Revision as of 19:14, 7 June 2024 editDollasdal (talk | contribs)Extended confirmed users1,609 editsm →See also← Previous edit | Latest revision as of 23:10, 12 November 2024 edit undoMrfoogles (talk | contribs)Extended confirmed users8,094 edits correct name ryanoid -> diamide insecticideTag: Visual edit | ||
Line 52: | Line 52: | ||
== See also == | == See also == | ||
* ], a class of insecticides with the same mechanism of action as ryanodine | * ], a class of insecticides with the same mechanism of action as ryanodine | ||
* ] | * ] | ||
* ] | * ] |
Latest revision as of 23:10, 12 November 2024
Names | |
---|---|
Preferred IUPAC name (1S,2R,2aS,2aR,3S,3aS,6S,7R,7aR,9S,9aS)-1,2a,2a,3a,7,9-Hexahydroxy-3,6,9a-trimethyl-1-(propan-2-yl)dodecahydro-3,9-methanobenzopentalenofuran-2-yl 1H-pyrrole-2-carboxylate | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
IUPHAR/BPS | |
KEGG | |
MeSH | Ryanodine |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C25H35NO9 |
Molar mass | 493.553 g·mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). N verify (what is ?) Infobox references |
Ryanodine is a poisonous diterpenoid found in the South American plant Ryania speciosa (Salicaceae). It was originally used as an insecticide.
The compound has extremely high affinity to the open-form ryanodine receptor, a group of calcium channels found in skeletal muscle, smooth muscle, and heart muscle cells. It binds with such high affinity to the receptor that it was used as a label for the first purification of that class of ion channels and gave its name to it.
At nanomolar concentrations, ryanodine locks the receptor in a half-open state, whereas it fully closes them at micromolar concentration. The effect of the nanomolar-level binding is that ryanodine causes release of calcium from calcium stores as the sarcoplasmic reticulum in the cytoplasm, leading to massive muscle contractions. The effect of micromolar-level binding is paralysis. This is true for both mammals and insects.
See also
- Diamide insecticides, a class of insecticides with the same mechanism of action as ryanodine
- Ryanodine receptor
- Dihydropyridine channel
References
- Santulli, Gaetano; Marks, Andrew (2015). "Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging". Current Molecular Pharmacology. 8 (2): 206–222. doi:10.2174/1874467208666150507105105. ISSN 1874-4672. PMID 25966694.
- Van Petegem, F (2012). "Ryanodine receptors: structure and function". The Journal of Biological Chemistry. 287 (38): 31624–32. doi:10.1074/jbc.r112.349068. PMC 3442496. PMID 22822064.
Further reading
- Santulli, Gaetano; Marks, Andrew (2015). "Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging". Current Molecular Pharmacology. 8 (2): 206–222. doi:10.2174/1874467208666150507105105. PMID 25966694.
- Bertil Hille, Ionic Channels of Excitable Membranes, 2nd edition, Sinauer Associates, Sunderland, MA, 01375, ISBN 0-87893-323-9