Misplaced Pages

Synovial joint: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 21:25, 6 March 2007 edit65.121.30.30 (talk) Structure← Previous edit Latest revision as of 10:15, 4 January 2025 edit undo90.174.2.25 (talk) Grammar 
(645 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Articulation which admits free motion in the joint; the most common type of articulation}}
]
{{Infobox anatomy
'''Synovial joints''' (or '''diarthroses''', or '''diarthroidal joints''') are the most common and most moveable type of ]s in the body. As with all other joints in the body, synovial joints achieve movement at the point of contact of the articulating bones. Structural and functional differences distinguish the synovial joints from the two other types of joints in the body, with the main structural difference being the existance of a cavity between the articulating bones and the occupation of a fluid in that cavity which aids movement.
|Name = Synovial joint
|Latin = junctura synovialis
|Image = 907 Synovial Joints.jpg
|Caption = Structure of synovial joint
|Image2 = 909 Types of Synovial Joints.jpg
|Caption2 = Types of synovial joints.

Clockwise from top-right: ], ], ], ], ] and ].
}}
A '''synovial joint''', also known as '''diarthrosis''', joins bones or cartilage with a fibrous ] that is continuous with the ] of the joined bones, constitutes the outer boundary of a synovial cavity, and surrounds the bones' articulating surfaces. This joint unites long bones and permits free bone movement and greater mobility.<ref>The Musculoskeletal System. In: Dutton M. eds. ''Dutton's Orthopaedic Examination, Evaluation, and Intervention, 5e''. McGraw-Hill; Accessed January 25, 2021. https://accessphysiotherapy-mhmedical-com.libaccess.lib.mcmaster.ca/content.aspx?bookid=2707&sectionid=224662311</ref> The synovial cavity/joint is filled with ]. The joint capsule is made up of an outer layer of fibrous membrane, which keeps the bones together structurally, and an inner layer, the ], which seals in the synovial fluid.

They are the most common and most movable type of ] in the body of a mammal. As with most other joints, synovial joints achieve movement at the point of contact of the articulating ]s.


== Structure == == Structure ==
Synovial joints contain the following structures:
The whole of a diarthrosis is contained by a ligamentous sac, the ] or articular capsule.
* Synovial cavity: all diarthroses have the characteristic space between the bones that is filled with ].
* ]: the fibrous capsule, continuous with the periosteum of articulating bones, surrounds the diarthrosis and unites the articulating bones; the joint capsule consists of two layers - (1) the outer ] membrane that may contain ligaments and (2) the inner ] that secretes the lubricating, shock absorbing, and joint-nourishing synovial fluid; the joint capsule is highly innervated, but without blood and lymph vessels, and receives nutrition from the surrounding blood supply via either ] (slow), or via ] (fast, more efficient), induced through exercise.
* ]: the bones of a synovial joint are covered by a layer of ] that lines the ] of the joint end of the bone with a smooth, slippery surface that prevents ]; articular cartilage functions to absorb shock and reduce ] during movement.

Many, but not all, synovial joints also contain additional structures:<ref name="Graysp20"/>
* ]s or menisci - the ] pads between opposing surfaces in a joint
* Articular fat pads - ] pads that protect the articular cartilage, as seen in the infrapatellar fat pad in the knee
* ]<ref name="Graysp20"/> - cords of ] composed of parallel bundles of ]
* Accessory ligaments (extracapsular and intracapsular) - the fibers of some fibrous membranes are arranged in parallel bundles of dense regular connective tissue that are highly adapted for resisting strains to prevent extreme movements that may damage the articulation{{Citation needed|date=October 2012}}
* ] - sac-like structures that are situated strategically to alleviate friction in some joints (shoulder and knee) that are filled with fluid similar to synovial fluid<ref name="Tortora12thEd"/>{{Page needed|date=October 2012}}

The bone surrounding the joint on the proximal side is sometimes called the ''plafond'' (French word for ceiling), especially in the ]. Damage to this structure is referred to as a ].

===Blood supply===
The blood supply of a synovial joint is derived from the arteries sharing in the ] around the joint.

=== Types ===
There are seven types of synovial joints.<ref name="umich2010couse"/> Some are relatively immobile, therefore more stable. Others have multiple degrees of freedom, but at the expense of greater risk of injury.<ref name="umich2010couse"/> In ascending order of mobility, they are:

{| class="wikitable"
! Name
! Example
! Description
|-
| ]s<br/>(or gliding joint)
| ]s of the ], ]
| These joints allow only gliding or sliding movements, are multi-axial such as the articulation between vertebrae.
|-
| ]s
| ] (between the ] and the ])
| These joints act as a ] ] does, allowing flexion and extension in just one plane, i.e. uniaxial.
|-
| ]s
| ], ], and ]
| One bone rotates about another
|-
| ]s<br/>(or ellipsoidal joints)
| ] (])
| A condyloid joint is a modified ball and socket joint that allows primary movement within two perpendicular axes, passive or secondary movement may occur on a third axes. Some classifications make a distinction between condyloid and ellipsoid joints;<ref name="Rogers2010p157"/><ref name="Sharkey2008p33"/> these joints allow flexion, extension, abduction, and adduction movements (circumduction).
|-
| ]s
| ] or trapeziometacarpal joint of ] (between the ] and ] - ]), ]
| Saddle joints, where the two surfaces are reciprocally concave/convex in shape, which resemble a ], permit the same movements as the condyloid joints but allows greater movement.
|-
| {{nowrap|]s}}<br/>"universal Joint"
| ] (]) and ] joints
| These allow for all movements except gliding
|-
| Compound joints<ref name="Moini2011p231"/><ref name="Abernethy2005p331"/><br/>/ bicondyloid joints<ref name="Graysp20"/>
| ] joint
| condylar joint (condyles of femur join with condyles of tibia) and saddle joint (lower end of femur joins with patella)
|}

====Multiaxial joints====
]
A '''multiaxial joint''' ('''polyaxial joint''' or '''triaxial joint''') is a synovial joint that allows for several directions of movement.<ref>{{cite web |last1=Miles |first1=Linda |title=LibGuides: BIO 140 - Human Biology I - Textbook: Chapter 41 - Classification of Joints |url=https://guides.hostos.cuny.edu/bio140/12-41 |website=guides.hostos.cuny.edu |publisher=Hostos Community College Library |access-date=21 May 2023 |language=en}}</ref> In the human body, the ] and ]s are multiaxial joints.<ref>{{cite web |last1=Lawry |first1=George V. |title=Chapter 1 - Anatomy of Joints, General Considerations, and Principles of Joint Examination |url=https://www.sciencedirect.com/science/article/abs/pii/B9780323030038500052 |website=Musculoskeletal Examination and Joint Injection Techniques |publisher=Mosby |access-date=21 May 2023 |pages=1–6 |language=en |date=1 January 2006}}</ref> They allow the upper or lower limb to move in an anterior-posterior direction and a medial-lateral direction. In addition, the limb can also be rotated around its long axis. This third movement results in rotation of the limb so that its anterior surface is moved either toward or away from the midline of the body.<ref name="ana&physio">{{cite book |last1=Betts |first1=J. Gordon |title=Anatomy & physiology |date=2013 |publisher=OpenStax |chapter=9.1 Classification of joints|location=Houston, Texas |isbn=978-1-947172-04-3 |url=https://openstax.org/books/anatomy-and-physiology/pages/9-1-classification-of-joints |access-date=14 May 2023}}</ref>


==Function==
The surfaces of the two bones at the joint are covered in ]. The thickness of the cartilage varies with each joint, and sometimes may be of uneven thickness. Articular cartilage is multi-layered. A thin superficial layer provides a smooth surface for the two bones to slide against each other. Of all the layers, it has the highest concentration of ] and the lowest concentration of ]s, making it very resistant to shear stresses. Deeper than that is an intermediate layer, which is mechanically designed to absorb shocks and distribute the load efficiently. The deepest layer is highly calcified, and anchors the articular cartilage to the bone.
{{Main|Anatomical terms of motion}}
The movements possible with synovial joints are:
* ]: movement away from the mid-line of the body
* ]: movement toward the mid-line of the body
* ]: straightening limbs at a joint
* ]: bending the limbs at a joint
* ]: a circular movement around a fixed point


==Clinical significance==
In joints where the two surfaces do not fit snugly together, a meniscus or multiple folds of ] within the joint correct the fit, ensuring stability and the optimal distribution of load forces.Brian Moffitt loves men a lot!!!
{{anchor|space}}The ''joint space'' equals the distance between the involved bones of the joint. A ''joint space narrowing'' is a sign of either (or both) ] and inflammatory degeneration.<ref name="JacobsonGirish2008">{{cite journal|last1=Jacobson|first1=Jon A.|last2=Girish|first2=Gandikota|last3=Jiang|first3=Yebin|last4=Sabb|first4=Brian J.|title=Radiographic Evaluation of Arthritis: Degenerative Joint Disease and Variations|journal=Radiology|volume=248|issue=3|year=2008|pages=737–747|issn=0033-8419|doi=10.1148/radiol.2483062112|pmid=18710973}}</ref> The normal joint space is at least 2&nbsp;mm in the ] (at the superior ]),<ref name="Lequesne2004">{{cite journal|last1=Lequesne|first1=M|title=The normal hip joint space: variations in width, shape, and architecture on 223 pelvic radiographs|journal=Annals of the Rheumatic Diseases|volume=63|issue=9|year=2004|pages=1145–1151|issn=0003-4967|doi=10.1136/ard.2003.018424|pmc=1755132|pmid=15308525}}</ref> at least 3&nbsp;mm in the ],<ref>{{cite book|title=Osteoarthritis: Diagnosis and Medical/surgical Management, LWW Doody's all reviewed collection|author=Roland W. Moskowitz|publisher=Lippincott Williams & Wilkins|year=2007|isbn=9780781767071|page=}}</ref> and 4–5&nbsp;mm in the ].<ref>{{cite web|url=http://radref.org/ref.php?id=361|title=Glenohumeral joint space|website=radref.org}}, in turn citing: {{cite journal|last1=Petersson|first1=Claes J.|last2=Redlund-Johnell|first2=Inga|title=Joint Space in Normal Gleno-Humeral Radiographs|journal=Acta Orthopaedica Scandinavica|volume=54|issue=2|year=2009|pages=274–276|issn=0001-6470|doi=10.3109/17453678308996569|pmid=6846006|doi-access=free}}</ref> For the ], a joint space of between 1.5 and 4&nbsp;mm is regarded as normal.<ref name="Massilla ManiSivasubramanian2016">{{cite journal|last1=Massilla Mani|first1=F.|last2=Sivasubramanian|first2=S. Satha|title=A study of temporomandibular joint osteoarthritis using computed tomographic imaging|journal=Biomedical Journal|volume=39|issue=3|year=2016|pages=201–206|issn=2319-4170|doi=10.1016/j.bj.2016.06.003|pmc=6138784|pmid=27621122}}</ref> Joint space narrowing is therefore a component of several ].


In ], the clinical manifestations are primarily synovial inflammation and joint damage. The ], highly specialized mesenchymal cells found in the ], have an active and prominent role in the pathogenic processes in the rheumatic joints.<ref name=nygaard>{{cite journal |doi=10.1038/s41584-020-0413-5 |title=Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes |year=2020 |last1=Nygaard |first1=Gyrid |last2=Firestein |first2=Gary S. |journal=Nature Reviews Rheumatology|volume=16 |issue=6 |pages=316–333 |pmid=32393826 |pmc=7987137 }}</ref> Therapies that target these cells are emerging as promising therapeutic tools, raising hope for future applications in rheumatoid arthritis.<ref name=nygaard />
The ] is a membrane that covers all the non-cartilaginous surfaces within the joint capsule. It secretes ] into the joint, which nourishes and lubricates the articular cartilage. The synovium is separated from the capsule by a layer of cellular tissue that contains blood vessels and nerves.


== Types == == References ==
<references>
]
<ref name="Graysp20">{{Cite book|author1=Drake, Richard L.|author2=Vogl, Wayne|author3=Mitchell, Adam W. M.|author4=Gray, Henry|date=2015|title=]|edition= 3rd|chapter=Skeletal system|page=20|isbn=978-0-7020-5131-9|oclc=881508489}}</ref>
<ref name="Tortora12thEd">Tortora & Derrickson () ''Principles of Anatomy & Physiology'' (12th ed.). Wiley & Sons</ref>
<ref name="umich2010couse">{{cite web|last=Umich|date=2010|work=Learning Modules - Medical Gross Anatomy|url= http://www.med.umich.edu/lrc/coursepages/m1/anatomy2010/html/modules/joints_module/joints_01.html|title= Introduction to Joints|publisher= University of Michigan Medical School|url-status=dead|archive-url= https://web.archive.org/web/20111122101527/http://www.med.umich.edu/lrc/coursepages/m1/anatomy2010/html/modules/joints_module/joints_01.html|archive-date=2011-11-22}}</ref>
<ref name="Rogers2010p157">Rogers, Kara (2010) ''Bone and Muscle: Structure, Force, and Motion'' </ref>
<ref name="Sharkey2008p33">Sharkey, John (2008) ''The Concise Book of Neuromuscular Therapy'' </ref>
<ref name="Moini2011p231">Moini (2011) ''Introduction to Pathology for the Physical Therapist Assistant'' </ref>
<ref name="Abernethy2005p331">Bruce Abernethy (2005) ''The Biophysical Foundations Of Human Movement'' pp.23, </ref>
</references>


===Sources===
Synovial joints can be further grouped by their shape, which controls the movement they allow. They are divided into six subtypes:
{{Free-content attribution|
| title = Anatomy and Physiology
| author = J. Gordon Betts ''et al''
| publisher =
| source= <!-- The source of the work if not from the publisher or the author -->
| documentURL = https://openstax.org/details/books/anatomy-and-physiology
| License statement URL = <!-- The URL of the license statement of the work if not included within the document -->
| license = CC BY 4.0
|howto =
}}


{{Commons category|Synovial joints}}
# ''']s''', such as the ] and ] joints. These allow a wide range of movement.
# ''']s''' (or '''ellipsoidal joints'''), such as the ]. A condyloid joint is where two bones fit together with an odd shape (e.g. an ]), and one bone is concave, the other convex. Some classifications make a distinction between condyloid and ellipsoid joints.
# ''']s''', such as at the ] (between the ] and ]). Saddle joints, which resemble a ], permit the same movements as the condyloid joints.
# ''']s''', such as the ] (between the ] and the ]). These joints act like a ] ], allowing flexion and extension in just one plane.
# ''']s''', such as the elbow (between the ] and the ]). This is where one bone rotates about another.
# ''']s''' (or '''planar joints'''), such as in the ]s of the wrist. These joints allow a wide variety of movement, but not much distance.


{{Joints}} {{Joints}}
{{Authority control}}
]


{{DEFAULTSORT:Synovial Joint}}
]
]

Latest revision as of 10:15, 4 January 2025

Articulation which admits free motion in the joint; the most common type of articulation
Synovial joint
Structure of synovial joint
Types of synovial joints. Clockwise from top-right: ball and socket joint, condyloid joint, plane joint, saddle joint, hinge joint and pivot joint.
Details
Identifiers
Latinjunctura synovialis
TA98A03.0.00.020
TA21533
FMA7501
Anatomical terminology[edit on Wikidata]

A synovial joint, also known as diarthrosis, joins bones or cartilage with a fibrous joint capsule that is continuous with the periosteum of the joined bones, constitutes the outer boundary of a synovial cavity, and surrounds the bones' articulating surfaces. This joint unites long bones and permits free bone movement and greater mobility. The synovial cavity/joint is filled with synovial fluid. The joint capsule is made up of an outer layer of fibrous membrane, which keeps the bones together structurally, and an inner layer, the synovial membrane, which seals in the synovial fluid.

They are the most common and most movable type of joint in the body of a mammal. As with most other joints, synovial joints achieve movement at the point of contact of the articulating bones.

Structure

Synovial joints contain the following structures:

  • Synovial cavity: all diarthroses have the characteristic space between the bones that is filled with synovial fluid.
  • Joint capsule: the fibrous capsule, continuous with the periosteum of articulating bones, surrounds the diarthrosis and unites the articulating bones; the joint capsule consists of two layers - (1) the outer fibrous membrane that may contain ligaments and (2) the inner synovial membrane that secretes the lubricating, shock absorbing, and joint-nourishing synovial fluid; the joint capsule is highly innervated, but without blood and lymph vessels, and receives nutrition from the surrounding blood supply via either diffusion (slow), or via convection (fast, more efficient), induced through exercise.
  • Articular cartilage: the bones of a synovial joint are covered by a layer of hyaline cartilage that lines the epiphyses of the joint end of the bone with a smooth, slippery surface that prevents adhesion; articular cartilage functions to absorb shock and reduce friction during movement.

Many, but not all, synovial joints also contain additional structures:

  • Articular discs or menisci - the fibrocartilage pads between opposing surfaces in a joint
  • Articular fat pads - adipose tissue pads that protect the articular cartilage, as seen in the infrapatellar fat pad in the knee
  • Tendons - cords of dense regular connective tissue composed of parallel bundles of collagen fibers
  • Accessory ligaments (extracapsular and intracapsular) - the fibers of some fibrous membranes are arranged in parallel bundles of dense regular connective tissue that are highly adapted for resisting strains to prevent extreme movements that may damage the articulation
  • Bursae - sac-like structures that are situated strategically to alleviate friction in some joints (shoulder and knee) that are filled with fluid similar to synovial fluid

The bone surrounding the joint on the proximal side is sometimes called the plafond (French word for ceiling), especially in the talocrural joint. Damage to this structure is referred to as a Gosselin fracture.

Blood supply

The blood supply of a synovial joint is derived from the arteries sharing in the anastomosis around the joint.

Types

There are seven types of synovial joints. Some are relatively immobile, therefore more stable. Others have multiple degrees of freedom, but at the expense of greater risk of injury. In ascending order of mobility, they are:

Name Example Description
Plane joints
(or gliding joint)
carpals of the wrist, acromioclavicular joint These joints allow only gliding or sliding movements, are multi-axial such as the articulation between vertebrae.
Hinge joints elbow (between the humerus and the ulna) These joints act as a door hinge does, allowing flexion and extension in just one plane, i.e. uniaxial.
Pivot joints atlanto-axial joint, proximal radioulnar joint, and distal radioulnar joint One bone rotates about another
Condyloid joints
(or ellipsoidal joints)
wrist joint (radiocarpal joint) A condyloid joint is a modified ball and socket joint that allows primary movement within two perpendicular axes, passive or secondary movement may occur on a third axes. Some classifications make a distinction between condyloid and ellipsoid joints; these joints allow flexion, extension, abduction, and adduction movements (circumduction).
Saddle joints Carpometacarpal or trapeziometacarpal joint of thumb (between the metacarpal and carpal - trapezium), sternoclavicular joint Saddle joints, where the two surfaces are reciprocally concave/convex in shape, which resemble a saddle, permit the same movements as the condyloid joints but allows greater movement.
Ball and socket joints
"universal Joint"
shoulder (glenohumeral) and hip joints These allow for all movements except gliding
Compound joints
/ bicondyloid joints
knee joint condylar joint (condyles of femur join with condyles of tibia) and saddle joint (lower end of femur joins with patella)

Multiaxial joints

A multiaxial joint, such as the hip joint, allows for three types of movement: anterior-posterior, medial-lateral, and rotational.

A multiaxial joint (polyaxial joint or triaxial joint) is a synovial joint that allows for several directions of movement. In the human body, the shoulder and hip joints are multiaxial joints. They allow the upper or lower limb to move in an anterior-posterior direction and a medial-lateral direction. In addition, the limb can also be rotated around its long axis. This third movement results in rotation of the limb so that its anterior surface is moved either toward or away from the midline of the body.

Function

Main article: Anatomical terms of motion

The movements possible with synovial joints are:

  • abduction: movement away from the mid-line of the body
  • adduction: movement toward the mid-line of the body
  • extension: straightening limbs at a joint
  • flexion: bending the limbs at a joint
  • rotation: a circular movement around a fixed point

Clinical significance

The joint space equals the distance between the involved bones of the joint. A joint space narrowing is a sign of either (or both) osteoarthritis and inflammatory degeneration. The normal joint space is at least 2 mm in the hip (at the superior acetabulum), at least 3 mm in the knee, and 4–5 mm in the shoulder joint. For the temporomandibular joint, a joint space of between 1.5 and 4 mm is regarded as normal. Joint space narrowing is therefore a component of several radiographic classifications of osteoarthritis.

In rheumatoid arthritis, the clinical manifestations are primarily synovial inflammation and joint damage. The fibroblast-like synoviocytes, highly specialized mesenchymal cells found in the synovial membrane, have an active and prominent role in the pathogenic processes in the rheumatic joints. Therapies that target these cells are emerging as promising therapeutic tools, raising hope for future applications in rheumatoid arthritis.

References

  1. The Musculoskeletal System. In: Dutton M. eds. Dutton's Orthopaedic Examination, Evaluation, and Intervention, 5e. McGraw-Hill; Accessed January 25, 2021. https://accessphysiotherapy-mhmedical-com.libaccess.lib.mcmaster.ca/content.aspx?bookid=2707&sectionid=224662311
  2. ^ Drake, Richard L.; Vogl, Wayne; Mitchell, Adam W. M.; Gray, Henry (2015). "Skeletal system". Gray's Anatomy for Students (3rd ed.). p. 20. ISBN 978-0-7020-5131-9. OCLC 881508489.
  3. Tortora & Derrickson () Principles of Anatomy & Physiology (12th ed.). Wiley & Sons
  4. ^ Umich (2010). "Introduction to Joints". Learning Modules - Medical Gross Anatomy. University of Michigan Medical School. Archived from the original on 2011-11-22.
  5. Rogers, Kara (2010) Bone and Muscle: Structure, Force, and Motion p.157
  6. Sharkey, John (2008) The Concise Book of Neuromuscular Therapy p.33
  7. Moini (2011) Introduction to Pathology for the Physical Therapist Assistant pp.231-2
  8. Bruce Abernethy (2005) The Biophysical Foundations Of Human Movement pp.23, 331
  9. Miles, Linda. "LibGuides: BIO 140 - Human Biology I - Textbook: Chapter 41 - Classification of Joints". guides.hostos.cuny.edu. Hostos Community College Library. Retrieved 21 May 2023.
  10. Lawry, George V. (1 January 2006). "Chapter 1 - Anatomy of Joints, General Considerations, and Principles of Joint Examination". Musculoskeletal Examination and Joint Injection Techniques. Mosby. pp. 1–6. Retrieved 21 May 2023.
  11. Betts, J. Gordon (2013). "9.1 Classification of joints". Anatomy & physiology. Houston, Texas: OpenStax. ISBN 978-1-947172-04-3. Retrieved 14 May 2023.
  12. Jacobson, Jon A.; Girish, Gandikota; Jiang, Yebin; Sabb, Brian J. (2008). "Radiographic Evaluation of Arthritis: Degenerative Joint Disease and Variations". Radiology. 248 (3): 737–747. doi:10.1148/radiol.2483062112. ISSN 0033-8419. PMID 18710973.
  13. Lequesne, M (2004). "The normal hip joint space: variations in width, shape, and architecture on 223 pelvic radiographs". Annals of the Rheumatic Diseases. 63 (9): 1145–1151. doi:10.1136/ard.2003.018424. ISSN 0003-4967. PMC 1755132. PMID 15308525.
  14. Roland W. Moskowitz (2007). Osteoarthritis: Diagnosis and Medical/surgical Management, LWW Doody's all reviewed collection. Lippincott Williams & Wilkins. p. 6. ISBN 9780781767071.
  15. "Glenohumeral joint space". radref.org., in turn citing: Petersson, Claes J.; Redlund-Johnell, Inga (2009). "Joint Space in Normal Gleno-Humeral Radiographs". Acta Orthopaedica Scandinavica. 54 (2): 274–276. doi:10.3109/17453678308996569. ISSN 0001-6470. PMID 6846006.
  16. Massilla Mani, F.; Sivasubramanian, S. Satha (2016). "A study of temporomandibular joint osteoarthritis using computed tomographic imaging". Biomedical Journal. 39 (3): 201–206. doi:10.1016/j.bj.2016.06.003. ISSN 2319-4170. PMC 6138784. PMID 27621122.
  17. ^ Nygaard, Gyrid; Firestein, Gary S. (2020). "Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes". Nature Reviews Rheumatology. 16 (6): 316–333. doi:10.1038/s41584-020-0413-5. PMC 7987137. PMID 32393826.

Sources

 This article incorporates text from a free content work. Licensed under CC BY 4.0. Text taken from Anatomy and Physiology​, J. Gordon Betts et al, Openstax.

Joints
Types
Terminology
Motions
Components
Category: