Misplaced Pages

Salk Institute for Biological Studies: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 05:19, 24 April 2021 editOsvaldo valdes 165443 (talk | contribs)Extended confirmed users20,291 edits Architecture← Previous edit Latest revision as of 12:29, 20 January 2025 edit undo96.82.59.129 (talk) changed Infobox to {{Infobox laboratory}} 
(73 intermediate revisions by 46 users not shown)
Line 1: Line 1:
{{short description|Life sciences research institute}} {{Short description|Scientific research institute in San Diego, US}}
{{Infobox building {{Infobox laboratory
| name = Salk Institute for Biological Studies| native_name = | name = Salk Institute for Biological Studies
| logo =
| native_name_lang = | logo_caption =
| logo = | image = Salk Institute 2.jpg
| caption = Salk Institute for Biological Studies in July 2019
| logo_size =
| logo_alt = | motto =
| established = {{start date and age|1960|12|28}}
| logo_caption =
| image = Salk Institute 2.jpg | lab_type =
| image_size = | type = Basic
| image_alt = <!-- or | alt = --> | budget =
| image_caption = <!-- or | caption = --> | debt =
| research_field = neuroscience, cancer research, aging, immunobiology, plant biology, computational biology
| map_type =
| map_alt = | president = Gerald Joyce
| map_caption = | vice-president =
| map_size = | dean =
| map_dot_label = | director = <!-- or |directors= -->
| map_dot_mark = | head_label =
| relief = | head =
| former_names = | faculty = 48
| alternate_names = | staff =
| etymology = | students =
| status = | alumni =
| cancelled = | address = 10010 N Torrey Pines Rd
| topped_out = | city = La Jolla
| building_type = Institutional | state = California
| country = US
| coordinates = {{Coord|32|53|15|N|117|14|47|W|display=inline,title|format=dms|region:US-CA_type:landmark}}
| location_map = <!-- Use this to put in a location map, e.g. Oxford (central) -->
| zipcode = 92037

| campus =
| free_label =
| free =
| nickname =
| affiliations = UC San Diego
| operating_agency =
| nobel_laureates = {{plainlist|
*]
*]
*]
*]
*]
}}
| website = {{URL|salk.edu}}
| footnotes =
| module = {{Infobox building
| embed = yes
| logo =
| logo_size =
| logo_alt =
| logo_caption =
| image =
| image_size =
| image_alt = <!-- or | alt = -->
| image_caption = Salk Institute for Biological Studies in July 2019
| map_type =
| map_alt =
| map_caption =
| map_size =
| map_dot_label =
| map_dot_mark =
| relief =
| former_names =
| alternate_names =
| etymology =
| status =
| cancelled =
| topped_out =
| building_type = Institutional
| architectural_style = | architectural_style =
| classification = | classification =
| location = | location =
| address = | address =
| location_city = La Jolla | location_city = ], ], U.S.
| location_country = | location_country =
| coordinates = <!-- {{coord|latitude|longitude|type:landmark|display=inline,title}} --> | coordinates = <!-- {{coord|latitude|longitude|type:landmark|display=inline,title}} -->
| altitude = | altitude =
| current_tenants = Salk Institute | current_tenants = Salk Institute
| namesake = Jonas Salk | namesake = Jonas Salk
| groundbreaking_date = | groundbreaking_date =
| start_date =

| start_date = | stop_date =
| stop_date = | est_completion =
| est_completion = | topped_out_date =
| topped_out_date = | completion_date = 1965
| completion_date = 1965 | opened_date =
| opened_date = | inauguration_date =
| inauguration_date = | relocated_date =
| relocated_date = | renovation_date =
| renovation_date = | closing_date =
| closing_date = | demolition_date = <!-- or | destruction_date = -->
| demolition_date = <!-- or | destruction_date = --> | cost =
| cost = | ren_cost =
| ren_cost = | client =
| client = | owner =
| owner = | landlord =
| landlord = | affiliation =
| affiliation = | height =
| height = | architectural =
| architectural = | tip =
| tip = | antenna_spire =
| antenna_spire = | roof =
| roof = | top_floor =
| top_floor = | observatory =
| observatory = | diameter =
| diameter = | circumference =
| circumference = | weight =
| weight = | other_dimensions =
| structural_system = ]
| other_dimensions =
| material = Poured concrete
| structural_system = ]
| material = Poured concrete | size =
| size = | floor_count = 4
| floor_count = 4 | floor_area =
| floor_area = | elevator_count =
| elevator_count = | grounds_area =
| grounds_area = | architect = ]
| architecture_firm =
| architect = ]
| architecture_firm = | developer =
| developer = | engineer =
| engineer =
| structural_engineer = ] | structural_engineer = ]
| services_engineer = | services_engineer =
| civil_engineer = | civil_engineer =
| other_designers = | other_designers =
| quantity_surveyor = | quantity_surveyor =
| main_contractor = | main_contractor =
| awards = ] ] | awards = ] ]
| designations = | designations =
| known_for =

| known_for = | ren_architect =
| ren_architect = | ren_firm =
| ren_firm = | ren_engineer =
| ren_engineer = | ren_str_engineer =
| ren_str_engineer = | ren_serv_engineer =
| ren_serv_engineer = | ren_civ_engineer =
| ren_civ_engineer = | ren_oth_designers =
| ren_oth_designers = | ren_qty_surveyor =
| ren_qty_surveyor = | ren_contractor =
| ren_contractor = | ren_awards =
| ren_awards = | rooms = <!-- or | unit_count = -->
| rooms = <!-- or | unit_count = --> | parking =
| parking = | public_transit =
| public_transit = | website =
| website = http://www.salk.edu/ | embedded =
| embedded = | references =
| references = | footnotes =
| footnotes =
}} }}
}}
The '''Salk Institute for Biological Studies''' is a scientific research institute located in the ] community of ], ] on the ].<ref>{{cite web|url=http://www.salk.edu |title=Salk Institute for Biological Studies |website=Salk.edu |access-date=2016-10-18}}</ref> The independent, non-profit institute was founded in 1960 by ], the developer of the ]; among the founding consultants were ] and ]. Construction of the research facilities began in spring of 1962. The Salk Institute consistently ranks among the top institutions in the US in terms of research output and quality in the life sciences.<ref>{{cite web |url=http://archive.sciencewatch.com/jan-feb2003/sw_jan-feb2003_page2.htm |title=Archived copy |access-date=2009-03-14 |url-status=dead |archive-url=https://web.archive.org/web/20090106012804/http://archive.sciencewatch.com/jan-feb2003/sw_jan-feb2003_page2.htm |archive-date=2009-01-06 }}</ref> In 2004, the '']'' ranked Salk as the world's top ] research institute, and in 2009 it was ranked number one globally by '']'' in the neuroscience and behavior areas.<ref>{{cite web|url=http://www.timeshighereducation.co.uk/hybrid.asp?typeCode=192 |title=Search &#124; Times Higher Education (THE) |publisher=Times Higher Education |access-date=2016-10-18}}</ref><ref>{{cite web|url=http://archive.sciencewatch.com/dr/sci/09/apr26-09_1D/ |title=04.26.2009 - Institution Rankings in Neuroscience & Behavior, 1998–2008 |website=ScienceWatch.com |date=2009-04-26 |access-date=2018-01-17}}</ref>



The '''Salk Institute for Biological Studies''' is a scientific research institute in the ] community of ], California.<ref>{{cite web|url=http://www.salk.edu |title=Salk Institute for Biological Studies |website=Salk.edu |access-date=2016-10-18}}</ref> The independent, non-profit institute was founded in 1960 by ], the developer of the ]; among the founding consultants were ] and ]. Construction of the research facilities began in spring of 1962. The Salk Institute consistently ranks among the top institutions in the US in terms of research output and quality in the life sciences.<ref>{{cite web |url=http://archive.sciencewatch.com/jan-feb2003/sw_jan-feb2003_page2.htm |title=Heavyweights in Molecular Biology/Genetics: For Some, A High Percentage of Elite Papers |access-date=2009-03-14 |url-status=dead |archive-url=https://web.archive.org/web/20090106012804/http://archive.sciencewatch.com/jan-feb2003/sw_jan-feb2003_page2.htm |archive-date=2009-01-06 }}</ref>


The Salk Institute employs 850 researchers in 60 research groups and focuses its research in three areas: ] and ]; ]s; and ].{{Clarify timeframe|date=October 2020}} Research topics include ], ], ], birth defects, ], ], ], and the neurobiology of ].<ref>{{Cite web|url=https://www.salk.edu/science/research-centers/glenn-center-for-research-on-aging/|title=The Paul F. Glenn Center for Research on Aging - Overview|website=www.salk.edu}}</ref> The ] provided the initial funding and continues to support the institute. Research is funded by a variety of public sources, such as the US ] and the ]; and private organizations such as Paris-based ], the ] and the Waitt Family Foundation.<ref>{{cite web|url=http://www.fiercebiotech.com/story/ipsen-salk-institute-ink-research-pact/2008-01-11 |title=Ipsen, Salk Institute ink research pact |website=FierceBiotech.com |access-date=2016-10-18}}</ref> In addition, the internally administered Innovation Grants Program encourages cutting-edge high-risk research.<ref>{{cite web|url=http://www.salk.edu/insidesalk/article.php?id=22 |title=InsideSalk - 11&#124;07 Issue Innovation Grants Program Infuses Cutting-Edge Projects with Start-Up Funds |website=Salk.edu |access-date=2016-10-18}}</ref> In 2017 the Salk Institute Trustees elected former president of ], Daniel C. Lewis as Board Chairman.<ref>{{cite web|url=https://www.salk.edu/news-release/salk-institute-trustees-elect-daniel-c-lewis-board-chairman/ |title=Salk Institute Trustees elect Daniel C. Lewis as Board Chairman |website=Salk.edu |access-date=2019-06-07}}</ref> As of October 2020, the Salk Institute employs 850 researchers in 60 research groups and focuses its research in three areas: ] and ]; ]s; and ]. Research topics include ], ], ], birth defects, ], ], ], and the neurobiology of ].<ref>{{Cite web|url=https://www.salk.edu/science/research-centers/glenn-center-for-research-on-aging/|title=The Paul F. Glenn Center for Research on Aging - Overview|website=www.salk.edu}}</ref> ] provided the initial funding and continues to support the institute. Research is funded by a variety of public sources, such as the US ] and the ]; and private organizations such as Paris-based ], the ] and the Waitt Family Foundation.<ref>{{cite news|url=http://www.fiercebiotech.com/story/ipsen-salk-institute-ink-research-pact/2008-01-11 |title=Ipsen, Salk Institute ink research pact |newspaper=Fierce Biotech |date=11 January 2008 |access-date=2016-10-18}}</ref> In addition, the internally administered Innovation Grants Program encourages cutting-edge high-risk research.<ref>{{cite web|url=http://www.salk.edu/insidesalk/article.php?id=22 |title=InsideSalk - 11&#124;07 Issue Innovation Grants Program Infuses Cutting-Edge Projects with Start-Up Funds |website=Salk.edu |access-date=2016-10-18}}</ref> In 2017 the Salk Institute Trustees elected former president of ], Daniel C. Lewis, as board chairman.<ref>{{cite web|url=https://www.salk.edu/news-release/salk-institute-trustees-elect-daniel-c-lewis-board-chairman/ |title=Salk Institute Trustees elect Daniel C. Lewis as Board Chairman |website=Salk.edu |access-date=2019-06-07}}</ref>


The institute also served as the basis for ] and ]'s 1979 book ].<ref>{{Cite book|url=http://press.princeton.edu/titles/2417.html|title=Laboratory Life|website=Princeton University Press|access-date=2017-05-04|isbn=9780691028323|date=1986-09-21|last1=Latour|first1=Bruno|last2=Woolgar|first2=Steve}}</ref> The institute also served as the basis for ] and ]'s 1979 book ].<ref>{{Cite book|url=http://press.princeton.edu/titles/2417.html|title=Laboratory Life|publisher=Princeton University Press|access-date=2017-05-04|isbn=9780691028323|date=1986-09-21|last1=Latour|first1=Bruno|last2=Woolgar|first2=Steve}}</ref>


==History== ==History==
Salk and architect ] approached the city of ] in March 1960 about a gift of land on the ] Mesa and were granted their request after a ] in June 1960. The National Foundation for Infantile Paralysis, known today as the ], provided the initial funding.<ref>{{cite web|url=https://www.salk.edu/about/history.html |title=History of Salk - Salk Institute for Biological Studies |website=Salk.edu |access-date=2016-10-18}}</ref> Construction began in 1962 and a handful of researchers moved into the first laboratory in 1963. Additional buildings housing more laboratories as well as the organizational administrative offices were constructed in the 1990s, designed by ]. Salk and architect ] approached the city of San Diego in March 1960 about a gift of land on the ] Mesa and were granted their request after a ] in June 1960. The National Foundation for Infantile Paralysis, known today as the ], provided the initial funding.<ref>{{cite web|url=https://www.salk.edu/about/history.html |title=History of Salk - Salk Institute for Biological Studies |website=Salk.edu |access-date=2016-10-18}}</ref> Construction began in 1962 and a handful of researchers moved into the first laboratory in 1963. Additional buildings housing more laboratories as well as the organizational administrative offices were constructed in the 1990s, designed by ].


As a memorial to Jonas Salk, a golden engraving lies on the floor at the entrance to the institute: "Hope lies in dreams, in imagination and in the courage of those who dare to make dreams into reality." As a memorial to Jonas Salk, a golden engraving lies on the floor at the entrance to the institute: "Hope lies in dreams, in imagination and in the courage of those who dare to make dreams into reality."
Line 118: Line 164:


===50th anniversary celebration=== ===50th anniversary celebration===
From 22–27 April 2010, the Salk Institute hosted glass sculptures by artist ] to celebrate 50 years of its inception.<ref>{{cite web |url=http://www.delmartimes.net/news/268756-chihuly-glass-scultpures-drawing-crowd-to-salk-institute |title=Archived copy |access-date=2010-04-26 |url-status=dead |archive-url=https://web.archive.org/web/20100504233406/http://www.delmartimes.net/news/268756-chihuly-glass-scultpures-drawing-crowd-to-salk-institute |archive-date=2010-05-04 }}</ref> The event was underwritten by ], past chairman of the board of trustees. From April 22 to 27, 2010, the Salk Institute hosted glass sculptures by artist ] to celebrate 50 years of its inception.<ref>{{cite web |url=http://www.delmartimes.net/news/268756-chihuly-glass-scultpures-drawing-crowd-to-salk-institute |title=DelMarTimes.net &#124; Chihuly glass scultpures drawing crowd to Salk Institute |access-date=2010-04-26 |url-status=dead |archive-url=https://web.archive.org/web/20100504233406/http://www.delmartimes.net/news/268756-chihuly-glass-scultpures-drawing-crowd-to-salk-institute |archive-date=2010-05-04 }}</ref> The event was underwritten by ], past chairman of the board of trustees.


==Establishing the institute== ==Establishing the institute==
{{Main|Jonas Salk#Establishing the Salk Institute}}
]
Jonas Salk founded the institute in 1963 in the San Diego neighborhood of La Jolla. Salk believed that the institution would help new and upcoming scientists along in their careers, as he said himself, "I thought how nice it would be if a place like this existed and I was invited to work there." Many supporters, in particular the National Foundation, "helped him build his dream of a research complex for the investigation of biological phenomena 'from cell to society'."<ref>"", ''Detroit Free Press'', April 9, 1980, p. 31.</ref>


In 1966, Salk described his "ambitious plan for the creation of a kind of ] academy where the supposedly alienated two cultures of science and humanism will have a favorable atmosphere for cross-fertilization."<ref>Taubman, Howard. "Father of Biophilosophy" The New York Times, November 11, 1966</ref> Author and journalist ] explained:
{{main|Jonas Salk}}
]
Many supporters, in particular the National Foundation, "helped him build his dream of a research complex for the investigation of biological phenomena 'from cell to society'."<ref>"", ''Detroit Free Press'', April 9, 1980, p. 31.</ref> Called the ], it opened in 1963 in the ] neighborhood of ]. Salk believed that the institution would help new and upcoming scientists along in their careers, as he said himself, "I thought how nice it would be if a place like this existed and I was invited to work there."

In 1966, Salk described his "ambitious plan for the creation of a kind of ] academy where the supposedly alienated two cultures of science and humanism will have a favorable atmosphere for cross-fertilization."<ref> Taubman, Howard. "Father of Biophilosophy" The New York Times, November 11, 1966</ref> Author and journalist ] explained:


{{quote|Although he is distinctly future-oriented, Dr. Salk has not lost sight of the institute's immediate aim, which is the development and use of the new biology, called ] and ], described as part physics, part chemistry and part biology. The broad-gauged purpose of this science is to understand man's life processes. {{quote|Although he is distinctly future-oriented, Dr. Salk has not lost sight of the institute's immediate aim, which is the development and use of the new biology, called ] and ], described as part physics, part chemistry and part biology. The broad-gauged purpose of this science is to understand man's life processes.
Line 132: Line 177:
There is talk here of the possibility, once the secret of how the cell is triggered to manufacture ] is discovered, that a single vaccine may be developed to protect a child against many common infectious diseases. There is speculation about the power to isolate and perhaps eliminate genetic errors that lead to birth defects. There is talk here of the possibility, once the secret of how the cell is triggered to manufacture ] is discovered, that a single vaccine may be developed to protect a child against many common infectious diseases. There is speculation about the power to isolate and perhaps eliminate genetic errors that lead to birth defects.


Dr. Salk, a creative man himself, hopes that the institute will do its share in probing the wisdom of nature and thus help enlarge the wisdom of man. For the ultimate purpose of science, humanism and the arts, in his judgment, is the freeing of each individual to cultivate his full creativity, in whichever direction it leads. ... As if to prepare for Socratic encounters such as these, the institute's architect, ], has installed blackboards in place of concrete facings on the walls along the walks. <ref>Taubman, Howard. "Father of Biophilosophy" The New York Times, November 11, 1966,</ref>}} Dr. Salk, a creative man himself, hopes that the institute will do its share in probing the wisdom of nature and thus help enlarge the wisdom of man. For the ultimate purpose of science, humanism and the arts, in his judgment, is the freeing of each individual to cultivate his full creativity, in whichever direction it leads. ... As if to prepare for Socratic encounters such as these, the institute's architect, ], has installed blackboards in place of concrete facings on the walls along the walks.<ref>Taubman, Howard. "Father of Biophilosophy" The New York Times, November 11, 1966,</ref>}}


''The New York Times'', in a 1980 article celebrating the 25th anniversary of the Salk vaccine, described the current workings at the facility: '']'', in a 1980 article celebrating the 25th anniversary of the Salk vaccine, described the current workings at the facility:


<blockquote>At the institute, a magnificent complex of laboratories and study units set on a bluff overlooking the Pacific, Dr. Salk holds the titles of founding director and resident fellow. His own laboratory group is concerned with the ] aspects of cancer and the mechanisms of autoimmune disease, such as ], in which the ] attacks the body's own tissues.<ref name=NYT4-8-80>Glueck, Grace. ''The New York Times'', April 8, 1980</ref></blockquote> <blockquote>At the institute, a magnificent complex of laboratories and study units set on a bluff overlooking the Pacific, Dr. Salk holds the titles of founding director and resident fellow. His own laboratory group is concerned with the ] aspects of cancer and the mechanisms of autoimmune disease, such as ], in which the ] attacks the body's own tissues.<ref name=NYT4-8-80>Glueck, Grace. ''The New York Times'', April 8, 1980</ref></blockquote>
Line 142: Line 187:
], codiscoverer of the structure of the ] molecule, was a leading professor at the institute until his death in 2004. ], codiscoverer of the structure of the ] molecule, was a leading professor at the institute until his death in 2004.


The institute also served as the basis for ] and ]'s 1979 book ].<ref>{{Cite web|url=http://press.princeton.edu/titles/2417.html|title=Laboratory Life|website=Princeton University Press|access-date=May 4, 2017}}</ref> The institute also served as the basis for ] and ]'s 1979 book ].<ref>{{Cite book|url=http://press.princeton.edu/titles/2417.html|title=Laboratory Life|publisher=Princeton University Press|date=21 September 1986|isbn=9780691028323|access-date=May 4, 2017|last1=Latour|first1=Bruno|last2=Woolgar|first2=Steve}}</ref>



==Architecture== ==Architecture==


The Salk Institute, La Jolla, California (1959–1965) was to be a campus composed of three clusters: meeting and conference areas, living quarters, and laboratories. Only the laboratory cluster, consisting of two parallel blocks enclosing a water garden, was built. The two laboratory blocks frame a long view of the ], accentuated by a thin linear fountain that seems to reach for the horizon.
{{main|Louis Kahn}}

The ], ] (1959–1965) was to be a campus composed of three clusters: meeting and conference areas, living quarters, and laboratories. Only the laboratory cluster, consisting of two parallel blocks enclosing a water garden, was built. The two laboratory blocks frame a long view of the ], accentuated by a thin linear fountain that seems to reach for the horizon. It is "arguably the defining work" of the architect.<ref>{{cite journal| first=Marvin| last=Trachtenberg| date=1 September 2016| url=http://www.architecturalrecord.com/articles/11881-records-top-125-buildings-51-75| title=RECORD's Top 125 Buildings: 51-75: Salk Institute| journal=]}}</ref>
The campus was designed by Louis Kahn.<ref>{{Cite web|title=Buildings of Wonder|url=https://www.salk.edu/about/buildings-of-wonder/|access-date=2022-02-07|website=Salk Institute for Biological Studies|language=en}}</ref> Salk had sought a beautiful campus in order to draw the best researchers in the world. The original buildings of the Salk Institute were designated a historical landmark in 1991. The entire {{convert|27|acre|adj=on}} site was deemed eligible by the California Historical Resources Commission in 2006 for listing in the US ]. It is "arguably the defining work" of Kahn.<ref>{{cite journal| first=Marvin| last=Trachtenberg| date=1 September 2016| url=http://www.architecturalrecord.com/articles/11881-records-top-125-buildings-51-75| title=RECORD's Top 125 Buildings: 51-75: Salk Institute| journal=]}}</ref>


The campus was designed by ]. Salk had sought a beautiful campus in order to draw the best researchers in the world. Salk and Kahn—having both descended from Russian-Jewish parents that had immigrated to the United States—and had a deeper connection than just partners of an architectural project. The original buildings of the Salk Institute were designated a historical landmark in 1991. The entire {{convert|27|acre|adj=on}} site was deemed eligible by the California Historical Resources Commission in 2006 for listing in the US ].
===Design=== ===Design===

] ]


Jack MacAllister, ], of the Kahn firm was the supervising architect and a major design influence on the structure that consists of two symmetric buildings with a water stream flowing towards the ocean in the middle ]-paved central plaza that separates the two.<ref>{{cite web|url=http://www.aiacc.org/tag/jack-macallister/ |title=Jack MacAllister Archives |publisher=AIACC |date=2014-04-24 |access-date=2016-10-18}}</ref><ref name="latimes.com">Jessica Gelt (August 25, 2014), {{webarchive |url=https://web.archive.org/web/20160305210122/http://www.latimes.com/entertainment/arts/culture/la-et-cm-getty-conservation-salk-institute-architecture-20140822-story.html |date=March 5, 2016 }} '']''.</ref><ref>{{cite web|title = Insights: Jack MacAllister, FAIA|url = http://aecknowledge.com/presentations/1|website = aecknowledge.com|access-date = 2016-01-25|medium = video}}</ref> In the beginning the buildings were made up of different types of ] mixes of different color. In the basement of the complex, there are different colored water walls because Kahn was experimenting with the mixtures. The buildings themselves have been designed to promote collaboration, and thus there are no walls separating laboratories on any of the floors. The lighting fixtures on the roof slide along rails thus reflecting the collaborative and open philosophy of the Salk Institute's science. Jack MacAllister, ], of the Kahn office, was the supervising architect and a design influence on the building that consists of two symmetric wings with a water stream flowing towards the ocean in the middle ]-paved central plaza that separates the two.<ref>{{cite web|url=http://www.aiacc.org/tag/jack-macallister/ |title=Jack MacAllister Archives |publisher=AIACC |date=2014-04-24 |access-date=2016-10-18}}</ref><ref name="latimes.com">Jessica Gelt (August 25, 2014), {{webarchive |url=https://web.archive.org/web/20160305210122/http://www.latimes.com/entertainment/arts/culture/la-et-cm-getty-conservation-salk-institute-architecture-20140822-story.html |date=March 5, 2016 }} '']''.</ref><ref>{{cite web|title = Insights: Jack MacAllister, FAIA|url = http://aecknowledge.com/presentations/1|website = aecknowledge.com|access-date = 2016-01-25|medium = video}}</ref> In the beginning the buildings were made up of different types of ] mixes of different color. In the basement of the complex, there are different colored water walls because Kahn was experimenting with the mixtures. The buildings themselves have been designed to promote collaboration, and thus there are no walls separating laboratories on any of the floors. The lighting fixtures on the roof slide along rails thus reflecting the collaborative and open philosophy of the Salk Institute's science.

After two years of design work, and after the design had been approved and meetings with building contractors had begun, Kahn and the Salk Institute abruptly decided to reduce the number of laboratory buildings from four narrow ones to two wider ones and to increase the number of floors per building from two to three. Komendant re-engineered the structure and produced a new set of drawings with a speed that professor Leslie described as "legendary".<ref name=leslie-book/>{{rp|143–149,200}} Komendant also trained the construction workers in techniques for producing a highly refined concrete finish.<ref name=leslie-book/>{{rp|156,165}}
After two years of design work, and after the design had been approved and meetings with building contractors had begun, Kahn and the Salk Institute abruptly decided to reduce the number of laboratory buildings from four narrow ones to two wider ones and to increase the number of floors per building from two to three. ] re-engineered the structure and produced a new set of drawings with a speed that professor Leslie described as "legendary".<ref name=leslie-book/>{{rp|143–149,200}} Komendant also trained the construction workers in techniques for producing a highly refined concrete finish.<ref name=leslie-book/>{{rp|156,165}}


In 1992 the ] (AIA) gave this building its prestigious ], which is given to only one building per year.<ref name=AIA_25_award>{{cite web |url= http://www.aia.org/practicing/awards/AIAS075247 |title= Twenty Five Year Award Recipients |publisher= American Institute of Architects |access-date=Feb 17, 2012}}</ref> In 1992 the ] (AIA) gave this building its prestigious ], which is given to only one building per year.<ref name=AIA_25_award>{{cite web |url= http://www.aia.org/practicing/awards/AIAS075247 |title= Twenty Five Year Award Recipients |publisher= American Institute of Architects |access-date=Feb 17, 2012}}</ref>


Inside the laboratories, the ducts and vents are reinforced by concrete ]es supported by post-tensioned columns.<ref name=":0">{{Cite book|title=Key buildings of the twentieth century: plans, sections, and elevations|last=Weston|first=Richard|publisher=W.W. Norton|year=2004|isbn=978-0-393-73145-3|location=New York|page=138}}</ref> The authorities at the time were very cautious due to the fact that they felt these trusses would not be able to hold in case of an earthquake, but in a ''tour de force'' of structural design, ] was able to achieve twice the ductility that a steel frame offered.<ref name=":0" /> At first Kahn wanted to put a garden in the middle of the two buildings but, as construction continued, he did not know what shape it should take. When he saw an exhibit of ]'s work at the ] in New York, Kahn invited Baragan to collaborate on the court that separated the two buildings. Barragan told Kahn that he should not add one leaf, nor plant, not one flower, nor dirt, instead, make it a plaza with a single water feature. The resulting space is considered the most impressive element of the entire design.{{By whom?|date=October 2020}} Inside the laboratories, the ducts and vents are reinforced by concrete ]es supported by post-tensioned columns.<ref name=":0">{{Cite book|title=Key buildings of the twentieth century: plans, sections, and elevations|last=Weston|first=Richard|publisher=W.W. Norton|year=2004|isbn=978-0-393-73145-3|location=New York|page=138}}</ref> The authorities at the time were very cautious due to the fact that they felt these trusses would not be able to hold in case of an earthquake, but in a ''tour de force'' of structural design, Komendant was able to achieve twice the ductility that a steel frame offered.<ref name=":0" />
At first Kahn wanted to put a garden in the middle of the two buildings but, as construction continued, he did not know what shape it should take. When he saw an exhibit of ]'s work at the ] in New York, Kahn invited Baragan to collaborate on the court that separated the two buildings. Barragan told Kahn that he should not add one leaf, nor plant, not one flower, nor dirt, instead, make it a plaza with a single water feature. The resulting space is considered the most impressive element of the entire design.{{By whom|date=October 2020}}

===Courtyard=== ===Courtyard===

] trees.]] ] trees.]]


In the courtyard is a citrus grove containing several orderly rows of semi-dwarf ] trees. This grove replaces the original grove which contained orange and kumquat trees which were then replaced with lime trees in the 1995 grove refurbishment. This latest replacement was due primarily to a need to remove current trees for structural repairs and waterproofing of central plant ceilings. The trees were mulched and used for ground cover in compliance with project commitments to sustainability. The decision not to replant additional lime trees stems from dissatisfaction with the manner in which the current trees defoliate and turn yellow in the shade. The Valencia compensates for shade by producing additional chlorophyll in shaded sections, becoming greener. In the courtyard is a citrus grove containing several rows of semi-dwarf ] trees. This grove replaces the original grove which contained orange and kumquat trees which were then replaced with lime trees in the 1995 grove refurbishment. This latest replacement was due primarily to a need to remove current trees for structural repairs and waterproofing of central plant ceilings. The trees were mulched and used for ground cover in compliance with project commitments to sustainability. The decision not to replant additional lime trees stems from dissatisfaction with the manner in which the current trees defoliate and turn yellow in the shade. Valencia compensates for shade by producing additional ] in shaded section, becoming greener.


===Open environment=== ===Open environment===
Line 168: Line 220:


In 2014, the ] partnered with the Salk Institute to preserve the concrete and teak building which is, due to its coastal location, subject to the punishing rigors of a marine environment.<ref name="latimes.com"/> In 2014, the ] partnered with the Salk Institute to preserve the concrete and teak building which is, due to its coastal location, subject to the punishing rigors of a marine environment.<ref name="latimes.com"/>
===Concrete===
According to A. Perez, the concrete was made with volcanic ash relying on the basis of ancient Roman concrete making techniques, and as a result gives off a warm, pinkish glow. This "]ic" concrete was then only vibrated as needed structurally, leaving a lightly textured wall face. The basement also houses the transgenic core. Each laboratory block has five study towers, with each tower containing four offices, except for those near the entrance to the court, which only contain two. A diagonal wall allows each of the thirty-six scientists using the studies to have a view of the Pacific, and every study is fitted with a combination of operable sliding and fixed glass panels in teak wood frames. Originally the design also included living quarters and a conference building, but they were never actually built.


===Laboratories, library===
Most of the laboratories and studies are named after the benefactors, such as the Sloan-Swartz Center for Theoretical Neurobiology<ref>{{cite web|url=http://www.sloan-swartz.salk.edu/ |title=Sloan-Swartz |website=Sloan-swartz.salk.edu |access-date=2016-10-18}}</ref> and the Razavi Newman Center for Bioinformatics.<ref>{{Cite web | url=http://bioinformatics.salk.edu/ | title=Salk Bioinformatics| archive-url=https://web.archive.org/web/20070322131254/http://bioinformatics.salk.edu/| archive-date=2007-03-22}}</ref> A library that houses current periodicals, some books and computers is located on the 3rd level of the west end of the North building.<ref>{{cite web |url=http://www.salk.edu/about/about_campus_directions.php?sid=about&subsid=campus |title=Archived copy |access-date=2007-12-24 |url-status=dead |archive-url=https://web.archive.org/web/20071223083439/http://www.salk.edu/about/about_campus_directions.php?sid=about&subsid=campus |archive-date=2007-12-23 }}</ref> The Conrad T. Prebys auditorium and the Trustees' Room are located in the basement of the east buildings of the institute.
Most of the laboratories and studies are named after the benefactors, such as the Sloan-Swartz Center for Theoretical Neurobiology<ref>{{cite web|url=http://www.sloan-swartz.salk.edu/ |title=Sloan-Swartz |website=Sloan-swartz.salk.edu |access-date=2016-10-18}}</ref> and the Razavi Newman Center for Bioinformatics.<ref>{{Cite web | url=http://bioinformatics.salk.edu/ | title=Salk Bioinformatics| archive-url=https://web.archive.org/web/20070322131254/http://bioinformatics.salk.edu/| archive-date=2007-03-22}}</ref> A library that houses current periodicals, some books and computers is located on the 3rd level of the west end of the North building.<ref>{{cite web |url=http://www.salk.edu/about/about_campus_directions.php?sid=about&subsid=campus |title=Salk Institute - the Salk Campus - Directions and Tours |access-date=2007-12-24 |url-status=dead |archive-url=https://web.archive.org/web/20071223083439/http://www.salk.edu/about/about_campus_directions.php?sid=about&subsid=campus |archive-date=2007-12-23 }}</ref> The Conrad T. Prebys auditorium and the Trustees' Room are located in the basement of the east buildings of the institute.

===Concrete===


According to A. Perez, the concrete was made with volcanic ash relying on the basis of ancient Roman concrete making techniques, and as a result gives off a warm, pinkish glow. This "]ic" concrete was then only vibrated as needed structurally, leaving a lightly textured wall face. The basement also houses the transgenic core. Each laboratory block has five study towers, with each tower containing four offices, except for those near the entrance to the court, which only contain two. A diagonal wall allows each of the thirty-six scientists using the studies to have a view of the Pacific, and every study is fitted with a combination of operable sliding and fixed glass panels in teak wood frames. Originally the design also included living quarters and a conference building, but they were never built.


===Structural system=== ===Structural system===
{{Main|August Komendant}} {{Main|August Komendant#Salk Institute for Biological Studies}}
] ]


In keeping with his design and the philosophy of "served and servant spaces,"{{efn|"Served and servant spaces: Servant spaces are supporting the main areas of the building. Toilets, storage and technical rooms, stairs and corridors, duct shaft and kitchens are main examples of spaces that are considered as servant spaces. Servant spaces are not meant for habitation, they will be visited only briefly or by internal staff. They are mostly meant for mechanical equipment, ducts and pipes. Served spaces are the primary areas. Concert halls, commercial spaces, living rooms, bedrooms, auditoriums, classes and exhibition spaces are common examples of served spaces. Served spaces are meant for habitation and are meant for primary occupants of the space or visitors. " and the need for mechanical services (air ducts, pipes, etc.)"}}<ref>{{cite web|url=https://www.constructingarchitect.com/what-are-served-and-servant-spaces/|title=What are served and servant spaces?|access-date=2020-10-24}}</ref> and as the vast requirement for mechanical spaces were extensive, Kahn decided to create a separate service floor for them above each of the laboratories to make it easier to reconfigure individual laboratories in the future without disrupting neighboring spaces. He also designed each laboratory floor to be entirely free of internal support columns, making laboratory configuration easier. Komendant engineered the ] that make this arrangement possible. These ] trusses are about {{convert|62|ft}} long, spanning the full width of each floor and extending from the bottom of each service floor to the top. They are supported by steel cables embedded in the concrete in a curve similar to that of cables supporting a ]. Their rectangular openings, which are {{convert|6|ft}} high in the center and {{convert|5|ft}} at the ends, allow maintenance workers to move easily through the thicket of pipes and ducts on the service floors. The trusses impose strictly vertical loads on their support columns, to which they are attached not rigidly but with a system of slip plates and tension cables to permit small movements during moderate earthquakes.<ref name=leslie-book>{{cite book |title=Louis I. Kahn: Building Art, Building Science |last=Leslie |first=Thomas |year=2005 |publisher=George Braziller, Inc |location=New York |isbn=0-8076-1543-9 }}</ref>{{rp|97}}{{clear}} In keeping with his design and the philosophy of "served and servant spaces,"{{efn|"Served and servant spaces: Servant spaces are supporting the main areas of the building. Toilets, storage and technical rooms, stairs and corridors, duct shaft and kitchens are main examples of spaces that are considered as servant spaces. Servant spaces are not meant for habitation, they will be visited only briefly or by internal staff. They are mostly meant for mechanical equipment, ducts and pipes. Served spaces are the primary areas. Concert halls, commercial spaces, living rooms, bedrooms, auditoriums, classes and exhibition spaces are common examples of served spaces. Served spaces are meant for habitation and are meant for primary occupants of the space or visitors. " and the need for mechanical services (air ducts, pipes, etc.)"}}<ref>{{cite web|url=https://www.constructingarchitect.com/what-are-served-and-servant-spaces/|title=What are served and servant spaces?|date=16 January 2018|access-date=2020-10-24}}</ref> and as the vast requirement for mechanical spaces were extensive, Kahn decided to create a separate service floor for them above each of the laboratories to make it easier to reconfigure individual laboratories in the future without disrupting neighboring spaces. He also designed each laboratory floor to be entirely free of internal support columns, making laboratory configuration easier. Komendant engineered the ] that make this arrangement possible. These ] trusses are about {{convert|62|ft}} long, spanning the full width of each floor and extending from the bottom of each service floor to the top. They are supported by steel cables embedded in the concrete in a curve similar to that of cables supporting a ]. Their rectangular openings, which are {{convert|6|ft}} high in the center and {{convert|5|ft}} at the ends, allow maintenance workers to move easily through the thicket of pipes and ducts on the service floors. The trusses impose strictly vertical loads on their support columns, to which they are attached not rigidly but with a system of slip plates and tension cables to permit small movements during moderate earthquakes.<ref name=leslie-book>{{cite book |title=Louis I. Kahn: Building Art, Building Science |last=Leslie |first=Thomas |year=2005 |publisher=George Braziller, Inc |location=New York |isbn=0-8076-1543-9 }}</ref>{{rp|97}}{{clear}}



=== Unbuilt areas === === Unbuilt areas ===
Line 203: Line 256:
{{colend}} {{colend}}


Rusty Gage was named to a five-year term to lead the Institute on January 1, 2019.<ref>{{cite web|url=https://www.salk.edu/news-release/salk-president-rusty-gage-named-to-new-five-year-term-to-lead-institute/|title=Salk President Rusty Gage named to new five-year term to lead Institute|access-date=6 June 2019}}</ref> Jan Karlseder is the chair of the academic council.<ref name="Academic Council">{{cite web|title=Salk Institute - Academic Council|url=http://www.salk.edu/about/academic_council.html|publisher=Salk Institute|access-date=6 June 2019}}</ref> There are 53 faculty members. Five of these are members of the ], and more than a quarter are elected members of the US ].<ref>{{cite web|url=http://www.salk.edu/news/pressrelease_details.php?press_id=216 |title=Salk scientist Thomas Albright elected to National Academy of Sciences - Salk Institute for Biological Studies |website=Salk.edu |date=2008-04-30 |access-date=2016-10-18}}</ref> Rusty Gage was named to a five-year term to lead the institute on January 1, 2019.<ref>{{cite web|url=https://www.salk.edu/news-release/salk-president-rusty-gage-named-to-new-five-year-term-to-lead-institute/|title=Salk President Rusty Gage named to new five-year term to lead Institute|access-date=6 June 2019}}</ref> In February 2023 he returned to full-time laboratory work and was succeeded as president by Gerald Joyce.<ref>{{cite web|url=https://www.salk.edu/news-release/gerald-joyce-to-become-next-president-of-the-salk-institute/|title=Gerald Joyce to become next president of the Salk Institute|date=February 16, 2023|work=Salk News|access-date=18 February 2023}}</ref> The Austrian molecular biologist ] is the chair of the academic council.<ref name="Academic Council">{{cite web|title=Salk Institute - Academic Council|url=http://www.salk.edu/about/academic_council.html|publisher=Salk Institute|access-date=6 June 2019}}</ref> There are 53 faculty members. Five of these are members of the ], and more than a quarter are elected members of the US ].<ref>{{cite web|url=http://www.salk.edu/news/pressrelease_details.php?press_id=216 |title=Salk scientist Thomas Albright elected to National Academy of Sciences - Salk Institute for Biological Studies |website=Salk.edu |date=2008-04-30 |access-date=2016-10-18}}</ref>


In terms of research output measured by number of publications and citations, the institute is recognized as one of the world's leading institutions in several areas of biology, especially in neurosciences and plant biology.<ref>{{cite web |url=http://archive.sciencewatch.com/sept-oct2000/sw_sept-oct2000_page2.htm |title=Archived copy |access-date=2009-03-16 |url-status=dead |archive-url=https://web.archive.org/web/20110720185602/http://archive.sciencewatch.com/sept-oct2000/sw_sept-oct2000_page2.htm |archive-date=2011-07-20 }}</ref><ref>{{citation|doi=10.1016/j.cell.2006.04.005|pmid=16630805|title=Janelia Farm: An Experiment in Scientific Culture|journal=Cell|volume=125|issue=2|pages=209–12|year=2006|last1=Rubin|first1=Gerald M|doi-access=free}}</ref><ref>{{cite web|url=http://www.garfield.library.upenn.edu/essays/v13p440y1990.pdf |title=Current Comments |website=Garfield.library.upenn.edu |date=December 3, 1990 |access-date=2016-10-18}}</ref> In terms of research output measured by number of publications and citations, the institute is recognized as one of the world's leading institutions in several areas of biology, especially in neurosciences and plant biology.<ref>{{cite web |url=http://archive.sciencewatch.com/sept-oct2000/sw_sept-oct2000_page2.htm |title=Cell Superstars and Genome Giants |access-date=2009-03-16 |url-status=dead |archive-url=https://web.archive.org/web/20110720185602/http://archive.sciencewatch.com/sept-oct2000/sw_sept-oct2000_page2.htm |archive-date=2011-07-20 }}</ref><ref>{{citation|doi=10.1016/j.cell.2006.04.005|pmid=16630805|title=Janelia Farm: An Experiment in Scientific Culture|journal=Cell|volume=125|issue=2|pages=209–12|year=2006|last1=Rubin|first1=Gerald M|doi-access=free}}</ref><ref>{{cite web|url=http://www.garfield.library.upenn.edu/essays/v13p440y1990.pdf |title=Current Comments |website=Garfield.library.upenn.edu |date=December 3, 1990 |access-date=2016-10-18}}</ref>


In December 2009, the ''Time'' magazine ranked ]'s mapping of the human epigenome as the second biggest scientific achievement of 2009.<ref>{{cite news| url=http://www.time.com/time/specials/packages/article/0,28804,1945379_1944416_1944420,00.html | work=Time | first=Eben | last=Harrell | title=The Top 10 Everything Of 2009 | date=8 December 2009}}</ref> In December 2009, the ''Time'' magazine ranked ]'s mapping of the human epigenome as the second biggest scientific achievement of 2009.<ref>{{cite magazine| url=http://www.time.com/time/specials/packages/article/0,28804,1945379_1944416_1944420,00.html | archive-url=https://web.archive.org/web/20091213010502/http://www.time.com/time/specials/packages/article/0,28804,1945379_1944416_1944420,00.html | url-status=dead | archive-date=December 13, 2009 | magazine=Time | first=Eben | last=Harrell | title=The Top 10 Everything Of 2009 | date=8 December 2009}}</ref>


In May 2008, the ] announced that it would provide ]270 million for funding ] (CIRM). The ], a joint effort between Salk Institute, ], ] and ], received US$43 million from this funding.<ref>{{cite news| url=https://www.nytimes.com/2008/05/08/us/08stem.html?_r=1&scp=3&sq=salk%20institute&st=cse | work=The New York Times | first=Andrew | last=Pollack | title=$271 Million for Research on Stem Cells in California | date=8 May 2008}}</ref><ref>{{cite web |url=http://www.sanfordconsortium.org/about-about-us.htm |title=Sanford Consortium for Regenerative Medicine &#124; About Us |website=Sanfordconsortium.org |access-date=2016-10-18 |url-status=dead |archive-url=https://web.archive.org/web/20161101215111/http://www.sanfordconsortium.org/about-about-us.htm |archive-date=2016-11-01 }}</ref> In May 2008, the ] announced that it would provide ]270 million for funding ] (CIRM). The ], a joint effort between Salk Institute, ], ] and ], received US$43 million from this funding.<ref>{{cite news| url=https://www.nytimes.com/2008/05/08/us/08stem.html?_r=1&scp=3&sq=salk%20institute&st=cse | work=The New York Times | first=Andrew | last=Pollack | title=$271 Million for Research on Stem Cells in California | date=8 May 2008}}</ref><ref>{{cite web |url=http://www.sanfordconsortium.org/about-about-us.htm |title=Sanford Consortium for Regenerative Medicine &#124; About Us |website=Sanfordconsortium.org |access-date=2016-10-18 |url-status=dead |archive-url=https://web.archive.org/web/20161101215111/http://www.sanfordconsortium.org/about-about-us.htm |archive-date=2016-11-01 }}</ref>


In addition, the institute employs postdoctoral scholars and staff scientists who receive training for academic leadership. In addition, the institute employs postdoctoral scholars and staff scientists who receive training for academic leadership.
Line 215: Line 268:
==Notable projects== ==Notable projects==
Salk Institute currently runs the Harnessing Plants Initiative (HPI), which aims to improve the capability of agricultural crops to ]. It comprises two programs: Salk Institute currently runs the Harnessing Plants Initiative (HPI), which aims to improve the capability of agricultural crops to ]. It comprises two programs:
* CRoPS (CO2 Removal on a Planetary Scale) which aims to develop "Salk Ideal Plants" * CRoPS (CO<sub>2</sub> Removal on a Planetary Scale) which aims to develop "Salk Ideal Plants"
* CPR (Coastal Plant Restoration) * CPR (Coastal Plant Restoration)
The Salk Ideal Plants are plants that are genetically modified. The intent is to create plants with increased root mass, root depth and ] content.<ref></ref> The Salk Ideal Plants are plants that are genetically modified. The intent is to create plants with increased root mass, root depth and ] content.<ref></ref>


==Training program== ==Training program==
Although the Salk Institute is not a degree-granting institution, it runs a graduate program together with the neighboring ], and all Salk Institute professors receive adjunct appointments in the Division of Biological Sciences at UCSD. In addition, several faculty members are affiliated with other programs such as the Neuroscience Graduate Program and the Cellular and Molecular Medicine.<ref>{{cite web|url=http://www.salk.edu/careers/graduate_students.html |title=Academic Training - Salk Institute for Biological Studies |website=Salk.edu |access-date=2016-10-18}}</ref> The students pursue either a ] or an ]/] degree. Although the Salk Institute is not a degree-granting institution, it runs a graduate program together with the neighboring ], and all Salk Institute professors receive adjunct appointments in the Division of Biological Sciences at UC San Diego. In addition, several faculty members are affiliated with other programs such as the Neuroscience Graduate Program and the Cellular and Molecular Medicine.<ref>{{cite web|url=http://www.salk.edu/careers/graduate_students.html |title=Academic Training - Salk Institute for Biological Studies |website=Salk.edu |access-date=2016-10-18}}</ref> The students pursue either a ] or an ]/] degree.


==Notable faculty members== ==Notable faculty members==
Line 232: Line 285:
*], prominent developmental biologist. *], prominent developmental biologist.
*], expert in ] who discovered the proteins required for ] gene expression *], expert in ] who discovered the proteins required for ] gene expression
* ], Neuroscientist known for work in exploring the scalable architecture of the brain. Member of the National Academy of Sciences and former Howard Hughes Medical Investigator.
* ], cancer researcher and director of Salk's ]-Designated Cancer Center.


==Nobel laureates== ==Nobel laureates==
The institute has two ] on its faculty: ] and ].{{Clarify timeframe|date=October 2020}} Four of Salk's 11 Nobel laureates were deceased by 2016: ], ], ], and ]. Another five scientists trained at Salk have gone on to win the ].<ref>{{cite web|url=http://www.salk.edu/about/ |title=About - Salk Institute for Biological Studies |website=Salk.edu |access-date=2020-10-17}}</ref> As of 2024, the institute has one ] on its faculty: ]. Four of Salk's 11 Nobel laureates were deceased by 2016: Francis Crick, ], ], and ]. Another five scientists trained at Salk have gone on to win the ].<ref>{{cite web|url=http://www.salk.edu/about/ |title=About - Salk Institute for Biological Studies |website=Salk.edu |access-date=2020-10-17}}</ref>


===Former members=== ===Former members===
*] (1939-2014), early neuroscientist *] (1939–2014), early neuroscientist
*] (deceased), Nobel laureate (for DNA double helix structure description). *] (deceased), Nobel laureate (for DNA double helix structure description).
*] (deceased), former Senior Fellow and Research Professor *] (deceased), former senior fellow and research professor
*] (deceased), virologist. *] (deceased), virologist.
*] (deceased), Nuclear physicist, invented radioactive cobalt cancer treatment. *] (deceased), Nuclear physicist, invented radioactive cobalt cancer treatment.
Line 245: Line 300:
*] (deceased), co-founder, pioneer in the research of ] *] (deceased), co-founder, pioneer in the research of ]
*] (former president of Salk Institute), Nobel laureate (for work on telomeres and telomerase with ] and ]). *] (former president of Salk Institute), Nobel laureate (for work on telomeres and telomerase with ] and ]).
*] (1927-2019) Nobel laureate (for work with '']'') *] (deceased), Nobel laureate (for work with '']'')
*], co-founder, Nobel laureate (for elucidating the structures of neurohormones ] and ]) *], co-founder, Nobel laureate (for elucidating the structures of neurohormones ] and ])
*], cancer biologist, Editor-in-chief of ] journal. *], cancer biologist, Editor-in-chief of ] journal.

==Bibliography==

* Leslie, Thomas (2005). ''Louis I. Kahn: Building Art, Building Science''. New York: George Braziller, Inc.{{ISBN| 0-8076-1543-9|0-8076-1543-9}}
* Weston, Richard (2004). Key buildings of the twentieth century: plans, sections, and elevations. New York: W.W. Norton. p. 138. {{ISBN|978-0-393-73145-3}}
* Wiseman, Carter. Louis I. Kahn: ''Beyond Time and Style''. New York: W. W. Norton & Company, 2007, {{ISBN|978-0393731651}}

== Notes ==
{{notelist}}

==References==
{{Reflist|30em}}


==Gallery== ==Gallery==
<gallery mode=packed heights=125px style="text-align:left"> <gallery mode="packed" heights="125px" style="text-align:left">


File:Salk Institute (16).jpg File:Salk Institute (16).jpg
Line 280: Line 323:
* ] * ]


===Louis Kahn=== ==Bibliography==
*
*
*
*
* on ]
*, a personal collection of photographs taken at various Kahn buildings.
*
*
*
*
* from the ]* ]
* ]
* ]


* ] (2005). ''Louis I. Kahn: Building Art, Building Science''. New York: George Braziller, Inc.{{ISBN| 0-8076-1543-9|0-8076-1543-9}}
==External links==
* Weston, Richard (2004). Key buildings of the twentieth century: plans, sections, and elevations. New York: W.W. Norton. p.&nbsp;138. {{ISBN|978-0-393-73145-3}}
*
* Wiseman, Carter. Louis I. Kahn: ''Beyond Time and Style''. New York: W. W. Norton & Company, 2007, {{ISBN|978-0393731651}}
*
* The University of Pennsylvania's Architectural Archives has a section on ].
* ]


== Notes ==
{{Commons | Louis Kahn}}
{{notelist}}

==References==
{{Reflist|30em}}

==External links==
{{Commons category}}
* {{Official website|https://www.salk.edu/}}


{{Louis Kahn|state=collapsed}} {{Louis Kahn|state=collapsed}}
{{Penn}} {{Penn}}
{{Coord|32|53|15|N|117|14|47|W|display=title|format=dms|region:US-CA_type:landmark}}

{{authority control}} {{authority control}}


] ]
] ]
] ]
]
] ]
] ]

Latest revision as of 12:29, 20 January 2025

Scientific research institute in San Diego, US
Salk Institute for Biological Studies
Salk Institute for Biological Studies in July 2019
EstablishedDecember 28, 1960; 64 years ago (1960-12-28)
Research typeBasic
Field of researchneuroscience, cancer research, aging, immunobiology, plant biology, computational biology
PresidentGerald Joyce
Faculty48
Address10010 N Torrey Pines Rd
LocationLa Jolla, California, US
32°53′15″N 117°14′47″W / 32.88750°N 117.24639°W / 32.88750; -117.24639
ZIP code92037

AffiliationsUC San Diego
Nobel laureates
Websitesalk.edu
Building details
General information
TypeInstitutional
Town or citySan Diego, California, U.S.
Current tenantsSalk Institute
Named forJonas Salk
Completed1965
Technical details
Structural systemVierendeel trusses
MaterialPoured concrete
Floor count4
Design and construction
Architect(s)Louis I. Kahn
Structural engineerAugust Komendant
Awards and prizesAmerican Institute of Architects Twenty-five Year Award


The Salk Institute for Biological Studies is a scientific research institute in the La Jolla community of San Diego, California. The independent, non-profit institute was founded in 1960 by Jonas Salk, the developer of the polio vaccine; among the founding consultants were Jacob Bronowski and Francis Crick. Construction of the research facilities began in spring of 1962. The Salk Institute consistently ranks among the top institutions in the US in terms of research output and quality in the life sciences.

As of October 2020, the Salk Institute employs 850 researchers in 60 research groups and focuses its research in three areas: molecular biology and genetics; neurosciences; and plant biology. Research topics include aging, cancer, diabetes, birth defects, Alzheimer's disease, Parkinson's disease, AIDS, and the neurobiology of American Sign Language. March of Dimes provided the initial funding and continues to support the institute. Research is funded by a variety of public sources, such as the US National Institutes of Health and the government of California; and private organizations such as Paris-based Ipsen, the Howard Hughes Medical Institute and the Waitt Family Foundation. In addition, the internally administered Innovation Grants Program encourages cutting-edge high-risk research. In 2017 the Salk Institute Trustees elected former president of Booz Allen Hamilton, Daniel C. Lewis, as board chairman.

The institute also served as the basis for Bruno Latour and Steve Woolgar's 1979 book Laboratory Life: The Construction of Scientific Facts.

History

Salk and architect Louis I. Kahn approached the city of San Diego in March 1960 about a gift of land on the Torrey Pines Mesa and were granted their request after a referendum in June 1960. The National Foundation for Infantile Paralysis, known today as the March of Dimes, provided the initial funding. Construction began in 1962 and a handful of researchers moved into the first laboratory in 1963. Additional buildings housing more laboratories as well as the organizational administrative offices were constructed in the 1990s, designed by Anshen & Allen.

As a memorial to Jonas Salk, a golden engraving lies on the floor at the entrance to the institute: "Hope lies in dreams, in imagination and in the courage of those who dare to make dreams into reality."

Francis Crick held the post of J.W. Kieckhefer Distinguished Research Professor at the Salk Institute. His later research centered on theoretical neurobiology and attempts to advance the scientific study of human consciousness. He remained in this post at the Salk Institute until his death in 2004.

50th anniversary celebration

From April 22 to 27, 2010, the Salk Institute hosted glass sculptures by artist Dale Chihuly to celebrate 50 years of its inception. The event was underwritten by Irwin Jacobs, past chairman of the board of trustees.

Establishing the institute

Main article: Jonas Salk § Establishing the Salk Institute
Jonas Salk

Jonas Salk founded the institute in 1963 in the San Diego neighborhood of La Jolla. Salk believed that the institution would help new and upcoming scientists along in their careers, as he said himself, "I thought how nice it would be if a place like this existed and I was invited to work there." Many supporters, in particular the National Foundation, "helped him build his dream of a research complex for the investigation of biological phenomena 'from cell to society'."

In 1966, Salk described his "ambitious plan for the creation of a kind of Socratic academy where the supposedly alienated two cultures of science and humanism will have a favorable atmosphere for cross-fertilization." Author and journalist Howard Taubman explained:

Although he is distinctly future-oriented, Dr. Salk has not lost sight of the institute's immediate aim, which is the development and use of the new biology, called molecular and cellular biology, described as part physics, part chemistry and part biology. The broad-gauged purpose of this science is to understand man's life processes.

There is talk here of the possibility, once the secret of how the cell is triggered to manufacture antibodies is discovered, that a single vaccine may be developed to protect a child against many common infectious diseases. There is speculation about the power to isolate and perhaps eliminate genetic errors that lead to birth defects.

Dr. Salk, a creative man himself, hopes that the institute will do its share in probing the wisdom of nature and thus help enlarge the wisdom of man. For the ultimate purpose of science, humanism and the arts, in his judgment, is the freeing of each individual to cultivate his full creativity, in whichever direction it leads. ... As if to prepare for Socratic encounters such as these, the institute's architect, Louis Kahn, has installed blackboards in place of concrete facings on the walls along the walks.

The New York Times, in a 1980 article celebrating the 25th anniversary of the Salk vaccine, described the current workings at the facility:

At the institute, a magnificent complex of laboratories and study units set on a bluff overlooking the Pacific, Dr. Salk holds the titles of founding director and resident fellow. His own laboratory group is concerned with the immunologic aspects of cancer and the mechanisms of autoimmune disease, such as multiple sclerosis, in which the immune system attacks the body's own tissues.

In an interview about his future hopes at the institute, he said, "In the end, what may have more significance is my creation of the institute and what will come out of it, because of its example as a place for excellence, a creative environment for creative minds."

Francis Crick, codiscoverer of the structure of the DNA molecule, was a leading professor at the institute until his death in 2004.

The institute also served as the basis for Bruno Latour and Steve Woolgar's 1979 book Laboratory Life: The Construction of Scientific Facts.


Architecture

The Salk Institute, La Jolla, California (1959–1965) was to be a campus composed of three clusters: meeting and conference areas, living quarters, and laboratories. Only the laboratory cluster, consisting of two parallel blocks enclosing a water garden, was built. The two laboratory blocks frame a long view of the Pacific Ocean, accentuated by a thin linear fountain that seems to reach for the horizon.

The campus was designed by Louis Kahn. Salk had sought a beautiful campus in order to draw the best researchers in the world. The original buildings of the Salk Institute were designated a historical landmark in 1991. The entire 27-acre (11 ha) site was deemed eligible by the California Historical Resources Commission in 2006 for listing in the US National Register of Historic Places. It is "arguably the defining work" of Kahn.

Design

Water stream between symmetric building masses flowing towards the ocean.

Jack MacAllister, FAIA, of the Kahn office, was the supervising architect and a design influence on the building that consists of two symmetric wings with a water stream flowing towards the ocean in the middle travertine-paved central plaza that separates the two. In the beginning the buildings were made up of different types of concrete mixes of different color. In the basement of the complex, there are different colored water walls because Kahn was experimenting with the mixtures. The buildings themselves have been designed to promote collaboration, and thus there are no walls separating laboratories on any of the floors. The lighting fixtures on the roof slide along rails thus reflecting the collaborative and open philosophy of the Salk Institute's science.

After two years of design work, and after the design had been approved and meetings with building contractors had begun, Kahn and the Salk Institute abruptly decided to reduce the number of laboratory buildings from four narrow ones to two wider ones and to increase the number of floors per building from two to three. August Komendant re-engineered the structure and produced a new set of drawings with a speed that professor Leslie described as "legendary". Komendant also trained the construction workers in techniques for producing a highly refined concrete finish.

In 1992 the American Institute of Architects (AIA) gave this building its prestigious Twenty-five Year Award, which is given to only one building per year.

Inside the laboratories, the ducts and vents are reinforced by concrete Vierendeel trusses supported by post-tensioned columns. The authorities at the time were very cautious due to the fact that they felt these trusses would not be able to hold in case of an earthquake, but in a tour de force of structural design, Komendant was able to achieve twice the ductility that a steel frame offered.

At first Kahn wanted to put a garden in the middle of the two buildings but, as construction continued, he did not know what shape it should take. When he saw an exhibit of Luis Barragan's work at the Museum of Modern Art in New York, Kahn invited Baragan to collaborate on the court that separated the two buildings. Barragan told Kahn that he should not add one leaf, nor plant, not one flower, nor dirt, instead, make it a plaza with a single water feature. The resulting space is considered the most impressive element of the entire design.

Courtyard

Semi-dwarf Valencia orange trees.

In the courtyard is a citrus grove containing several rows of semi-dwarf Valencia orange trees. This grove replaces the original grove which contained orange and kumquat trees which were then replaced with lime trees in the 1995 grove refurbishment. This latest replacement was due primarily to a need to remove current trees for structural repairs and waterproofing of central plant ceilings. The trees were mulched and used for ground cover in compliance with project commitments to sustainability. The decision not to replant additional lime trees stems from dissatisfaction with the manner in which the current trees defoliate and turn yellow in the shade. Valencia compensates for shade by producing additional chlorophyll in shaded section, becoming greener.

Open environment

The Salk Institute replete with empty space is symbolic of an open environment for creation. The contrast between balance and dynamic space manifests a pluralistic invitation for scientific study in structures developed to accommodate their respective functions as parts of a research facility. Although modern in appearance, it is essentially an isolated compound for individual and collaborative study, not unlike monasteries as sanctuaries for religious discovery, and they are thought to have directly influenced Kahn in his design. Ultimately, the Salk Institute's meaning can be interpreted as transcending function and physical place as a reflection of Western civilization's pursuit of truth through science.

In 2014, the Getty Conservation Institute partnered with the Salk Institute to preserve the concrete and teak building which is, due to its coastal location, subject to the punishing rigors of a marine environment.

Laboratories, library

Most of the laboratories and studies are named after the benefactors, such as the Sloan-Swartz Center for Theoretical Neurobiology and the Razavi Newman Center for Bioinformatics. A library that houses current periodicals, some books and computers is located on the 3rd level of the west end of the North building. The Conrad T. Prebys auditorium and the Trustees' Room are located in the basement of the east buildings of the institute.

Concrete

According to A. Perez, the concrete was made with volcanic ash relying on the basis of ancient Roman concrete making techniques, and as a result gives off a warm, pinkish glow. This "pozzolanic" concrete was then only vibrated as needed structurally, leaving a lightly textured wall face. The basement also houses the transgenic core. Each laboratory block has five study towers, with each tower containing four offices, except for those near the entrance to the court, which only contain two. A diagonal wall allows each of the thirty-six scientists using the studies to have a view of the Pacific, and every study is fitted with a combination of operable sliding and fixed glass panels in teak wood frames. Originally the design also included living quarters and a conference building, but they were never built.

Structural system

Main article: August Komendant § Salk Institute for Biological Studies
A section of a laboratory building at the Salk Institute. Above each laboratory floor is a service floor to handle air ducts, piping, etc. The ladder-like structures that encase the service floors are Vierendeel trusses.

In keeping with his design and the philosophy of "served and servant spaces," and as the vast requirement for mechanical spaces were extensive, Kahn decided to create a separate service floor for them above each of the laboratories to make it easier to reconfigure individual laboratories in the future without disrupting neighboring spaces. He also designed each laboratory floor to be entirely free of internal support columns, making laboratory configuration easier. Komendant engineered the Vierendeel trusses that make this arrangement possible. These pre-stressed concrete trusses are about 62 feet (19 m) long, spanning the full width of each floor and extending from the bottom of each service floor to the top. They are supported by steel cables embedded in the concrete in a curve similar to that of cables supporting a suspension bridge. Their rectangular openings, which are 6 feet (1.8 m) high in the center and 5 feet (1.5 m) at the ends, allow maintenance workers to move easily through the thicket of pipes and ducts on the service floors. The trusses impose strictly vertical loads on their support columns, to which they are attached not rigidly but with a system of slip plates and tension cables to permit small movements during moderate earthquakes.

Unbuilt areas

The meeting and conference areas and the living quarters were formally designated by Kahn as the Meeting Place and Living Place, respectively. He continued to make drawings of these spaces even after their cancellation following a shortage in construction funding. Kahn's stressed importance of the Meeting Place and Living Place to the entirety of the campus plan was in accordance to the Urban Reidentification Grid concepts proposed by British architects Peter and Alison Smithson nearly a decade before, in which interconnectivity between communal activities and their respective spaces took priority. Aesthetically, the unbuilt areas combined cuboidal and cylindrical forms, distinguishing them from the laboratory cluster. The U-shaped road that was part of the original plan was built and exists to this day, but its ends that would have connected the Meeting Place and Living Place to the central laboratories are left bare or occupied by a parking lot.

Scientific activities

The institute is organized into several research units, each of which is further composed of several scientific groups, each led by a member of the faculty. Some of these units are:

  • Plant Molecular and Cellular Biology Laboratory
  • Regulatory Biology Laboratory
  • Structural Biology Laboratory
  • Gene Expression Laboratory
  • Laboratory of Genetics
  • Molecular Neurobiology Laboratory
  • Cellular Neurobiology Laboratory
  • Systems Neurobiology Laboratories
  • Computational Neurobiology Laboratory
  • Clayton Foundation Laboratories for Peptide Biology
  • Molecular and Cell Biology Laboratory
  • Chemical Biology and Proteomics Laboratory
  • Immunobiology and Microbial Pathogenesis Laboratory
  • The Renato Dulbecco Laboratories for Cancer Research

Rusty Gage was named to a five-year term to lead the institute on January 1, 2019. In February 2023 he returned to full-time laboratory work and was succeeded as president by Gerald Joyce. The Austrian molecular biologist Jan Karlseder is the chair of the academic council. There are 53 faculty members. Five of these are members of the Howard Hughes Medical Institute, and more than a quarter are elected members of the US National Academy of Sciences.

In terms of research output measured by number of publications and citations, the institute is recognized as one of the world's leading institutions in several areas of biology, especially in neurosciences and plant biology.

In December 2009, the Time magazine ranked Joseph R. Ecker's mapping of the human epigenome as the second biggest scientific achievement of 2009.

In May 2008, the California state government announced that it would provide $US270 million for funding California Institute for Regenerative Medicine (CIRM). The Sanford Consortium for Regenerative Medicine, a joint effort between Salk Institute, UC San Diego, Burnham Institute and TSRI, received US$43 million from this funding.

In addition, the institute employs postdoctoral scholars and staff scientists who receive training for academic leadership.

Notable projects

Salk Institute currently runs the Harnessing Plants Initiative (HPI), which aims to improve the capability of agricultural crops to sequester carbon. It comprises two programs:

  • CRoPS (CO2 Removal on a Planetary Scale) which aims to develop "Salk Ideal Plants"
  • CPR (Coastal Plant Restoration)

The Salk Ideal Plants are plants that are genetically modified. The intent is to create plants with increased root mass, root depth and suberin content.

Training program

Although the Salk Institute is not a degree-granting institution, it runs a graduate program together with the neighboring UC San Diego, and all Salk Institute professors receive adjunct appointments in the Division of Biological Sciences at UC San Diego. In addition, several faculty members are affiliated with other programs such as the Neuroscience Graduate Program and the Cellular and Molecular Medicine. The students pursue either a PhD or an MD/PhD degree.

Notable faculty members

Nobel laureates

As of 2024, the institute has one Nobel laureate on its faculty: Elizabeth Blackburn. Four of Salk's 11 Nobel laureates were deceased by 2016: Francis Crick, Robert W. Holley, Renato Dulbecco, and Sydney Brenner. Another five scientists trained at Salk have gone on to win the Nobel Prize.

Former members

Gallery

See also

Bibliography

Notes

  1. "Served and servant spaces: Servant spaces are supporting the main areas of the building. Toilets, storage and technical rooms, stairs and corridors, duct shaft and kitchens are main examples of spaces that are considered as servant spaces. Servant spaces are not meant for habitation, they will be visited only briefly or by internal staff. They are mostly meant for mechanical equipment, ducts and pipes. Served spaces are the primary areas. Concert halls, commercial spaces, living rooms, bedrooms, auditoriums, classes and exhibition spaces are common examples of served spaces. Served spaces are meant for habitation and are meant for primary occupants of the space or visitors. " and the need for mechanical services (air ducts, pipes, etc.)"

References

  1. "Salk Institute for Biological Studies". Salk.edu. Retrieved 2016-10-18.
  2. "Heavyweights in Molecular Biology/Genetics: For Some, A High Percentage of Elite Papers". Archived from the original on 2009-01-06. Retrieved 2009-03-14.
  3. "The Paul F. Glenn Center for Research on Aging - Overview". www.salk.edu.
  4. "Ipsen, Salk Institute ink research pact". Fierce Biotech. 11 January 2008. Retrieved 2016-10-18.
  5. "InsideSalk - 11|07 Issue Innovation Grants Program Infuses Cutting-Edge Projects with Start-Up Funds". Salk.edu. Retrieved 2016-10-18.
  6. "Salk Institute Trustees elect Daniel C. Lewis as Board Chairman". Salk.edu. Retrieved 2019-06-07.
  7. Latour, Bruno; Woolgar, Steve (1986-09-21). Laboratory Life. Princeton University Press. ISBN 9780691028323. Retrieved 2017-05-04.
  8. "History of Salk - Salk Institute for Biological Studies". Salk.edu. Retrieved 2016-10-18.
  9. "DelMarTimes.net | Chihuly glass scultpures drawing crowd to Salk Institute". Archived from the original on 2010-05-04. Retrieved 2010-04-26.
  10. "Salk 25 years after vaccine", Detroit Free Press, April 9, 1980, p. 31.
  11. Taubman, Howard. "Father of Biophilosophy" The New York Times, November 11, 1966
  12. Taubman, Howard. "Father of Biophilosophy" The New York Times, November 11, 1966,
  13. Glueck, Grace. "Salk Studies Man's Future" The New York Times, April 8, 1980
  14. Latour, Bruno; Woolgar, Steve (21 September 1986). Laboratory Life. Princeton University Press. ISBN 9780691028323. Retrieved May 4, 2017.
  15. "Buildings of Wonder". Salk Institute for Biological Studies. Retrieved 2022-02-07.
  16. Trachtenberg, Marvin (1 September 2016). "RECORD's Top 125 Buildings: 51-75: Salk Institute". Architectural Record.
  17. "Jack MacAllister Archives". AIACC. 2014-04-24. Retrieved 2016-10-18.
  18. ^ Jessica Gelt (August 25, 2014), Getty team launches conservation study of Kahn's Salk Institute Archived March 5, 2016, at the Wayback Machine Los Angeles Times.
  19. "Insights: Jack MacAllister, FAIA". aecknowledge.com (video). Retrieved 2016-01-25.
  20. ^ Leslie, Thomas (2005). Louis I. Kahn: Building Art, Building Science. New York: George Braziller, Inc. ISBN 0-8076-1543-9.
  21. "Twenty Five Year Award Recipients". American Institute of Architects. Retrieved Feb 17, 2012.
  22. ^ Weston, Richard (2004). Key buildings of the twentieth century: plans, sections, and elevations. New York: W.W. Norton. p. 138. ISBN 978-0-393-73145-3.
  23. "Sloan-Swartz". Sloan-swartz.salk.edu. Retrieved 2016-10-18.
  24. "Salk Bioinformatics". Archived from the original on 2007-03-22.
  25. "Salk Institute - the Salk Campus - Directions and Tours". Archived from the original on 2007-12-23. Retrieved 2007-12-24.
  26. "What are served and servant spaces?". 16 January 2018. Retrieved 2020-10-24.
  27. Churchill, James (3 May 2019). "The Salk Institute, a form in ethical Brutalism". GSAPP, Columbia University. Modern American Architecture.
  28. "Salk President Rusty Gage named to new five-year term to lead Institute". Retrieved 6 June 2019.
  29. "Gerald Joyce to become next president of the Salk Institute". Salk News. February 16, 2023. Retrieved 18 February 2023.
  30. "Salk Institute - Academic Council". Salk Institute. Retrieved 6 June 2019.
  31. "Salk scientist Thomas Albright elected to National Academy of Sciences - Salk Institute for Biological Studies". Salk.edu. 2008-04-30. Retrieved 2016-10-18.
  32. "Cell Superstars and Genome Giants". Archived from the original on 2011-07-20. Retrieved 2009-03-16.
  33. Rubin, Gerald M (2006), "Janelia Farm: An Experiment in Scientific Culture", Cell, 125 (2): 209–12, doi:10.1016/j.cell.2006.04.005, PMID 16630805
  34. "Current Comments" (PDF). Garfield.library.upenn.edu. December 3, 1990. Retrieved 2016-10-18.
  35. Harrell, Eben (8 December 2009). "The Top 10 Everything Of 2009". Time. Archived from the original on December 13, 2009.
  36. Pollack, Andrew (8 May 2008). "$271 Million for Research on Stem Cells in California". The New York Times.
  37. "Sanford Consortium for Regenerative Medicine | About Us". Sanfordconsortium.org. Archived from the original on 2016-11-01. Retrieved 2016-10-18.
  38. Harnessing plants initiative
  39. "Academic Training - Salk Institute for Biological Studies". Salk.edu. Retrieved 2016-10-18.
  40. "Ronald M. Evans, PhD". HHMI.org. Retrieved 2016-10-18.
  41. "About - Salk Institute for Biological Studies". Salk.edu. Retrieved 2020-10-17.

External links

Louis Kahn
Buildings
Parks and
gardens
Proposed
Founded
Related
University of Pennsylvania
Schools
Programs
Places
Athletics
Teams
Venues
Traditions
Media
Life
People
Art
Categories:
Salk Institute for Biological Studies: Difference between revisions Add topic