Misplaced Pages

Reactive centrifugal force: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 17:59, 29 April 2008 editWolfkeeper (talk | contribs)31,832 editsm Real versus fictional forces← Previous edit Latest revision as of 21:01, 15 November 2024 edit undoBeland (talk | contribs)Autopatrolled, Administrators237,085 editsm whitespace cleanup; convert special characters found by Misplaced Pages:Typo Team/moss (via WP:JWB
(352 intermediate revisions by 82 users not shown)
Line 1: Line 1:
{{Short description|Force directed away from the center of rotation}}
:''For the pseudoforce that appears with a noninertial, rotating frame of reference see ]''
{{for|centrifugal force more generally, including other concepts of it and its history|Centrifugal force}}
A '''reactive centrifugal force''' refers to a ] which is generated by a ] and acts away from the ]. It is the ] force to a ].
{{Classical mechanics|rotational}}
In ], a '''reactive centrifugal force''' forms part of an action–reaction pair with a ].


In accordance with ], an object moves in a straight line in the absence of a ] acting on the object. A curved path ensues when a force that is orthogonal to the object's motion acts on it; this force is often called a ], as it is directed toward the center of curvature of the path. Then in accordance with ], there will also be an equal and opposite force exerted by the object on some other object,<ref name=Roche>
A mass undergoing ] constantly ]s toward the center of the circle. This ] is caused by a ], which is exerted on the mass by some other object. In accordance with ], the mass exerts an equal and opposite force on the object. This is the '''real''' or "''']'''" centrifugal force: it is directed away from the center of rotation, and is exerted ''by'' the rotating mass ''on'' the object which imposes the centripetal acceleration. Although this sense was used by ],<ref></ref> it is only occasionally used in modern discussions.<ref></ref><ref></ref><ref></ref><ref>http://physnet.org/modules/pdf_modules/m17.pdf
{{cite journal
ACCELERATION AND FORCE IN CIRCULAR MOTION by Peter Signell</ref>
| last= Roche
| first= John
| year= 2001
| title= Introducing motion in a circle
| journal= Physics Education
| volume= 36
| issue= 5
| pages= 399–405
| doi= 10.1088/0031-9120/36/5/305
|bibcode = 2001PhyEd..36..399R | s2cid= 250827660
}}</ref><ref name=Kobayashi>
{{cite journal
| last= Kobayashi
| first= Yukio
| year= 2008
| title= Remarks on viewing situation in a rotating frame
| journal= European Journal of Physics
| volume= 29
| issue= 3
| pages= 599–606
| doi= 10.1088/0143-0807/29/3/019
|bibcode = 2008EJPh...29..599K | s2cid= 120947179
}}</ref> and this reaction force is sometimes called a ''reactive centrifugal force'', as it is directed in the opposite direction of the centripetal force.


In the case of a ball held in ] by a string, the centripetal force is the force exerted by the string on the ball. The reactive centrifugal force on the other hand is the force the ball exerts on the string, placing it under ].
==Reactive centrifugal force==
A car with a passenger inside driving around a curve provides an example of the reactive centrifugal force. Viewed from an ], the passenger's inertia resists ], keeping the passenger moving with constant speed and direction as the car begins to turn. From this point of view, the passenger does not gravitate toward the outside of the path which the car follows; instead, the car's path curves to meet the passenger.


Unlike the ] known as ], which exists only in the ], the reactive force is a real Newtonian ] that is observed in any reference frame. The two forces will only have the same magnitude in the special cases where circular motion arises and where the axis of rotation is the origin of the rotating frame of reference.<ref name="mook">
Once the car contacts the passenger, it then applies a sideways force to accelerate him or her around the turn with the car. This force is called a centri''petal'' ("center seeking") force because its vector changes direction to continue to point toward the center (precisely, the ]) of the car's arc as the car traverses it.
{{cite book |author=Delo E. Mook & ] |url=https://books.google.com/books?id=QnJqIyk_dzIC&dq=%22reactive+centrifugal+force%22&pg=PA47 |title=Inside relativity |publisher=Princeton University Press |year=1987 |isbn=0-691-02520-7 |location=Princeton NJ |page=47}}</ref><ref>
{{cite book
| title = A Text Book of Theory of Machines
| edition = 3rd
| author = J. S. Brar and R. K. Bansal
| publisher = Firewall Media
| year = 2004
| isbn = 9788170084181
| page = 39
| url = https://books.google.com/books?id=hVeaAL0j3T0C&pg=PA39
}}
</ref><ref>
{{cite book
| title = The elements of analytical mechanics: solids and fluids
| edition = 4th
| author = De Volson Wood
| publisher = J. Wiley & sons
| year = 1884
| page =
| url = https://archive.org/details/cu31924031364338
}}</ref><ref name="scott">
{{cite journal
| title = Centrifugal Forces and Newton's Laws of Motion
| volume = 25
| author = G. David Scott
| journal = American Journal of Physics
| year = 1957
| issue = 5
| page = 325
| doi = 10.1119/1.1934450
| bibcode = 1957AmJPh..25..325S
}}
</ref>


== Paired forces ==
If the car is acting upon the passenger, then the passenger must be acting upon the car with an equal and opposite force. Being opposite, this reaction force is directed ''away'' from the center, therefore centri''fugal''.<ref></ref> It is critical to realize that this centrifugal force acts upon the car, not the passenger.
]


The figure at right shows a ball in ] held to its path by a string tied to an immovable post. In this system a ] upon the ball provided by the string maintains the circular motion, and the reaction to it, which some refer to as the ''reactive centrifugal force'', acts upon the string and the post.
The ''centrifugal reaction force'' with which the passenger pushes back against the door of the car is given by:


] requires that any body moving along any path other than a straight line be subject to a net non-zero force, and the ] shows the force upon the ball (center panel) exerted by the string to maintain the ball in its circular motion.
:{|
|-
|<math>\mathbf{F}_\mathrm{centrifugal} \,</math>
|<math>= - m \mathbf{a}_\mathrm{centripetal} \,</math>
|-
|
|<math>= m \omega^2 \mathbf{r}_\perp \,</math>
|}


] of action and reaction states that if the string exerts an inward centripetal force on the ball, the ball will exert an equal but outward reaction upon the string, shown in the free body diagram of the string (lower panel) as the ''reactive centrifugal force''.
where <math>m</math> is the mass of the rotating object, <math>\omega</math> the rotational speed (in radians per unit time), and <math>r</math> the radius from the center of curvature.


The string transmits the reactive centrifugal force from the ball to the fixed post, pulling upon the post. Again according to Newton's third law, the post exerts a reaction upon the string, labeled the ''post reaction'', pulling upon the string. The two forces upon the string are equal and opposite, exerting no ''net'' force upon the string (assuming that the string is massless), but placing the string under tension.
The reactive centrifugal force<ref>http://www.infoplease.com/ce6/sci/A0811114.html</ref> is a real force, but the term is rarely used in modern discussions.<ref></ref><ref></ref>


The reason the post appears to be "immovable" is because it is fixed to the earth. If the rotating ball was tethered to the mast of a boat, for example, the boat mast and ball would both experience rotation about a central point.
==Confusion and misconceptions==
Centrifugal force can be a confusing term because it is used (or misused) in more than one instance, and because sloppy labelling can obscure which forces are acting upon which objects in a system. When diagramming forces in a system, one must describe each object separately, attaching only those forces acting ''upon'' it (not forces that it ''exerts'' upon other objects).


==Applications==
==Real versus fictional forces==

{| class="wikitable" align="right"
Even though the reactive centrifugal is rarely used in analyses in the physics literature, the concept is applied within some mechanical engineering concepts. An example of this kind of engineering concept is an analysis of the stresses within a rapidly rotating turbine blade.<ref name=Roche/> The blade can be treated as a stack of layers going from the axis out to the edge of the blade. Each layer exerts an outward (centrifugal) force on the immediately adjacent, radially inward layer and an inward (centripetal) force on the immediately adjacent, radially outward layer. At the same time the inner layer exerts an elastic centripetal force on the middle layer, while and the outer layer exerts an elastic centrifugal force, which results in an internal stress. It is the stresses in the blade and their causes that mainly interest mechanical engineers in this situation.
|

! align=center| Real force
]'''. The motor spins the input shaft that makes the shoes go around, and the outer drum (removed) turns the output power shaft.]]
! align=center| Pseudo force

Another example of a rotating device in which a reactive centrifugal force can be identified used to describe the system behavior is the ]. A centrifugal clutch is used in small engine-powered devices such as chain saws, go-karts and model helicopters. It allows the engine to start and idle without driving the device, but automatically and smoothly engages the drive as the engine speed rises. A spring is used to constrain the spinning clutch shoes. At low speeds, the spring provides the centripetal force to the shoes, which move to larger radius as the speed increases and the spring stretches under tension. At higher speeds, when the shoes can't move any further out to increase the spring tension, due to the outer drum, the drum provides some of the centripetal force that keeps the shoes moving in a circular path. The force of tension applied to the spring, and the outward force applied to the drum by the spinning shoes are the corresponding reactive centrifugal forces. The mutual force between the drum and the shoes provides the friction needed to engage the output drive shaft that is connected to the drum.<ref>{{cite book | author = Anthony G. Atkins, Tony Atkins and Marcel Escudier | title = A Dictionary of Mechanical Engineering | date = 2013 | publisher = Oxford University Press | isbn = 9780199587438 | page = 53 | url = https://books.google.com/books?id=0TjtKmSIL48C&pg=PA53 | access-date = 5 June 2014}}</ref> Thus the ] illustrates both the fictitious centrifugal force and the reactive centrifugal force.

== Difference from centrifugal pseudoforce ==
The "reactive centrifugal force" discussed in this article is not the same thing as the ], which is usually what is meant by the term "centrifugal force".

Reactive centrifugal force, being one-half of the reaction pair together with centripetal force, is a concept which applies in any reference frame. This distinguishes it from the inertial or fictitious centrifugal force, which appears only in rotating frames.

{| class="wikitable" style="text-align:center;"
!
! Reactive centrifugal force
! Inertial centrifugal force
|- |-
! align=center| Reference<br>frame ! Reference frame
| align=center| Any | Any
| align=center| Only rotating reference frames | Only rotating frames
|- |-
! align=center| Exerted by ! Exerted ''by''
| Bodies undergoing rotation
| align=center| Bodies moving along<br>curved paths
| align=center| Acts as if exerted by the rotation axis<br>of the frame of reference | Acts as if emanating from the rotation axis, it is a so-called ]
|- |-
! align=center| Exerted upon ! Exerted ''upon''
| The constraint that causes the inward centripetal force
| align=center| The object imposing<br>curved motion
| All bodies, moving or not; if moving, ] is present as well
| align=center| All bodies
|- |-
! align=center| Direction ! Direction
| Opposite to the centripetal force
| align=center| Away from the<br>]
| align=center| Away from the rotation axis<br>of the frame of reference | Away from rotation axis, regardless of path of body
|-
! ] analysis
| Part of an action-reaction pair with a centripetal force as per Newton's third law
| Included as a ] in Newton's second law and is never part of an action-reaction pair with a centripetal force
|} |}


== Gravitational two-body case ==
*As already discussed a mass experiencing a ], which is exerted on it by some other object, exerts an equal and opposite force on that object in accordance with ]. This is a '''real''' or "''']'''" centrifugal force: it is directed away from the ], and is exerted ''by'' the rotating mass ''on'' the object which imposes the centripetal acceleration.


In a two-body rotation, such as a planet and moon rotating about their common center of mass or ], the forces on both bodies are centripetal. In that case, the reaction to the centripetal force of the planet on the moon is the centripetal force of the moon on the planet.<ref name=scott/>
* An '''inertial''' (also known as ''']''' or '''pseudo''') centrifugal force appears when a rotating ] is used for analysis. To make ] valid in such a frame, any true force on a mass must be supplemented by a (fictitious) ] that is directed away from the axis of rotation and a ] that bends a moving objects path.

Referring back to the earlier example, in the reference frame that is rotating together with the car (a model which those inside the car will often find natural), it looks as if a 'magical' force is pushing the passenger away from the center of the bend. In a rotating frame this is ascribed to the ]s&mdash;but it is not actual forces exerted by any other object- in reality it is ]. Seen from a stationary observer, outside the car, the passenger would travel in a straight line until the car door pushed against them. The effect occurs when the reference frame is following the car, because that hides the car's ]. Nevertheless physicists sometimes treat these types of forces much as if they were real forces, as it makes some kinds of calculations simpler and gives correct results, but these forces do not appear in inertial frames of reference that most students would normally use to do their calculations.

== See also ==
{{Wiktionary|centrifugal}}
* ]
* ]
* ]
* ]


==References== ==References==
{{reflist}}

<references/>
*
* - Columbia electronic encyclopedia
* M. Alonso and E.J. Finn, ''Fundamental university physics'', Addison-Wesley
* vs. - from an online Regents Exam physics tutorial by the Oswego City School District
*

==External links==
* at MathPages
* at h2g2


] ]
] ]
]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 21:01, 15 November 2024

Force directed away from the center of rotation For centrifugal force more generally, including other concepts of it and its history, see Centrifugal force.
Part of a series on
Classical mechanics
F = d p d t {\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}} Second law of motion
Branches
Fundamentals
Formulations
Core topics
Rotation
Scientists

In classical mechanics, a reactive centrifugal force forms part of an action–reaction pair with a centripetal force.

In accordance with Newton's first law of motion, an object moves in a straight line in the absence of a net force acting on the object. A curved path ensues when a force that is orthogonal to the object's motion acts on it; this force is often called a centripetal force, as it is directed toward the center of curvature of the path. Then in accordance with Newton's third law of motion, there will also be an equal and opposite force exerted by the object on some other object, and this reaction force is sometimes called a reactive centrifugal force, as it is directed in the opposite direction of the centripetal force.

In the case of a ball held in circular motion by a string, the centripetal force is the force exerted by the string on the ball. The reactive centrifugal force on the other hand is the force the ball exerts on the string, placing it under tension.

Unlike the inertial force known as centrifugal force, which exists only in the rotating frame of reference, the reactive force is a real Newtonian force that is observed in any reference frame. The two forces will only have the same magnitude in the special cases where circular motion arises and where the axis of rotation is the origin of the rotating frame of reference.

Paired forces

A ball in circular motion held by a string tied to a fixed post.

The figure at right shows a ball in uniform circular motion held to its path by a string tied to an immovable post. In this system a centripetal force upon the ball provided by the string maintains the circular motion, and the reaction to it, which some refer to as the reactive centrifugal force, acts upon the string and the post.

Newton's first law requires that any body moving along any path other than a straight line be subject to a net non-zero force, and the free body diagram shows the force upon the ball (center panel) exerted by the string to maintain the ball in its circular motion.

Newton's third law of action and reaction states that if the string exerts an inward centripetal force on the ball, the ball will exert an equal but outward reaction upon the string, shown in the free body diagram of the string (lower panel) as the reactive centrifugal force.

The string transmits the reactive centrifugal force from the ball to the fixed post, pulling upon the post. Again according to Newton's third law, the post exerts a reaction upon the string, labeled the post reaction, pulling upon the string. The two forces upon the string are equal and opposite, exerting no net force upon the string (assuming that the string is massless), but placing the string under tension.

The reason the post appears to be "immovable" is because it is fixed to the earth. If the rotating ball was tethered to the mast of a boat, for example, the boat mast and ball would both experience rotation about a central point.

Applications

Even though the reactive centrifugal is rarely used in analyses in the physics literature, the concept is applied within some mechanical engineering concepts. An example of this kind of engineering concept is an analysis of the stresses within a rapidly rotating turbine blade. The blade can be treated as a stack of layers going from the axis out to the edge of the blade. Each layer exerts an outward (centrifugal) force on the immediately adjacent, radially inward layer and an inward (centripetal) force on the immediately adjacent, radially outward layer. At the same time the inner layer exerts an elastic centripetal force on the middle layer, while and the outer layer exerts an elastic centrifugal force, which results in an internal stress. It is the stresses in the blade and their causes that mainly interest mechanical engineers in this situation.

A two-shoe centrifugal clutch. The motor spins the input shaft that makes the shoes go around, and the outer drum (removed) turns the output power shaft.

Another example of a rotating device in which a reactive centrifugal force can be identified used to describe the system behavior is the centrifugal clutch. A centrifugal clutch is used in small engine-powered devices such as chain saws, go-karts and model helicopters. It allows the engine to start and idle without driving the device, but automatically and smoothly engages the drive as the engine speed rises. A spring is used to constrain the spinning clutch shoes. At low speeds, the spring provides the centripetal force to the shoes, which move to larger radius as the speed increases and the spring stretches under tension. At higher speeds, when the shoes can't move any further out to increase the spring tension, due to the outer drum, the drum provides some of the centripetal force that keeps the shoes moving in a circular path. The force of tension applied to the spring, and the outward force applied to the drum by the spinning shoes are the corresponding reactive centrifugal forces. The mutual force between the drum and the shoes provides the friction needed to engage the output drive shaft that is connected to the drum. Thus the centrifugal clutch illustrates both the fictitious centrifugal force and the reactive centrifugal force.

Difference from centrifugal pseudoforce

The "reactive centrifugal force" discussed in this article is not the same thing as the centrifugal pseudoforce, which is usually what is meant by the term "centrifugal force".

Reactive centrifugal force, being one-half of the reaction pair together with centripetal force, is a concept which applies in any reference frame. This distinguishes it from the inertial or fictitious centrifugal force, which appears only in rotating frames.

Reactive centrifugal force Inertial centrifugal force
Reference frame Any Only rotating frames
Exerted by Bodies undergoing rotation Acts as if emanating from the rotation axis, it is a so-called fictitious force
Exerted upon The constraint that causes the inward centripetal force All bodies, moving or not; if moving, Coriolis force is present as well
Direction Opposite to the centripetal force Away from rotation axis, regardless of path of body
Kinetic analysis Part of an action-reaction pair with a centripetal force as per Newton's third law Included as a fictitious force in Newton's second law and is never part of an action-reaction pair with a centripetal force

Gravitational two-body case

In a two-body rotation, such as a planet and moon rotating about their common center of mass or barycentre, the forces on both bodies are centripetal. In that case, the reaction to the centripetal force of the planet on the moon is the centripetal force of the moon on the planet.

References

  1. ^ Roche, John (2001). "Introducing motion in a circle". Physics Education. 36 (5): 399–405. Bibcode:2001PhyEd..36..399R. doi:10.1088/0031-9120/36/5/305. S2CID 250827660.
  2. Kobayashi, Yukio (2008). "Remarks on viewing situation in a rotating frame". European Journal of Physics. 29 (3): 599–606. Bibcode:2008EJPh...29..599K. doi:10.1088/0143-0807/29/3/019. S2CID 120947179.
  3. Delo E. Mook & Thomas Vargish (1987). Inside relativity. Princeton NJ: Princeton University Press. p. 47. ISBN 0-691-02520-7.
  4. J. S. Brar and R. K. Bansal (2004). A Text Book of Theory of Machines (3rd ed.). Firewall Media. p. 39. ISBN 9788170084181.
  5. De Volson Wood (1884). The elements of analytical mechanics: solids and fluids (4th ed.). J. Wiley & sons. p. 310.
  6. ^ G. David Scott (1957). "Centrifugal Forces and Newton's Laws of Motion". American Journal of Physics. 25 (5): 325. Bibcode:1957AmJPh..25..325S. doi:10.1119/1.1934450.
  7. Anthony G. Atkins, Tony Atkins and Marcel Escudier (2013). A Dictionary of Mechanical Engineering. Oxford University Press. p. 53. ISBN 9780199587438. Retrieved 5 June 2014.
Categories: