAAAAIAAJ&output=text


From "Analysis and Performance of 3-Phse Grid-Connected Induction Generator via Transistorized Ac Voltage Controller" EE Dept.- College of Engineering, Cairo University (2008):

"...Accordingly, the generator will absorb active power from the grid, which leads to negative power factor."

http://faculty.ksu.edu.sa/Alolah/Documents/Files%20of%20papers/C033.pdf


From the Fluke 434 Power Quality Analyzer manual:

http://assets.fluke.com/manuals/434_435_umeng0300.pdf

Search for "interpretation of power factor"

Also see:

http://us.fluke.com/fluke/usen/Power-Quality-Tools/Three-Phase/Fluke-430-Series.htm?PID=56077


I would also ask what you would say the power factor is for a line that has the current 180 degrees out of phase from the voltage. That's a test that I have run many times on AC power supplies using another, larger AC power supply as the "load." Some AC power supplies cannot handle such a load. Guy Macon 21:17, 15 July 2010 (UTC)

Not comforting... a student paper that misspells "phase" in the title does not fill me with confidence. A 1908 paper? Physicists? And overhauling loads are described in every undergrad machines lab. --Wtshymanski (talk) 02:39, 16 July 2010 (UTC)

Arbitrary Section Break 1

Again I ask; what do you say the power factor is for a line that has the current 180 degrees out of phase from the voltage? Guy Macon 09:45, 16 July 2010 (UTC)
There's no power being transferred to the "load" if the current is going the other way, so it can't be defined. Or, we've got the source and load interchanged, so the PF is 1. Which one do the authorities prefer? This situation arises many times in transmission...some times the electricity runs from Winnipeg to Minneapolis, but some times the electricity runs from Minneapolis to Winnipeg, too. --Wtshymanski (talk) 13:07, 16 July 2010 (UTC)
There's no power being transferred to the load if the load is a pure capacitance, yet we have no trouble determining the PF in that case. You can't just say "it can't be defined." Such circuits exist and they have measurable voltage, current, and phase. If your method of calculating PF cannot handle a particular real-world combination of voltage, current, and phase, yet standard test equipment can, then something is wrong with your method of calculatiing PF. The PF still exists in the real world.
The concept of negative power factor has been in use for over a hundred years. I grant that it is rarely used and many engineers have never heard of it, but the concept of a using a flickermeter to obtain a numeric value for Pst is also something that many engineers have never heard of, yet Pst and Negative PF are measurable by most or all power quality analyzers. (See IEC 61000-4-15 and IEC 61000-3-3).
Invoking IEEE Std. 1459 proves nothing. It specifically defines real power as being only that which flows to the load, and thus by definition cannot be used to describe a circuit where real power flows from the load. Guy Macon 10:23, 17 July 2010 (UTC)
Well, yeah, that's kind of the point; "reliable references" are what we use here on Jimbo's dream. IEEE 1459 is a set of *definitions* of terms used in describing AC power and defines (for those who chose to use it) what "power factor" means. If the committee that wrote up 1459 thought that, for defining power factor, power only flows from a source to a load, that's good enough for me. Are you saying the Fluke company's designer who labelled something 'minus' instead of 'reverse power' is a higher authority than the IEEE? As you point out, power often flows either way down a wire so this is a common situation, and yet i don't ever see anyone calculating a negative power factor in my meager collection of texts. Could you find me a worked example somewhere where a prof is telling his students " -1 MW over +2 MVA means the power factor in this circuit is -0.5, lagging" or something to that effect; preferably an authority who can spell "phase" correctly in the title of a document.
I had a similar discussion with another editor some years ago and asked for some documentation, and he hasn't got back to me yet. If it's defined, why is it so hard to find anyone talking about it? Negative voltage, all the time. Negative resistance, sure. negative power, in some contexts, sure. Negative power factor - only in papers from 1908? Sounds fishy to me. (You can proably find more places talking about power factor greater than 1 than power factors less than 0.) ( I worked in an arc furnace shop so had to get familiar with flicker and flicker meters and the difference between 120 v bulbs and 240 v bulbs...) --Wtshymanski (talk) 13:44, 17 July 2010 (UTC)
If anyone is still interested, IEEE 1459 says "1—The instantaneous power is produced by the active component of the current, i.e., the component that is in phase with the voltage. It is the rate of flow of the energy. This energy flows unidirectionally from the source to the load. Its rate of flow is not negative, pa≥0." which is why IEEE 1459 never discusses "negative" power factor. If P ia never negative and S by definition is never negative, P/S can never be negative. -Wtshymanski (talk) 15:30, 19 July 2010 (UTC)

I'm not a professional, but what seems obvious to me is that the negative power factor is measuring the flow in the direction from what was a load (but is now acting as a source) to what was a source (but is now receiving the flow). Which is why the IEEE 1459 doesn't SEEM to allow for it. The source and load have switched places, but the measuring device is using the same direction as before, and so to distinguish the situation uses negatives. Isn't that what is really happening? 216.239.88.89 (talk) 04:36, 8 October 2010 (UTC)

Arbitrary Section Break 2

The output of a Fluke 434 Power Quality Analyzer is a reliable source. It is a standard piece of test equipment used throughout the industry to measure power factor. If it displays a negative power factor, the circuit has a negative power factor. All the other brands of power analyzers will give you the same reading.

You keep quoting IEEE 1459 again and again while ignoring the fact that IEEE 1459 specifically defines real power as being only that which flows to the load, and thus by definition cannot be used to describe a circuit where real power flows from the load. You can't apply an IEEE standard to a circuit topology that the IEEE standard says it does not apply to. Do you have a reference that doesn't specifically exclude the circuit we are discussing?

If, as we have seen, your preferred method of calculating PF cannot handle a particular real-world combination of voltage, current, and phase, yet standard test equipment can, then that in itself shows us that something is wrong with your method of calculating PF. The PF still exists in the real world. You aren't allowed to pretend that when an AC power source has the current 180 degrees out of phase from the voltage suddenly power factor does not exist, nor are you allowed to claim that the power factor is exactly the same as it would be if the load was resistive.

Also, the Philosophical Transactions of the Royal Society of London, Volume 203 (1904) meets every criteria for being a proper citation from a reliable source. Unless you can cite a reference establishing that later research disproved the 1904 research you have no logical reason for rejecting it as a reference. And no, an IEEE standard that clearly states that it does not apply to power flowing from the load to the source does not disprove the 1904 paper.

If you want to claim that the term is rarely used, that's fine. It is indeed rarely used. I worked for many years without running into the term. However, once I started working on programmable AC power sources, I found that it was indeed a valid term, used by engineers in that specialized field and measured by standard test gear such as the Fluke 434 Power Quality Analyzer. Guy Macon 22:48, 23 July 2010 (UTC)

I am looking for a research paper titled "Negative Power Factor" by Allen Varley Astin (director of the National Bureau of Standards until 1969). I know that it is in the Library of Congress, but I have not been able to obtain a copy. Does anyone know of an online source? Thanks! Guy Macon 23:01, 23 July 2010 (UTC)
IEEE 1459 seems to supersede the 1908 paper and is a current technical standard. It's not my definition nor my method, it's IEEE. Take it up with the people who revise 1459 ( which is overdue to be changed from a draft standard). Why do they define real power as flowing only from source to load? The Fluke company is free to make up its own definitions. However, it seems needlessly complex to me - why overload the - sign with the direction of power flow? Are you sure the - sign on the Fluke isn't just an indication you've hooked the leads up wrong? Again, if the concept is useful, it should show up in the current literature, not something written by physicists a century ago. Why don't the other Fluke power quality meters also measure negative power factor - there's only one in the line that has this in the user notes, and to me it looks like an indication of incorrect hookup rather than an attempt to be incompatible with IEEE 1459. I'm not saying the term is rarely used, I'm saying it's never used because it's against the way power factor is defined in IEEE 1459. You're making an awful lot out of your 9single model of) Fluke user manual- if they'd put in an LED saying "Backwards leads" instead of overloading the - sign in the display, would this conversation still have existed? --Wtshymanski (talk) 04:42, 24 July 2010 (UTC)

Arbitrary Section Break 3

I'm not sure how to add comments to this discussion, but I will try. As one of the active participants in developing IEEE 1459, I regret that we failed to acknowledge that active power can flow both directions, and has a sign. I will try to get that fixed in the next edition. Negative power is not a matter of connecting meter leads incorrectly; it's a real-world situation. Consider a house that has a large solar panel/inverter on its roof. Let's say that in the middle of the day, the solar panel makes enough power that power flows from the house to the grid. In the middle of the night, power flows from the grid to the house. The simplest measurement solution is to define one of these directions as "positive power" -- typically, we define the power that flows from the grid to the house as positive power -- and that makes the other direction negative power. Anybody who believes that single phase non-distorted power flow is defined by Vrms x Irms x cos(theta) must also believe in negative power, because Vrms is always positive due to the "square" term in RMS, Irms is always positive due to the "square" term in RMS, and cos(theta) can take any value between -1 and 1. I don't think references are necessary for this discussion, any more than we need a reference saying that -1 x 4 = -4 . Of course, power factor can take any value between -1 and +1 - there isn't any doubt about this topic in the electric power measurement community. Every modern electric power instrument for AC systems that has been built in the last quarter of a century happily measures both negative and positive power (Fluke, Dranetz, BMI, Schneider, Power Standards Lab) and calculates a signed Power Factor value as the ratio of a signed power to an unsigned VA.AMcEachern (talk) 23:03, 12 October 2012 (UTC)

How am I supposed to interpret a "negative" pf, which according to IEEE 1459 can't happen? Say I walk into the control room of a hydro plant and I see the big power factor meter on the wall reads "-0.75" . What do I do? Do I adjust the wicket gates to pump power back into the system, or do I raise (or lower) the excitation? What does the -ve sign mean? Isn't it more correct to have one meter saying "lead or lag power factor" and another meter saying "import or export power" - a two-dimensional measurement needs two pointers, not one. --Wtshymanski (talk) 01:05, 13 October 2012 (UTC)

Arbitrary Section Break 4

Again, I regret the error in IEEE 1459. You are very helpful in pointing out this misunderstanding, and that's exactly why these Standards go through revisions to create new editions. (For example, IEC 61000-4-30, Power Quality Measurement Methods, which I Chair, is preparing its third Edition; despite being heavily used for 10+ years, this standard still needs clarification, correction, and extensions. IEEE 1459 is in a similar state.) To answer your specific question about a control room of a hydro plant: it would be unthinkable that there would ever be negative power for such a hydro plant i.e. it would never be accepting power from the grid, unless, of course, it is one of those rare pumped-storage systems in which the electrical rotating machinery is used both as a motor to drive the pump, and as a generator when the water flows downhill. Very, very rare. But the question at hand, I think, is about the definition of Power Factor and not about a specific application in a generating plant. With your permission, I would like to break the definition down and respectfully ask you which of the following statements you disagree with? For the purposes of these statements, let's assume together the simplest possible situation: a single-phase system in which both the voltage and the current are perfectly sinusoidal. (1) RMS values are always positive, because they begin by squaring some either positive or negative instananeous value, and the squaring function converts both to a positive number. (2) Volt-Amps is RMS volts x RMS amps, and is therefore always positive. (3)Power Factor is the ratio of Watts to Volt-Amps. (4)for sinusoidal waveforms, Watts is RMS volts x RMS amps x cosine(angle between voltage and current sine waves) - this is mathematically equivalent, for sinusoidal waveforms, to watts is the integral, over an interval of time that is an integer multiple of half-periods, of the instantaneous product of the instantaneous voltage and the instantanous current. (5) The cosine function has an output in the range of -1 to +1. (6) Watts, therefore, can be either positive or negative. (7) Power Factor, therefore, has a range of -1 to +1. Please, can you identify which of these statements you disagree with? There may be more than one, of course. Thank you! AMcEachern (talk) 21:11, 14 October 2012 (UTC)
The bit where the cosine goes negative. This can only happen if power is flowing from the "load" to the "source" . IEEE 1459 currently says (in very small print, too), power, by definition, flows only from source to load. As long as some people define "lead/lag" to mean "plus/minus" and others get "forward/backward" to mean "plus/minus", generalizing the present IEEE 1459 definition to include "reverse power" is not going to help clarify the situation. AC power is inherently a two-dimensional quality and squashing it down to a one-dimensional representation is going to be wrong much of the time. I don't want a hydro operator reaching for the wrong knob when he sees "negative" power factor. I look forward to a new edition of IEEE 1459 that explains this authoritatively, though it's a little like trusting the next Windows security update (if they didn't get it right in the last edition, what confidence should we have in the new release?). Once IEEE 1459 is fixed and the world agrees on it, Misplaced Pages can cite it as a reference and the world will be a richer, more confusing, place.
The other place where you get a hydro unit absorbing power from the system is when it is in synchronous condensor mode, spinning the turbine in air (with some gimmick to keep water out of the turbine); this is only a few per cent of the unit rating, though. The watts are negative, but it's still sending leading vars to the system - what is the sign of the power factor then? --Wtshymanski (talk) 22:25, 14 October 2012 (UTC)
Ah! I think you have it precisely correct when you put "load" and "source" in quotation marks. Your interpretation is absolutely correct - power is negative when it flows from the thing identified, nominally, as the load towards the thing identified, nominally, as the source. A quarter of a century ago, that was an extremely rare situation; today, it's far more common, with so many residences having photovoltaic systems. At their revenue meters, we see positive power when power flows from the grid to the house, and negative power when it flows from the house to the grid. There's nothing complicated about that. You are also correct that the old convention of using "+" and "-" for lead/lag causes a lot of confusion, but fortunately this is also rare today -- not rare enough, probably! But as long as we all agree that power factor is the ratio of power to volt-amps, I don't think there's any real dispute that power can be negative (at least among modern measuring authorities) so I don't think there's any real dispute that power factor can range from -1 to +1. Alex Emanuel (Chairman of IEEE 1459) has asked me to organize a debate on AC power definitions at the 2013 Summer Meeting of the IEEE Power Engineering Society. I will make sure that your point about the names of the source and load is clearly presented, if you're not there to present it yourself, which would be very welcome. (Regarding your question about the synchronous condenser mode, if the watts are negative, the PF is negative; but in this case it's a very small negative number, because we're seeing mostly VAR's so the ratio watts to volt-amps is very small.) If I may add one other note: in DC power systems, the concept of negative power is quite common. For example, measuring the power at the terminals of a rechargable battery, it's conventional to measure negative watts while the battery is being charged, and positive watts while the battery is delivering power. As you point out, this is a matter of reversing the "load" and the "source". But this is so common in DC power supply design that there isn't any discussion -- it happens with capacitors, super capacitors, batteries, inductors, or any other component that can store and release energy. The signs of the DC voltage and the DC current determine the direction of power flow; if the signs are the same, the power flow is positive, and if the signs are opposite, the power flow is negative. And one more small note -- if we consider a single-phase sinusoidal-voltage-and-current power circuit with non-unity (but positive!) power factor, surely everyone agrees that the power is positive during part of the cycle, and negative during a smaller part of the cycle? It's positive during the part of the waveform where the voltage and current have the same sign, and it's negative during the part of the waveform where the voltage and current have different signs. So even on common AC systems, negative power is quite ordinary during part of the cycle...AMcEachern (talk) 01:03, 15 October 2012 (UTC)
There's no charge number for sending me to IEEE meetings, so that's not going to happen. The (magnitude of the) power factor of a synchronous condensor is still in the range 0 to 1, no matter how small the watts consumed by the unit. DC circuits are out of context in a discussion of power factor. The IEEE 1459 definitions aren't talking about sub-cycle flows, only the average over integral numbers of cycles.
Negative power is a perfectly useful thing to define, sometimes the power flows from Winnipeg to Minneapolis, sometimes it flows from Minneapolis to Winnipeg, it's perfectly legitimate for the utilities at either end to define power coming in as "plus" and power going out as "minus". Only a Wikieditor would be confused at the resulting ambiguity of the sign of the power flowing in the line - it's purely a matter of definition and Manitoba Hydro and Xcel Energy define it differently for their own purposes.
I look forward to a new edition of IEEE 1459. I thought it was admirably clear when it said "Power flows from sources to loads" and therefore doesn't need to define negative power or negative power factors. I don't think it's useful to define "negative power factor" as "power factor with source and load interchanged" because I think it's overloading the "-" sign with a whole different meaning. A single number can't tell you everything you need to know about power flow; you need to know two dimensions, real/reactive and import/export, to properly characterize it.
This is getting off topic for a Misplaced Pages article talk page because until there's a new citation for negative power factor, there's no way to change the article to include a concept of "negative" power factor. --Wtshymanski (talk) 14:39, 15 October 2012 (UTC)
Thank you. I appreciate your intellectual honesty in acknowledging that negative power is a useful concept, and I appreciate your writing that you don't think it's useful to define negative power factor, acknowledging (I think!) that this is your opinion, backed of course by your reading of IEEE 1149 that negative power does not exist. I'm not sure how to reconcile these two ideas, if one accepts that the definition of power factor is the ratio of watts to volt-amps, but I am grateful for the progress.

Arbitrary Section Break 5

It will take a couple of years to get the error out of IEEE 1149; to speed things up, I will compose a paper for IEEE Transactions on this issue, but that too will take a year or so to get drafted, submitted, peer-reviewed, and published.
Meanwhile, based on the discussion above, and based on the citations above, and based on the practice of all the major instrument manufacturers for the last quarter of a century, would you consider changing the first line of the article from "...is a dimensionless number between 0 and 1..." to "...is a dimensionless number between 0 and 1 (or, according to some authorities, between -1 and +1)..."? I think you could make this change without compromising your intellectual integrity, and it certainly would add a useful flag to readers that there is honest disagreement about the question. Respectfully, AMcEachern (talk) 15:44, 15 October 2012 (UTC)
It should be noted that the IEEE are not the only body who get to decide on these matters. They are a very small cog in a global wheel. Having said that, I am not aware of any body that has said anything different, but the point is that some governing body could without running it past the IEEE first. If the Society of {insert some tin pot little country here} Electrical Engineers made such a statement, it would be citeable regardless of what the IEEE has to say on the matter. 86.159.159.194 (talk) 15:56, 15 October 2012 (UTC)

Cite it and write it. I quoted IEEE 1459 two years ago in the discussion above (see the remark above the 19 July 2010 .sig line). I would be pleased to see an authoritive source quoted that generalizes power factor to -ve values, but the instruction manual for someone's meter isn't on the same rank as an IEEE standard. --Wtshymanski (talk) 16:24, 15 October 2012 (UTC)

Would you accept IEEE 1459 itself as the citation for positive and negative power, and therefore positive and negative power factor? if so, please examine Figure 1 in both Editions of IEEE 1459, which clearly shows both positive and negative power along the horizontal axis. I agree that Figure 1 directly conflicts, in the same Standard, with the statement in 3.1.1.1 that says that power is always positive. But surely that conflict makes my point: that Misplaced Pages should not deprive its readers of the fact that authorities disagree?
Again I ask, based on the discussion above, and based on the citations above, and based on the practice of all the major instrument manufacturers for the last quarter of a century, would you consider changing the first line of the article from "...is a dimensionless number between 0 and 1..." to "...is a dimensionless number between 0 and 1 (or, according to some authorities, between -1 and +1)..."? I am not asking you to say anything that is untrue; I am asking that you allow Misplaced Pages readers to know that your opinion is not the only opinion, and that there are reasonable published references that disagree, and reasonable authorities that disagree, and even parts of IEEE 1459 that disagree. AMcEachern (talk) 00:34, 16 October 2012 (UTC)
We can't say "according to some authorities" on Misplaced Pages, without pointing at "which" authorities we mean. There must be a textbook somewhere (preferably not published by Tab Books) that gives an example of negative power factor calculation. This should be easy to cite. --Wtshymanski (talk) 02:37, 16 October 2012 (UTC)
Thank you, and I truly appreciate the progress we have made in this discussion.
(I have temporarily placed a Draft IEEE paper at http://powerstandards.com/Shymanski/draft.pdf for your review; it includes a dozen citations over the last 100 years on the correct meaning of negative power factor. I would welcome your comments and suggestions. Among my colleagues in the academic and metrology community who have seen this draft, the general consensus is that the paper is correct but perhaps not worth publishing, because it is so widely known and accepted that power factor ranges from -1 to +1. And one professor of Electrical Engineering at Berkeley, who wants to remain nameless, jokingly asked me not to correct the Misplaced Pages article on PF because she uses it in her introductory lecture as a great example of why her students are forbidden to cite Misplaced Pages - there's an obvious technical error -- the range 0-1 -- on the very first line of the article...)
May I gently point out that we have no citations, as far as I know, for saying that power factor is between 0 and 1? My understanding is that you derive that conclusion from the statement in IEEE 1459 that power is always positive. Based on the same level of analysis, could we use IEEE 1459 Fig 1 (which shows positive and negative power) as our citation for negative power factor? Would that be a reasonable solution? AMcEachern (talk) 18:18, 17 October 2012 (UTC)
The cleanest way to fix this is to fix IEEE 1459, but if the standards committees let the current language persist through the last two editions, it's obviously of more concern to Wiki editors than to working engineers. If I see a "-" sign on a power factor meter I've hooked up, I either start looking for an electrican to swap wires around, or else I think thre's something unexpected going on in the power system. How useful is a "negative" power factor? It's not like you can do arithmetic on power factors - you can't say "This branch is -.8 pF and this branch is +.9, so my total power factor is .1 and all's right with the world". It's like the bloody "humidex" or "wind chill" numbers, which try to give a one-dimensional figure for a two-dimensional situation, simplifying nobody's life but those of the radio DJ's. But I've said all this before. --Wtshymanski (talk) 19:10, 17 October 2012 (UTC)
I'm not sure I understand your position on this matter. Could you clarify? In your last entry, you seemed to say that the issue was a lack of citations on negative power factor. I asked you if we could use IEEE 1459 Figure 1 as the citation, but you ignored my question. I provided you with 12 citations on negative power factor in the Draft IEEE paper, and you made no comments. Please, is the issue, in your opinion, a lack of citations?
Could you clarify? I though that you now agreed that IEEE 1459 contains both an statement that power is always positive, and also a statement in Figure 1 that power is either positive or negative. And I thought you agreed that PF=W/VA. So isn't it clear the IEEE 1459 provides justification both for the argument that PF is in the range of 0 - 1, and also justification for the range of -1 - +1?
Could you clarify? Are you now saying that you believe that we have sufficient citations to, at a minimum, include both ranges; but now you don't understand why including the latter range is useful? If so, here is a response.
(a) You are correct - summing power factors doesn't make sense. If you have two circuits that have PF's of +0.7 and +0.8, together they don't have a PF of 1.5. But I don't see how your true statement relates to the negative power factor.
(b)Negative Power Factor is useful because it conforms to the standard sinusoidal equations PF=W/VA and W= VA x cos(phi), without any exceptions or exclusions.
(c)Negative Power Factor is useful for understanding modern "loads" that are bi-directional (for a very practical example, see Figure 1 in the Draft IEEE paper link above - the positive PF tells you about the behavior of the battery charger as a load, and the negative PF tells you about the behavior of the inverter as a source.)
(d)You are incorrect -- forgive me for being blunt -- that using a polarity for a value that can, in fact, be positive or negative such as the ratio W/VA alters it from a one-dimensional value to a two-dimensional value. Doing so simply places the value correctly on the number line, either to the left of zero or the right of zero. Ratios are often negative - there are negative percentages, for example. Ratios are, by their nature, values with single dimensions. (
e) Lastly, and most importantly, like most metrology engineers I believe being truthful and correct is inherently useful. And I think this is especially important in defining basic measurement quantities. Young engineers use Misplaced Pages for their initial information - we know they shouldn't, but they do. We older engineers should work hard to make the information in Misplaced Pages correct. That means, I think, including information with which we personally disagree, but for which there are reasonable technical arguments and which are supported by reasonable authorities as shown through the citations.
At this point, I think I have done the best I can. I have provided you with technical citations from the IEEE 1459 standard, while acknowledging that the standard is ambiguous; I have provided you with a dozen citations; I have suggested that both ranges be presented; I have provided you with practical applications. If, in your opinion, all this is insufficient to even include in the article the possibility that there are multiple opinions, you have greater intellectual confidence than I do.
But, still, I'm an optimist -- I do hope you will find a way to, at a minimum, include both the 0 - 1 range and the -1 - +1 range, using all of the proposed citations that have been given to you for justification. Otherwise, we can look forward to continuing this conversation in a few years, after the next edition of IEEE 1459! Cheers! AMcEachern (talk) 22:00, 17 October 2012 (UTC)

Arbitrary Section Break 6

Most of the analogue power factor meters that I have encountered, both single and three phase, have a scale that occupies the full 360 degrees of a circle. The quadrants are marked 'lead' and 'lag' (two of each). Although the opposite quadrants are not marked as 'positive' or 'negative', nevertheless an indication in one (say) 'lag' quadrant represents power flowing in the opposite direction to when the instrument reads 'lag' in the diametrically opposite quadrant. Although power factor in itself cannot be negative, this would equate to the concept of negative power - that is power flowing in the opposite direction to that which is regarded as positive. Obviously, the concept of negative power is absurd in its own right. On the other hand, digital power factor meters generally do not indicate negative power factor as such (though from the above, this does not seem to be universal). Like negative power, negative power factor seems to be just a mere convention to indicate that power is flowing in the opposite direction. The only problem with the concept is that if P=V.I.cosΦ, the current flowing the other way can also be considered negative, thus P=V.-I.-(cosΦ) which will yield a positive power, undermining the concept (though of course power cannot really be negative so it works in convoluted sort of way).

Watt-hour meters, when energy is passed back into the grid, will run backwards raising the alarming concept of negative energy and hence negative power - once the concept of negative time is eliminated (don't even think of going here - it will do your head in). But we can all relax, it is really positive energy just passing in a different direction. At the end of time, it all ends up as heat warming up a rather chilly universe (OK- that's a simplified view - please don't start a discussion on energy utilisation in the universe either!). DieSwartzPunkt (talk) 17:07, 13 October 2012 (UTC)

As a professional metrology engineer who specializes in electric power, I am a bit dismayed by the post above. How can one respond to the statement "Obviously, the concept of negative power is absurd in its own right."? Well, gosh. Negative power, in AC power systems, is an (almost) universally accepted concept, and has been for a hundred years or so. Please see the Reference section of http://powerstandards.com/Shymanski/draft.pdf for a dozen examples. Negative power simply means power that is flowing in the opposite direction from the "normal" direction. A classic example, found in Figure 1 of that paper, is a large-scale grid-connected battery: when the battery is being charged, the power flow is positive; when the battery is supporting the grid through its inverter, the power flow is negative. Nothing complicated or absurd about that. Or look at Figure 1 in IEEE 1459, which clearly shows both positive and negative power on the horizontal axis. Regarding the comment about P=V.-I.(cosΦ) -- you've probably forgotten that the "V" and "I" in that equation are the RMS values, and are therefore always positive. RMS means root-mean-square, and any value that is squared is positive. There's no such thing as "-I" in an equation where the I is an RMS value. In electric power systems, there's nothing complicated about "negative energy" either - for example, that's the energy for which the utility pays the homeowner when the homeowner's photovoltaic array is pumping power back into the grid. Yes, correctly-designed watt-hour meters run backwards in this case - that's exactly what they're supposed to do (although modern watt-hour meters segregate positive watt-hours from negative watt-hours, because each typically has its own price per kilowatt-hour). I don't feel as uncomfortable with your dismissal of negative power factor as "a mere convention" -- I suppose the same thing could be said about negative voltage, or a negative rate of interest -- but I am deeply uncomfortable that the first line of this article contains a technically false statement, i.e. power factor is in the range of 0 to 1. (That's the equivalent of saying that all voltages are positive, and dismiss negative voltages as a mere convention that can be fixed by flipping the leads on a voltmeter...) AMcEachern (talk) 14:28, 18 October 2012 (UTC)
As a compromise, what about adding something like this to the article: "Power in electrical circuits is a signed quantity; negative power represents power flowing in the opposite direction from positive power. Some PF meters have a dial that can indicate both the PF and the direction of power flow." or words to that effect. According to DieSwartzPunkt, that much can be supported by sources, and avoids getting into the issue of "negative" PF. --Chetvorno 21:08, 17 October 2012 (UTC)
I appreciate your effort to find a compromise. The problem, I think, is that there really isn't any issue about "negative" PF among the professional AC power metrology community. PF is defined as the ratio of watts to volt-amps - everyone agrees. Volt-amps is defined the product of RMS volts and RMS amps - everyone agrees. RMS is defined as root-mean-square, and the "square" in the definition means that RMS values are always positive - everyone agrees. That means volt-amps are always positive - everyone agrees. Watts can be either negative or positive - there seems to be some confusion in this group about this issue, but in general everyone agrees about that (for a further discussion, and 100 years of references, please see the draft I've posted at http://powerstandards.com/Shymanski/draft.pdf). Therefore, Power Factor, the ratio of watts to volt-amps, can be either negative or positive. It isn't complicated - everything is rooted in the definitions, and the definitions are well accepted. There's no reason to avoid negative PF. Doing so misleads non-professionals who look at this page for guidance.AMcEachern (talk) 14:28, 18 October 2012 (UTC)

Arbitrary Section Break 7

I am heartily fed up with students telling me that negative PF does not exist, they always quote Misplaced Pages in support of this. I was surprised to find this discussion which seems to provide incontrovertible proof that the article is wrong, and yet no action has been taken! I have decided to take it upon myself to implement the change using the exhaustive references already provided by Sandy McEachern who is, after all, the acknowledged expert. I do hope that this is not seen as a controversial move, but the continued major inaccuracy in this article cannot be tolerated. JohnJuliusFeinstein (talk) 11:47, 17 March 2013 (UTC)

I must apologize. I thought we had corrected this page long ago. Perhaps someone changed it back and I didn't notice?
You were correct in fixing the article. This goes back to Wtshymanski's original claim that there is no such thing as a negative power factor, and my attempts to correct his error. --Guy Macon (talk) 14:07, 17 March 2013 (UTC)
"When I use a word, Humpty Dumpty said... it means just what I choose it to mean neither more nor less." IEEE 1459 says power factor is positive. You may find it useful to define otherwise but the IEEE seems to think otherwise. --Wtshymanski (talk) 17:44, 17 March 2013 (UTC)
I believe that the reliance on an errored IEEE 1459 has been thoroughly discredited, All the King's horses and all the King's men - Couldn't put Humpty together again! They must also not be allowed to prolong this error. ElectricTattiebogle (talk) 18:09, 17 March 2013 (UTC)


Wtshymanski, it's OK to admit that you were wrong. You made a claim that there is no such thing as a negative power factor. You were wrong. Learn from your mistake and move on. IEEE 1459 is not a suicide pact. Once we know that it has an error in it, we do not have to repeat the error on Misplaced Pages. We just have to cite the sources that show that it has an error.
From the Fluke 434 Power Quality Analyzer manual:
"Interpretation of Power Factor when measured at a device:"
"PF = 1: all supplied power is consumed by the device. Voltage and current are in phase."
"PF = 0 to 1: not all supplied power is consumed, a certain amount of reactive power is present. Current leads (capacitive load) or lags (inductive load)."
"PF = -1 to 0: device is generating power. Current leads or lags."
"PF = -1: device generates power. Current and voltage are in phase."
That seem clear enough to me. --Guy Macon (talk) 19:53, 17 March 2013 (UTC)

Wtshymanski, please WP:TALKDONTREVERT. There is an overwhelming consensus against you. If you continue to edit war instead of discussing the merits of your argument you will be blocked. Again. --Guy Macon (talk) 20:38, 17 March 2013 (UTC)

I don't even know why there's an IEEE when some nameless technical writer is a recognized authority in the field. Mind, you have to pick *which* Fluke instrument you believe, as my trials with the Scopemeter a few months ago demonstrated. Mr. McEchern says he's going to have the IEEE fix 1459 to match the Misplaced Pages at a conference this summer. --Wtshymanski (talk) 20:40, 17 March 2013 (UTC)

If by "have the IEEE fix 1459 to match the Misplaced Pages" you mean make it match your theory that there is no such thing as negative power factor, please explain why he wrote "Therefore, Power Factor, the ratio of watts to volt-amps, can be either negative or positive. It isn't complicated." at the bottom of Arbitrary Section Break 7.
While you are at it, please explain what the power factor is for a line that has the current 180 degrees out of phase from the voltage. That's a test that is performed on every Pacific Power Source AC supply using another, larger AC power supply as the "load." P.P.S. supplies handle this just fine, but some AC power supplies which I will not name cannot handle such a load. So what is the PF in that case?
If your preferred method of calculating PF cannot handle a particular real-world combination of voltage, current, and phase, yet standard test equipment can, then that in itself shows us that something is wrong with your method of calculating PF.
The circuit still exists in the real world. You aren't allowed to pretend that when an AC power source has the current 180 degrees out of phase from the voltage that suddenly power factor does not exist, nor are you allowed to claim that the power factor is exactly the same as it would be if the load was resistive. That's clearly wrong. --Guy Macon (talk) 21:35, 17 March 2013 (UTC)
Our resident edit warrior, Wtshymanski seems determined to have his way regardless of what others may believe (I gather that there is no change there). JohnJuliusFeinstein added a section on negative power factor and nobody can deny that it is well reference as he provided no less than twelve (yes, 12) supporting references to support his edit (exactly what Misplaced Pages demands). Wtshymanski seems determined to stick to his single source that because the IEEE says there is no negative power factor, then every one else must be wrong. Reading this extended discussion, there seems to be plenty of evidence of the concept of negative power factor (and no shortage of instruments that actually display it). The addition of so many rerences in support of negative power factor, along with the overwhealming concensus in this talk page should be the end of the matter. But oh no! Wtshymanski carries on the edit war by wrongly deleting the well sourced addition sticking to his single source, the IEEE, who increasingly seem to be in a minority of one. I B Wright (talk) 10:33, 18 March 2013 (UTC)
  • Comment. WP does not choose sides. It sounds like there are two definitions of power factor given by prominent authorities, so both should be reported and neither should be discarded. There's the general idea of PF, and then there are mathematical definitions. I would suggest stating the IEEE definition (provide a date) and pointing out that it doesn't have a negative value but does not specify direction. Then provide the other definition of power factor (possibly providing later dates) and show its merits. Glrx (talk) 15:53, 18 March 2013 (UTC)
User:Glrx, may I suggest that you read the posts between Arbitrary Section Break 3 and Arbitrary Section Break 7? Here you will see that is acknowledged by those involved with preparing IEEE 1459 that the standard has an error which will be fixed in the next edition (after all, it is clear from the math that the negative must exist - I do not believe anyone is actually doubting that). Given that, do you really feel that Misplaced Pages has a duty to help perpetuate the error? JohnJuliusFeinstein (talk) 16:18, 18 March 2013 (UTC)

IEEE 1459 says power flows from a source to a load. If you see a minus sign on your power factor meter, it means you've got the leads hooked up wrong, or you guessed wrong about the direction of power flow. Anyway, we have no credible sources that say the IEEE 1459 committee thinks this is unclear, all we have is OR from an account claiming to be someone on the committee. In this case, Misplaced Pages is not perpetuating the error, since it's not an error. Hmm, I've got an Ion 7300 here, I wonder what it does if I interchange dot and non-dot terminals on the CT circuit. --Wtshymanski (talk) 17:40, 18 March 2013 (UTC)

Mr Shymanski, I do hope that you are not seriously attempting to cast doubt on Sandy McEachern's identity? Here is a recent IEEE newsletter which confirms (page 17) his roles with IEEE, here is his CV from his own company's website, and the draft paper which he placed on that website, using your name as the reference, provides a convincing link between WP user AMcEachern and Alex McEachern, Founder, President, and Chief Technologist of Power Standards Lab. Please avoid using disingenuous tactics in an attempt to smear user AMcEachern. JohnJuliusFeinstein (talk) 19:11, 18 March 2013 (UTC)
When I was just starting out on my first real engineering employer, I was told something that I will never forget. Everybody is wrong sometime, but the wise engineer gets really happy when someone proves him to be wrong. This is a form of positive feedback that makes your mental model of the world closer to the actual technical details of the world.
Alas, the way this started makes that pretty much impossible for Wtshymanski to do. As he has done so often with so many people, he made it crystal clear that as far as he was concerned the only reason I believed in this mythical negative power factor was because I am a really, really bad engineer. He really was sarcastic and mocking, going so far as to create a special user page highlighting how silly and stupid I was being. So one can understand his reluctance to admit error. I think that the following applies here:
"The most hostile group was the one with high but unstable self esteem. These people think well of themselves in general, but their self-esteem fluctuates. They are especially prone to react defensively to ego threats, and they are also more prone to hostility, anger and aggression than other people."
"Hostile people do not have low self esteem; on the contrary, they think highly of themselves, But their favorable view of themselves is not held with total conviction, and it goes up and down in response to daily events. has a chip on his shoulder because he thinks you might want to deflate his favorable self image."
--Roy F. Baumeister, Evil: Inside Human Violence and Cruelty Page 149
Always remember the First Rule of Holes: when you find yourself in one, quit digging. --Guy Macon (talk) 22:25, 18 March 2013 (UTC)
I do not know if anyone is keeping score: but this is the third article in recent times that has had to be protected because of Wtshymanski's constant edit warring. (Counting only the ones I am aware of.) I B Wright (talk) 16:06, 19 March 2013 (UTC)

Arbitrary Section Break 8

I am grateful for the progress that has been made on this topic, and for the kindness and respect that many Misplaced Pages users have shown to me. A few minor clarifications:

  • I am, in fact, Alex McEachern as well as Misplaced Pages user AMcEachern. To help anyone who has any doubts, I have added "Active participant in Misplaced Pages power factor discussion" to my home page at http://Alex.McEachern.com. It's right at the very bottom.
  • About IEEE 1459:
  • There is no confusion in IEEE 1459 about negative power factor. There is one confusing statement that says, effectively, that power always flows from the source to the load. Editor Shymanski extended that statement to form his idea that power is always positive, and then extended that idea to conclude that power factor is always positive. But it is not an IEEE position that power factor is always positive.
  • Figure 1 in IEEE 1459 clearly shows that power can be either positive or negative, and that implies that power factor can be either positive or negative.
  • After the power definitions debate which I will moderate at the Summer 2013 IEEE Conference in Vancouver, where this topic will be thoroughly discussed, I expect that IEEE 1459 will be revised/updated/errated or corrected in some other way. But it is NOT my intent to modify IEEE 1459 to match the (incorrect, in my judgement) idea that power factor can be only positive. My judgement is that power factor can take any value between -1 and +1.

In general, I agree with the present state of the article. I do have a minor quibble with "A negative power factor occurs when the device which is normally the load starts to generate power which then flows back towards the device which is normally considered the generator..." To be precise, the words "starts to" are incorrect; the negative power factor is present whenever this condition applies, not just when it starts. If someone knows how to edit the article when it's locked, that might be a good correction to make. Thanks again to everyone! AMcEachern (talk) 22:50, 15 April 2013 (UTC)

I have personally confirmed that Misplaced Pages user AMcEachern is indeed Alex McEachern, fellow at IEEE, author of (draft) Some corrections to IEEE Standard 1459-2010, and owner of the alex.mceachern.com and powerstandards.com web sites. --Guy Macon (talk) 02:19, 16 April 2013 (UTC)
Wonderful. Now if we can only get user:AMcEachern to testify who is User:Guy Macon, we'll have a perfect authentication. --Wtshymanski (talk) 13:32, 16 April 2013 (UTC)
Actually, my identity can be confirmed. I can prove that I control the web pages, email addresses, telephone numbers and mailing address that I say I do, I have applied Template:User committed identity to my Misplaced Pages page, and I can provide a Notarized Identity Verification Form on request. A while back I had to confirm my identity and that I wrote a certain online document before testifying in a patent infringement case (Someone tried to patent the idea of using 60VAC/60VAC balanced AC power with the outlets normally used in the usual single-phase 120VAC (hot) / 0VAC (neutral) system. I testified that I had installed just such a system in a recording studio in West Hollywood many years earlier and that it was still being used.) Wtshymanski, might I remind you that it was you who claimed "anyway, we have no credible sources that say the IEEE 1459 committee thinks this is unclear, all we have is OR from an account claiming to be someone on the committee", thus triggering the above proof of identity? Please remember the First Rule of Holes: when you find yourself in one, quit digging. --Guy Macon (talk) 14:21, 16 April 2013 (UTC)
I fully agree that the words "starts to" in my original edit are ambiguous, and the final sentence of the first para of the lede should be changed to: "A negative power factor occurs when the device which is normally the load generates power which then flows back towards the device which is normally considered the generator." JohnJuliusFeinstein (talk) 01:18, 16 April 2013 (UTC)

Edit request

This edit request has been answered. Set the |answered= or |ans= parameter to no to reactivate your request.

In the first sentence of the lede, delete the phrase:

"A negative power factor occurs when the device which is normally the load starts to generate power which then flows back towards the device which is normally considered the generator..."

Substitute

"A negative power factor occurs when the device which is normally the load generates power which then flows back towards the device which is normally considered the generator..."

Justification:

  1. It is agreed above that the negative power factor occurs all the while power is being fed from the load to the generator and not just as the reverse feed starts.
  2. None of the twelve citations supporting the point claim that the negative power factor only occurs at the start of the event.
  3. The editor who inserted the phrase concedes that the words 'starts to' are ambiguous and that the lede should be changed in accordance with this request.

As for whether this page should be unprotected: this would not seem a good idea as Wtshymanski has made it clear that he will continue to misinterpret what the IEEE have to say on the subject of negative power factor (). Unfortunately, Wtshymanski's claim that the IEEE have supported his view is not correct as documented (exhaustively) above including one of the contributors to that very document. The article is currently correct so no edit request is necessary on the disputed point of negative power factor. I B Wright (talk) 18:20, 16 April 2013 (UTC)

I agree that the above edit is uncontroversial and should be made. As for page protection, I think that the following edits say it all: In these edits Wtshymanski flat out refused to follow our policies on consensus and edit warring. --Guy Macon (talk) 19:16, 16 April 2013 (UTC)
I had a go at reading #Negative Power Factor? above. Eight arbitrary breaks? Anyway. We did Power factor at college, Electrical Principles Level 3 - it was explained to us as the cosine of the phase angle between voltage and current; and it's possible for cosines to be negative, so  Done, amended. Regarding the status of the prot: if you decide that it should be lifted, please file a request at WP:RFPP. --Redrose64 (talk) 20:06, 16 April 2013 (UTC)
  • Support deletion of "starts to", but with reservations.
Phrases of "normally the load" and "normally considered the generator" should be edited, too. The noun phrases "nominal load" (or "named load") and nominal generator should be used instead. Normal ≠ nominal.
"A negative power factor occurs when the device which is the nominal load generates power that flows toward the device which is the nominal generator..."
Or simpler:
"A negative power factor occurs when the nominal load generates power that flows toward the nominal generator..."
Glrx (talk) 20:11, 16 April 2013 (UTC)
If you disagree with the edit that I made, please don't revert my talk page post. --Redrose64 (talk) 20:37, 16 April 2013 (UTC)
I don't disagree with your edit and I did not intentionally remove your talk page edit. I did not get an edit conflict warning when I edited the talk page. I had the talk page loaded before you made the change, and then proceeded to edit it and check the definition of nominal. I then clicked save, but the page did not load; instead I had a blank page displayed in my browser. I clicked back and then save again, and everything appeared normal.
I've seen other editors claim they inadvertently deleted an edit, and now I see a mechanism for that. My guess is WP throws away the lock instead of looking for an updated time on the submit.
Glrx (talk) 23:50, 16 April 2013 (UTC)
I don't disagree with your proposed change, but if you want it considered, you need to put it in the form of an edit request using the {{Edit protected}} template. You then need to state exactly what change you are proposing along with a justification (see my example above). If there is no previous discussion on the point, one will surely follow. An admin will then either make the edit or decline it. I B Wright (talk) 16:24, 30 April 2013 (UTC)

The cosine of 180 degrees is -1

Interestingly, Redrose64 has provided the basis for a nice little proof that power factor can be negative.

He said, " the cosine of the phase angle between voltage and current". This is true, in fact it is often referred to as "cos Φ".

If the current flow reverses, its phase becomes 180 degrees to that which it was before the reversal.

The cosine of 180 degrees is -1   QED DieSwartzPunkt (talk) 14:44, 21 April 2013 (UTC)

Your answer is correct, but the definition "Power factor is the cosine of the phase angle between voltage and current" is not always true. It is only true in the specific case where the load is some combination of resistive and reactive (inductive or capacitive) and the voltage and current waveforms are sinusoidal with no distortion or harmonics. Try calculating the phase angle for figure 3 of or figure 3 of .
That being said, in the specific case of undistorted sinusoidal voltage and current waveforms, the cosine method does indeed show that when the voltage and current are 180 degrees out of phase, the power factor is negative. The power factor can also be negative in the case where the current waveform is highly distorted (see figure 3 again) -- simply reverse the phase of the current waveform -- but the only way to use the phase angle / cosine method in that case is to first perform a Fourier transform, calculate the cosine for each harmonic, and combine the results. This is, of course exactly what a modern power analyzer such as the Voltech PM1000 does. Look at , which clearly states "Power Factor" -1.000 to +1.000". --Guy Macon (talk) 19:43, 30 April 2013 (UTC)
It's not necessary to have the specific case of 180° - all positive or negative angles between 90° (exclusive) and 270° (exclusive) have a negative cosine. So the voltage and current could be 91° out of phase, and the power factor is negative. --Redrose64 (talk) 20:31, 30 April 2013 (UTC)
Yes. Sorry for not making that clear. --Guy Macon (talk) 22:04, 30 April 2013 (UTC)
Though you are correct in the widely employed usage of the term 'power factor', it is not correct in the strictly accurate definition. The term 'power factor' is strictly defined as the cosine of the phase angle between sinusoidal voltage and sinusoidal current. To cover the situation where the current waveform is not sinusoidal, the alternative term 'apparent power factor' was coined which addresses that it is not the proper fower factor and is defined as real power divided by apparent power (or Watts divided by Volt-Amps). However, having said that, most engineers will just call it 'power factor' because it just happens to also be ratio of the real power to the apparent power - it's just not defined that way. Many technical works, including those from highly authoratative sources, have abandoned the strictly correct former definition of 'power factor' for the latter in order to sweep the problem introduced by non sinusoidal currents firmly under the carpet. The article here is no exception, but as the cited references support the point, this has to be regarded as acceptable. I could cite references for the alternate definition, but they all predate the introduction of non sinusoidal power supplies as the problem had not yet arisen. Addressing both concepts in the article would only serve to confuse the readership anyway. 86.145.244.180 (talk) 14:52, 4 May 2013 (UTC)
That really depends on where you stand on the prescriptive vs. descriptive issue. See Dictionary#Prescriptive vs. descriptive, Linguistic prescription#Prescription and description and Linguistic description
Standards such as IEEE 1459 are prescriptive, but Misplaced Pages pages are, by design, descriptive and not prescriptive.

If Misplaced Pages had been available around the fourth century B.C., it would have reported the view that the Earth is flat as a fact and without qualification. And it would have reported the views of Eratosthenes (who correctly determined the earth's circumference in 240BC) either as controversial, or a fringe view. Similarly if available in Galileo's time, it would have reported the view that the sun goes round the earth as a fact, and Galileo's view would have been rejected as 'original research'. Of course, if there is a popularly held or notable view that the earth is flat, Misplaced Pages reports this view. But it does not report it as true. It reports only on what its adherents believe, the history of the view, and its notable or prominent adherents. Misplaced Pages is inherently a non-innovative reference work: it stifles creativity and free-thought. Which is a Good Thing.
— WP:FLAT

As for any references you might cite, even if the authors intended them to be prescriptive, if they predate the introduction of nonlinear loads and they predate IEEE 1459, they are no longer prescriptive because they are outdated. --Guy Macon (talk) 22:05, 4 May 2013 (UTC)
I'm not sure exactly what point 86.145.244.180 was trying to make but if the 21st century references define power factor as the ratio of real power to apparent power (as they seem to do) then that is what the article should state. I have noted that article does address the issue of "apparent power factor" with respect to non linear loads, but uses (what I presume) is an alternative term "harmonic power factor". I B Wright (talk) 15:55, 12 May 2013 (UTC)

Contributors here might like to note that this elongated discussion has given rise to a paper on negative power and negative power factor (so not a complete waste of time). The paper is entitled, "On Negative Power and Negative Power Factor in Alternating Current Power Systems". The paper acknowledges the input from all the contributors here though is only able to name two of them (the rest of us being unknown). The paper in draft form can be found here. I B Wright (talk) 17:09, 5 June 2013 (UTC)

Very clear, well-written and sourced. Good job. I would suggest a couple of minor tweaks to that document:
First, "Misplaced Pages.org" isn't an actual website location. It is a common enough mistake that the servers at Wikimedia are programmed to redirect you to a real URL (http://www.wikipedia.org/) but even that is wrong -- the page you are reading is not on www.wikipedia.org but rather en.wikipedia.org (The English Misplaced Pages). The usual convention is to just say "Misplaced Pages" or possibly "en.wikipedia.org" (no capitalization).
Second, if you look at the title bar on the PDF document, it says it is "Microsoft Word - On Negative Power and Negative Power Factor Rev 2". This has always annoyed me; a document that is 'not in Microsoft Word format says that it is in the title text, just because Microsoft wants some free advertising. This is a metadata issue.
In general, before publishing anything in Word or PDF format, you should purge the metadata and put in information that will help the reader. In your metadata, in addition to the free advertising for Microsoft Word in the title, it has "PDF producer: Acrobat Distiller 10.1.5(Windows)" (information that is no use to the reader except as free advertising for Acrobat Distiller), the author is listed as "Alex" (should be the exact same spelling as the individual or organization used in the copyright notice), and the Subject and Keywords are blank. Putting appropriate text in those fields will help search engines to find and classify the document.
Here is some interesting advice from Adobe and from the national security agency about scrubbing metadata before publication:
http://www.nsa.gov/ia/_files/app/pdf_risks.pdf
http://ridethelightning.senseient.com/2010/08/adobes-advice-on-purging-pdf-documents-of-metadata.html
http://ridethelightning.senseient.com/2010/08/adobe-offers-more-helpful-metadata-scrubbing-tips.html
http://ridethelightning.senseient.com/2010/08/remove-metadata-from-acrobat-documents-as-part-of-ediscovery-readiness.html
http://ridethelightning.senseient.com/2010/07/metadata-scrubbing-are-lawyers-finally-getting-the-message.html
In my opinion, there should be a policy regarding metadata in the IEEE’s written data retention policies and procedures, and you might want to consider doing the same at Power Standards Lab.
Finally, as long as I have my "get every tiny detail right" engineer hat on, let us consider the directory and filename:
http://powerstandards.com/Shymanski/draft.pdf
This is just a personal preference of mine, but I like to see a somewhat more descriptive filename. It is really annoying when I have my IT hat on, someone asks me to recover a file, and it is one of 10,000 files with the exact same "draft.pdf" filename. I prefer something like NegativePowerFactorDraftV2.PDF. (Or Negative-Power-Factor-Draft-V2.PDF, Negative Power Factor Draft V2.PDF or Negative_Power_Factor_Draft_V2.PDF.) Windows has had long filenames since 1994.
Finally, since W.T. Shymanski has made it very clear that he thinks that you are dead wrong and insists that there is no such thing as negative power factor, he might not like having his name in the URL. Obviously http://powerstandards.com/GuyMacon/ is far superior... (just kidding. Something like http://powerstandards.com/IEEE_1459-2010_Corrections/ would be better). --Guy Macon (talk) 21:08, 5 June 2013 (UTC)

Edit request on 14 May 2013

This edit request has been answered. Set the |answered= or |ans= parameter to no to reactivate your request.

Due to their very wide input voltage range, many power supplies with active PFC can automatically adjust to operate on AC power from about 100 V (Japan) to 240 V (Europe). That feature is particularly welcome in power supplies for laptops. 91.113.8.65 (talk) 15:48, 14 May 2013 (UTC)

 Not done: please provide reliable sources that support the change you want to be made. --Redrose64 (talk) 20:49, 14 May 2013 (UTC)
Just as well. It is not the active power factor correction that achieves the wide voltage range. The power supply would still operate from the wide voltage range even if active (or any) PFC was not fitted. DieSwartzPunkt (talk) 11:52, 16 May 2013 (UTC)
It is a "free bonus" of the common method of APFC used in ATX PSUs, switchmode boost, that enable power to be drawn at all points on the AC cycle, assuming the APFC is designed to accept a maximum of 240V, and has sufficient boost capababilty to work as low as 100V. The standard with no or passive PFC is to use bridge rectification at 230V, voltage doubling at 115V. Ace of Risk (talk) 15:30, 16 May 2013 (UTC)
I don't think that that is unique to PFC power supplies. I haven't done a survey, but I believe that most switching power supplies have the ability to operate over a wide input range. --Guy Macon (talk) 19:27, 16 May 2013 (UTC)
Correct. I have a wide selection of such power supplies (you seem to get one with everything you buy these days). The earliest of these predate the requirements for PFC (and my PF meter confirms that they are not) but are specified to operate from 100-250 volts AC. Also, quite a number of modern PC power supplies still have a voltage switch (a shufty round the back of my 6 month old PC reveals such a switch on the power supply) so PFC has not granted it a wide voltage range. DieSwartzPunkt (talk) 16:32, 18 May 2013 (UTC)
A load is not a load if the averaged power factor is less than 1. It is a source, period. Cosine of 180 degree is in fact -1, this is true. But any passive reactive load cannot be a source and can only have a minimum reactive PF of 0.0, cosine(90)= 0.0, period. IFF, like an electric motor during regenerative breaking creates a PF of less than 0 up to a magnitude of -1.0 then it is called a source.
If you want to leave the definition as +1.0 to -1.0 simply put in parenthesis the word load and source, or more precisely Loading and Sourcing. Edit to... +1.0 (Loading) to -1.0 (Sourcing,)Done, over, complete, none confusing...User: I_B_GREEN, Green_Is_Now,CEO, Chief Efficiency Officer... — Preceding unsigned comment added by 161.84.227.12 (talk) 22:31, 6 June 2013 (UTC)
I think you must have meant a load is not a load if the power factor is less than 0. But I don't understand how this adds to the already very unnecessarily muddied discussion about active power factor correction and input voltage. SMPS do not rely upon power factor correction to operate on a wide input voltage range. For example, my laptop SMPS measures a PF of 0.5 yet operates between 100 - 240v. It appears the principal value of active PFC is to enable a greater power draw off from a mains circuit where the current carrying capacity of the circuit would otherwise be a limiting factor, or if you are power factor metered which is sometimes the case for large commercial power consumers. I suggest discussion of active power factor control has no place in the power factor article. The article should concentrate on what power factor means, how it is measured, and why it is important. Subjects such as power factor control or active power factor control could have their own space. Ramifications of APFC for SMPS should perhaps be reserved for the SMPS article where I am sure experts in SMPS will make sure the article is on target. Nick Hill (talk) 22:22, 9 June 2013 (UTC)
A load which is purely resistive (including those cases where XL exactly balances XC) will have a power factor of exactly 1. Any other load has a power factor less than 1. So you're saying that a 1 kW electric motor - which presents a substantial XL - is a source? Hmmm. --Redrose64 (talk) 18:34, 7 June 2013 (UTC)
There is no need to argue about how to describe power factor. The IEEE has already figured it out, and it is slowly working its way to becoming a clarification of the existing standards. You can read it here:
http://powerstandards.com/Shymanski/draft.pdf
One key question to ask yourself it this: how do you describe a point in a circuit that has the current exactly 180 degrees out of phase with the voltage? If your preferred scheme cannot describe that or gives you the exact same answer as 0 degrees, you need a better system. --Guy Macon (talk) 22:11, 7 June 2013 (UTC)

I thought we got rid of the need for IEEE standards, now that Fluke meter manuals define our terms? One draft paper by an IEEE member does not make it the opinion of IEEE. ( recall some tsimmis a few years back by some lonely member publishing ...quite original...views on system netural grounding in a couple of papers. Didn't change the IEEE's "opinion", though, insofar as a collection of committees can be said to have a consistent "opinion" on anything.) There's a standards process, though why would anyone bother as long as we can consult some random WIki editor's toolbox for the gospel. Should have had their conference by now...I no longer subscribe to the "proceedings" but I expect the results will be on the Web by and by. --Wtshymanski (talk) 16:51, 8 June 2013 (UTC)

Wtshymanski, you have been warned about behavior such as the above.
On 19:11, 18 March 2013, JohnJuliusFeinstein wrote
"Mr Shymanski, I do hope that you are not seriously attempting to cast doubt on Sandy McEachern's identity? Here is a recent IEEE newsletter which confirms (page 17) his roles with IEEE, here is his CV from his own company's website, and the draft paper which he placed on that website, using your name as the reference, provides a convincing link between WP user AMcEachern and Alex McEachern, Founder, President, and Chief Technologist of Power Standards Lab. Please avoid using disingenuous tactics in an attempt to smear user AMcEachern."
On 02:19, 16 April 2013‎, I (Guy Macon) wrote:
"I have personally confirmed that Misplaced Pages user AMcEachern is indeed Alex McEachern, fellow at IEEE, author of (draft) Some corrections to IEEE Standard 1459-2010, and owner of the alex.mceachern.com and powerstandards.com web sites."
And at 22:50, 15 April 2013 (UTC) AMcEachern wrote
"I am, in fact, Alex McEachern as well as Misplaced Pages user AMcEachern. To help anyone who has any doubts, I have added 'Active participant in Misplaced Pages power factor discussion' to my home page at http://Alex.McEachern.com. It's right at the very bottom."
After the above, for you to call him "some random WIki editor" and "some lonely IEEE member" is inappropriate behavior, even for you. Misplaced Pages user AMcEachern is indeed Alex McEachern, and Alex McEachern is not just an IEEE member, but rather is an IEEE Fellow (awarded for "contributions to power quality measurement"), and is the co-author of IEEE 519, IEEE 1159, SEMI F47, IEC 61000-4-30, IEC 61000-4-34, IEC 61000-4-11 and, most notably for the purposes of this discussion, co-author of IEEE 1459, which you kept citing on this very page ("If the committee that wrote up 1459 thought that, for defining power factor, power only flows from a source to a load, that's good enough for me") back before the author of 1459 told you
"May I gently point out that we have no citations, as far as I know, for saying that power factor is between 0 and 1? My understanding is that you derive that conclusion from the statement in IEEE 1459 that power is always positive. Based on the same level of analysis, could we use IEEE 1459 Fig 1 (which shows positive and negative power) as our citation for negative power factor? Would that be a reasonable solution? "
and
"Would you accept IEEE 1459 itself as the citation for positive and negative power, and therefore positive and negative power factor? if so, please examine Figure 1 in both Editions of IEEE 1459, which clearly shows both positive and negative power along the horizontal axis. I agree that Figure 1 directly conflicts, in the same Standard, with the statement in 3.1.1.1 that says that power is always positive. But surely that conflict makes my point: that Misplaced Pages should not deprive its readers of the fact that authorities disagree?"
He is also the author of the Handbook of Power Signatures (generally considered to be the definitive reference on the subject) author of the Electric Power Measurements chapter of the Encyclopedia of Electrical and Electronics Engineering, chairman of the International Electrotechnical Commission (IEC) TC77A Working Group 9, which sets the standards for power quality instruments. He is also the former Chairman of IEEE 1159.1 and a voting member of the IEEE Standards Coordination Committee on Power Quality. And he holds 30 U.S. patents in the area.
For you, knowing all of the above, to imply that he is some random Misplaced Pages editor or some random IEEE member is tendentious, disruptive, and an unacceptable slur. Don't do it again or there will be consequences. --Guy Macon (talk) 19:59, 8 June 2013 (UTC)
This is what I get for trying to be subtle. For "some random editor", read "some random editor who owns a Fluke model mumblety-mumble power meter", if that clarifies it for you. I don't doubt (nor much care about) user AMcEachern's identity and the above wasn't about him. As for me, I am some random IEEE member, getting more random each time I log onto Misplaced Pages. If Mr. McEachern couldn't get the standard to read clearly after the last few revisions, why would anyone expect Misplaced Pages to get it right? We're lucky Randy from Boise hasn't equated "power factor" with "efficiency", citing something he saw last year on Discovery Channel as a reference. --Wtshymanski (talk) 17:12, 10 June 2013 (UTC)
Riiiiiiiight. when you wrote "One draft paper by an IEEE member does not make it the opinion of IEEE" you were talking about me, not the only person here who has written an IEEE draft paper. I just got in a shipment of a metric ton of WP:AGF, so I will take you at your word. (Drat! Almost out of AGF again! Better re-order...)
None of this, of course, changes that fact that said draft paper contains multiple citations to reliable sources establishing that negative power factor does exist, and you have provided exactly zero citations other than a self-contradictory IEEE document -- and the author clearly explained which of the two contradictory statements in that document is in error (the one you keep citing) -- supporting your claim that negative power factor does not exist. --Guy Macon (talk) 18:38, 10 June 2013 (UTC)
It was you (Macon) who quoted his Fluke manual as being evidence that negative power factor is not just an indication you've hooked up the instrument wrong. Mind you, when I quoted my Fluke manual and showed that a different instrument did not display negative power factor, I was brushed off. I am unimpressed by this style of argument. Since the fringe appears to contain a substantial number of IEEE standards contributors who in the last several revisions of IEEE 1459 did not feel it was useful and necessary to explicitly standardize the definition of negative power factor, I'm comfortable in that fringe. --Wtshymanski (talk) 15:04, 12 June 2013 (UTC)

Negative PF issue

The material in the previous section is off topic for the section heading and is troubling in other respects.

PF is a defined term, and its value depends on that definition. In one view, the actual source matters and PF is never negative; in the other view, there's a nominal source and the PF may be negative. Either definition is possible/plausible. Viewing PF as an efficiency (where direction of flow irrelevant) is not absurd on its face.

I think most of the editors here would follow the nominal source/negative power factor view. Personally, I prefer that view, too, but I'm not willing to discard the other viewpoint as wrong (definitions cannot be wrong). I'm also not willing to concede that an unambiguous IEEE definition should be the last word on any issue. If the IEEE definition were PF is never negative, then I'd view a Fluke meter's PF < 0 reading as a different definition from a significant reliable source.

McEachern's paper is in some sense self-defeating on the definition because it acknowledges that at least some engineers believe that PF is never negative. Furthermore, the paper points out places where the IEEE spec is confusing or ambiguous on the issue. If an insignificant minority held the never negative view, then there would be little need to write the paper. To me, there is a minority viewpoint for PF is never negative.

My take is the WP article should adopt the nominal source/negative PF definition, but it should briefly acknowledge the never negative definition. I have no trouble with using McEachern's draft paper as the source for both positions. Even if the paper is currently unpublished, I can accept McEachern's membership on the 2000 and 2010 committees as bestowing prominence. WP:DUE. However, neither McEachern nor the paper speak for the IEEE. The paper describes a position that McEachern advocates, but the IEEE is currently silent on the ambiguity of its definition. Glrx (talk) 20:09, 10 June 2013 (UTC)

The minority viewpoint for PF is never negative is clearly a WP:FRINGE view, and the "some readers" the paper refers to appear to consist of Wtshymanski and a few students who got the wrong information from from Misplaced Pages before we corrected it. No source anywhere has been found that repeats the error in IEEE 1459 -- probably because the rest of that document -- especially figure 1 -- makes no sense if you believe that PF is never negative. No textbook teaches that there is no such thing as a negative power factor. No scientific or engineering paper makes the claim. Holding that theory makes it impossible to do a power factor calculation when the current switches from being in phase to 180 degrees out of phase with the voltage.
I say we treat it like any other fringe view, and give it the WP:WEIGHT we would give any other fringe theory where we have zero evidence that it is held by anyone but one Misplaced Pages editor and some students who got the information from Misplaced Pages.
The fact that at one time there were instruments that used + and - for lead and lag, on the other hand, is worth adding if we can find sources, which should not be difficult. --Guy Macon (talk) 02:00, 11 June 2013 (UTC)
I also agree that that negative power factor does not exist. Negative power factor is a reading on an instrument that we all understand the meaning of but in reality is impossible. When load power factor is measured and it becomes negative it means that the instrument manufacturer was tired of the "---" reading complaints and allowed it for the convenience of the user. A load never feeds back negative power into it's source. This is impossible in simple logic. Power direction determines source and load. What has happened is the load has become the source and the instrument has not been reversed to measure load power. People seem to be confusing negative power factor with the artificially created positive and negative RVA statements, arbitrarily assigned, for convenience of communication . This has never applied to power factor. A further problem with this method of validating technical issues, and other issues, for that matter, in WP is outside references are based on repeated misconceptions becoming de facto standard and then accepted over time, ain't it so? Where does that leave us? Only using references that are over forty years old? :) 174.118.142.187 (talk) 16:53, 13 June 2013 (UTC)
Do you have any sources that say that? Any textbooks that say that there is no such thing as negative power factor? Class handouts? Other than that one where the author told us it was a mistake, any IEEE documents? Research papers? Magazine articles? Any manual for any power analysis instrument? Anything at all? "Because someone using IP address 174.118.142.187 says so" doesn't quite meet our WP:V requirement.
Imagine that you are measuring the power factor of a transmission line used by a small factory. You measure 120 volts and 120 amperes, 0 degrees of phase shift and 0% voltage and current distortion. You hook up your Fluke 434 Power Quality Analyzer and is says that the power factor is +1. Just to be sure, you hook up your Voltech PM1000+ Power Analyzer It also says that the power factor is +1.
Having worked most of the night analyzing power, you take a break, eat breakfast, and enjoy the eastern Canadian sunrise. When you return, a huge photovoltaic array on the roof of the factory has kicked in. There is no change to the voltage, current, or distortion, but the voltage and current are now 180 degrees out of phase, the utility's watt-hour meter is running backwards, and both analyzers show a power factor of -1. How can this be? You round up a dozen other instruments, and every single one of them reads -1 So you call a university professor, who tells you "I am heartily fed up with students telling me that negative PF does not exist". You claim that all of the instrument manufacturers are purposely telling lies, both in what they display and in the explanations in their manuals. Do you have any sources for that claim?
This reminds me of the drunk driver who was driving the wrong way on the freeway. Upon hearing on the radio (over the honking horns) that there was a drunk driver who was driving the wrong way on the freeway, he peered through his windshield, noticed all of the headlights heading toward him, and exclaimed "My God! There are DOZENS of them!!" --Guy Macon (talk) 23:15, 13 June 2013 (UTC)
This reminds me of that drunken driver also. Was there any signs that say it is illegal to drive on that side of the road when you are drunk? Do you have any cites or references that state that? Class handouts? Magazine articles? Perhaps a driver training manual? Let's see one. That's what the discussion is all about and because somebody with a twisted example doesn't justify it to be accurate enough to be in WP. The only thing that can happen here is put in what we have references for. In light of conflicting ones we use the ones with the most weight. I weigh about 95kg. :). When your meter goes backward you state the absolute value of the power factor and mark it as being a generation point. If the kWh meter is going backward you install one with a detent. Utilities don't buy back energy at the same rate they sell it and the customer has to disconnect his source until the proper approval is obtained and metering installed. What happens when your meters indicate a lower VA than your watts? Do you have power factor higher than unity (1.0) or do you conclude you have a metering error? Is your VA reading arithmetic VA or phasor VA? Do we now have arithmetic power factor? Legal Metrologists will tell you they do and know when to use it and when not to. A silly example doesn't prove any of the argument either way. I only stated a logical observation conclusion in light of disagreeing references. There are instrument readings and there is knowledge how to apply them. Your example used improper terminology in the analysis to justify the negative power factor fallacy. Power doesn't flow from a load to a source and we never measure the transmission line, we measure the load with load wattmeters. Your meters are backwards. WP demands the best reference source, wright or not. Who knows? 174.118.142.187 (talk) 00:38, 14 June 2013 (UTC)
Checking one of your references where the professor says "Sandy McEachern who is, after all, the acknowledged expert". If this is true where is her published papers? 174.118.142.187 (talk) 00:53, 14 June 2013 (UTC)
HIS website, which includes a list of publications and biographical information, can be found here (as has been indicated several times already): http://alex.mceachern.com/ ElectricTattiebogle (talk) 13:16, 14 June 2013 (UTC)
So Sandy is Alex? That name has been used multiple times without confirmation I can find. I am not well versed in reference quality for WP but would a source with products advertised supported by the very same source documents be a COI or meet the WP standards? I only see promotion in the linked site provided. 174.118.142.187 (talk) 14:02, 14 June 2013 (UTC)
Both Alex and Sandy are familiar forms of Alexander. --Redrose64 (talk) 14:11, 14 June 2013 (UTC)
Until we get someone else with the last name of McEachern posting to this talk page we safely assume that any references to McEachern are to the only McEachern in this conversation. --Guy Macon (talk) 18:32, 14 June 2013 (UTC)
I guess we will have to wait for "Mac" to input. :) Talk about confusion. Geesh! 174.118.142.187 (talk) 04:04, 15 June 2013 (UTC)
Your point about the rate at which utilities buy back energy is probably an America-centric view. Here in Europe, any electricity generated by a photovoltaic scheme (or wind mill, water wheel etc.) is sold back to the utility at a higher rate than you pay for the electricity supplied. Here in the UK, I pay 13.68 pence for every kWh of energy supplied to me by my electricity supplier. When the sun shines (as it is at the moment) and my photovoltaic panels are producing around 4 kW of power, I am paid 42 pence for every kWh that I feed back through my meter to the electric company (the amount I generate is separately monitored by the PV equipment). My electric meter is currently running backwards so that the accumulated kWh is reducing indicating that it is integrating negative power. If my electricity supply company is the source of my power, and my home the load, then during the day the power flows from the load to the source and the electric meter integrates that power by subtracting this negative power from the (positive) accumulated reading. Of course, the power isn't really negative, or my washing machine heater would freeze the water rather than heat it (an absurd concept). It is just an (almost) universally used convention to indicate reverse power flow.
I doubt Europe has any basic principles that differ from North America's. Your meter will be indicating backwards but both register accumulators will have to be calibrated and certified separately and the independent results have math applied to get your bill. We have incentive programmes (note spelling :)) that force the utilities to pay out more than the energy is worth. Our utilities have a few ways of doing it. I only get credit for any net energy fed back into the grid when I am a "source" to the system. Others get big rewards for everything produced at exorbitant rates paid by the government, even if they consume it all at the lower rate. The utilities don't pay for it. 174.118.142.187 (talk) 14:13, 14 June 2013 (UTC)
I don't understand your reference to, "both register accumulators". Electric meters here have just one 'accumulator' for the watt-hours consumed. If the power flow is from the utility to the consumer, the reading on the register dials increases as energy is supplied. If the net flow is from the consumer to the utility, the induction disk rotates in the opposite direction and the reading on the register dials decreases as energy is returned (i.e. the meter integrates negative power). The feed in rate is paid to me by the utility (and separately metered by the inverter system). It is true that they get it back from the government, but that is invisible to me. DieSwartzPunkt (talk) 11:18, 16 June 2013 (UTC)
Since an electric meter does not indicate VA or watts, it would be impossible for it to indicate a lower VA than watts. DieSwartzPunkt (talk) 12:14, 14 June 2013 (UTC)
Your meter doesn't indicate watts or VA that you can see on the front. Perhaps power factor doesn't exist at your European location. :) — Preceding unsigned comment added by 174.118.142.187 (talkcontribs) 14:31, 14 June 2013 (UTC)
My meter doesn't indicate or measure VA, watts or even power factor at all because it has no provision for doing so. It's sole ability is to integrate power consumed, both positive and negative, with respect to time (i.e. it measures energy and nothing else). Since the electric meter article contains a very nice picture of an induction type watt-hour meter, perhaps you would care to point out, where in its structure you believe that there is a hidden mechanism for measuring VA or power. DieSwartzPunkt (talk) 11:18, 16 June 2013 (UTC)
I think 'straws' and 'clutching' come to mind here. The article contains no less than a dozen references supporting the concept of negative power factor (and it has to be understood that it is only a convention for reverse (positive) power flow). Wtshymanski tried to defend his (up until now) unilateral stance that negative power factor does not exist by claiming that all 12 references were bogus ( The edit summary is the telling feature). But as Guy points out, so far, there have been no references supplied that specifically state that there is no such thing as negative power factor (beyond the IEEE paper which actually contradicted itself). If suitable and reliable sources could be found which support that viewpoint beyond a fringe theory, then the article could legitimately document the alternative concept. But so far, nothing has been forthcoming. DieSwartzPunkt (talk) 11:53, 14 June 2013 (UTC)
Well as much as I agree with you and "a negative can never be proven" (Quote from you, I believe) it has to come down to the best reference for the article. Consensus has not been used on this issue as currently the article is locked down with the onus on the new edits editors to provide convincing discussion and haven't. We hardly can expect a few, less than half a dozen edits, editors with only this article and reverts of Wtshymanski edits experience, to participate intelligently in the WP process and prove the fringe theory that negative PF does exist. OTOH I have to agree with Wtshymanski that the 12 references have no substance, possibly imaginary or not suitable referenced to be of value. 174.118.142.187 (talk) 14:31, 14 June 2013 (UTC)
Since you mentioned references, the solution here is very simple. Open a section at the bottom of this page to propose a change to the article. State what you want changed and what you want it changed to. Most importantly, include those all important references that support the change you want made. But that's the problem isn't it. In spite of the continued requests made here, no reference has been forcoming apart from one IEEE document that contadicts itself on the issue. As for the existing references, how good or bad everyone believes they are somewhat immaterial. Even if they are poor references, they are better than no references (and that is a slight reword of a quote from Wtshymanski himself - but not in relation to this discussion). DieSwartzPunkt (talk) 11:16, 17 June 2013 (UTC)
Is it just me, or can anyone else smell a sock here? Not only is 174.118.142.187 supporting the lone view expressed by Wtshymamski, but he is also supporting Wtshymanski's view that the 12 perfectly good references are inadequate. Or is it just a coincidence?
Well here is another coincidence. Wtshymanski's location is a matter of public record (I won't repeat it here for fear of falling foul of WP: OUTING). 174.118.142.187 geolocates to the same place. 212.183.140.50 (talk) 14:44, 14 June 2013 (UTC)
Strangely, the thought had crossed my mind. As a further coincidence, 174.118.142.187 has been compiling some interesting information of his own (My thanks the Mr Wright for bringing this to my attention). The additional coincidence is that he is clearly supporting Wtshymanski's tendentious editing by compiling a list of some of those opposing him. 174.118.142.187 also has other similar characteristics. He exhibits tendentious editing traits of his own; he blanks embarrasing remarks from his talk page in short order (relatively few Misplaced Pages editors actually do so). And when the deletion has taken place, that sarcastic edit summary that is so typical of Wtshymanski.
While formulating this response, 174.118.142.187 blanked the previous comment, so it obviously touched a nerve. Since he is making allegations, but blanking anyone else's attempt to do so, we have that Wtshymanski charecteristic that he is right and entitled to do what he likes, and everyone else is wrong and cannot.DieSwartzPunkt (talk) 15:21, 14 June 2013 (UTC)
I don't buy it. The "geolocates to the same place" is a fabrication. 174.118.142.187 geolocates to Collingwood, Ontario Canada (closest major city: Toronto). Per Misplaced Pages policies, I cannot reveal any personal information about Wtshymanski that he has not himself revealed on Misplaced Pages, but at File:RedRiverFloodwayInletStructure.jpg, File:HP 95LX Pocket Computer.JPG and File:Mercury emissions by light source EPA 2008.svg he reveals that User:Wtshymanski is W. T. Shymanski. The location of W. T. Shymanski is easily found by a web search and it is over 2000 kilometers (1200 miles) away from 174.118.142.187's location. Plus, Wtshymanski has reverted 174.118.142.187 at least once. --Guy Macon (talk) 19:43, 14 June 2013 (UTC)
In other words, a registered editor and an unregistered editor who argue the same patent nonsense are not necessarily sockpuppets. They may just be two incorrect disruptive editors. Robert McClenon (talk) 22:58, 14 June 2013 (UTC)
Exactly. I admit, when I saw an IP editor agreeing with Wtshymanski despite the utter lack of sources for the fringe view that say that there is no such thing as negative power factor, sockpuppetry crossed my mind, but checking the geolocation showed no connection. In the process of writing up the above I looked very carefully at the articles they have both edited, and it became clear they both hold to a combination of mainstream and fringe beliefs about engineering -- but not the same fringe beliefs. --Guy Macon (talk) 02:29, 15 June 2013 (UTC)
As one engineer to another, sometimes engineers have to make fine distinctions between different sorts of patent nonsense. Robert McClenon (talk) 03:21, 15 June 2013 (UTC)

Sorry but you have the observation wrong. To my knowledge I was not agreeing with Wtshymanski, at the time. When I first commented I didn't know who was on what side. Now can we please get on with the discussion or is it important to distract from it? Is there anything else to state? Just for the record I can see both sides of the argument. The negative PF doesn't feel right, to me, as it violates basic source/load logic and the way I was taught, but simple math tells us that Neg. PF exists mathematically. Instrument readings and patents are worthless, and bogus references do nothing to further a conclusion. One reference refers to a patent for a voltmeter and makes no reference to power factor, (it refers to the phase angle between two different currents in the coils) period and only makes readers suspect of other falsehoods. It needs to be removed, ASAP. More reading may prove WT correct about these references. It would be interesting to hear about his research on these references that stand so high on the one side of the scale. 174.118.142.187 (talk) 03:57, 15 June 2013 (UTC)

The issue of "negative" power is actually very simple. First, we need to remember that power factor is a combination of displacement factor and distortion factor. Displacement factor is a simple mathematical equation that defines the phase angle difference between the fundamental current and voltage waveforms (i.e. at nominal frequency). The equation is just the cosine of the phase angle between the fundamental, which has a range between +1 and -1. Distortion factor is the factor that allows for the effect of harmonics (i.e. non fundamental frequency) in the overall waveform. Nonetheless, the fact that the displacement factor can vary between +1 and -1, clearly means that the overall power factor is also between +1 and -1. Most students are taught that anything between +1 and 0 is leading (current waveform reaches its peaks before the voltage), and anything between 0 and -1 is lagging (voltage waveform reaches its peaks before the current). What we are actually talking about is the direction of the flow of energy, which can clearly be in two directions; thus the postive and negative. I think the real problem with "negative PF" is how people are taught when they are students.Bhtpbank (talk) 09:43, 20 June 2013 (UTC)
You might want to read http://powerstandards.com/Shymanski/draft.pdf . Phase angles (leading and lagging) in the range of -90° to 0° and +90° to 0° have a positive power factor. Phase angles in the range of -90° to 180° and +90° to 180° have a negative power factor. --Guy Macon (talk) 10:23, 20 June 2013 (UTC)

Two ref expansions requested

This edit request has been answered. Set the |answered= or |ans= parameter to no to reactivate your request.
  1. replace ref http://www.iec.ch/zone/si/si_elecmag.htm with {{cite web |title=SI Units - Electricity and Magnetism |publisher=International Electrotechnical Commission |url=http://www.iec.ch/zone/si/si_elecmag.htm |archiveurl=http://web.archive.org/web/20071211234311/http://www.iec.ch/zone/si/si_elecmag.htm#si_epo |archivedate=2007-12-11 |accessdate=2013-06-14}}
  2. replace ref with {{cite web|last=Davis |first=Sam |url=http://powerelectronics.com/mag/power_boosting_power_supply/ |title=Comparison between passive and active PFC solutions for a 250-W ATX application. |publisher=Powerelectronics.com |date=February 1, 2005 |accessdate=2013-06-16}}

--Lexein (talk) 00:21, 16 June 2013 (UTC)

Nothing is lost or altered, all information added is neutral, so  Done --Redrose64 (talk) 09:28, 16 June 2013 (UTC)

Negative power (and hence negative power factor) from first principles

I find the notion expressed above that there can be no such concept as negative power to be completely absurd. That its non existence could be classed as a "fringe theory" just does not work. I am not aware of any other professional electrical engineer who would see it any other way.

Consider a length of transmission line energised at V volts DC (keep it simple to start with). There is flowing a current of I amps. Thus energy is flowing along said line. Energy is an absolute concept and can only be positive. But the flow of energy is a directional concept and must therefore be either positive (flowing one way) or negative (flowing the other). Mathematically, the power in our considered line is VI watts. If the direction of current flow is reversed (to become -I amps), the direction of power flow is reversed and becomes -VI watts (negative power).

Of course, which direction is positive and which is negative is purely an arbitrary choice. Without any knowledge of what is connected to the ends of our line it may be determined by nothing more that which way around we connected the ammeter. In a practical circuit, we assign labels to the two ends, "SUPPLY" and "LOAD". By convention we regard positive power as flowing from the SUPPLY end to the LOAD end, if only because it is logical to do so.

In an AC transmission line nothing changes. All the relationships hold true except for the complication of power factor. The power itself still flows either one way (positive) or the other (negative). Our positive current is a current more or less in phase with the voltage. Negative current is replaced by a current more or less 180 degrees out of phase with the voltage. So here again mathematically, where the current is 180° out of phase, the power is -VI watts. I could explain this better if I resorted to complex notation, but I am loath to do so as not everone may be familiar with it.

Power factor is defined as the VA in the circuit divided by the power. Since VA is the RMS volts multiplied by RMS amps, VA can never be negative (because the RMS value can never be negative). Thus in our example, power factor is -VI/VA = -1.

A practical application of this negative power malarky is in my own speciality of railway traction. Once again which direction we regard as the positive flow is arbitrary, but (positive) power is regarded as flowing into railway locomotives because that is all it has done up until the second half of the last century. Since that time, regenerative braking means that locomotives now also convert some of their dynamic energy back into electrical energy and return it to the overhead wire (or third rail). In this instance, according to the convention, the power flow into the locomotive is negative (i.e flowing out). Modern AC locomotive specs specify the power factor for when motoring (absorbing power) and the power factor for regenerating (supplying power). The power factor specified for when regenerating is specified as a negative quantity (because the power is negative). It is difficult to cite these because most readers here are unlikely to have access to them as they are considered commercially sensitive.

As for those 12 references one after the other in the article (is it not possible to pick the two best ones and bin the rest?). Although they are not references that negative power factor is accepted as a concept per se, they are references that power factor is used in the electrical engineering world (i.e. that the concept is accepted and used).

As a practical example, consider a locomotive climbing an grade and consuming 2P kW from the overhead line. Nearby are two locomotives descending and using their regenerative braking and are consuming -P kW each from the same overhead line system (i.e. they are actually supplying power as it flowing in the reverse direction). To find the power being supplied by the sub-station all you have to do is add up the powers being drawn by the individual locomotives (2P+(-P)+(-P) = 0) which is the correct answer. This would not work if power could only be considered as a positive concept.

In our workshop we still have a pair of fairly old Crompton electro-dynamic power factor meters (one single phase and one three phase). Both have circular 360° dials and the pointer on either can move around all 360° of it. In both cases the quadrants are marked; "+ lead"; "+ lag"; "- lead" and "- lag". Our modern electronic power analysers also indicate both positive and negative power and power factor. –LiveRail Talk > 11:45, 19 June 2013 (UTC)

"Fringe theory" has a very specific meaning on Misplaced Pages. See Misplaced Pages:Fringe theories and Misplaced Pages:Why Misplaced Pages cannot claim the earth is not flat. How we treat this particular fringe theory should be based on two factors; the complete lack of reliable sources that reject the mainstream four-quadrant description, and the notable lack of adherents of this particular fringe theory. Both of these factors lead me to the conclusion that this article should define power factor as being in the range between +1 and -1, and that there is no justification for even mentioning this particular fringe theory. --Guy Macon (talk) 17:26, 19 June 2013 (UTC)
I've been watching this (sad, wasteful) dispute for some time. I concur with Guy Macon unequivocally. No mention should be made in the article of this "positive only" claim. It has not been discussed as such in reliable sources over time, and is unlikely to ever be. It is an error of comprehension, compounded by an erratum, expanded to a colossally zealous refusal to accept standard industry-wide mathematically correct practice. Misplaced Pages is WP:NOTFORUM, WP:NOTBATTLEGROUND, and is not to be used for WP:OR. --Lexein (talk) 08:55, 21 June 2013 (UTC)
Please verify one detail. There has been the claim made that power factor can only be positive. That argument has been verified, on this page, to be fallacious. Has that fallacious claim been published? If so, it is a fringe theory, and may need mention. Or is it only the argument of one or two Wikipedians who don't understand? If so, it is original research, and incorrect original research at that. Robert McClenon (talk) 12:28, 21 June 2013 (UTC)
As far as I can determine, and I think Wtshymanski agreed above, that the claim that "power factor can only be positive", has been published (or rather, not demonstrated false) only unintentionally, and only in one place (that we've found so far), in the form of an error in a single IEEE standards document. This was discussed at length above, and sent on its standards-committee voyage to being corrected, by AMcEachern, above. --Lexein (talk) 15:19, 21 June 2013 (UTC)
I spent a lot of time looking for a source for this, because I wanted to be able to mention the "positive only" fringe theory. I not only looked for a reliable source that we can cite, but even for unreliable sources such as blogs, Youtube comments etc. so that at least I could say on the article talk page that someone besides Wtshymanski and 174.118.142.187 holds the theory. I found nothing except the usual mirror sites that repackage Misplaced Pages articles (we had it wrong until recently), and I really did spend a fair amount of time searching. I would assume that Wtshymanski and 174.118.142.187 also did that search and would have told us if they had found anything at all that supports their theory. -Guy Macon (talk)
This is a fascinating discussion. It seems to me that All About Circuits (an online book) is an excellent discussion (ranging over several pages) of power factor that might be a useful additional source for clarifying the issues. I do not have sufficient experience to venture an opinion myself, but I do find the writing here to be very clear. David Spector (talk) 13:08, 22 June 2013 (UTC)
Thank you for your interest and the link. Unfortunately, the material that you referred to does not move us any further forward because, although it gives a very good discussion of power factor, it is restricted to circuits where a 'supply' always supplies the power to the 'load'. As already discussed, this whole business of negative power and power factor arises from a situation where the 'load' generates power and feeds it back to the 'supply' (Liverail's railway locomotives above are a superb example of this in action). Sadly, the allaboutcircuits material does not discuss a circuit where the power flow reverses and is thus silent on the concept of reverse power flow and how is dealt with numerically. This still leaves us with the situation that the point of view advanced above, that power and power factor cannot be negative, is unsupported by any references. DieSwartzPunkt (talk) 11:48, 23 June 2013 (UTC)
I take your point. Since this seems to be an argument between experts, I'm afraid my opinion as someone who understands the basic physics of AC circuits is irrelevant. Probably we need an additional expert, such as someone who teaches this topic professionally. Or perhaps some textbooks that are explicit on this topic. David Spector (talk) 22:57, 17 July 2013 (UTC)
It is an interesting question as to how one can properly evaluate a dispute between experts. We see this in a lot of areas; climate change, creationism -- I have even seen spirited disputes about WWI battle tanks. One problem is that those who push fringe views often have a huge amount of "evidence" they can bury you with. Just try arguing with a holocaust denier or a World Trade Tower/9-11 conspiracy theorist some time.
So, how does a non expert tell who is correct? There are two methods, consensus and citations.
Consensus: Every engineer who has looked at this disagrees with Wtshymanski on this. Many are the usual anonymous screen names, but I use my real name and my resume is on my web page, and Misplaced Pages user AMcEachern is Alex McEachern, fellow at IEEE, author of (draft) Some corrections to IEEE Standard 1459-2010, and owner of the alex.mceachern.com and powerstandards.com web sites.
Citations: Wtshymanski has provided exactly zero citations to reliable sources that back up his position. That's always a bad sign. He does claim that IEEE 1459 supports his position, but it has been explained to him multiple times that he is misinterpreting IEEE 1459. One of the many engineers who have explained this to Wtshymanski is Alex McEachern, one of the principle authors of IEEE 1459. --Guy Macon (talk) 01:49, 18 July 2013 (UTC)
I don't understand why we are still discussing this. I thought we reached a consensus days ago, one that does not favor Wtshymanski's position. Binksternet (talk) 02:50, 18 July 2013 (UTC)

Another non-compliant example

File:Cosphi not IEEE 1459.jpg
A power factor display that is not calculated in compliance with IEEE 1459.

Maybe it's a hyperbolic cosine? --Wtshymanski (talk) 19:40, 17 July 2013 (UTC)

There is a big difference between "not calculated in compliance with IEEE 1459" and "not calculated in compliance with Wtshymanski's misinterpretation of IEEE 1459". This has been explained to you in detail by one of the principle authors of IEEE 1459, who has started the process of correcting the ambiguity in IEEE 1459 that led to your misinterpretation. You were wrong. You need to drop the stick and back slowly away from the horse carcass now. --Guy Macon (talk) 00:52, 18 July 2013 (UTC)
But you would have at least expected that the idiot who wrote the software behind the display might have realised that the power factor is bound by the limits of +1.000 and -1.000 and applied those limits to the posible displayed values rather than permit the erroneous display of -1.001. One cannot help but wonder if a bad choice of current and/or voltage waveforms would produce a number even more outside of the bounds. My own power factor meter (part of a modest priced plug in energy monitor) claims an accuracy of ±0.03, but I have never seen it display 1.01, 1.02 or 1.03. DieSwartzPunkt (talk) 11:16, 18 July 2013 (UTC)
Related: File talk:Cosphi not IEEE 1459.jpg#Disputed Description --Guy Macon (talk) 13:29, 18 July 2013 (UTC)
The picture shows a power factor not compliant with Misplaced Pages's definition either. Negative power factor is equivalent to saying real power reverses direction but apparent power doesn't. Seems arbitrary to me. --Wtshymanski (talk) 12:38, 28 July 2013 (UTC)
What part of "nobody agrees with your fringe theory" are you having trouble understanding? What part of "you have provided zero citations backing up your fringe theory" are you having trouble understanding? DROP THE STICK. DO IT NOW. --Guy Macon (talk) 22:46, 28 July 2013 (UTC)

I have come back here after over a month to discover that this is still rumbling on. I might have assumed that it had been long resolved, so what am I missing? I was a bit worried when I saw Wtshimanski's comment that the picture that he supplied shows a "power factor not compliant with Misplaced Pages's definition either". This somewhat alarmed me and so I checked what the article said. The section entitled "Definition and explanation" does not contain what I would recognise as a definition but does have an explanation. The nearest to a definition is the opening sentence of the article which is as good as any and makes it quite clear that power factor can be between -1 and +1. The "Definition and explanation" section discusses how power factor is arrived at, though does not explicitly state that apparent power (in VAs) is only ever positive or even how it is calculated.

However the link to Volt-amperes is quite clear in that it (correctly) states that the apparent power is the RMS volts multiplied by the RMS amperes. Since the RMS value (of anything) can only ever be positive, the apparent power in VA can therefore only be positive and thus is not considered to have direction. Wtshimanski is correct when he says, "real power reverses direction but apparent power doesn't". As for whether it is arbitrary? It probably is, given the definitions that electrical science has settled on for real and apparent power. The convention that we are left with is that apparent power does not have direction but real power does. I, as an elecrical engineer, have managed quite satisfactorily with that convention as have all of my learned colleagues. –LiveRail Talk > 12:46, 30 July 2013 (UTC)

If Wtshymanski was pushing his fringe theory by constantly arguing for it, that would be a behavioral problem to be addressed with warnings and blocks, but as long as he just pops up every so often, just post another "you have no sources/drop the stick" response. At this point it is really no different than the way we deal with creationists posing to the Evolution talk page.
As a (pointless but interesting) aside, try calculating power factor from the basic definition of RMS voltage and current without following the convention of using the (positive) principal square root. Totally useless for electrical engineering work, but calculating power factor using the negative square root (or even the square root of negative numbers, using complex numbers) is an interesting exercise.
In the real world using the normal conventions, adding a DC voltage offset -- positive or negative -- to an AC voltage waveform always increases the RMS voltage, which reflect the physical reality that a resistive load will get hotter whether you add positive or negative DC. Of course if it really is a resistive load, power factor cannot go negative either. --Guy Macon (talk) 16:26, 30 July 2013 (UTC)

For the generating unit in question, I saw it display a negative number in the field labelled "cos phi" when P was negative and Q was positive, and also with P positive and Q negative. Though I checked it each time I visited the powerhouse, I was never able to catch what it would say when both P and Q are negative. ( Asking: What is the generator doing when both P and Q are negative? And why would you run a hydro generator that way?) What does Wiki consensus say it should display then? What does IEEE 1459 say it should display? But even Wiki consensus agrees that cos phi must be strictly contained in the closed interval -1, +1. --Wtshymanski (talk) 16:51, 24 August 2013 (UTC)

There seems to be something wrong with either your observation or the instrument in question (I suspect the former). Since P=Irms*Vrms*cos Φ, if the cos Φ reads negative when P is positive then there is something wrong as neither Irms nor Vrms can be negative by definition. But neither your faulty observation nor faulty instrument constitutes a reliable source supporting your unilateral theory so DROP IT. DieSwartzPunkt (talk) 12:31, 25 August 2013 (UTC)
I was worried about such nasty suspicions, which is why my collection of pictures of HMI screens showing silly things for power factor continues to grow. For what it's worth, I've never seen sillyness from old-fangled pointer on scale instruments; it's only this new digital era that has lead to instruments in powerhouses saying ridiculous things. We were doomed when we were conditioned to click on "start" to shut down a computer; we've given up expecting computer-generated screens to tell the truth. Misplaced Pages is consistent with this lowered expectation. --Wtshymanski (talk) 22:35, 25 August 2013 (UTC)
Clearly I need to be even more blunt; Wtshymanski, you have two choices. You can drop the stick, which means that on all pages where you have every other editor opposing you and zero sources (the one implies the other; if you had reliable sources to back up your fringe theories then the other editors wouldn't oppose you) you need to stop posting again and again about how wrong everyone else is. Or you can refuse to drop the stick, in which case I will personally write up an RFC/U. I think we both know that the result of that would be very likely to be a topic ban or a set of longer and longer blocks. Actions have consequences. --Guy Macon (talk) 22:47, 25 August 2013 (UTC)

Repetition has nothing to do with truthfulness. I have a reliable reference, the IEEE 1459 standard. --Wtshymanski (talk) 17:31, 14 November 2013 (UTC)

A reference that is so reliable, that in one place it states that power factor cannot be negative and in another place it states that it can. The fact that this reference is in error has been freely admited by its author above and corrective action put in train. I B Wright (talk) 19:20, 14 November 2013 (UTC)
That's it. I have had more than my fill of Wtshymanski's fringe theories, battleground mentality and tendentious editing. Just as there is science and pseudoscience, there is engineering and pseudoengineering. In the next week or so I will write up a second RFC/U asking for a topic ban. Enough is enough. --Guy Macon (talk) 10:55, 19 November 2013 (UTC)
Ping me when you're done. I will want to participate. Binksternet (talk) 13:32, 19 November 2013 (UTC)
Me too. --Lexein (talk) 14:46, 19 November 2013 (UTC)
(At the risk of imitating a parrot.) Me too. I B Wright (talk) 12:40, 28 November 2013 (UTC)

You are all on my notification list. I will let you know when I think the draft version is ready so you can suggest improvements, and again when it gets posted. I am also going to make a point of notifying all of W's supporters (Sound of Crickets...). --Guy Macon (talk) 13:45, 28 November 2013 (UTC)

is the top diagram correct?

In the top diagram titled "Instantaneous and average power calculated from AC voltage and current with a zero power factor", shouldn’t the voltage and current waveforms be in sync? (for a zero pf)

It appears the current lags the voltage by 90 degrees.

Shane — Preceding unsigned comment added by 112.213.179.150 (talk) 22:27, 8 August 2013 (UTC)

The diagram is correct. Power factor is the cosine of the phase difference between voltage and current (valid for sinusoidal waves only). When the voltage and current are 90 degrees out of phase, the cosine of that 90 degree phase shift is 0. If the voltage and current were in phase, the the phase shift would be zero and the cosine of zero degrees is 1. DieSwartzPunkt (talk) 15:31, 9 August 2013 (UTC)
Yes you are correct, my misinterpretation of the diagram, For some reason after viewing the image and reading the caption, I somehow automatically assumed a pf of 1 (unity), I don't know why despite it being clearly worded. In my days of electrical theory 40 yrs ago it was always displayed a unity pf diagram first (using purely resistive load) along with some theory, then introducing leading and lagging diagrams after one had come to understand the theory a little. BTW... my question and comments may be deleted by anyone if need be, however it may be prudent to include another diagram showing the in-phase relationship of a unity pf.
Shane — Preceding unsigned comment added by 112.213.170.206 (talk) 20:55, 9 August 2013 (UTC)
A perfectly valid and reasonable point. If anyone has access to 'gnuplot', the original contributor of the diagrams kindly left the source code used to generate the plot on the file description page. Can anyone tweak as required and oblige?
Incidentally if you add four tildes to the end of your post ("~~~~"), The editor will automagically add a signature to the end of your post. DieSwartzPunkt (talk) 15:46, 10 August 2013 (UTC)
Correct correction. To be pedantic, three tildes works as well - you just don't get the date and time (but it is possible that some bot will remedy the omission). DieSwartzPunkt (talk)
Yes Three tildes (~~~) works, but is not recommended:
"Since typing four tildes adds the time and date to your resulting signature, this is the preferred option for signing your posts in discussions ... since does not date-stamp your signature, you may wish to sign this way only when leaving general notices on your user page or user talk page." --WP:SIG.
Useless trivia: you can also use three tildes, a space, and five tildes (~~~ ~~~~~), as I have done with this post. --Guy Macon (talk) 20:59, 19 November 2013 (UTC)

Added section expanding upon distortion power factor

I recently added a section titled "Distortion in three-phase networks" below "Distortion Power Factor" to describe the local effects of non-linear loads, which I felt was a needed topic for clarity when it was later assumed that harmonic distortion is harmful to the network and connected loads. I am worried that this discussion is outside the scope of the distortion power factor itself, but I felt it would help with overall clarity.

I also added more detail in the Distortion power factor section to describe the distortion of voltage and why it can be neglected. The previous statement that it can be assumed that voltage is sinusoidal could be misunderstood by the reader to mean that there is no voltage distortion. On another note, I want to point out that the definition of distortion power factor is probably incorrect. To my understanding, current harmonics do not change the average power transferred to the load, but it affects the instantaneous power being delivered. I don't know exactly what the definition should be, but someone with more background should consider editing it, at least to make it more clear. Lastly, I am not sure if my citing of sources was acceptable, since I used a single source in multiple areas.Kmuster (talk) 07:29, 27 November 2013 (UTC)

Nice addition. Citing sources is always acceptable. If your single source covers all the points made then fair enough. My only question to you is: do not the 6th and 12th (etc.) harmonics also contribute to to the triplen currents as they are also in (angular) phase with each other in each (electrical) phase? I B Wright (talk) 12:33, 28 November 2013 (UTC)

For nonlinear loads, the general PF is often defined to be average input power divided by RMS input power. The reason for this is that if the input voltage is sinusoidal and the period of the input current is an integer multiple of the fundamental frequency, the math works out such that the power factor defined in this way is equivalent to dividing the amplitude of the fundamental Fourier coefficient of the input current by the RMS of the input current, and then dividing again by square root of two. The distortion power factor formula you have listed is correct, but I think some additional derivations as per are in order. 128.174.115.178 (talk) 17:37, 3 December 2013 (UTC)

Soon to be resolved forever

Casey Harmon is on the case. — Preceding unsigned comment added by 204.61.34.129 (talk) 21:58, 2 January 2014 (UTC)

Not consistent

Not sure if this is by design, but note that on this page you say apparent power is simply S but in the wikipedia article for apparent power, you define apparent power as the magnitude of S, i.e. |S|, while S is defined as the complex power. It would be nice if these two entries were more consistent -- i.e. |S| is apparent power (the magnitude of the complex power, |S| = sqrt(P^2 + Q^2)) and S is complex power for both this article as well as the article for apparent power. — Preceding unsigned comment added by 50.58.26.98 (talk) 22:02, 15 January 2014 (UTC)

Apparent power can be quantified either way. It can be quantified as simply its magnitude (and often is), or it can be quantified in complex form. Which is chosen by engineers is based on what he proposes to do with it. In this article, the magnitude is sufficient for the discussion at hand and going into complex notation only serves to obfuscate the points beng made. The apparent power article, by necessity has to go into more detail and needs to reflect that apparent power is, in reality, a complex quantity. 86.171.45.200 (talk) 17:27, 16 January 2014 (UTC)
Categories: