Revision as of 06:30, 8 March 2002 editZundark (talk | contribs)Extended confirmed users, File movers, Pending changes reviewers29,658 editsm aka sigma-field← Previous edit | Latest revision as of 13:46, 8 October 2024 edit undoMathwriter2718 (talk | contribs)Extended confirmed users1,134 edits →Sub σ-algebras: Improved example and added formal defn | ||
(675 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Algebraic structure of set algebra}} | |||
A '''σ-algebra''' (or '''σ-field''') ''X'' over a ] ''E'' is a family of ] of ''E'' which is closed under ] set operations; σ-algebras are mainly used in order to define ] on ''E''. The concept is important in ] and ]. | |||
{{for|an algebraic structure admitting a given signature Σ of operations|Universal algebra}} | |||
{{lowercase title}} | |||
In ] and in ], a '''σ-algebra''' ("sigma algebra"; also '''σ-field''', where the σ comes from the ] "Summe"<ref>Elstrodt, J. (2018). Maß- Und Integrationstheorie. Springer Spektrum Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57939-8</ref>) on a set ''X'' is a nonempty collection Σ of ] of ''X'' ] under ], countable ], and countable ]. The ordered pair <math>(X, \Sigma)</math> is called a ]. | |||
A σ-algebra of subsets is a ] of subsets; elements of the latter only need to be closed under the union or intersection of ''finitely'' many subsets, which is a weaker condition.<ref>{{Cite web |title=11. Measurable Spaces |url=https://www.randomservices.org/random/foundations/Measurable.html |access-date=30 March 2016 |website=Random: Probability, Mathematical Statistics, Stochastic Processes |publisher=University of Alabama in Huntsville, Department of Mathematical Sciences |quote=Clearly a σ-algebra of subsets is also an algebra of subsets, so the basic results for algebras in still hold.}}</ref> | |||
Formally, ''X'' is a σ-algebra if and only if it has the following properties: | |||
The main use of σ-algebras is in the definition of ]; specifically, the collection of those subsets for which a given measure is defined is necessarily a σ-algebra. This concept is important in ] as the foundation for ], and in ], where it is interpreted as the collection of events which can be assigned probabilities. Also, in probability, σ-algebras are pivotal in the definition of ]. | |||
# The empty set is in ''X'', | |||
# If ''S'' is in X then so is the complement of ''S''. | |||
# If ''S''<sub>1</sub>, ''S''<sub>2</sub>, ''S''<sub>3</sub>, ... is a sequence in ''X'' then their (countable) union is also in ''X''. | |||
In ], (sub) σ-algebras are needed for the formal mathematical definition of a ],<ref name=sufficiency>{{cite book |last1=Billingsley |first1=Patrick |authorlink=Patrick Billingsley |title=Probability and Measure |date=2012 |publisher=Wiley |isbn=978-1-118-12237-2 |edition=Anniversary}}</ref> particularly when the statistic is a function or a random process and the notion of ] is not applicable. | |||
From 1 and 2 it follows that ''E'' is in ''X''; from 2 and 3 it follows that the σ-algebra is also closed under countable intersections. | |||
If <math>X = \{a, b, c, d\}</math> one possible σ-algebra on <math>X</math> is <math>\Sigma = \{\varnothing, \{a, b\}, \{c, d\}, \{a, b, c, d\}\},</math> where <math>\varnothing</math> is the ]. In general, a finite algebra is always a σ-algebra. | |||
=== Examples === | |||
If <math>\{A_1, A_2, A_3, \ldots\},</math> is a countable ] of <math>X</math> then the collection of all unions of sets in the partition (including the empty set) is a σ-algebra. | |||
If ''E'' is any set, then the family consisting only of the empty set and ''E'' is a σ-algebra over ''E'', the so-called ''trivial σ-algebra''. Another σ-algebra over ''E'' is given by the ] of ''E''. | |||
A more useful example is the set of subsets of the ] formed by starting with all ]s and adding in all countable unions, countable intersections, and relative complements and continuing this process (by ] through all ]s) until the relevant closure properties are achieved (a construction known as the ]). | |||
If {''X''<sub>a</sub>} is a family of σ-algebras over ''E'', then the intersection of all ''X''<sub>a</sub> is also a σ-algebra over ''E''. | |||
==Motivation== | |||
If ''U'' is an arbitrary family of subsets of ''E'' then we can form a special σ-algebra from ''U'', called the ''σ-algebra generated by U''. We denote it by σ(''U'') and define it as follows. | |||
There are at least three key motivators for σ-algebras: defining measures, manipulating limits of sets, and managing partial information characterized by sets. | |||
First note that there is a σ-algebra over ''E'' that contains ''U'', namely the power set of ''E''. | |||
Let Φ be the family of all σ-algebras over ''E'' that contain ''U'' (that is, a σ-algebra ''X'' over ''E'' is in Φ if and only if ''U'' is a subset of ''X''.) | |||
Then we define σ(''U'') to be the intersection of all σ-algebras in Φ. σ(''U'') is then the smallest σ-algebra over ''E'' that contains ''U''; its elements are all sets that can be gotten from sets in ''U'' by applying a countable sequence of the set operations union, intersection and complement. | |||
===Measure=== | |||
This leads to the most important example: the ] σ-algebra over any ] is the σ-algebra generated by the open sets (or, equivalently, by the closed sets). | |||
A ] on <math>X</math> is a ] that assigns a non-negative ] to subsets of <math>X;</math> this can be thought of as making precise a notion of "size" or "volume" for sets. We want the size of the union of disjoint sets to be the sum of their individual sizes, even for an infinite sequence of ]. | |||
It is important to note that this σ-algebra is not, in general, the whole power set. | |||
For a non-trivial example, see the ]. | |||
One would like to assign a size to {{em|every}} subset of <math>X,</math> but in many natural settings, this is not possible. For example, the ] implies that when the size under consideration is the ordinary notion of length for subsets of the real line, then there exist sets for which no size exists, for example, the ]s. For this reason, one considers instead a smaller collection of privileged subsets of <math>X.</math> These subsets will be called the measurable sets. They are closed under operations that one would expect for measurable sets, that is, the complement of a measurable set is a measurable set and the countable union of measurable sets is a measurable set. Non-empty collections of sets with these properties are called σ-algebras. | |||
On the ] '''R'''<sup>''n''</sup>, another σ-algebra is of importance: that of all ] sets. This σ-algebra contains more sets than the Borel σ-algebra. | |||
=== |
===Limits of sets=== | ||
Many uses of measure, such as the probability concept of ], involve ]. For this, closure under countable unions and intersections is paramount. Set limits are defined as follows on σ-algebras. | |||
* The {{em|]}} or {{em|outer limit}} of a sequence <math>A_1, A_2, A_3, \ldots</math> of subsets of <math>X</math> is <math display=block>\limsup_{n\to\infty} A_n = \bigcap_{n=1}^\infty \bigcup_{m=n}^\infty A_m = \bigcap_{n=1}^\infty A_n \cup A_{n+1} \cup \cdots.</math> It consists of all points <math>x</math> that are in infinitely many of these sets (or equivalently, that are in ] of them). That is, <math>x \in \limsup_{n\to\infty} A_n</math> if and only if there exists an infinite ] <math> A_{n_1}, A_{n_2}, \ldots</math> (where <math>n_1 < n_2 < \cdots</math>) of sets that all contain <math>x;</math> that is, such that <math>x \in A_{n_1} \cap A_{n_2} \cap \cdots.</math> | |||
If ''X'' is a σ-algebra over ''E'' and ''Y'' is a σ-algebra over ''F'', then a ] ''f'' : ''E'' <tt>-></tt> ''F'' is called ''measurable'' if the preimage of every set in ''Y'' is in ''X''. A function ''f'' : ''E'' <tt>-></tt> '''R''' is called measurable if it is measurable with respect to the Borel σ-algebra on '''R'''. | |||
* The {{em|]}} or {{em|inner limit}} of a sequence <math>A_1, A_2, A_3, \ldots</math> of subsets of <math>X</math> is <math display=block>\liminf_{n\to\infty} A_n = \bigcup_{n=1}^\infty \bigcap_{m=n}^\infty A_m = \bigcup_{n=1}^\infty A_n \cap A_{n+1} \cap \cdots.</math> It consists of all points that are in all but finitely many of these sets (or equivalently, that are {{em|eventually}} in all of them). That is, <math>x \in \liminf_{n\to\infty} A_n</math> if and only if there exists an index <math>N \in \N</math> such that <math>A_N, A_{N+1}, \ldots</math> all contain <math>x;</math> that is, such that <math>x \in A_N \cap A_{N+1} \cap \cdots.</math> | |||
The inner limit is always a subset of the outer limit: <math display=block>\liminf_{n\to\infty} A_n ~\subseteq~ \limsup_{n\to\infty} A_n.</math> | |||
If these two sets are equal then their limit <math>\lim_{n\to\infty} A_n</math> exists and is equal to this common set: | |||
<math display=block>\lim_{n\to\infty} A_n := \liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n.</math> | |||
===Sub σ-algebras=== | |||
In much of probability, especially when ] is involved, one is concerned with sets that represent only part of all the possible information that can be observed. This partial information can be characterized with a smaller σ-algebra which is a subset of the principal σ-algebra; it consists of the collection of subsets relevant only to and determined only by the partial information. Formally, if <math>\Sigma, \Sigma'</math> are σ-algebras on <math>X</math>, then <math>\Sigma'</math> is a sub σ-algebra of <math>\Sigma</math> if <math>\Sigma' \subseteq \Sigma</math>. An example will illustrate how this idea arises. | |||
Imagine two people are betting on a game that involves flipping a coin repeatedly and observing whether it comes up Heads (<math>H</math>) or Tails (<math>T</math>). Both players are assumed to be infinitely wealthy, so there is no limit to how long the game can last. This means the ] Ω must consist of all possible infinite sequences of <math>H</math> or <math>T:</math> | |||
<math display=block>\Omega = \{H, T\}^\infty = \{(x_1, x_2, x_3, \dots) : x_i \in \{H, T\}, i \geq 1\}.</math> | |||
The observed information after <math>n</math> flips have occurred is one of the <math>2^n</math> possibilities describing the sequence of the first <math>n</math> flips. This is codified as the sub σ-algebra | |||
<math display=block>\mathcal{G}_n = \{A \times \{H, T\}^\infty : A \subseteq \{H, T\}^n\}</math> | |||
which locks down the first <math>n</math> flips and is agnostic about the result of the remaining ones. Observe that then | |||
<math display=block>\mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \mathcal{G}_3 \subseteq \cdots \subseteq \mathcal{G}_\infty,</math> | |||
where <math>\mathcal{G}_\infty</math> is the smallest σ-algebra containing all the others. | |||
==Definition and properties== | |||
===Definition=== | |||
Let <math>X</math> be some set, and let <math>P(X)</math> represent its ]. Then a subset <math>\Sigma \subseteq P(X)</math> is called a '''σ-algebra''' if and only if it satisfies the following three properties:<ref>{{cite book | last=Rudin | first=Walter | authorlink=Walter Rudin | title=Real & Complex Analysis | publisher=] | year=1987 | isbn=0-07-054234-1}}</ref> | |||
# <math>X</math> is in <math> \Sigma</math>. | |||
# <math> \Sigma</math> is ''closed under complementation'': If some set <math>A</math> is in <math> \Sigma,</math> then so is its ], <math>X \setminus A.</math> | |||
# <math> \Sigma</math> is ''closed under countable unions'': If <math>A_1, A_2, A_3, \ldots</math> are in <math> \Sigma,</math> then so is <math>A = A_1 \cup A_2 \cup A_3 \cup \cdots.</math> | |||
From these properties, it follows that the σ-algebra is also closed under countable ] (by applying ]). | |||
It also follows that the ] <math>\varnothing</math> is in <math> \Sigma,</math> since by '''(1)''' <math>X</math> is in <math> \Sigma</math> and '''(2)''' asserts that its complement, the empty set, is also in <math> \Sigma.</math> Moreover, since <math>\{X, \varnothing\}</math> satisfies condition '''(3)''' as well, it follows that <math>\{X, \varnothing\}</math> is the smallest possible σ-algebra on <math>X.</math> The largest possible σ-algebra on <math>X</math> is <math>P(X).</math> | |||
Elements of the σ-algebra are called ]s. An ordered pair <math>(X, \Sigma),</math> where <math>X</math> is a set and <math> \Sigma</math> is a σ-algebra over <math>X,</math> is called a '''measurable space'''. A function between two measurable spaces is called a ] if the ] of every measurable set is measurable. The collection of measurable spaces forms a ], with the ]s as ]s. ] are defined as certain types of functions from a σ-algebra to <math>.</math> | |||
A σ-algebra is both a ] and a ] (λ-system). The converse is true as well, by Dynkin's theorem (see below). | |||
===Dynkin's π-λ theorem=== | |||
{{See also|π-λ theorem}} | |||
This theorem (or the related ]) is an essential tool for proving many results about properties of specific σ-algebras. It capitalizes on the nature of two simpler classes of sets, namely the following. | |||
* A ] <math>P</math> is a collection of subsets of <math>X</math> that is closed under finitely many intersections, and | |||
* A ] (or λ-system) <math>D</math> is a collection of subsets of <math>X</math> that contains <math>X</math> and is closed under complement and under countable unions of ''disjoint'' subsets. | |||
Dynkin's π-λ theorem says, if <math>P</math> is a π-system and <math>D</math> is a Dynkin system that contains <math>P,</math> then the σ-algebra <math>\sigma(P)</math> ] by <math>P</math> is contained in <math>D.</math> Since certain π-systems are relatively simple classes, it may not be hard to verify that all sets in <math>P</math> enjoy the property under consideration while, on the other hand, showing that the collection <math>D</math> of all subsets with the property is a Dynkin system can also be straightforward. Dynkin's π-λ Theorem then implies that all sets in <math>\sigma(P)</math> enjoy the property, avoiding the task of checking it for an arbitrary set in <math>\sigma(P).</math> | |||
One of the most fundamental uses of the π-λ theorem is to show equivalence of separately defined measures or integrals. For example, it is used to equate a probability for a random variable <math>X</math> with the ] typically associated with computing the probability: | |||
<math display=block>\mathbb{P}(X\in A) = \int_A \,F(dx)</math> for all <math>A</math> in the Borel σ-algebra on <math>\Reals,</math> | |||
where <math>F(x)</math> is the ] for <math>X,</math> defined on <math>\Reals,</math> while <math>\mathbb{P}</math> is a ], defined on a σ-algebra <math> \Sigma</math> of subsets of some ] <math>\Omega.</math> | |||
===Combining σ-algebras=== | |||
Suppose <math>\textstyle\left\{\Sigma_\alpha : \alpha \in \mathcal{A}\right\}</math> is a collection of σ-algebras on a space <math>X.</math> | |||
'''Meet''' | |||
The intersection of a collection of σ-algebras is a σ-algebra. To emphasize its character as a σ-algebra, it often is denoted by: | |||
<math display=block>\bigwedge_{\alpha \in \mathcal{A}} \Sigma_\alpha.</math> | |||
'''Sketch of Proof:''' Let <math>\Sigma^*</math> denote the intersection. Since <math>X</math> is in every <math>\Sigma_\alpha, \Sigma^*</math> is not empty. Closure under complement and countable unions for every <math>\Sigma_\alpha</math> implies the same must be true for <math>\Sigma^*.</math> Therefore, <math>\Sigma^*</math> is a σ-algebra. | |||
'''Join''' | |||
The union of a collection of σ-algebras is not generally a σ-algebra, or even an algebra, but it ] a σ-algebra known as the join which typically is denoted | |||
<math display=block>\bigvee_{\alpha \in \mathcal{A}} \Sigma_\alpha = \sigma\left(\bigcup_{\alpha \in \mathcal{A}} \Sigma_\alpha\right).</math> | |||
A π-system that generates the join is | |||
<math display=block>\mathcal{P} = \left\{\bigcap_{i=1}^n A_i : A_i \in \Sigma_{\alpha_i}, \alpha_i \in \mathcal{A},\ n \geq 1\right\}.</math> | |||
'''Sketch of Proof:''' By the case <math>n = 1,</math> it is seen that each <math>\Sigma_\alpha\subset\mathcal{P},</math> so | |||
<math display=block>\bigcup_{\alpha \in \mathcal{A}} \Sigma_\alpha \subseteq \mathcal{P}.</math> | |||
This implies | |||
<math display=block>\sigma\left(\bigcup_{\alpha \in \mathcal{A}} \Sigma_\alpha\right) \subseteq \sigma(\mathcal{P})</math> | |||
by the definition of a σ-algebra ] by a collection of subsets. On the other hand, | |||
<math display=block>\mathcal{P} \subseteq \sigma\left(\bigcup_{\alpha \in \mathcal{A}} \Sigma_\alpha\right)</math> | |||
which, by Dynkin's π-λ theorem, implies | |||
<math display=block>\sigma(\mathcal{P}) \subseteq \sigma\left(\bigcup_{\alpha \in \mathcal{A}} \Sigma_\alpha\right).</math> | |||
===σ-algebras for subspaces=== | |||
Suppose <math>Y</math> is a subset of <math>X</math> and let <math>(X, \Sigma)</math> be a measurable space. | |||
* The collection <math>\{Y \cap B : B \in \Sigma\}</math> is a σ-algebra of subsets of <math>Y.</math> | |||
* Suppose <math>(Y, \Lambda)</math> is a measurable space. The collection <math>\{A \subseteq X : A \cap Y \in \Lambda\}</math> is a σ-algebra of subsets of <math>X.</math> | |||
===Relation to σ-ring=== | |||
A ''σ''-algebra <math> \Sigma</math> is just a ] that contains the universal set <math>X.</math><ref name=Vestrup2009>{{cite book| last=Vestrup |first=Eric M. |title=The Theory of Measures and Integration |year=2009 |publisher=John Wiley & Sons |isbn=978-0-470-31795-2 |page=12}}</ref> A ''σ''-ring need not be a ''σ''-algebra, as for example measurable subsets of zero Lebesgue measure in the real line are a ''σ''-ring, but not a ''σ''-algebra since the real line has infinite measure and thus cannot be obtained by their countable union. If, instead of zero measure, one takes measurable subsets of finite Lebesgue measure, those are a ] but not a ''σ''-ring, since the real line can be obtained by their countable union yet its measure is not finite. | |||
===Typographic note=== | |||
''σ''-algebras are sometimes denoted using ] capital letters, or the ]. Thus <math>(X, \Sigma)</math> may be denoted as <math>\scriptstyle(X,\,\mathcal{F})</math> or <math>\scriptstyle(X,\,\mathfrak{F}).</math> | |||
==Particular cases and examples== | |||
===Separable σ-algebras=== | |||
A '''separable <math>\sigma</math>-algebra''' (or '''separable <math>\sigma</math>-field''') is a <math>\sigma</math>-algebra <math>\mathcal{F}</math> that is a ] when considered as a ] with ] <math>\rho(A,B) = \mu(A \mathbin{\triangle} B)</math> for <math>A,B \in \mathcal{F}</math> and a given finite ] <math>\mu</math> (and with <math>\triangle</math> being the ] operator).<ref>{{cite journal|last1=Džamonja|first1=Mirna|last2=Kunen|first2=Kenneth|authorlink2=Kenneth Kunen|title=Properties of the class of measure separable compact spaces| journal=]|year=1995|pages=262|url=https://archive.uea.ac.uk/~h020/fundamenta.pdf|quote=If <math>\mu</math> is a Borel measure on <math>X,</math> the measure algebra of <math>(X,\mu)</math> is the Boolean algebra of all Borel sets modulo <math>\mu</math>-null sets. If <math>\mu</math> is finite, then such a measure algebra is also a metric space, with the distance between the two sets being the measure of their symmetric difference. Then, we say that <math>\mu</math> is ''separable'' ] this metric space is separable as a topological space.}}</ref> Any <math>\sigma</math>-algebra generated by a ] collection of ] is separable, but the converse need not hold. For example, the Lebesgue <math>\sigma</math>-algebra is separable (since every Lebesgue measurable set is equivalent to some Borel set) but not countably generated (since its cardinality is higher than continuum). | |||
A separable measure space has a natural ] that renders it ] as a ]. The distance between two sets is defined as the measure of the ] of the two sets. The symmetric difference of two distinct sets can have measure zero; hence the pseudometric as defined above need not to be a true metric. However, if sets whose symmetric difference has measure zero are identified into a single ], the resulting ] can be properly metrized by the induced metric. If the measure space is separable, it can be shown that the corresponding metric space is, too. | |||
===Simple set-based examples=== | |||
Let <math>X</math> be any set. | |||
* The family consisting only of the empty set and the set <math>X,</math> called the minimal or '''trivial σ-algebra''' over <math>X.</math> | |||
* The ] of <math>X,</math> called the '''discrete σ-algebra'''. | |||
* The collection <math>\{\varnothing, A, X \setminus A, X\}</math> is a simple σ-algebra generated by the subset <math>A.</math> | |||
* The collection of subsets of <math>X</math> which are countable or whose complements are countable is a σ-algebra (which is distinct from the power set of <math>X</math> if and only if <math>X</math> is uncountable). This is the σ-algebra generated by the ] of <math>X.</math> Note: "countable" includes finite or empty. | |||
* The collection of all unions of sets in a countable ] of <math>X</math> is a σ-algebra. | |||
===Stopping time sigma-algebras=== | |||
A ] <math>\tau</math> can define a <math>\sigma</math>-algebra <math>\mathcal{F}_\tau,</math> the | |||
so-called ], which in a ] describes the information up to the random time <math>\tau</math> in the sense that, if the filtered probability space is interpreted as a random experiment, the maximum information that can be found out about the experiment from arbitrarily often repeating it until the time <math>\tau</math> is <math>\mathcal{F}_{\tau}.</math><ref name="Fischer (2013)">{{cite journal|last=Fischer|first=Tom|title=On simple representations of stopping times and stopping time sigma-algebras|journal=Statistics and Probability Letters|year=2013|volume=83|issue=1|pages=345–349|doi=10.1016/j.spl.2012.09.024|arxiv=1112.1603 |url=https://dx.doi.org/10.1016/j.spl.2012.09.024}}</ref> | |||
==σ-algebras generated by families of sets== | |||
===σ-algebra generated by an arbitrary family=== | |||
{{anchor}} | |||
Let <math>F</math> be an arbitrary family of subsets of <math>X.</math> Then there exists a unique smallest σ-algebra which contains every set in <math>F</math> (even though <math>F</math> may or may not itself be a σ-algebra). It is, in fact, the intersection of all σ-algebras containing <math>F.</math> (See intersections of σ-algebras above.) This σ-algebra is denoted <math>\sigma(F)</math> and is called '''the σ-algebra generated by <math>F.</math>''' | |||
If <math>F</math> is empty, then <math>\sigma(\varnothing) = \{\varnothing, X\}.</math> Otherwise <math>\sigma(F)</math> consists of all the subsets of <math>X</math> that can be made from elements of <math>F</math> by a countable number of complement, union and intersection operations. | |||
For a simple example, consider the set <math>X = \{1, 2, 3\}.</math> Then the σ-algebra generated by the single subset <math>\{1\}</math> is | |||
<math>\sigma(\{1\}) = \{\varnothing, \{1\}, \{2, 3\}, \{1, 2, 3\}\}.</math> | |||
By an ], when a collection of subsets contains only one element, <math>A,</math> <math>\sigma(A)</math> may be written instead of <math>\sigma(\{A\});</math> in the prior example <math>\sigma(\{1\})</math> instead of <math>\sigma(\{\{1\}\}).</math> Indeed, using <math>\sigma\left(A_1, A_2, \ldots\right)</math> to mean <math>\sigma\left(\left\{A_1, A_2, \ldots\right\}\right)</math> is also quite common. | |||
There are many families of subsets that generate useful σ-algebras. Some of these are presented here. | |||
===σ-algebra generated by a function=== | |||
If <math>f</math> is a function from a set <math>X</math> to a set <math>Y</math> and <math>B</math> is a <math>\sigma</math>-algebra of subsets of <math>Y,</math> then the <math>\sigma</math>'''-algebra generated by the function''' <math>f,</math> denoted by <math>\sigma (f),</math> is the collection of all inverse images <math>f^{-1} (S)</math> of the sets <math>S</math> in <math>B.</math> That is, | |||
<math display=block>\sigma (f) = \left\{f^{-1}(S) \, : \, S \in B\right\}. </math> | |||
A function <math>f</math> from a set <math>X</math> to a set <math>Y</math> is ] with respect to a σ-algebra <math> \Sigma</math> of subsets of <math>X</math> if and only if <math>\sigma(f)</math> is a subset of <math>\Sigma.</math> | |||
One common situation, and understood by default if <math>B</math> is not specified explicitly, is when <math>Y</math> is a ] or ] and <math>B</math> is the collection of ]s on <math>Y.</math> | |||
If <math>f</math> is a function from <math>X</math> to <math>\Reals^n</math> then <math>\sigma(f)</math> is generated by the family of subsets which are inverse images of intervals/rectangles in <math>\Reals^n:</math> | |||
<math display=block>\sigma(f) = \sigma\left(\left\{f^{-1}(\left \times \cdots \times \left) : a_i, b_i \in \Reals\right\}\right).</math> | |||
A useful property is the following. Assume <math>f</math> is a measurable map from <math>\left(X, \Sigma_X\right)</math> to <math>\left(S, \Sigma_S\right)</math> and <math>g</math> is a measurable map from <math>\left(X, \Sigma_X\right)</math> to <math>\left(T, \Sigma_T\right).</math> If there exists a measurable map <math>h</math> from <math>\left(T, \Sigma_T\right)</math> to <math>\left(S, \Sigma_S\right)</math> such that <math>f(x) = h(g(x))</math> for all <math>x,</math> then <math>\sigma(f) \subseteq \sigma(g).</math> If <math>S</math> is finite or countably infinite or, more generally, <math>\left(S, \Sigma_S\right)</math> is a ] (for example, a separable complete metric space with its associated Borel sets), then the converse is also true.<ref>{{cite book | last=Kallenberg | first=Olav | authorlink=Olav Kallenberg | title=Foundations of Modern Probability |edition=2nd | publisher=] | year=2001 | isbn=0-387-95313-2|page=7}}</ref> Examples of standard Borel spaces include <math>\Reals^n</math> with its Borel sets and <math>\Reals^\infty</math> with the cylinder σ-algebra described below. | |||
===Borel and Lebesgue σ-algebras=== | |||
An important example is the ] over any ]: the σ-algebra generated by the ]s (or, equivalently, by the ]s). This σ-algebra is not, in general, the whole power set. For a non-trivial example that is not a Borel set, see the ] or ]. | |||
On the ] <math>\Reals^n,</math> another σ-algebra is of importance: that of all ] sets. This σ-algebra contains more sets than the Borel σ-algebra on <math>\Reals^n</math> and is preferred in ] theory, as it gives a ]. | |||
===Product σ-algebra=== | |||
Let <math>\left(X_1, \Sigma_1\right)</math> and <math>\left(X_2, \Sigma_2\right)</math> be two measurable spaces. The σ-algebra for the corresponding ] <math>X_1 \times X_2</math> is called the '''product σ-algebra''' and is defined by | |||
<math display=block>\Sigma_1 \times \Sigma_2 = \sigma\left(\left\{B_1 \times B_2 : B_1 \in \Sigma_1, B_2 \in \Sigma_2\right\}\right).</math> | |||
Observe that <math>\{B_1 \times B_2 : B_1 \in \Sigma_1, B_2 \in \Sigma_2\}</math> is a π-system. | |||
The Borel σ-algebra for <math>\Reals^n</math> is generated by half-infinite rectangles and by finite rectangles. For example, | |||
<math display=block>\mathcal{B}(\Reals^n) = \sigma \left(\left\{(-\infty, b_1] \times \cdots \times (-\infty, b_n] : b_i \in \Reals\right\}\right) = \sigma\left(\left\{\left(a_1, b_1\right] \times \cdots \times \left(a_n, b_n\right] : a_i, b_i \in \Reals\right\}\right).</math> | |||
For each of these two examples, the generating family is a π-system. | |||
===σ-algebra generated by cylinder sets=== | |||
Suppose | |||
<math display=block>X \subseteq \Reals^{\mathbb{T}} = \{f : f(t) \in \Reals,\ t \in \mathbb{T}\}</math> | |||
is a set of real-valued functions. Let <math>\mathcal{B}(\Reals)</math> denote the Borel subsets of <math>\Reals.</math> A ] of <math>X</math> is a finitely restricted set defined as | |||
<math display=block>C_{t_1,\dots,t_n}(B_1,\dots,B_n) = \left\{f \in X : f(t_i) \in B_i, 1 \leq i \leq n\right\}.</math> | |||
Each | |||
<math display=block>\left\{C_{t_1,\dots,t_n}\left(B_1, \dots, B_n\right) : B_i \in \mathcal{B}(\Reals), 1 \leq i \leq n\right\}</math> | |||
is a π-system that generates a σ-algebra <math>\textstyle\Sigma_{t_1, \dots, t_n}.</math> Then the family of subsets | |||
<math display=block>\mathcal{F}_X = \bigcup_{n=1}^\infty \bigcup_{t_i \in \mathbb{T},i \leq n}\Sigma_{t_1, \dots, t_n}</math> | |||
is an algebra that generates the '''cylinder σ-algebra''' for <math>X.</math> This σ-algebra is a subalgebra of the Borel σ-algebra determined by the ] of <math>\Reals^{\mathbb{T}}</math> restricted to <math>X.</math> | |||
An important special case is when <math>\mathbb{T}</math> is the set of natural numbers and <math>X</math> is a set of real-valued sequences. In this case, it suffices to consider the cylinder sets | |||
<math display=block>C_n\left(B_1, \dots, B_n\right) = \left(B_1 \times \cdots \times B_n \times \Reals^\infty\right) \cap X = \left\{\left(x_1, x_2, \ldots, x_n,x_{n+1},\ldots\right) \in X : x_i \in B_i ,1 \leq i \leq n\right\},</math> | |||
for which | |||
<math display=block>\Sigma_n = \sigma\left(\{C_n\left(B_1, \dots, B_n\right) : B_i \in \mathcal{B}(\Reals), 1 \leq i \leq n\}\right)</math> | |||
is a non-decreasing sequence of σ-algebras. | |||
===Ball σ-algebra=== | |||
The ball σ-algebra is the smallest σ-algebra containing all the open (and/or closed) balls. This is never larger than the ]. Note that the two σ-algebra are equal for separable spaces. For some nonseparable spaces, some maps are ball measurable even though they are not Borel measurable, making use of the ball σ-algebra useful in the analysis of such maps.<ref>van der Vaart, A. W., & Wellner, J. A. (1996). Weak Convergence and Empirical Processes. In Springer Series in Statistics. Springer New York. https://doi.org/10.1007/978-1-4757-2545-2</ref> | |||
===σ-algebra generated by random variable or vector=== | |||
Suppose <math>(\Omega, \Sigma, \mathbb{P})</math> is a ]. If <math>\textstyle Y:\Omega\to\Reals^n</math> is measurable with respect to the Borel σ-algebra on <math>\Reals^n</math> then <math>Y</math> is called a ''']''' (<math>n = 1</math>) or '''random vector''' (<math>n > 1</math>). The σ-algebra generated by <math>Y</math> is | |||
<math display=block>\sigma(Y) = \left\{Y^{-1}(A) : A \in \mathcal{B}\left(\Reals^n\right)\right\}.</math> | |||
===σ-algebra generated by a stochastic process=== | |||
Suppose <math>(\Omega,\Sigma,\mathbb{P})</math> is a ] and <math>\Reals^\mathbb{T}</math> is the set of real-valued functions on <math>\mathbb{T}.</math> If <math>\textstyle Y : \Omega\to X \subseteq \Reals^\mathbb{T}</math> is measurable with respect to the cylinder σ-algebra <math>\sigma\left(\mathcal{F}_X\right)</math> (see above) for <math>X</math> then <math>Y</math> is called a ''']''' or '''random process'''. The σ-algebra generated by <math>Y</math> is | |||
<math display=block>\sigma(Y) = \left\{Y^{-1}(A) : A \in \sigma\left(\mathcal{F}_X\right)\right\} = \sigma\left(\left\{Y^{-1}(A) : A \in \mathcal{F}_X\right\}\right),</math> | |||
the σ-algebra generated by the inverse images of cylinder sets. | |||
==See also== | |||
* {{annotated link|Measurable function}} | |||
* {{annotated link|Sample space}} | |||
* {{annotated link|Sigma-additive set function}} | |||
* {{annotated link|Sigma-ring}} | |||
{{Families of sets}} | |||
==References== | |||
{{reflist}} | |||
==External links== | |||
* {{springer|title=Algebra of sets|id=p/a011400}} | |||
* ] from PlanetMath. | |||
<!-- http://planetmath.org/encyclopedia/SigmaAlgebra.html --> | |||
{{Authority control}} | |||
] | |||
] | |||
] | |||
] |
Latest revision as of 13:46, 8 October 2024
Algebraic structure of set algebra For an algebraic structure admitting a given signature Σ of operations, see Universal algebra.In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra"; also σ-field, where the σ comes from the German "Summe") on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.
A σ-algebra of subsets is a set algebra of subsets; elements of the latter only need to be closed under the union or intersection of finitely many subsets, which is a weaker condition.
The main use of σ-algebras is in the definition of measures; specifically, the collection of those subsets for which a given measure is defined is necessarily a σ-algebra. This concept is important in mathematical analysis as the foundation for Lebesgue integration, and in probability theory, where it is interpreted as the collection of events which can be assigned probabilities. Also, in probability, σ-algebras are pivotal in the definition of conditional expectation.
In statistics, (sub) σ-algebras are needed for the formal mathematical definition of a sufficient statistic, particularly when the statistic is a function or a random process and the notion of conditional density is not applicable.
If one possible σ-algebra on is where is the empty set. In general, a finite algebra is always a σ-algebra.
If is a countable partition of then the collection of all unions of sets in the partition (including the empty set) is a σ-algebra.
A more useful example is the set of subsets of the real line formed by starting with all open intervals and adding in all countable unions, countable intersections, and relative complements and continuing this process (by transfinite iteration through all countable ordinals) until the relevant closure properties are achieved (a construction known as the Borel hierarchy).
Motivation
There are at least three key motivators for σ-algebras: defining measures, manipulating limits of sets, and managing partial information characterized by sets.
Measure
A measure on is a function that assigns a non-negative real number to subsets of this can be thought of as making precise a notion of "size" or "volume" for sets. We want the size of the union of disjoint sets to be the sum of their individual sizes, even for an infinite sequence of disjoint sets.
One would like to assign a size to every subset of but in many natural settings, this is not possible. For example, the axiom of choice implies that when the size under consideration is the ordinary notion of length for subsets of the real line, then there exist sets for which no size exists, for example, the Vitali sets. For this reason, one considers instead a smaller collection of privileged subsets of These subsets will be called the measurable sets. They are closed under operations that one would expect for measurable sets, that is, the complement of a measurable set is a measurable set and the countable union of measurable sets is a measurable set. Non-empty collections of sets with these properties are called σ-algebras.
Limits of sets
Many uses of measure, such as the probability concept of almost sure convergence, involve limits of sequences of sets. For this, closure under countable unions and intersections is paramount. Set limits are defined as follows on σ-algebras.
- The limit supremum or outer limit of a sequence of subsets of is It consists of all points that are in infinitely many of these sets (or equivalently, that are in cofinally many of them). That is, if and only if there exists an infinite subsequence (where ) of sets that all contain that is, such that
- The limit infimum or inner limit of a sequence of subsets of is It consists of all points that are in all but finitely many of these sets (or equivalently, that are eventually in all of them). That is, if and only if there exists an index such that all contain that is, such that
The inner limit is always a subset of the outer limit: If these two sets are equal then their limit exists and is equal to this common set:
Sub σ-algebras
In much of probability, especially when conditional expectation is involved, one is concerned with sets that represent only part of all the possible information that can be observed. This partial information can be characterized with a smaller σ-algebra which is a subset of the principal σ-algebra; it consists of the collection of subsets relevant only to and determined only by the partial information. Formally, if are σ-algebras on , then is a sub σ-algebra of if . An example will illustrate how this idea arises.
Imagine two people are betting on a game that involves flipping a coin repeatedly and observing whether it comes up Heads () or Tails (). Both players are assumed to be infinitely wealthy, so there is no limit to how long the game can last. This means the sample space Ω must consist of all possible infinite sequences of or
The observed information after flips have occurred is one of the possibilities describing the sequence of the first flips. This is codified as the sub σ-algebra
which locks down the first flips and is agnostic about the result of the remaining ones. Observe that then where is the smallest σ-algebra containing all the others.
Definition and properties
Definition
Let be some set, and let represent its power set. Then a subset is called a σ-algebra if and only if it satisfies the following three properties:
- is in .
- is closed under complementation: If some set is in then so is its complement,
- is closed under countable unions: If are in then so is
From these properties, it follows that the σ-algebra is also closed under countable intersections (by applying De Morgan's laws).
It also follows that the empty set is in since by (1) is in and (2) asserts that its complement, the empty set, is also in Moreover, since satisfies condition (3) as well, it follows that is the smallest possible σ-algebra on The largest possible σ-algebra on is
Elements of the σ-algebra are called measurable sets. An ordered pair where is a set and is a σ-algebra over is called a measurable space. A function between two measurable spaces is called a measurable function if the preimage of every measurable set is measurable. The collection of measurable spaces forms a category, with the measurable functions as morphisms. Measures are defined as certain types of functions from a σ-algebra to
A σ-algebra is both a π-system and a Dynkin system (λ-system). The converse is true as well, by Dynkin's theorem (see below).
Dynkin's π-λ theorem
See also: π-λ theoremThis theorem (or the related monotone class theorem) is an essential tool for proving many results about properties of specific σ-algebras. It capitalizes on the nature of two simpler classes of sets, namely the following.
- A π-system is a collection of subsets of that is closed under finitely many intersections, and
- A Dynkin system (or λ-system) is a collection of subsets of that contains and is closed under complement and under countable unions of disjoint subsets.
Dynkin's π-λ theorem says, if is a π-system and is a Dynkin system that contains then the σ-algebra generated by is contained in Since certain π-systems are relatively simple classes, it may not be hard to verify that all sets in enjoy the property under consideration while, on the other hand, showing that the collection of all subsets with the property is a Dynkin system can also be straightforward. Dynkin's π-λ Theorem then implies that all sets in enjoy the property, avoiding the task of checking it for an arbitrary set in
One of the most fundamental uses of the π-λ theorem is to show equivalence of separately defined measures or integrals. For example, it is used to equate a probability for a random variable with the Lebesgue-Stieltjes integral typically associated with computing the probability: for all in the Borel σ-algebra on where is the cumulative distribution function for defined on while is a probability measure, defined on a σ-algebra of subsets of some sample space
Combining σ-algebras
Suppose is a collection of σ-algebras on a space
Meet
The intersection of a collection of σ-algebras is a σ-algebra. To emphasize its character as a σ-algebra, it often is denoted by:
Sketch of Proof: Let denote the intersection. Since is in every is not empty. Closure under complement and countable unions for every implies the same must be true for Therefore, is a σ-algebra.
Join
The union of a collection of σ-algebras is not generally a σ-algebra, or even an algebra, but it generates a σ-algebra known as the join which typically is denoted A π-system that generates the join is Sketch of Proof: By the case it is seen that each so This implies by the definition of a σ-algebra generated by a collection of subsets. On the other hand, which, by Dynkin's π-λ theorem, implies
σ-algebras for subspaces
Suppose is a subset of and let be a measurable space.
- The collection is a σ-algebra of subsets of
- Suppose is a measurable space. The collection is a σ-algebra of subsets of
Relation to σ-ring
A σ-algebra is just a σ-ring that contains the universal set A σ-ring need not be a σ-algebra, as for example measurable subsets of zero Lebesgue measure in the real line are a σ-ring, but not a σ-algebra since the real line has infinite measure and thus cannot be obtained by their countable union. If, instead of zero measure, one takes measurable subsets of finite Lebesgue measure, those are a ring but not a σ-ring, since the real line can be obtained by their countable union yet its measure is not finite.
Typographic note
σ-algebras are sometimes denoted using calligraphic capital letters, or the Fraktur typeface. Thus may be denoted as or
Particular cases and examples
Separable σ-algebras
A separable -algebra (or separable -field) is a -algebra that is a separable space when considered as a metric space with metric for and a given finite measure (and with being the symmetric difference operator). Any -algebra generated by a countable collection of sets is separable, but the converse need not hold. For example, the Lebesgue -algebra is separable (since every Lebesgue measurable set is equivalent to some Borel set) but not countably generated (since its cardinality is higher than continuum).
A separable measure space has a natural pseudometric that renders it separable as a pseudometric space. The distance between two sets is defined as the measure of the symmetric difference of the two sets. The symmetric difference of two distinct sets can have measure zero; hence the pseudometric as defined above need not to be a true metric. However, if sets whose symmetric difference has measure zero are identified into a single equivalence class, the resulting quotient set can be properly metrized by the induced metric. If the measure space is separable, it can be shown that the corresponding metric space is, too.
Simple set-based examples
Let be any set.
- The family consisting only of the empty set and the set called the minimal or trivial σ-algebra over
- The power set of called the discrete σ-algebra.
- The collection is a simple σ-algebra generated by the subset
- The collection of subsets of which are countable or whose complements are countable is a σ-algebra (which is distinct from the power set of if and only if is uncountable). This is the σ-algebra generated by the singletons of Note: "countable" includes finite or empty.
- The collection of all unions of sets in a countable partition of is a σ-algebra.
Stopping time sigma-algebras
A stopping time can define a -algebra the so-called stopping time sigma-algebra, which in a filtered probability space describes the information up to the random time in the sense that, if the filtered probability space is interpreted as a random experiment, the maximum information that can be found out about the experiment from arbitrarily often repeating it until the time is
σ-algebras generated by families of sets
σ-algebra generated by an arbitrary family
Let be an arbitrary family of subsets of Then there exists a unique smallest σ-algebra which contains every set in (even though may or may not itself be a σ-algebra). It is, in fact, the intersection of all σ-algebras containing (See intersections of σ-algebras above.) This σ-algebra is denoted and is called the σ-algebra generated by
If is empty, then Otherwise consists of all the subsets of that can be made from elements of by a countable number of complement, union and intersection operations.
For a simple example, consider the set Then the σ-algebra generated by the single subset is By an abuse of notation, when a collection of subsets contains only one element, may be written instead of in the prior example instead of Indeed, using to mean is also quite common.
There are many families of subsets that generate useful σ-algebras. Some of these are presented here.
σ-algebra generated by a function
If is a function from a set to a set and is a -algebra of subsets of then the -algebra generated by the function denoted by is the collection of all inverse images of the sets in That is,
A function from a set to a set is measurable with respect to a σ-algebra of subsets of if and only if is a subset of
One common situation, and understood by default if is not specified explicitly, is when is a metric or topological space and is the collection of Borel sets on
If is a function from to then is generated by the family of subsets which are inverse images of intervals/rectangles in
A useful property is the following. Assume is a measurable map from to and is a measurable map from to If there exists a measurable map from to such that for all then If is finite or countably infinite or, more generally, is a standard Borel space (for example, a separable complete metric space with its associated Borel sets), then the converse is also true. Examples of standard Borel spaces include with its Borel sets and with the cylinder σ-algebra described below.
Borel and Lebesgue σ-algebras
An important example is the Borel algebra over any topological space: the σ-algebra generated by the open sets (or, equivalently, by the closed sets). This σ-algebra is not, in general, the whole power set. For a non-trivial example that is not a Borel set, see the Vitali set or Non-Borel sets.
On the Euclidean space another σ-algebra is of importance: that of all Lebesgue measurable sets. This σ-algebra contains more sets than the Borel σ-algebra on and is preferred in integration theory, as it gives a complete measure space.
Product σ-algebra
Let and be two measurable spaces. The σ-algebra for the corresponding product space is called the product σ-algebra and is defined by
Observe that is a π-system.
The Borel σ-algebra for is generated by half-infinite rectangles and by finite rectangles. For example,
For each of these two examples, the generating family is a π-system.
σ-algebra generated by cylinder sets
Suppose
is a set of real-valued functions. Let denote the Borel subsets of A cylinder subset of is a finitely restricted set defined as
Each is a π-system that generates a σ-algebra Then the family of subsets is an algebra that generates the cylinder σ-algebra for This σ-algebra is a subalgebra of the Borel σ-algebra determined by the product topology of restricted to
An important special case is when is the set of natural numbers and is a set of real-valued sequences. In this case, it suffices to consider the cylinder sets for which is a non-decreasing sequence of σ-algebras.
Ball σ-algebra
The ball σ-algebra is the smallest σ-algebra containing all the open (and/or closed) balls. This is never larger than the Borel σ-algebra. Note that the two σ-algebra are equal for separable spaces. For some nonseparable spaces, some maps are ball measurable even though they are not Borel measurable, making use of the ball σ-algebra useful in the analysis of such maps.
σ-algebra generated by random variable or vector
Suppose is a probability space. If is measurable with respect to the Borel σ-algebra on then is called a random variable () or random vector (). The σ-algebra generated by is
σ-algebra generated by a stochastic process
Suppose is a probability space and is the set of real-valued functions on If is measurable with respect to the cylinder σ-algebra (see above) for then is called a stochastic process or random process. The σ-algebra generated by is the σ-algebra generated by the inverse images of cylinder sets.
See also
- Measurable function – Kind of mathematical function
- Sample space – Set of all possible outcomes or results of a statistical trial or experiment
- Sigma-additive set function – Mapping function
- Sigma-ring – Family of sets closed under countable unions
Families of sets over | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Is necessarily true of or, is closed under: |
Directed by |
F.I.P. | ||||||||
π-system | ||||||||||
Semiring | Never | |||||||||
Semialgebra (Semifield) | Never | |||||||||
Monotone class | only if | only if | ||||||||
𝜆-system (Dynkin System) | only if |
only if or they are disjoint |
Never | |||||||
Ring (Order theory) | ||||||||||
Ring (Measure theory) | Never | |||||||||
δ-Ring | Never | |||||||||
𝜎-Ring | Never | |||||||||
Algebra (Field) | Never | |||||||||
𝜎-Algebra (𝜎-Field) | Never | |||||||||
Dual ideal | ||||||||||
Filter | Never | Never | ||||||||
Prefilter (Filter base) | Never | Never | ||||||||
Filter subbase | Never | Never | ||||||||
Open Topology | (even arbitrary ) |
Never | ||||||||
Closed Topology | (even arbitrary ) |
Never | ||||||||
Is necessarily true of or, is closed under: |
directed downward |
finite intersections |
finite unions |
relative complements |
complements in |
countable intersections |
countable unions |
contains | contains | Finite Intersection Property |
Additionally, a semiring is a π-system where every complement is equal to a finite disjoint union of sets in |
References
- Elstrodt, J. (2018). Maß- Und Integrationstheorie. Springer Spektrum Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57939-8
- "11. Measurable Spaces". Random: Probability, Mathematical Statistics, Stochastic Processes. University of Alabama in Huntsville, Department of Mathematical Sciences. Retrieved 30 March 2016.
Clearly a σ-algebra of subsets is also an algebra of subsets, so the basic results for algebras in still hold.
- Billingsley, Patrick (2012). Probability and Measure (Anniversary ed.). Wiley. ISBN 978-1-118-12237-2.
- Rudin, Walter (1987). Real & Complex Analysis. McGraw-Hill. ISBN 0-07-054234-1.
- Vestrup, Eric M. (2009). The Theory of Measures and Integration. John Wiley & Sons. p. 12. ISBN 978-0-470-31795-2.
- Džamonja, Mirna; Kunen, Kenneth (1995). "Properties of the class of measure separable compact spaces" (PDF). Fundamenta Mathematicae: 262.
If is a Borel measure on the measure algebra of is the Boolean algebra of all Borel sets modulo -null sets. If is finite, then such a measure algebra is also a metric space, with the distance between the two sets being the measure of their symmetric difference. Then, we say that is separable if and only if this metric space is separable as a topological space.
- Fischer, Tom (2013). "On simple representations of stopping times and stopping time sigma-algebras". Statistics and Probability Letters. 83 (1): 345–349. arXiv:1112.1603. doi:10.1016/j.spl.2012.09.024.
- Kallenberg, Olav (2001). Foundations of Modern Probability (2nd ed.). Springer. p. 7. ISBN 0-387-95313-2.
- van der Vaart, A. W., & Wellner, J. A. (1996). Weak Convergence and Empirical Processes. In Springer Series in Statistics. Springer New York. https://doi.org/10.1007/978-1-4757-2545-2
External links
- "Algebra of sets", Encyclopedia of Mathematics, EMS Press, 2001
- Sigma Algebra from PlanetMath.