Misplaced Pages

Petrology: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:51, 4 December 2015 editClueBot NG (talk | contribs)Bots, Pending changes reviewers, Rollbackers6,440,412 editsm Reverting possible vandalism by 69.168.242.47 to version by Mild Bill Hiccup. Report False Positive? Thanks, ClueBot NG. (2460624) (Bot)← Previous edit Revision as of 13:24, 8 February 2016 edit undo130.225.98.210 (talk) "logos" is not the Greek word for "study". Or the ancient Greek word. Disclaimer: I am fluent in Greek.Next edit →
Line 1: Line 1:
{{no footnotes|date=December 2008}} {{no footnotes|date=December 2008}}
] seen under the microscope, with plane-polarized light in the upper picture, and cross polarized light in the lower picture. Scale box is 0.25 mm.]] ] seen under the microscope, with plane-polarized light in the upper picture, and cross polarized light in the lower picture. Scale box is 0.25 mm.]]
'''Petrology''' (from the ] πέτρα, ''pétra'', "rock" and λόγος, '']'', "study") is the branch of ] that studies the origin, composition, distribution and structure of ]s. '''Petrology''' (from the ] πέτρα, ''pétra'', "rock" and λόγος, '']'', "reason-reasoning" and "the word") is the branch of ] that studies the origin, composition, distribution and structure of ]s.


] was once approximately synonymous with ], but in current usage, lithology focuses on macroscopic hand-sample or outcrop-scale description of rocks while petrography is the speciality that deals with microscopic details. ] was once approximately synonymous with ], but in current usage, lithology focuses on macroscopic hand-sample or outcrop-scale description of rocks while petrography is the speciality that deals with microscopic details.

Revision as of 13:24, 8 February 2016

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (December 2008) (Learn how and when to remove this message)
A volcanic sand grain seen under the microscope, with plane-polarized light in the upper picture, and cross polarized light in the lower picture. Scale box is 0.25 mm.

Petrology (from the Greek πέτρα, pétra, "rock" and λόγος, logos, "reason-reasoning" and "the word") is the branch of geology that studies the origin, composition, distribution and structure of rocks.

Lithology was once approximately synonymous with petrography, but in current usage, lithology focuses on macroscopic hand-sample or outcrop-scale description of rocks while petrography is the speciality that deals with microscopic details.

In the petroleum industry, lithology, or more specifically mud logging, is the graphic representation of geological formations being drilled through, and drawn on a log called a mud log. As the cuttings are circulated out of the borehole they are sampled, examined (typically under a 10× microscope) and tested chemically when needed.

Methodology

Petrology utilizes the classical fields of mineralogy, petrography, optical mineralogy, and chemical analysis to describe the composition and texture of rocks. Modern petrologists also include the principles of geochemistry and geophysics through the study of geochemical trends and cycles and the use of thermodynamic data and experiments in order to better understand the origins of rocks.

Branches

There are three branches of petrology, corresponding to the three types of rocks: igneous, metamorphic, and sedimentary, and another dealing with experimental techniques:

  • Igneous petrology focuses on the composition and texture of igneous rocks (rocks such as granite or basalt which have crystallized from molten rock or magma). Igneous rocks include volcanic and plutonic rocks.
  • Sedimentary petrology focuses on the composition and texture of sedimentary rocks (rocks such as sandstone, shale, or limestone which consist of pieces or particles derived from other rocks or biological or chemical deposits, and are usually bound together in a matrix of finer material).
  • Metamorphic petrology focuses on the composition and texture of metamorphic rocks (rocks such as slate, marble, gneiss, or schist which started out as sedimentary or igneous rocks but which have undergone chemical, mineralogical or textural changes due to extremes of pressure, temperature or both)
  • Experimental petrology employs high-pressure, high-temperature apparatus to investigate the geochemistry and phase relations of natural or synthetic materials at elevated pressures and temperatures. Experiments are particularly useful for investigating rocks of the lower crust and upper mantle that rarely survive the journey to the surface in pristine condition. They are also one of the prime sources of information about completely inaccessible rocks such as those in the Earth's lower mantle and in the mantles of the other terrestrial planets and the Moon. The work of experimental petrologists has laid a foundation on which modern understanding of igneous and metamorphic processes has been built.

See also

References

  • Best, Myron G. (2002), Igneous and Metamorphic Petrology (Blackwell Publishing). ISBN 1-4051-0588-7
  • Blatt, Harvey; Tracy, Robert J.; Owens, Brent (2005), Petrology: igneous, sedimentary, and metamorphic (New York: W. H. Freeman). ISBN 978-0-7167-3743-8
  • Dietrich, Richard Vincent; Skinner, Brian J. (2009), Gems, Granites, and Gravels: knowing and using rocks and minerals (Cambridge University Press). ISBN 978-0-521-10722-8
  • Fei, Yingwei; Bertka, Constance M.; Mysen, Bjorn O. (eds.) (1999), Mantle Petrology: field observations and high-pressure experimentation (Houston TX: Geochemical Society). ISBN 0-941809-05-6
  • Philpotts, Anthony; Ague, Jay (2009), Principles of Igneous and Metamorphic Petrology (Cambridge University Press). ISBN 978-0-521-88006-0
  • Robb, L. (2005), Introduction to Ore-Forming Processes (Blackwell Science). ISBN 978-0-632-06378-9

External links

Geologic principles and processes
Stratigraphic principles
Petrologic principles
Geomorphologic processes
Sediment transport
icon Geology portal
Geology
Overviews
History of geology
Composition and structure
Historical geology
Dynamic Earth
Water
Geodesy
Geophysics
Applications
Occupations
Categories:
Petrology: Difference between revisions Add topic