Revision as of 17:40, 1 January 2025 editLowercase sigmabot III (talk | contribs)Bots, Template editors2,302,544 editsm Archiving 2 discussion(s) to Talk:Sun/Archive 10) (bot← Previous edit | Latest revision as of 18:01, 3 January 2025 edit undo50.127.5.36 (talk) →How does this work?: ReplyTags: Mobile edit Mobile web edit Reply | ||
(2 intermediate revisions by 2 users not shown) | |||
Line 111: | Line 111: | ||
:It matters because it is related to the Sun's internal rotation, which is discussed in the very next subsection. Perhaps that connection could be made more explicit. <span style="border-radius:2px;padding:3px;background:#1E816F">]<span style="color:#fff"> ‥ </span>]</span> 09:21, 31 December 2024 (UTC) | :It matters because it is related to the Sun's internal rotation, which is discussed in the very next subsection. Perhaps that connection could be made more explicit. <span style="border-radius:2px;padding:3px;background:#1E816F">]<span style="color:#fff"> ‥ </span>]</span> 09:21, 31 December 2024 (UTC) | ||
::I rewrote that paragraph, please review. I did not make the connection to rotation but the Gough ref could be used to do so. ] (]) 20:07, 31 December 2024 (UTC) | ::I rewrote that paragraph, please review. I did not make the connection to rotation but the Gough ref could be used to do so. ] (]) 20:07, 31 December 2024 (UTC) | ||
== How does this work? == | |||
hello I am merely 11 so some off my info may be wrong. How does the sun connect to earth in a way that could hurt earth. The sun is a part of global warming and too my knowledge and love off planets the Sun should not be getting any closer. How does this work? ] (]) 16:07, 2 January 2025 (UTC) | |||
:Well, the light from the sun is needed for life on Earth in the first place. The Sun is not generally getting closer to the earth (there's small change that repeats each year but it's not trending closer.) may be easier to understand. --] (]) 00:57, 3 January 2025 (UTC) | |||
::Thank you for this information Noreen! ] (]) 18:01, 3 January 2025 (UTC) |
Latest revision as of 18:01, 3 January 2025
Skip to table of contents |
This is the talk page for discussing improvements to the Sun article. This is not a forum for general discussion of the article's subject. |
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10Auto-archiving period: 3 months |
Sun is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Misplaced Pages community. Even so, if you can update or improve it, please do so. | ||||||||||||||||||||||||||||
Sun is part of the Solar System series, a featured topic. This is identified as among the best series of articles produced by the Misplaced Pages community. If you can update or improve it, please do so. | ||||||||||||||||||||||||||||
This article appeared on Misplaced Pages's Main Page as Today's featured article on March 20, 2006. | ||||||||||||||||||||||||||||
|
This level-2 vital article is rated FA-class on Misplaced Pages's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||||||||||||||||||||||||||||||||||||||
|
Unsafe conclusion in Motion and location
Under the subtitle "Motion in the Solar System"
There is an unsupported conclusion with an orphan reference. To wit: " The orbits of the inner planets, including of the Earth, are similarly displaced by the same gravitational forces, so the movement of the Sun has little effect on the relative positions of the Earth and the Sun or on solar irradiance on the Earth as a function of time. "
Checking footnote 140 reveals:
Retraction of: Scientific Reports 10.1038/s41598-019-45584-3, published online 24 June 2019 The Editors have retracted this Article. After publication, concerns were raised regarding the interpretation of how the Earth-Sun distance changes over time and that some of the assumptions on which analyses presented in the Article are based are incorrect.The analyses presented in the section entitled “Effects of SIM on a temperature in the terrestrial hemispheres” are based on the assumption that the orbits of the Earth and the Sun about the Solar System barycenter are uncorrelated, so that the Earth-Sun distance changes by an amount comparable to the Sun-barycenter distance. Post-publication peer review has shown that this assumption is inaccurate because the motions of the Earth and the Sun are primarily due to Jupiter and the other giant planets, which accelerate the Earth and the Sun in nearly the same direction, and thereby generate highly-correlated motions in the Earth and Sun. Current ephemeris calculations show that the Earth-Sun distance varies over a timescale of a few centuries by substantially less than the amount reported in this article. As a result the Editors no longer have confidence in the conclusions presented. S. I. Zharkov agrees with the retraction. V. V. Zharkova, E. Popova, and S. J. Shepherd disagree with the retraction.
Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R.S. & Kuchynka, P. The Planetary and Lunar Ephemerides DE430 and DE431. "The Interplanetary Network Progress Report", Volume 42–196, February 15, 2014.
JPL Horizons on-line solar system data. Horizons System
faint young Sun paradox
@Praemonitus removed the summary of Faint young Sun paradox, but in my opinion this topic is a great application of our understand (or lack) of the Sun's life history and should be included in this article. Johnjbarton (talk) 15:52, 11 October 2024 (UTC)
- I do see the point that it is related to the Sun's life history. OTOH, the predominant theory according to Faint young Sun paradox has a lot more to do with the Earth (greenhouse effect) than it does with the Sun, so maybe it's not actually that revealing a data point regarding the Sun's evolution. Double sharp (talk) 16:30, 11 October 2024 (UTC)
- Ok thanks, I think that is what Praemonitus was getting at. Johnjbarton (talk) 16:40, 11 October 2024 (UTC)
- Yes, the point about the increases to the Sun's luminosity and radius are already covered in the "Main sequence" section, so I didn't see a need to repeat that. There is a chart on the Solar luminosity article that provides useful information on the topic. Praemonitus (talk) 19:10, 11 October 2024 (UTC)
- Ok thanks, I think that is what Praemonitus was getting at. Johnjbarton (talk) 16:40, 11 October 2024 (UTC)
Question about the chemical abundances of the Sun
The Composition section says the following:
- At this time in the Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere.
- Originally it would have been about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements.
I'm puzzled about why the Sun would lose helium mass at the photosphere. Was it a diffusion process? (Cf. chemically peculiar star.) The article needs to explain it. Praemonitus (talk) 15:08, 14 October 2024 (UTC)
- Not a loss of helium but a gain of heavier elements. See Introduction:
- Lodders, K. (2021). Relative atomic solar system abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Science Reviews, 217(3), 44.
- Johnjbarton (talk) 16:36, 14 October 2024 (UTC)
- The H + He account for 98.5% at the start and 98.7% at present. Hence, the heavier elements have decreased in mass. Hmm. Praemonitus (talk) 18:17, 14 October 2024 (UTC)
- Okay, it's covered by the next paragraph: heavy element settling from the photosphere. Praemonitus (talk) 20:33, 15 October 2024 (UTC)
- The H + He account for 98.5% at the start and 98.7% at present. Hence, the heavier elements have decreased in mass. Hmm. Praemonitus (talk) 18:17, 14 October 2024 (UTC)
Norman or Joseph?
The article refers to "Norman" Lockyer and later to "Joseph" Lockyer even though the same person is indicated.
Some consistent name should be chosen and used consistently. 71.128.242.202 (talk) 19:37, 25 October 2024 (UTC)
- I did not find any mention of "Joseph Lockyer". The person named "Joseph Norman Lockyer" went exclusively by "Norman Lockyer". See Talk:Norman Lockyer. Johnjbarton (talk) 00:18, 26 October 2024 (UTC)
- I simplified the mention of 'Joseph Lockyer' earlier to just 'Lockyer' since Norman Lockyer was mentioned just a couple sentences above. Sgubaldo (talk) 00:21, 26 October 2024 (UTC)
- Ok great, I saw that. So fixed! Done Johnjbarton (talk) 00:25, 26 October 2024 (UTC)
- I simplified the mention of 'Joseph Lockyer' earlier to just 'Lockyer' since Norman Lockyer was mentioned just a couple sentences above. Sgubaldo (talk) 00:21, 26 October 2024 (UTC)
Nearly perfect sphere?
Is a tennis ball "a near perfect sphere"? A Class A ball bearing has an oblateness of under 3 ppm. The Sun's oblateness is nearly 3 times worse than that. And that's assuming the only thing we're concerned about is its GROSS physical dimensions (i.e. the major and minor axes). This is real life, not a 3D geometry exercise. Characterizing is as "near perfect" is totally vacuous. It serves no purpose and is wrong by many measures. Turns out, who knew?, that texture matters. The Photosphere can vary by 100's of km (according to the article) Do the math: 100 ÷ 7000 = 0.014 or 1.4% This isn't even reasonably near what could be made in the early 18th Century, let alone the 21st. That description should be removed. (And of course, anyone who claims that its surface is "near perfect" hasn't seen a Solar Prominence or a Coronal Mass Ejection. And never mind the fact that the heliopause not even close to spherical and varies by orders of magnitude more than the Sun's radius. (But the article does -sorta- qualify that it's talking about the visible surface of the Sun, i.e. the Photosphere, so it could be worse.)40.142.176.185 (talk) 09:09, 31 December 2024 (UTC)
- It matters because it is related to the Sun's internal rotation, which is discussed in the very next subsection. Perhaps that connection could be made more explicit. Remsense ‥ 论 09:21, 31 December 2024 (UTC)
- I rewrote that paragraph, please review. I did not make the connection to rotation but the Gough ref could be used to do so. Johnjbarton (talk) 20:07, 31 December 2024 (UTC)
How does this work?
hello I am merely 11 so some off my info may be wrong. How does the sun connect to earth in a way that could hurt earth. The sun is a part of global warming and too my knowledge and love off planets the Sun should not be getting any closer. How does this work? 50.127.5.36 (talk) 16:07, 2 January 2025 (UTC)
- Well, the light from the sun is needed for life on Earth in the first place. The Sun is not generally getting closer to the earth (there's small change that repeats each year but it's not trending closer.) This page may be easier to understand. --Noren (talk) 00:57, 3 January 2025 (UTC)
- Thank you for this information Noreen! 50.127.5.36 (talk) 18:01, 3 January 2025 (UTC)
- Misplaced Pages featured articles
- FA-Class Featured topics articles
- Misplaced Pages featured topics Solar System featured content
- High-importance Featured topics articles
- Featured articles that have appeared on the main page
- Featured articles that have appeared on the main page once
- FA-Class level-2 vital articles
- Misplaced Pages level-2 vital articles in Physical sciences
- FA-Class vital articles in Physical sciences
- FA-Class physics articles
- Top-importance physics articles
- FA-Class physics articles of Top-importance
- FA-Class Astronomy articles
- Top-importance Astronomy articles
- FA-Class Astronomy articles of Top-importance
- FA-Class Astronomical objects articles
- Pages within the scope of WikiProject Astronomical objects (WP Astronomy Banner)
- FA-Class Solar System articles
- Top-importance Solar System articles
- Solar System task force
- FA-Class Weather articles
- Low-importance Weather articles
- FA-Class Space weather articles
- Low-importance Space weather articles
- WikiProject Weather articles