Revision as of 17:40, 21 June 2021 editAl-Andalus (talk | contribs)Extended confirmed users, Pending changes reviewers14,530 edits →DevelopmentTags: Mobile edit Mobile web edit← Previous edit | Latest revision as of 00:01, 31 December 2024 edit undoUtherSRG (talk | contribs)Autopatrolled, Administrators178,644 edits →top: rm pages needed | ||
(341 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description| |
{{Short description|Biological part involved in sexual reproduction}} | ||
{{Use dmy dates|date=September 2020}} | {{Use dmy dates|date=September 2020}} | ||
] '']'' are the male ] (red) and female ] (brown).]] | |||
A '''sex organ''' (or '''reproductive organ''') is any part of an animal or plant that is involved in ]. The reproductive organs together constitute the ]. In animals, the ] in the male, and the ] in the female, are called the ''primary sex organs''.<ref name="Clark">{{cite book|last1=Clark|first1=Robert K.|title=Anatomy and Physiology: Understanding the Human Body|url=https://books.google.com/books?id=4idMNpe04qgC&q=primary+sex+organ&pg=PA268|publisher=Jones & Bartlett Learning|language=en|date=2005|isbn=9780763748166}}</ref> All others are called ''secondary sex organs'', divided between the external sex organs—the '''genitals''' or '''genitalia''', visible at birth in both sexes—and the internal sex organs.<ref name="Clark"/> | |||
] '']'' are the male ] (red) and female ] (brown)]] | |||
]es, ]s, and some similar plants have ] for reproductive organs, which are part of the ].<ref>{{cite web |url=http://biology.clc.uc.edu/courses/Bio106/mosses.htm |title=Mosses and Ferns |publisher=Biology.clc.uc.edu |date=2001-03-16 |access-date=2012-08-01 |url-status=dead |archive-url=https://web.archive.org/web/20120728014926/http://biology.clc.uc.edu/courses/Bio106/mosses.htm |archive-date=28 July 2012}}</ref> The ]s of ]s produce ] and ]s, but the sex organs themselves are inside the gametophytes within the pollen and the ].<ref>{{cite web |url=http://www2.estrellamountain.edu/faculty/farabee/BIOBK/BioBookflowers.html |title=Flowering Plant Reproduction |publisher=Emc.maricopa.edu |date=2010-05-18 |access-date=2012-08-01}}</ref> ] likewise produce their sexually reproductive structures within the gametophytes contained within the ] and pollen. The cones and pollen are not themselves sexual organs. | |||
A '''sex organ''', also known as a '''reproductive organ''', is a part of an ] that is involved in ]. Sex organs constitute the primary ] of an organism. Sex organs are responsible for producing and transporting ], as well as facilitating ] and supporting the development and ] of offspring. Sex organs are found in many species of animals and plants, with their features varying depending on the species. | |||
Sex organs are typically differentiated into ] and ] types. | |||
In animals (including humans), the male sex organs include the ]s, ], and ]; the female sex organs include the ], ], ]s, and ]. The testicle in the male and the ovary in the female are called the ''primary sex organs''.<ref name="Clark">{{cite book|last=Clark|first=Robert K.|title=Anatomy and Physiology: Understanding the Human Body|url=https://books.google.com/books?id=4idMNpe04qgC&q=primary+sex+organ&pg=PA268|publisher=Jones & Bartlett Learning|page=25|language=en|date=2005|isbn=9780763748166}}</ref> All other sex-related organs are known as ''secondary sex organs''. The outer parts are known as the '''genitals''' or '''external genitalia''', visible at birth in both sexes,<ref name="Clark"/> while the inner parts are referred to as '''internal genitalia''', which in both sexes, are always hidden.<ref>{{cite book|last=Deol|first=Pooja Soni|title=ANATOMY PHYSIOLOGY OF FEMALE REPRODUCTIVE SYSTEM|url=https://books.google.com/books?id=gO7aEAAAQBAJ&pg=PA14|publisher=Blue Rose Publishers|page=14|date=2023}}</ref> | |||
In plants, male reproductive structures include ] in flowering plants, which produce ].<ref>{{Cite web |title=Parts of a Flower |url=https://www.amnh.org/learn-teach/curriculum-collections/biodiversity-counts/plant-identification/plant-morphology/parts-of-a-flower |website=] |access-date=19 March 2023 |archive-date=19 March 2023 |archive-url=https://web.archive.org/web/20230319032014/https://www.amnh.org/learn-teach/curriculum-collections/biodiversity-counts/plant-identification/plant-morphology/parts-of-a-flower |url-status=live }}</ref> Female reproductive structures, such as ] in flowering plants, produce ] and receive pollen for fertilization.<ref name=EB1911>{{cite EB1911 |wstitle=Pollination |volume=22 |pages=2–5}}</ref> ]es, ]s, and some similar plants have ] for reproductive organs, which are part of the ].<ref>{{cite web |url=http://biology.clc.uc.edu/courses/Bio106/mosses.htm |title=Mosses and Ferns |publisher=Biology.clc.uc.edu |date=2001-03-16 |access-date=2012-08-01 |url-status=dead |archive-url=https://web.archive.org/web/20120728014926/http://biology.clc.uc.edu/courses/Bio106/mosses.htm |archive-date=28 July 2012}}</ref> The ]s of ]s produce pollen and ]s, but the sex organs themselves are inside the gametophytes within the pollen and the ovule.<ref>{{cite web |date=2010-05-18 |title=Flowering Plant Reproduction |url=http://www2.estrellamountain.edu/faculty/farabee/BIOBK/BioBookflowers.html |archive-url=https://web.archive.org/web/20121008233734/http://www2.estrellamountain.edu/faculty/farabee/BIOBK/BioBookflowers.html |archive-date=Oct 8, 2012 |access-date=2012-08-01 |publisher=Emc.maricopa.edu}}</ref> ] likewise produce their sexually reproductive structures within the gametophytes contained within the ] and pollen. The cones and pollen are not themselves sexual organs. | |||
Together, the sex organs constitute an organism's ].<ref name=EB1911-2>{{cite EB1911 |wstitle=Reproductive System |volume=23}}</ref> | |||
== Terminology == | == Terminology == | ||
{{One source section | |||
The ''primary sex organs'' are the ]s, a pair of sex organs, which diverge into ] following male development or into ] following female development. As primary sex organs, gonads generate reproductive ]s containing inheritable ]. They also produce most of the primary hormones that affect sexual development, and regulate other sexual organs and sexually differentiated behaviors. | |||
| date = August 2021 | |||
}} | |||
The ''primary sex organs'' are the ]s, a pair of internal sex organs, which diverge into ]s following male development or into ] following female development.<ref>{{Cite encyclopaedia |title=Gonad |url=https://www.britannica.com/science/gonad |access-date=2024-08-21 |encyclopaedia=Encyclopædia Britannica |language=en}}</ref> As primary sex organs, gonads generate reproductive ]s containing inheritable ]. They also produce most of the primary hormones that affect sexual development, and regulate other sexual organs and sexually differentiated behaviors. | |||
''Secondary sex organs'' are the rest of the reproductive system, whether internal or external. The ] term ''genitalia'', sometimes anglicized as ''genitals'', is used to describe the externally visible sex |
''Secondary sex organs'' are the rest of the reproductive system, whether internal or external. The ] term ''genitalia'', sometimes anglicized as ''genitals'', is used to describe the externally visible sex organs. | ||
In general zoology, given the great variety in organs, physiologies, and behaviors involved in ], male genitalia are more strictly defined as "all male structures that are inserted in the female or that hold her near her ] during sperm transfer"; female genitalia are defined as "those parts of the female reproductive tract that make direct contact with male genitalia or male products (sperm, ]) during or immediately after copulation".<ref>Eberhard, W.G., 1985. Sexual Selection and Animal Genitalia. Harvard University Press</ref> | In general ], given the great variety in organs, physiologies, and behaviors involved in ], male genitalia are more strictly defined as "all male structures that are inserted in the female or that hold her near her ] during sperm transfer"; female genitalia are defined as "those parts of the female reproductive tract that make direct contact with male genitalia or male products (sperm, ]) during or immediately after copulation".<ref>Eberhard, W.G., 1985. Sexual Selection and Animal Genitalia. Harvard University Press</ref>{{Page needed|date=August 2021}} | ||
== |
== Evolution == | ||
{{Main|Evolution of sexual reproduction}} | |||
{{anchor|Human genitals}} | |||
It is hard to find a common origin for ]s. However, gonads most likely evolved independently several times.<ref>{{Cite book|last=Schmidt-Rhaesa|first=Andreas|url=https://books.google.com/books?id=iiwTDAAAQBAJ|title=The Evolution of Organ Systems|date=2007-08-30|publisher=Oxford University Press|isbn=978-0-19-856668-7|pages=252|language=en}}</ref> At first, ] and ] evolved due to ].<ref>{{Cite book|last1=switze|first1=International Conference on Comparative Physiology 1992 Crans|url=https://books.google.com/books?id=zunYrumtsR8C&q=evolution+of+sex+differences|title=The Differences Between the Sexes|last2=Bassau|first2=Short &|date=1994-08-04|publisher=Cambridge University Press|isbn=978-0-521-44878-9|pages=54|language=en}}</ref> | |||
=== External and internal organs === | |||
A consensus has emerged that ] represents a primary factor for genital evolution.<ref>{{Cite journal|last1=Langerhans|first1=R. Brian|last2=Anderson|first2=Christopher M.|last3=Heinen-Kay|first3=Justa L.|date=2016-09-06|title=Causes and Consequences of Genital Evolution|journal=Integrative and Comparative Biology|volume=56|issue=4|pages=741–751|doi=10.1093/icb/icw101|pmid=27600556|issn=1540-7063|doi-access=free}}</ref> Male genitalia show traits of ] that are driven by sexual selection.<ref>{{Cite journal|last=Simmons|first=Leigh W.|date=2014|title=Sexual selection and genital evolution|journal=Austral Entomology|language=en|volume=53|issue=1|pages=1–17|doi=10.1111/aen.12053|s2cid=53690631|issn=2052-1758|doi-access=free}}</ref> | |||
== Animals == | |||
===Vertebrates=== | |||
====Mammals==== | |||
{{anchor|Human genitals}} | |||
{{Further|Mammalian reproductive system|Human reproductive system}} | {{Further|Mammalian reproductive system|Human reproductive system}} | ||
The visible portion of |
The visible portion of ]n ]ian genitals for males consists of the ] and ]; for females, it consists of the ]. | ||
In ], females have two genital orifices, the |
In ], females have two genital orifices, the ] and ], while males have one genital orifice in the penis where ] and ] exit the urethra during ] and ].<ref name="Wake1992">{{cite book|author=Marvalee H. Wake|title=Hyman's Comparative Vertebrate Anatomy|url=https://books.google.com/books?id=VKlWjdOkiMwC&pg=PA583|year=1992|publisher=University of Chicago Press|isbn=978-0-226-87013-7|pages=583|author-link=Marvalee H. Wake}}</ref> Male and female genitals have many nerve endings, resulting in pleasurable and highly sensitive touch.<ref>{{cite book|author=Brigitta Olsen|title=Daphne's Dance: True Tales in the Evolution of Woman's Sexual Awareness|url=https://books.google.com/books?id=I9xrbK6CwzUC&pg=PA9|date=15 November 2009|publisher=Brigitta Olsen|isbn=978-0-9842117-0-8|page=9}}</ref> In most human societies, particularly in ] ones, exposure of the genitals is considered a ].<ref>{{cite book|author=Anita Allen|title=Unpopular Privacy: What Must We Hide?|url=https://books.google.com/books?id=fxYhR6hqc3QC&pg=PA219|date=November 2011|publisher=Oxford University Press, US|isbn=978-0-19-514137-5|page=219}}</ref> | ||
In humans, sex organs include: | In humans, sex organs/genitalia include: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 29: | Line 46: | ||
|- | |- | ||
| | | | ||
'''External''' | |||
* ]s | |||
* ] | * ] | ||
* ] | |||
** ] | ** ] | ||
** ] | ** ] | ||
** ] | ** ] | ||
* ] | |||
* ] | * ] | ||
'''Internal''' | |||
* ]s | |||
* ] | |||
* ]s | |||
* ] | |||
* ] | |||
* ]s | * ]s | ||
* ] | |||
])]] | ])]] | ||
| | | | ||
'''External''' | |||
* ]s | |||
* ] | |||
** ] | |||
*** ] | |||
*** ] | |||
*** ] | |||
** ] | |||
** ] | |||
** ] | |||
'''Internal''' | |||
* ]s | * ]s | ||
* ] | * ] | ||
* ] | |||
* ] | * ] | ||
** ] | ** ] | ||
* ] | * ] | ||
* ] | * ]s | ||
* ]s | |||
** ] | |||
])]] | |||
*** ] | |||
*** ] (glans clitoridis) | |||
*** ] | |||
** ] | |||
*** ] | |||
*** ] | |||
**** ] | |||
])]] | |||
|} | |} | ||
=== Development === | ===== Development ===== | ||
{{More citations needed section|date=August 2021}}{{Main article|Development of the reproductive system}} | |||
{{See also|List of homologues of the human reproductive system}} | |||
In typical ], sex organs originate from a common ] during early ] and ] into male or female ]es. The ] ], usually located on the ] and encoding the ], determines the direction of the differentiation. The absence of it allows the gonads to continue to develop into ovaries. | |||
The development of the internal and external reproductive organs is determined by hormones produced by certain fetal gonads (ovaries or testicles) and the cells' response to them. The initial appearance of the ] genitalia looks female-like: a pair of ] with a small protuberance in the middle, and the ] behind the protuberance. If the fetus has testes and the testes produce testosterone, and if the cells of the genitals respond to the testosterone, the outer urogenital folds swell and fuse in the midline to produce the scrotum; the protuberance grows larger and straighter to form the penis; the inner urogenital swellings grow, wrap around the penis, and fuse in the midline to form the ].<ref>{{cite book|last1=Hodges|first1=Frederick Mansfield S.|last2=Denniston|first2=George C.|last3=Milos|first3=Marilyn Fayre|publisher=Springer US|year= 2007|title=Male and Female Circumcision: Medical, Legal, and Ethical Considerations in Pediatric Practice|page=10|access-date=November 24, 2023|isbn=978-0-58539-937-9|url=https://books.google.com/books?id=U0EyBwAAQBAJ&pg=PA10&dq=}}</ref><ref>{{cite book|last1=Martin|first1=Richard J.|last2=Fanaroff|first2=Avory A.|last3=Walsh| first3=Michele C.|publisher=Elsevier Health Sciences|year=2014|title=Fanaroff and Martin's Neonatal-Perinatal Medicine E-Book: Diseases of the Fetus and Infant|page=1522|access-date=November 24, 2023|isbn=978-0-32329-537-6|url=https://books.google.com/books?id=AnVYBAAAQBAJ&pg=PA1522&dq=}}</ref> Each organ/body part in one sex has a ] counterpart. | |||
{{Main article|Development of the reproductive system}} | |||
In typical ], sex organs originate from a common ] during early ] and ] into male or female ]es. The ] ], usually located on the ] and encoding the ], determines the direction of this differentiation. The absence of it allows the gonads to continue to develop into ovaries. | |||
The process of sexual differentiation includes the development of ], such as patterns of pubic and facial hair and female breasts that emerge at puberty. | |||
Thereafter, the development of the internal, and external reproductive organs is determined by hormones produced by certain fetal gonads (ovaries or testes) and the cells' response to them. The initial appearance of the ] genitalia looks basically feminine: a pair of "]" with a small protuberance in the middle, and the ] behind the protuberance. If the fetus has testes, and if the testes produce testosterone, and if the cells of the genitals respond to the testosterone, the outer urogenital folds swell and fuse in the midline to produce the scrotum; the protuberance grows larger and straighter to form the penis; the inner urogenital swellings grow, wrap around the penis, and fuse in the midline to form the penile urethra. | |||
{{anchor|Evolution}} Because of the strong ] affecting the structure and function of genitalia, they form an organ system that evolves rapidly.<ref>Hosken, David J., and Paula Stockley."." {{Webarchive|url=https://web.archive.org/web/20171012045147/http://www.sexologia.ulusofona.pt/biblio/Indice_files/Sexual%20selection%20and%20genital%20evolution.pdf# |date=12 October 2017 }} Trends in Ecology & Evolution 19.2 (2004): 87-93.</ref><ref>Arnqvist, Göran. "." {{Webarchive|url=https://web.archive.org/web/20120127135826/http://heart.sdsu.edu/~website/Biology_307/pdfs/genitalia.pdf# |date=27 January 2012 }} Nature 393.6687 (1998): 784.</ref><ref>Schilthuizen, M. 2014. {{Webarchive|url=https://web.archive.org/web/20230614234747/https://books.google.com/books?id=xqM7AgAAQBAJ&dq=nature%27s+nether+regions&pg=PT2 |date=14 June 2023 }}. Penguin USA</ref> A great variety of genital form and function may therefore be found among animals. | |||
Each sex organ in one sex has a ] counterpart in the other one. See a ]. In a larger perspective, the whole process of ] also includes development of ] such as patterns of pubic and facial hair and female breasts that emerge at puberty. Furthermore, as the largest sexual organ,<ref>https://science.sciencemag.org/content/253/5023/957</ref> the ] also undergoes differentiation in sex-specific neural structures, affecting, but not solely nor absolutely determining, typical sex-specific behavior, commonly called ]. | |||
====Other animals==== | |||
] encompasses the development of genitalia and/or sex-specific cerebral neural structures either somewhere between typical male and female, or indeed at the opposite of the typically expected ], for instance, in ] individuals of genetically male ] karyotype with a complete female habitus (physical outer body) and female neural brain structures. | |||
In many other ]s, a single posterior orifice (the ]) serves as the only opening for the reproductive, digestive, and urinary tracts (if present) in both sexes. All ]s, birds, ]s,<ref>{{Cite web|date=2018|title=Male reproductive behaviour of Naja oxiana (Eichwald, 1831) in captivity, with a case of unilateral hemipenile prolapse|url=https://www.researchgate.net/publication/335270872}}</ref> some fish, and a few mammals (]s, ]s, ]s, and ]s) have this orifice, from which they excrete both urine and feces in addition to serving reproductive functions.<ref>{{Cite web |title=Page:The Works of William Harvey (part 1 of 2).djvu/283 - Wikisource, the free online library |url=https://en.wikisource.org/Page:The_Works_of_William_Harvey_(part_1_of_2).djvu/283 |access-date=2023-03-25 |website=en.wikisource.org |language=en |archive-date=25 March 2023 |archive-url=https://web.archive.org/web/20230325152215/https://en.wikisource.org/Page:The_Works_of_William_Harvey_(part_1_of_2).djvu/283 |url-status=live }}</ref> Excretory systems with analogous purpose in certain invertebrates are also sometimes referred to as cloacae. | |||
Penile and clitoral structures are present in some birds and many reptiles. | |||
In humans societies, once a child is born, parents may be given the authority to decide whether or not to modify the child's genitalia, and if so ]. Some scenaria have medical staff choose, either by the parents' or their own authority. If it is decided that the genitalia should be modified, and the result is incongruent with the child's future ], the child may begin to show symptoms of ], which can lead them to a life of discomfort until they are able to remedy the issue.<ref name="Anne Fausto Sterling">{{cite book|last=Fausto Sterling|first=Anne|title=Sexing The Body|year=2000|publisher=New York|location=New York|pages=44–77}}</ref> Modifying the genitalia of intersex children is broadly considered to be a violation of the child's ].<ref name="un2016">{{Citation | last2 = Special Rapporteur on the right of everyone to the enjoyment of the highest attainable standard of physical and mental health | title = Sport and healthy lifestyles and the right to health. Report A/HRC/32/33 | last1 = Pūras | first1 = Dainius | publisher = ] | date = 4 April 2016 | url = http://ap.ohchr.org/documents/dpage_e.aspx?si=A/HRC/32/33 | url-status=live | archive-url = https://web.archive.org/web/20161215111551/http://ap.ohchr.org/documents/dpage_e.aspx?si=A%2FHRC%2F32%2F33 | archive-date = 15 December 2016 | df = dmy-all }}</ref><ref name="swissnek">{{Cite book| last = Swiss National Advisory Commission on Biomedical Ethics NEK-CNE| title = On the management of differences of sex development. Ethical issues relating to "intersexuality".Opinion No. 20/2012| location = Berne| series = 2012| date = November 2012| url = http://www.nek-cne.ch/fileadmin/nek-cne-dateien/Themen/Stellungnahmen/en/NEK_Intersexualitaet_En.pdf| url-status = dead| archive-url = https://web.archive.org/web/20150423213245/http://www.nek-cne.ch/fileadmin/nek-cne-dateien/Themen/Stellungnahmen/en/NEK_Intersexualitaet_En.pdf| archive-date = 2015-04-23}}</ref><ref name="SenateOnSterilisation"> {{webarchive|url=https://web.archive.org/web/20150923181927/http://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Community_Affairs/Involuntary_Sterilisation/Sec_Report/index |date=2015-09-23 }}, ] Community Affairs Committee, October 2013.</ref><ref name="who2015">{{Cite book| publisher = World Health Organization| isbn = 9789241564984| last = World Health Organization| author-link = World Health Organization| title = Sexual health, human rights and the law| location = Geneva| date = 2015}}</ref> | |||
] ] fish is determined by the shape of a fleshy tube behind the anus known as ]. | |||
{{anchor|Evolution}}Because of the strong ] affecting the structure and function of genitalia, they form an organ system that evolves rapidly.<ref>Hosken, David J., and Paula Stockley. "." {{Webarchive|url=https://web.archive.org/web/20171012045147/http://www.sexologia.ulusofona.pt/biblio/Indice_files/Sexual%20selection%20and%20genital%20evolution.pdf# |date=12 October 2017 }} Trends in Ecology & Evolution 19.2 (2004): 87-93.</ref><ref>Arnqvist, Göran. "." {{Webarchive|url=https://web.archive.org/web/20120127135826/http://heart.sdsu.edu/~website/Biology_307/pdfs/genitalia.pdf# |date=27 January 2012 }} Nature 393.6687 (1998): 784.</ref><ref>Schilthuizen, M. 2014. . Penguin USA</ref> A great variety of genital form and function may therefore be found among animals. | |||
== |
===Invertebrates=== | ||
====Insects==== | |||
In many other animals a single posterior orifice, called the ], serves as the only opening for the reproductive, digestive, and urinary tracts (if present). All amphibians, birds, reptiles,<ref>{{Cite journal|date=2018|title=Male reproductive behaviour of Naja oxiana (Eichwald, 1831) in captivity, with a case of unilateral hemipenile prolapse|url=https://www.researchgate.net/profile/Alireza-Nasoori/publication/335270872_Male_reproductive_behaviour_of_Naja_oxiana_Eichwald_1831_in_captivity_with_a_case_of_unilateral_hemipenile_prolapse/links/5d5bea4b4585152102526799/Male-reproductive-behaviour-of-Naja-oxiana-Eichwald-1831-in-captivity-with-a-case-of-unilateral-hemipenile-prolapse.pdf?origin=publication_detail|via=https://www.biotaxa.org/hn/article/view/34541}}</ref> some fish, and a few mammals (monotremes, tenrecs, golden moles, and marsupial moles) have this orifice, from which they excrete both urine and feces in addition to serving reproductive functions. Excretory systems with analogous purpose in certain invertebrates are also sometimes referred to as cloacae. | |||
===Insects=== | |||
{{main|Insect reproductive system}} | {{main|Insect reproductive system}} | ||
]]] | ]]] | ||
The organs concerned with ] mating and the deposition of eggs are known collectively as the external genitalia, although they may be largely internal; their components are very diverse in form. | The organs concerned with ] mating and the deposition of eggs are known collectively as the external genitalia, although they may be largely internal; their components are very diverse in form. | ||
===Slugs and snails=== | ====Slugs and snails==== | ||
{{main|Reproductive system of gastropods}} | {{main|Reproductive system of gastropods}} | ||
The reproductive system of gastropods (slugs and snails) varies greatly from one group to another. | The reproductive system of gastropods (slugs and snails) varies greatly from one group to another. | ||
=== |
====Planaria==== | ||
{{main|Reproductive system of planarians}} | {{main|Reproductive system of planarians}} | ||
] are flat worms widely used in biological research. There are sexual and asexual planaria. Sexual planaria are hermaphrodites, possessing both testicles and ovaries. Each planarian transports its excretion to the other planarian, giving and receiving sperm. | ] are flat worms widely used in biological research. There are sexual and asexual planaria. Sexual planaria are hermaphrodites, possessing both testicles and ovaries. Each planarian transports its excretion to the other planarian, giving and receiving sperm. | ||
Line 95: | Line 117: | ||
== Plants == | == Plants == | ||
{{main article|Alternation of generations|Plant reproductive morphology}} | {{main article|Alternation of generations|Plant reproductive morphology}} | ||
In most plant species, an individual has both male and female sex organs (a ]).<ref>{{Cite book|last1=Purves|first1=William K.|url=https://books.google.com/books?id=kS-h84pMJw4C&q=plant+sex+organs|title=Life: The Science of Biology|last2=Sadava|first2=David E.|last3=Orians|first3=Gordon H.|last4=Heller|first4=H. Craig|date=2001|publisher=Macmillan|isbn=978-0-7167-3873-2|pages=176|language=en}}</ref> | |||
The ] of ]s involves ] between a ] and a ] ]. The gametophyte produces sperm or egg cells by ]. The sporophyte produces spores by ] which in turn develop into gametophytes. Any sex organs that are produced by the plant will develop on the gametophyte. The ]s, which include ]s and ]s have small gametophytes that develop inside the pollen grains (male) and the ] (female). | |||
The ] of ]s involves ] between a ] and a ] gametophyte.<ref>{{Cite book |last=Pal |first=Nishant |url=https://books.google.com/books?id=Y-_czgEACAAJ |title=Plant Biology |date=2021-12-06 |publisher=Independently Published |isbn=979-8-7799-0473-5 |language=en |access-date=25 March 2023 |archive-date=10 April 2023 |archive-url=https://web.archive.org/web/20230410180903/https://books.google.com/books?id=Y-_czgEACAAJ |url-status=live }}</ref> The ] produces sperm or egg cells by ]. The sporophyte produces spores by ], which in turn develop into gametophytes. Any sex organs that are produced by the plant will develop on the gametophyte. The ]s, which include ]s and ]s, have small gametophytes that develop inside the pollen grains (male) and the ] (female). | |||
=== Flowering plants === | |||
Sexual reproduction in ]s involves the union of the male and female germ cells, sperm and egg cells respectively. Pollen is produced in ]s, and is carried to the ], which has the ] at its base where ] can take place. Within each pollen grain is a male gametophyte which consists of only three cells. In most flowering plants the female gametophyte within the ovule consists of only seven cells. Thus there are no sex organs as such. | |||
=== Flowers === | |||
In flowering plants, the ]s contain the sex organs.<ref>{{Cite book|last1=Purves|first1=William K.|url=https://books.google.com/books?id=kS-h84pMJw4C&q=plant+sex+organs|title=Life: The Science of Biology|last2=Sadava|first2=David E.|last3=Orians|first3=Gordon H.|last4=Heller|first4=H. Craig|date=2001|publisher=Macmillan|isbn=978-0-7167-3873-2|pages=665|language=en}}</ref> | |||
Sexual reproduction in ]s involves the union of the male and female germ cells, sperm and egg cells respectively. Pollen is produced in ]s and is carried to the ] or ], which has the ovule at its base where ] can take place. Within each pollen grain is a male gametophyte, which consists of only three cells. In most flowering plants, the female gametophyte within the ovule consists of only seven cells. Thus there are no sex organs as such. | |||
== Fungi == | |||
{{Main|Mating in fungi}} | |||
The sex organs in ] are known as ]. In some fungi, the sex organs are indistinguishable from each other but, in other cases, male and female sex organs are clearly different.<ref>{{Cite book|last1=Heritage|first1=J.|url=https://books.google.com/books?id=C0Q0ApyDFzcC&q=sex+organs+in+fungi&pg=PA19|title=Introductory Microbiology|last2=Evans|first2=E. G. V.|last3=Killington|first3=R. A.|date=1996-01-26|publisher=Cambridge University Press|isbn=978-0-521-44977-9|pages=19|language=en}}</ref> | |||
Similar gametangia that are similar are known as isogametangia. While male and female gametangia are known as heterogametangia, which occurs in the majority of fungi.<ref>{{Cite book|last1=Manoharachary|first1=C.|url=https://books.google.com/books?id=Neg4DwAAQBAJ&q=female+sex+organs+in+fungi&pg=PA328|title=Mycology and Microbiology (A Textbook for UG and PG Courses)|last2=Tilak|first2=K. V. B. R.|last3=Mallaiah|first3=K. V.|last4=Kunwar|first4=I. K.|date=2016-05-01|publisher=Scientific Publishers|isbn=978-93-86102-13-3|pages=328|language=en}}</ref> | |||
== See also == | == See also == | ||
{{Div col |
{{Div col}} | ||
* ] | * ] | ||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | * ] | ||
* ] | * ] | ||
Line 111: | Line 143: | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | |||
{{Div col end}} | {{Div col end}} | ||
Line 121: | Line 151: | ||
{{Commons category|Sexual anatomy}} | {{Commons category|Sexual anatomy}} | ||
{{Wiktionary|Wikisaurus:genitalia}} | {{Wiktionary|Wikisaurus:genitalia}} | ||
* {{cite book| |
* {{cite book|last1=Leonard|first1=Janet L.|first2=Alex|last2=Córdoba-Aguilar|title=The Evolution of Primary Sexual Characters in Animals|year=2010|publisher=Oxford University Press|location=Oxford|isbn=978-0199717033|url=https://books.google.com/books?id=PgtXj5R6OfMC}} | ||
{{Sex (biology)}} | {{Sex (biology)}} |
Latest revision as of 00:01, 31 December 2024
Biological part involved in sexual reproduction
A sex organ, also known as a reproductive organ, is a part of an organism that is involved in sexual reproduction. Sex organs constitute the primary sex characteristics of an organism. Sex organs are responsible for producing and transporting gametes, as well as facilitating fertilization and supporting the development and birth of offspring. Sex organs are found in many species of animals and plants, with their features varying depending on the species.
Sex organs are typically differentiated into male and female types.
In animals (including humans), the male sex organs include the testicles, epididymides, and penis; the female sex organs include the clitoris, ovaries, oviducts, and vagina. The testicle in the male and the ovary in the female are called the primary sex organs. All other sex-related organs are known as secondary sex organs. The outer parts are known as the genitals or external genitalia, visible at birth in both sexes, while the inner parts are referred to as internal genitalia, which in both sexes, are always hidden.
In plants, male reproductive structures include stamens in flowering plants, which produce pollen. Female reproductive structures, such as pistils in flowering plants, produce ovules and receive pollen for fertilization. Mosses, ferns, and some similar plants have gametangia for reproductive organs, which are part of the gametophyte. The flowers of flowering plants produce pollen and egg cells, but the sex organs themselves are inside the gametophytes within the pollen and the ovule. Coniferous plants likewise produce their sexually reproductive structures within the gametophytes contained within the cones and pollen. The cones and pollen are not themselves sexual organs.
Together, the sex organs constitute an organism's reproductive system.
Terminology
This section relies largely or entirely upon a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources at this section. (August 2021) (Learn how and when to remove this message) |
The primary sex organs are the gonads, a pair of internal sex organs, which diverge into testicles following male development or into ovaries following female development. As primary sex organs, gonads generate reproductive gametes containing inheritable DNA. They also produce most of the primary hormones that affect sexual development, and regulate other sexual organs and sexually differentiated behaviors.
Secondary sex organs are the rest of the reproductive system, whether internal or external. The Latin term genitalia, sometimes anglicized as genitals, is used to describe the externally visible sex organs.
In general zoology, given the great variety in organs, physiologies, and behaviors involved in copulation, male genitalia are more strictly defined as "all male structures that are inserted in the female or that hold her near her gonopore during sperm transfer"; female genitalia are defined as "those parts of the female reproductive tract that make direct contact with male genitalia or male products (sperm, spermatophores) during or immediately after copulation".
Evolution
Main article: Evolution of sexual reproductionIt is hard to find a common origin for gonads. However, gonads most likely evolved independently several times. At first, testes and ovaries evolved due to natural selection.
A consensus has emerged that sexual selection represents a primary factor for genital evolution. Male genitalia show traits of divergent evolution that are driven by sexual selection.
Animals
Vertebrates
Mammals
Further information: Mammalian reproductive system and Human reproductive system
The visible portion of eutherian mammalian genitals for males consists of the penis and scrotum; for females, it consists of the vulva.
In placental mammals, females have two genital orifices, the vaginal and urethral openings, while males have one genital orifice in the penis where urine and semen exit the urethra during urination and ejaculation. Male and female genitals have many nerve endings, resulting in pleasurable and highly sensitive touch. In most human societies, particularly in conservative ones, exposure of the genitals is considered a public indecency.
In humans, sex organs/genitalia include:
Male | Female |
---|---|
External Internal |
External Internal |
Development
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (August 2021) (Learn how and when to remove this message) |
In typical prenatal development, sex organs originate from a common primordium during early gestation and differentiate into male or female sexes. The SRY gene, usually located on the Y chromosome and encoding the testis determining factor, determines the direction of the differentiation. The absence of it allows the gonads to continue to develop into ovaries.
The development of the internal and external reproductive organs is determined by hormones produced by certain fetal gonads (ovaries or testicles) and the cells' response to them. The initial appearance of the fetal genitalia looks female-like: a pair of urogenital folds with a small protuberance in the middle, and the urethra behind the protuberance. If the fetus has testes and the testes produce testosterone, and if the cells of the genitals respond to the testosterone, the outer urogenital folds swell and fuse in the midline to produce the scrotum; the protuberance grows larger and straighter to form the penis; the inner urogenital swellings grow, wrap around the penis, and fuse in the midline to form the penile raphe. Each organ/body part in one sex has a homologous counterpart.
The process of sexual differentiation includes the development of secondary sexual characteristics, such as patterns of pubic and facial hair and female breasts that emerge at puberty.
Because of the strong sexual selection affecting the structure and function of genitalia, they form an organ system that evolves rapidly. A great variety of genital form and function may therefore be found among animals.
Other animals
In many other vertebrates, a single posterior orifice (the cloaca) serves as the only opening for the reproductive, digestive, and urinary tracts (if present) in both sexes. All amphibians, birds, reptiles, some fish, and a few mammals (monotremes, tenrecs, golden moles, and marsupial moles) have this orifice, from which they excrete both urine and feces in addition to serving reproductive functions. Excretory systems with analogous purpose in certain invertebrates are also sometimes referred to as cloacae.
Penile and clitoral structures are present in some birds and many reptiles.
Sexing teleost fish is determined by the shape of a fleshy tube behind the anus known as genital papilla.
Invertebrates
Insects
Main article: Insect reproductive systemThe organs concerned with insect mating and the deposition of eggs are known collectively as the external genitalia, although they may be largely internal; their components are very diverse in form.
Slugs and snails
Main article: Reproductive system of gastropodsThe reproductive system of gastropods (slugs and snails) varies greatly from one group to another.
Planaria
Main article: Reproductive system of planariansPlanaria are flat worms widely used in biological research. There are sexual and asexual planaria. Sexual planaria are hermaphrodites, possessing both testicles and ovaries. Each planarian transports its excretion to the other planarian, giving and receiving sperm.
Plants
Main articles: Alternation of generations and Plant reproductive morphologyIn most plant species, an individual has both male and female sex organs (a hermaphrodite).
The life cycle of land plants involves alternation of generations between a sporophyte and a haploid gametophyte. The gametophyte produces sperm or egg cells by mitosis. The sporophyte produces spores by meiosis, which in turn develop into gametophytes. Any sex organs that are produced by the plant will develop on the gametophyte. The seed plants, which include conifers and flowering plants, have small gametophytes that develop inside the pollen grains (male) and the ovule (female).
Flowers
In flowering plants, the flowers contain the sex organs.
Sexual reproduction in flowering plants involves the union of the male and female germ cells, sperm and egg cells respectively. Pollen is produced in stamens and is carried to the pistil or carpel, which has the ovule at its base where fertilization can take place. Within each pollen grain is a male gametophyte, which consists of only three cells. In most flowering plants, the female gametophyte within the ovule consists of only seven cells. Thus there are no sex organs as such.
Fungi
Main article: Mating in fungiThe sex organs in fungi are known as gametangia. In some fungi, the sex organs are indistinguishable from each other but, in other cases, male and female sex organs are clearly different.
Similar gametangia that are similar are known as isogametangia. While male and female gametangia are known as heterogametangia, which occurs in the majority of fungi.
See also
- Andrology
- Emasculation
- Genital modification and mutilation
- Human sexuality
- Hysterectomy
- Intimate part
- Obstetrics and gynaecology
- Oophorectomy
- Orchiectomy
References
- ^ Clark, Robert K. (2005). Anatomy and Physiology: Understanding the Human Body. Jones & Bartlett Learning. p. 25. ISBN 9780763748166.
- Deol, Pooja Soni (2023). ANATOMY PHYSIOLOGY OF FEMALE REPRODUCTIVE SYSTEM. Blue Rose Publishers. p. 14.
- "Parts of a Flower". American Museum of Natural History. Archived from the original on 19 March 2023. Retrieved 19 March 2023.
- Chisholm, Hugh, ed. (1911). "Pollination" . Encyclopædia Britannica. Vol. 22 (11th ed.). Cambridge University Press. pp. 2–5.
- "Mosses and Ferns". Biology.clc.uc.edu. 16 March 2001. Archived from the original on 28 July 2012. Retrieved 1 August 2012.
- "Flowering Plant Reproduction". Emc.maricopa.edu. 18 May 2010. Archived from the original on 8 October 2012. Retrieved 1 August 2012.
- Chisholm, Hugh, ed. (1911). "Reproductive System" . Encyclopædia Britannica. Vol. 23 (11th ed.). Cambridge University Press.
- "Gonad". Encyclopædia Britannica. Retrieved 21 August 2024.
- Eberhard, W.G., 1985. Sexual Selection and Animal Genitalia. Harvard University Press
- Schmidt-Rhaesa, Andreas (30 August 2007). The Evolution of Organ Systems. Oxford University Press. p. 252. ISBN 978-0-19-856668-7.
- switze, International Conference on Comparative Physiology 1992 Crans; Bassau, Short & (4 August 1994). The Differences Between the Sexes. Cambridge University Press. p. 54. ISBN 978-0-521-44878-9.
{{cite book}}
: CS1 maint: numeric names: authors list (link) - Langerhans, R. Brian; Anderson, Christopher M.; Heinen-Kay, Justa L. (6 September 2016). "Causes and Consequences of Genital Evolution". Integrative and Comparative Biology. 56 (4): 741–751. doi:10.1093/icb/icw101. ISSN 1540-7063. PMID 27600556.
- Simmons, Leigh W. (2014). "Sexual selection and genital evolution". Austral Entomology. 53 (1): 1–17. doi:10.1111/aen.12053. ISSN 2052-1758. S2CID 53690631.
- Marvalee H. Wake (1992). Hyman's Comparative Vertebrate Anatomy. University of Chicago Press. p. 583. ISBN 978-0-226-87013-7.
- Brigitta Olsen (15 November 2009). Daphne's Dance: True Tales in the Evolution of Woman's Sexual Awareness. Brigitta Olsen. p. 9. ISBN 978-0-9842117-0-8.
- Anita Allen (November 2011). Unpopular Privacy: What Must We Hide?. Oxford University Press, US. p. 219. ISBN 978-0-19-514137-5.
- Hodges, Frederick Mansfield S.; Denniston, George C.; Milos, Marilyn Fayre (2007). Male and Female Circumcision: Medical, Legal, and Ethical Considerations in Pediatric Practice. Springer US. p. 10. ISBN 978-0-58539-937-9. Retrieved 24 November 2023.
- Martin, Richard J.; Fanaroff, Avory A.; Walsh, Michele C. (2014). Fanaroff and Martin's Neonatal-Perinatal Medicine E-Book: Diseases of the Fetus and Infant. Elsevier Health Sciences. p. 1522. ISBN 978-0-32329-537-6. Retrieved 24 November 2023.
- Hosken, David J., and Paula Stockley."Sexual selection and genital evolution." Archived 12 October 2017 at the Wayback Machine Trends in Ecology & Evolution 19.2 (2004): 87-93.
- Arnqvist, Göran. "Comparative evidence for the evolution of genitalia by sexual selection." Archived 27 January 2012 at the Wayback Machine Nature 393.6687 (1998): 784.
- Schilthuizen, M. 2014. Nature's Nether Regions: What the Sex Lives of Bugs, Birds, and Beasts Tell Us About Evolution, Biodiversity, and Ourselves Archived 14 June 2023 at the Wayback Machine. Penguin USA
- "Male reproductive behaviour of Naja oxiana (Eichwald, 1831) in captivity, with a case of unilateral hemipenile prolapse". 2018.
- "Page:The Works of William Harvey (part 1 of 2).djvu/283 - Wikisource, the free online library". en.wikisource.org. Archived from the original on 25 March 2023. Retrieved 25 March 2023.
- Purves, William K.; Sadava, David E.; Orians, Gordon H.; Heller, H. Craig (2001). Life: The Science of Biology. Macmillan. p. 176. ISBN 978-0-7167-3873-2.
- Pal, Nishant (6 December 2021). Plant Biology. Independently Published. ISBN 979-8-7799-0473-5. Archived from the original on 10 April 2023. Retrieved 25 March 2023.
- Purves, William K.; Sadava, David E.; Orians, Gordon H.; Heller, H. Craig (2001). Life: The Science of Biology. Macmillan. p. 665. ISBN 978-0-7167-3873-2.
- Heritage, J.; Evans, E. G. V.; Killington, R. A. (26 January 1996). Introductory Microbiology. Cambridge University Press. p. 19. ISBN 978-0-521-44977-9.
- Manoharachary, C.; Tilak, K. V. B. R.; Mallaiah, K. V.; Kunwar, I. K. (1 May 2016). Mycology and Microbiology (A Textbook for UG and PG Courses). Scientific Publishers. p. 328. ISBN 978-93-86102-13-3.
Further reading
- Leonard, Janet L.; Córdoba-Aguilar, Alex (2010). The Evolution of Primary Sexual Characters in Animals. Oxford: Oxford University Press. ISBN 978-0199717033.
Sex | |
---|---|
Biological terms | |
Sexual reproduction | |
Sexuality | |
Human regional anatomy | |||||
---|---|---|---|---|---|
Body | Skin | ||||
Head | |||||
Neck | |||||
Torso (Trunk) | |||||
Limbs |
|