Misplaced Pages

Holomorphic function: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 23:04, 27 December 2001 edit212.242.115.xxx (talk)No edit summary← Previous edit Latest revision as of 08:01, 19 January 2025 edit undoJacobolus (talk | contribs)Extended confirmed users35,816 edits revert change from august splitting out text into a separate note section. these are fine in ordinary footnotes without extra levels of indirection 
(584 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Use American English|date = February 2019}}
'''Holomorphic functions''' are the central object of study of ]; they are ] defined on an open subset of the ] '''C''' with values in '''C''' which are complex differentiable at every point. This is a much stronger condition than ] and implies that the function is infinitely often differentiable and can be described by it's ]. The term '''analytic function''' is used interchangeably with "holomorphic function", and often one meets the term "complex differentiable" used in the meaning "holomorphic".
{{Short description|Complex-differentiable (mathematical) function}}
{{for|Zariski's theory of holomorphic functions on an algebraic variety|formal holomorphic function}}
{{Redirect-distinguish|Holomorphism|Homomorphism}}
] {{tmath|f}} (bottom).]]
{{Complex analysis sidebar}}
]


In ], a '''holomorphic function''' is a ] of one or ] ] variables that is ] in a ] of each point in a ] in ] {{tmath|\C^n}}. The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is ] and locally equal to its own ] (is '']''). Holomorphic functions are the central objects of study in ].


Though the term '']'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent ] in a neighbourhood of each point in its ]. That all holomorphic functions are complex analytic functions, and vice versa, is a ].<ref>
{{cite encyclopedia
|title=Analytic functions of one complex variable
|year=2015
|encyclopedia=Encyclopedia of Mathematics
|publisher=European Mathematical Society / Springer
|url=https://www.encyclopediaofmath.org/index.php/Analytic_function#Analytic_functions_of_one_complex_variable
|via=encyclopediaofmath.org
}}
</ref>


Holomorphic functions are also sometimes referred to as ''regular functions''.<ref>{{SpringerEOM|title=Analytic function|access-date=February 26, 2021}}</ref> A holomorphic function whose domain is the whole ] is called an ]. The phrase "holomorphic at a point {{tmath|z_0}}" means not just differentiable at {{tmath|z_0}}, but differentiable everywhere within some close neighbourhood of {{tmath|z_0}} in the complex plane.
=== Definition ===


== Definition ==
]
Given a complex-valued function {{tmath|f}} of a single complex variable, the '''derivative''' of {{tmath|f}} at a point {{tmath|z_0}} in its domain is defined as the ]<ref>], ''Complex Analysis, 3 ed.'' (McGraw-Hill, 1979).</ref>
:<math>f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{ z - z_0 }.</math>


This is the same definition as for the ] of a ], except that all quantities are complex. In particular, the limit is taken as the complex number {{tmath|z}} tends to {{tmath|z_0}}, and this means that the same value is obtained for any sequence of complex values for {{tmath|z}} that tends to {{tmath|z_0}}. If the limit exists, {{tmath|f}} is said to be '''complex differentiable''' at {{tmath|z_0}}. This concept of complex differentiability shares several properties with ]: It is ] and obeys the ], ], and ].<ref>{{cite book |author-link=Peter Henrici (mathematician) |last=Henrici |first=P. |title=Applied and Computational Complex Analysis |publisher=Wiley |year=1986 |orig-year=1974, 1977 }} Three volumes, publ.: 1974, 1977, 1986.</ref>


Formally, if ''U'' is an open subset of '''C''' (see ] for the definition of "open") and ''f'' : ''U'' <tt>-></tt> '''C''' is a function, we say that ''f'' is ''complex differentiable'' at the point ''z''<sub>0</sub> of ''U'' if the ] A function is '''holomorphic''' on an ] {{tmath|U}} if it is ''complex differentiable'' at ''every'' point of {{tmath|U}}. A function {{tmath|f}} is ''holomorphic'' at a point {{tmath|z_0}} if it is holomorphic on some ] of {{tmath|z_0}}.<ref>
{{cite book
|first1=Peter |last1=Ebenfelt |first2=Norbert |last2=Hungerbühler
|first3=Joseph J. |last3=Kohn |first4=Ngaiming |last4=Mok
|first5=Emil J. |last5=Straube
|year=2011
|url=https://books.google.com/books?id=3GeUgafFRgMC&q=holomorphic |via=Google
|title=Complex Analysis
|publisher=Springer
|series=Science & Business Media
|isbn=978-3-0346-0009-5 }}
</ref>
A function is ''holomorphic'' on some non-open set {{tmath|A}} if it is holomorphic at every point of {{tmath|A}}.


A function may be complex differentiable at a point but not holomorphic at this point. For example, the function <math>\textstyle f(z) = |z|\vphantom{l}^2 = z\bar{z}</math> ''is'' complex differentiable at {{tmath|0}}, but ''is not'' complex differentiable anywhere else, esp. including in no place close to {{tmath|0}} (see the Cauchy–Riemann equations, below). So, it is ''not'' holomorphic at {{tmath|0}}.
f(z)-f(z<sub>0</sub>)


The relationship between real differentiability and complex differentiability is the following: If a complex function {{tmath|1= f(x+ iy) = u(x,y) + i\,v(x, y)}} is holomorphic, then {{tmath|u}} and {{tmath|v}} have first partial derivatives with respect to {{tmath|x}} and {{tmath|y}}, and satisfy the ]:<ref name=Mark>
f'(z<sub>0</sub>) = lim <nowiki>----------</nowiki>
{{cite book
|last=Markushevich |first=A.I.
|year=1965
|title=Theory of Functions of a Complex Variable
|publisher=Prentice-Hall
}}
</ref>
:<math>\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \mbox{and} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}\,</math>
or, equivalently, the ] of {{tmath|f}} with respect to {{tmath|\bar z}}, the ] of {{tmath|z}}, is zero:<ref name=Gunning>
{{cite book
|last1 = Gunning |first1 = Robert C. |author1-link = Robert Gunning (mathematician)
|last2 = Rossi |first2 = Hugo
|year = 1965
|title = Analytic Functions of Several Complex Variables
|series = Modern Analysis
|place = Englewood Cliffs, NJ
|publisher = ]
|mr = 0180696 |zbl = 0141.08601 |isbn = 9780821869536
|url = https://books.google.com/books?id=L0zJmamx5AAC |via=Google
}}
</ref>
:<math>\frac{\partial f}{\partial\bar{z}} = 0,</math>
which is to say that, roughly, {{tmath|f}} is functionally independent from {{tmath|\bar z}}, the complex conjugate of {{tmath|z}}.


If continuity is not given, the converse is not necessarily true. A simple converse is that if {{tmath|u}} and {{tmath|v}} have ''continuous'' first partial derivatives and satisfy the Cauchy–Riemann equations, then {{tmath|f}} is holomorphic. A more satisfying converse, which is much harder to prove, is the ]: if {{tmath|f}} is continuous, {{tmath|u}} and {{tmath|v}} have first partial derivatives (but not necessarily continuous), and they satisfy the Cauchy–Riemann equations, then {{tmath|f}} is holomorphic.<ref>
z&rarr;z<sub>0</sub> z - z<sub>0</sub>
{{cite journal
|first1=J.D. |last1=Gray
|first2=S.A. |last2=Morris
|date=April 1978
|title=When is a function that satisfies the Cauchy-Riemann equations analytic?
|journal=]
|volume=85 |issue=4 |pages=246–256
|jstor=2321164 |doi=10.2307/2321164
}}
</ref>


== Terminology ==
exists.
The term ''holomorphic'' was introduced in 1875 by ] and ], two of ]'s students, and derives from the Greek ] (''hólos'') meaning "whole", and ] (''morphḗ'') meaning "form" or "appearance" or "type", in contrast to the term '']'' derived from ] (''méros'') meaning "part". A holomorphic function resembles an ] ("whole") in a ] of the complex plane while a meromorphic function (defined to mean holomorphic except at certain isolated ]), resembles a rational fraction ("part") of entire functions in a domain of the complex plane.<ref>The original French terms were ''holomorphe'' and ''méromorphe''. {{pb}}
{{cite book |authorlink1= Charles Auguste Briot |last1=Briot |first1=Charles Auguste |authorlink2=Jean-Claude Bouquet |last2=Bouquet |first2=Jean-Claude |date=1875 |title=Théorie des fonctions elliptiques |edition=2nd |publisher=Gauthier-Villars |chapter=§15 fonctions holomorphes |chapter-url=https://archive.org/details/thoriedesfonct00briouoft/page/14/ |pages=14–15 |quote=Lorsqu'une fonction est continue, monotrope, et a une dérivée, quand la variable se meut dans une certaine partie du plan, nous dirons qu'elle est ''holomorphe'' dans cette partie du plan. Nous indiquons par cette dénomination qu'elle est semblable aux fonctions entières qui jouissent de ces propriétés dans toute l'étendue du plan. ¶ Une fraction rationnelle admet comme pôles les racines du dénominateur; c'est une fonction holomorphe dans toute partie du plan qui ne contient aucun de ses pôles. ¶ Lorsqu'une fonction est holomorphe dans une partie du plan, excepté en certains pôles, nous dirons qu'elle est ''méromorphe'' dans cette partie du plan, c'est-à-dire semblable aux fractions rationnelles. |trans-quote=When a function is continuous, ], and has a derivative, when the variable moves in a certain part of the plane, we say that it is ''holomorphic'' in that part of the plane. We mean by this name that it resembles ]s which enjoy these properties in the full extent of the plane.&nbsp; ¶ A rational fraction admits as ] the ] of the denominator; it is a holomorphic function in all that part of the plane which does not contain any poles. ¶ When a function is holomorphic in part of the plane, except at certain poles, we say that it is ''meromorphic'' in that part of the plane, that is to say it resembles rational fractions.}} {{pb}} {{cite book |authorlink1=James Harkness (mathematician) |first1=James |last1=Harkness |authorlink2=Frank Morley |first2=Frank |last2=Morley |date=1893 |chapter=5. Integration |chapter-url=https://archive.org/details/treatiseontheory00harkrich/page/n176/ |title=A Treatise on the Theory of Functions |publisher=Macmillan |page=161}}</ref> Cauchy had instead used the term ''synectic''.<ref>Briot & Bouquet had previously also adopted Cauchy’s term ''synectic'' (''synectique'' in French), in the 1859 first edition of their book. {{pb}} {{cite book |authorlink1= Charles Auguste Briot |last1=Briot |first1=Charles Auguste |authorlink2=Jean-Claude Bouquet |last2=Bouquet |first2=Jean-Claude |date=1859 |title= Théorie des fonctions doublement périodiques |publisher= Mallet-Bachelier |chapter=§10 |chapter-url=https://archive.org/details/fonctsdoublement00briorich/page/n37/ |page=11 }}</ref>


Today, the term "holomorphic function" is sometimes preferred to "analytic function". An important result in complex analysis is that every holomorphic function is complex analytic, a fact that does not follow obviously from the definitions. The term "analytic" is however also in wide use.
The limit here is taken over all sequences of ''complex'' numbers approaching ''z''<sub>0</sub>, and for all such sequences the difference quotient has to approach the same number ''f''&nbsp;'(''z''<sub>0</sub>).


== Properties ==
Intuitively, if ''f'' is complex differentiable at ''z''<sub>0</sub> and we approach the point ''z''<sub>0</sub> from the direction ''r'', then the images will approach the point ''f''(''z''<sub>0</sub>) from the direction ''f''&nbsp;'(''z''<sub>0</sub>) ''r'', where the last product is the multiplication of complex numbers.
Because complex differentiation is linear and obeys the product, quotient, and chain rules, the sums, products and compositions of holomorphic functions are holomorphic, and the quotient of two holomorphic functions is holomorphic wherever the denominator is not zero.<ref>
{{cite book
| last = Henrici | first = Peter | author-link = Peter Henrici (mathematician)
| year = 1993 | orig-year = 1986
| title = Applied and Computational Complex Analysis
| volume = 3
| place = New York - Chichester - Brisbane - Toronto - Singapore
| publisher = ]
| series = Wiley Classics Library
| edition = Reprint
| mr = 0822470 | zbl = 1107.30300 | isbn = 0-471-58986-1
| url = https://books.google.com/books?id=vKZPsjaXuF4C |via=Google
}}
</ref> That is, if functions {{tmath|f}} and {{tmath|g}} are holomorphic in a domain {{tmath|U}}, then so are {{tmath|f+g}}, {{tmath|f-g}}, {{tmath| fg}}, and {{tmath|f \circ g}}. Furthermore, {{tmath|f/g }} is holomorphic if {{tmath|g}} has no zeros in {{tmath|U}}; otherwise it is ].


If one identifies {{tmath|\C}} with the real ] {{tmath|\textstyle \R^2}}, then the holomorphic functions coincide with those functions of two real variables with continuous first derivatives which solve the ], a set of two ]s.<ref name=Mark/>
This concept of differentiability shares several properties with ]:


Every holomorphic function can be separated into its real and imaginary parts {{tmath|1=f(x + iy) = u(x, y) + i\,v(x,y)}}, and each of these is a ] on {{tmath|\textstyle \R^2}} (each satisfies ] {{tmath|1=\textstyle \nabla^2 u = \nabla^2 v = 0}}), with {{tmath|v}} the ] of {{tmath|u}}.<ref>
it is ] and obeys the product, quotient and chain rules.
{{cite book
|first=L.C. |last=Evans |author-link=Lawrence C. Evans
|year=1998
|title=Partial Differential Equations
|publisher=American Mathematical Society
}}
</ref>
Conversely, every harmonic function {{tmath|u(x, y)}} on a ] domain {{tmath|\textstyle \Omega \subset \R^2}} is the real part of a holomorphic function: If {{tmath|v}} is the harmonic conjugate of {{tmath|u}}, unique up to a constant, then {{tmath|1=f(x + iy) = u(x, y) + i\,v(x, y)}} is holomorphic.


] implies that the ] of every holomorphic function along a ] vanishes:<ref name=Lang>
If ''f'' is complex differentiable at ''every'' point ''z''<sub>0</sub> in ''U'', we say that ''f'' is ''holomorphic on U''.
{{cite book
|first = Serge |last = Lang | author-link = Serge Lang
| year = 2003
| title = Complex Analysis
| series = Springer Verlag GTM
| publisher = ]
}}
</ref>


:<math>\oint_\gamma f(z)\,\mathrm{d}z = 0.</math>


Here {{tmath|\gamma}} is a ] in a simply connected ] {{tmath|U \subset \C}} whose start point is equal to its end point, and {{tmath|f \colon U \to \C}} is a holomorphic function.


] states that every function holomorphic inside a ] is completely determined by its values on the disk's boundary.<ref name=Lang/> Furthermore: Suppose {{tmath|U \subset \C}} is a complex domain, {{tmath|f\colon U \to \C}} is a holomorphic function and the closed disk {{tmath|D \equiv \{ z : | z - z_0 | \le r \} }} is ] in {{tmath|U}}. Let {{tmath|\gamma}} be the circle forming the ] of {{tmath|D}}. Then for every {{tmath|a}} in the ] of {{tmath|D}}:
=== Examples ===


:<math>f(a) = \frac{ 1 }{2\pi i} \oint_\gamma \frac{f(z)}{z-a}\,\mathrm{d}z</math>


where the contour integral is taken ].


The derivative {{tmath|{f'}(a)}} can be written as a contour integral<ref name=Lang /> using ]:
All ] functions with complex coefficients are holomorphic on '''C''',


:<math> f'\!(a) = \frac{ 1 }{2\pi i} \oint_\gamma \frac{f(z)}{(z-a)^2}\,\mathrm{d}z,</math>
and so are the ], their inverses, and the ].


for any simple loop positively winding once around {{tmath|a}}, and
(The trigonometric functions are in fact closely related to and can be defined via the exponential function using ]).


:<math> f'\!(a) = \lim\limits_{\gamma\to a} \frac{ i }{2\mathcal{A}(\gamma)} \oint_{\gamma}f(z)\,\mathrm{d}\bar{z},</math>
The ] function is holomorphic on the set { ''z'' : ''z'' is not a non-positive real number}.


for infinitesimal positive loops {{tmath|\gamma}} around {{tmath|a}}.
The square root function can be defined as


In regions where the first derivative is not zero, holomorphic functions are ]: they preserve angles and the shape (but not size) of small figures.<ref>
:&radic; ''z'' = exp(1/2 ln(''z''))
{{cite book
| last =Rudin | first =Walter | author-link = Walter Rudin
| year=1987
| title=Real and Complex Analysis
| publisher=McGraw–Hill Book Co.
| location=New York
| edition=3rd
| isbn=978-0-07-054234-1 | mr=924157
}}
</ref>


Every ]. That is, a holomorphic function {{tmath|f}} has derivatives of every order at each point {{tmath|a}} in its domain, and it coincides with its own ] at {{tmath|a}} in a neighbourhood of {{tmath|a}}. In fact, {{tmath|f}} coincides with its Taylor series at {{tmath|a}} in any disk centred at that point and lying within the domain of the function.
and is therefore holomorphic wherever the logarithm ln(''z'') is. The function 1/''z'' is holomorphic on {''z'' : ''z'' &ne; 0}.


From an algebraic point of view, the set of holomorphic functions on an open set is a ] and a ]. Additionally, the set of holomorphic functions in an open set {{tmath|U}} is an ] if and only if the open set {{tmath|U}} is connected. <ref name=Gunning/> In fact, it is a ], with the ] being the ] on ]s.


From a geometric perspective, a function {{tmath|f}} is holomorphic at {{tmath|z_0}} if and only if its ] {{tmath|\mathrm{d}f}} in a neighbourhood {{tmath|U}} of {{tmath|z_0}} is equal to {{tmath| f'(z)\,\mathrm{d}z}} for some continuous function {{tmath|f'}}. It follows from


:<math>0 = \mathrm{d}^2 f = \mathrm{d}(f'\,\mathrm{d}z) = \mathrm{d}f' \wedge \mathrm{d}z</math>
=== Properties ===


that {{tmath|\mathrm{d}f'}} is also proportional to {{tmath|\mathrm{d}z}}, implying that the derivative {{tmath|\mathrm{d}f'}} is itself holomorphic and thus that {{tmath|f}} is infinitely differentiable. Similarly, {{tmath|1= \mathrm{d}(f\,\mathrm{d}z ) = f'\,\mathrm{d}z \wedge \mathrm{d}z = 0}} implies that any function {{tmath|f}} that is holomorphic on the simply connected region {{tmath|U}} is also integrable on {{tmath|U}}.


(For a path {{tmath|\gamma}} from {{tmath|z_0}} to {{tmath|z}} lying entirely in {{tmath|U}}, define {{tmath|1= F_\gamma(z) = F(0) + \int_\gamma f\,\mathrm{d}z }}; in light of the ] and the ], {{tmath|F_\gamma(z)}} is independent of the particular choice of path {{tmath|\gamma}}, and thus {{tmath|F(z)}} is a well-defined function on {{tmath|U}} having {{tmath|1= \mathrm{d}F = f\,\mathrm{d}z}} or {{tmath|1= f = \frac{\mathrm{d}F}{\mathrm{d}z} }}.


== Examples ==
Because complex differentiation is linear and obeys the product, quotient, and chain rules, sums, products and compositions of holomorphic functions are holomorphic, and the quotient of two holomorphic functions is holomorphic wherever the denominator is non-zero.
All ] functions in {{tmath|z}} with complex ]s are ]s (holomorphic in the whole complex plane {{tmath|\C}}), and so are the ] {{tmath|\exp z}} and the ] {{tmath|1= \cos{z} = \tfrac{1}{2} \bigl( \exp(+iz) + \exp(-iz)\bigr)}} and {{tmath|1= \sin{z} = -\tfrac{1}{2} i \bigl(\exp(+iz) - \exp(-iz)\bigr)}} (cf. ]). The ] of the ] function {{tmath|\log z}} is holomorphic on the domain {{tmath|\C \smallsetminus \{ z \in \R : z \le 0\} }}. The ] function can be defined as {{tmath|\sqrt{z} \equiv \exp \bigl(\tfrac{1}{2} \log z\bigr) }} and is therefore holomorphic wherever the logarithm {{tmath|\log z}} is. The ] {{tmath|\tfrac{1}{z} }} is holomorphic on {{tmath| \C \smallsetminus \{ 0 \} }}. (The reciprocal function, and any other ], is ] on {{tmath|\C}}.)


As a consequence of the ], any real-valued holomorphic function must be ]. Therefore, the ] {{nobr|<math>|z|</math>,}} the ] {{tmath|\arg z}}, the ] {{tmath|\operatorname{Re}(z)}} and the ] {{tmath|\operatorname{Im}(z)}} are not holomorphic. Another typical example of a continuous function which is not holomorphic is the ] {{tmath|\bar z.}} (The complex conjugate is ].)


== Several variables ==
The definition of a holomorphic function generalizes to several complex variables in a straightforward way. A function {{tmath|f \colon ( z_1, z_2, \ldots, z_n ) \mapsto f( z_1, z_2, \ldots, z_n ) }} in {{tmath|n}} complex variables is '''analytic''' at a point {{tmath|p}} if there exists a neighbourhood of {{tmath|p}} in which {{tmath|f}} is equal to a convergent power series in {{tmath|n}} complex variables;<ref>
{{cite book
|last1=Gunning |last2=Rossi |name-list-style=and
|title=Analytic Functions of Several Complex Variables
|page=2
}}
</ref>
the function {{tmath|f}} is '''holomorphic''' in an open subset {{tmath|U}} of {{tmath|\C^n}} if it is analytic at each point in {{tmath|U}}. ] shows (using the multivariate Cauchy integral formula) that, for a continuous function {{tmath|f}}, this is equivalent to {{tmath|f}} being holomorphic in each variable separately (meaning that if any {{tmath|n-1}} coordinates are fixed, then the restriction of {{tmath|f}} is a holomorphic function of the remaining coordinate). The much deeper ] proves that the continuity assumption is unnecessary: {{tmath|f}} is holomorphic if and only if it is holomorphic in each variable separately.


More generally, a function of several complex variables that is ] over every ] of its domain is analytic if and only if it satisfies the Cauchy–Riemann equations in the sense of distributions.
Every holomorphic function is infinitely often complex differentiable at every point. It coincides with its own ] and the Taylor series converges on every open disk that lies completely inside the domain ''U''.


Functions of several complex variables are in some basic ways more complicated than functions of a single complex variable. For example, the region of convergence of a power series is not necessarily an open ball; these regions are logarithmically-convex ]s, the simplest example of which is a ]. However, they also come with some fundamental restrictions. Unlike functions of a single complex variable, the possible domains on which there are holomorphic functions that cannot be extended to larger domains are highly limited. Such a set is called a ].


A ] {{tmath|\alpha}} is holomorphic if and only if its antiholomorphic ] is zero: {{tmath|1= \bar{\partial}\alpha = 0}}.


== Extension to functional analysis ==
{{Main article|infinite-dimensional holomorphy}}
The concept of a holomorphic function can be extended to the infinite-dimensional spaces of ]. For instance, the ] or ] can be used to define a notion of a holomorphic function on a ] over the field of complex numbers.


== See also ==
{{div col begin|colwidth=18em}}
* ]
* ]
* ]
* ]
* ]s
* ]s
* ]
* ]
* ]
* ]
{{div col end}}


== References ==
If one identifies '''C''' with '''R'''<sup>2</sup>, then the holomorphic functions coincide with those functions of two real variables which solve the ], a set of two partial ].
{{reflist|25em}}


== Further reading ==
* {{cite book
|last=Blakey |first=Joseph
|year=1958
|title=University Mathematics |edition=2nd
|publisher=Blackie and Sons
|location=London, UK
|oclc=2370110
}}


== External links ==
* {{springer|title=Analytic function|id=p/a012240}}


{{Authority control}}
Close to points with non-zero derivative, holomorphic functions are ] in the sense that they preserve angles and the shape of small figures.



] states that every holomorphic function is inside a disk completely determined by its values on the disk's boundary.



----

'''See also:'''

* ]


]

Latest revision as of 08:01, 19 January 2025

Complex-differentiable (mathematical) function For Zariski's theory of holomorphic functions on an algebraic variety, see formal holomorphic function. "Holomorphism" redirects here. Not to be confused with Homomorphism.
A rectangular grid (top) and its image under a conformal map f {\displaystyle f} ⁠ (bottom).
Mathematical analysisComplex analysis
Complex analysis
Complex numbers
Complex functions
Basic theory
Geometric function theory
People
Mapping of the function f ( z ) = 1 z {\displaystyle f(z)={\frac {1}{z}}} . The animation shows different z {\displaystyle z} in blue color with the corresponding f ( z ) {\displaystyle f(z)} in red color. The point z {\displaystyle z} and f ( z ) {\displaystyle f(z)} are shown in the C = ~ R 2 {\displaystyle \mathbb {C} {\tilde {=}}\mathbb {R} ^{2}} . y-axis represents the imaginary part of the complex number of z {\displaystyle z} and f ( z ) {\displaystyle f(z)} .

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space C n {\displaystyle \mathbb {C} ^{n}} ⁠. The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (is analytic). Holomorphic functions are the central objects of study in complex analysis.

Though the term analytic function is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis.

Holomorphic functions are also sometimes referred to as regular functions. A holomorphic function whose domain is the whole complex plane is called an entire function. The phrase "holomorphic at a point ⁠ z 0 {\displaystyle z_{0}} ⁠" means not just differentiable at ⁠ z 0 {\displaystyle z_{0}} ⁠, but differentiable everywhere within some close neighbourhood of ⁠ z 0 {\displaystyle z_{0}} ⁠ in the complex plane.

Definition

The function ⁠ f ( z ) = z ¯ {\displaystyle f(z)={\bar {z}}} ⁠ is not complex differentiable at zero, because as shown above, the value of ⁠ f ( z ) f ( 0 ) z 0 {\displaystyle {\frac {f(z)-f(0)}{z-0}}} ⁠ varies depending on the direction from which zero is approached. On the real axis only, ⁠ f {\displaystyle f} ⁠ equals the function ⁠ g ( z ) = z {\displaystyle g(z)=z} ⁠ and the limit is ⁠ 1 {\displaystyle 1} ⁠, while along the imaginary axis only, ⁠ f {\displaystyle f} ⁠ equals the different function ⁠ h ( z ) = z {\displaystyle h(z)=-z} ⁠ and the limit is ⁠ 1 {\displaystyle -1} ⁠. Other directions yield yet other limits.

Given a complex-valued function ⁠ f {\displaystyle f} ⁠ of a single complex variable, the derivative of ⁠ f {\displaystyle f} ⁠ at a point ⁠ z 0 {\displaystyle z_{0}} ⁠ in its domain is defined as the limit

f ( z 0 ) = lim z z 0 f ( z ) f ( z 0 ) z z 0 . {\displaystyle f'(z_{0})=\lim _{z\to z_{0}}{\frac {f(z)-f(z_{0})}{z-z_{0}}}.}

This is the same definition as for the derivative of a real function, except that all quantities are complex. In particular, the limit is taken as the complex number ⁠ z {\displaystyle z} ⁠ tends to ⁠ z 0 {\displaystyle z_{0}} ⁠, and this means that the same value is obtained for any sequence of complex values for ⁠ z {\displaystyle z} ⁠ that tends to ⁠ z 0 {\displaystyle z_{0}} ⁠. If the limit exists, ⁠ f {\displaystyle f} ⁠ is said to be complex differentiable at ⁠ z 0 {\displaystyle z_{0}} ⁠. This concept of complex differentiability shares several properties with real differentiability: It is linear and obeys the product rule, quotient rule, and chain rule.

A function is holomorphic on an open set U {\displaystyle U} ⁠ if it is complex differentiable at every point of ⁠ U {\displaystyle U} ⁠. A function ⁠ f {\displaystyle f} ⁠ is holomorphic at a point ⁠ z 0 {\displaystyle z_{0}} ⁠ if it is holomorphic on some neighbourhood of ⁠ z 0 {\displaystyle z_{0}} ⁠. A function is holomorphic on some non-open set ⁠ A {\displaystyle A} ⁠ if it is holomorphic at every point of ⁠ A {\displaystyle A} ⁠.

A function may be complex differentiable at a point but not holomorphic at this point. For example, the function f ( z ) = | z | l 2 = z z ¯ {\displaystyle \textstyle f(z)=|z|{\vphantom {l}}^{2}=z{\bar {z}}} is complex differentiable at ⁠ 0 {\displaystyle 0} ⁠, but is not complex differentiable anywhere else, esp. including in no place close to ⁠ 0 {\displaystyle 0} ⁠ (see the Cauchy–Riemann equations, below). So, it is not holomorphic at ⁠ 0 {\displaystyle 0} ⁠.

The relationship between real differentiability and complex differentiability is the following: If a complex function ⁠ f ( x + i y ) = u ( x , y ) + i v ( x , y ) {\displaystyle f(x+iy)=u(x,y)+i\,v(x,y)} ⁠ is holomorphic, then ⁠ u {\displaystyle u} ⁠ and ⁠ v {\displaystyle v} ⁠ have first partial derivatives with respect to ⁠ x {\displaystyle x} ⁠ and ⁠ y {\displaystyle y} ⁠, and satisfy the Cauchy–Riemann equations:

u x = v y and u y = v x {\displaystyle {\frac {\partial u}{\partial x}}={\frac {\partial v}{\partial y}}\qquad {\mbox{and}}\qquad {\frac {\partial u}{\partial y}}=-{\frac {\partial v}{\partial x}}\,}

or, equivalently, the Wirtinger derivative of ⁠ f {\displaystyle f} ⁠ with respect to ⁠ z ¯ {\displaystyle {\bar {z}}} ⁠, the complex conjugate of ⁠ z {\displaystyle z} ⁠, is zero:

f z ¯ = 0 , {\displaystyle {\frac {\partial f}{\partial {\bar {z}}}}=0,}

which is to say that, roughly, ⁠ f {\displaystyle f} ⁠ is functionally independent from ⁠ z ¯ {\displaystyle {\bar {z}}} ⁠, the complex conjugate of ⁠ z {\displaystyle z} ⁠.

If continuity is not given, the converse is not necessarily true. A simple converse is that if ⁠ u {\displaystyle u} ⁠ and ⁠ v {\displaystyle v} ⁠ have continuous first partial derivatives and satisfy the Cauchy–Riemann equations, then ⁠ f {\displaystyle f} ⁠ is holomorphic. A more satisfying converse, which is much harder to prove, is the Looman–Menchoff theorem: if ⁠ f {\displaystyle f} ⁠ is continuous, ⁠ u {\displaystyle u} ⁠ and ⁠ v {\displaystyle v} ⁠ have first partial derivatives (but not necessarily continuous), and they satisfy the Cauchy–Riemann equations, then ⁠ f {\displaystyle f} ⁠ is holomorphic.

Terminology

The term holomorphic was introduced in 1875 by Charles Briot and Jean-Claude Bouquet, two of Augustin-Louis Cauchy's students, and derives from the Greek ὅλος (hólos) meaning "whole", and μορφή (morphḗ) meaning "form" or "appearance" or "type", in contrast to the term meromorphic derived from μέρος (méros) meaning "part". A holomorphic function resembles an entire function ("whole") in a domain of the complex plane while a meromorphic function (defined to mean holomorphic except at certain isolated poles), resembles a rational fraction ("part") of entire functions in a domain of the complex plane. Cauchy had instead used the term synectic.

Today, the term "holomorphic function" is sometimes preferred to "analytic function". An important result in complex analysis is that every holomorphic function is complex analytic, a fact that does not follow obviously from the definitions. The term "analytic" is however also in wide use.

Properties

Because complex differentiation is linear and obeys the product, quotient, and chain rules, the sums, products and compositions of holomorphic functions are holomorphic, and the quotient of two holomorphic functions is holomorphic wherever the denominator is not zero. That is, if functions ⁠ f {\displaystyle f} ⁠ and ⁠ g {\displaystyle g} ⁠ are holomorphic in a domain ⁠ U {\displaystyle U} ⁠, then so are ⁠ f + g {\displaystyle f+g} ⁠, ⁠ f g {\displaystyle f-g} ⁠, ⁠ f g {\displaystyle fg} ⁠, and ⁠ f g {\displaystyle f\circ g} ⁠. Furthermore, ⁠ f / g {\displaystyle f/g} ⁠ is holomorphic if ⁠ g {\displaystyle g} ⁠ has no zeros in ⁠ U {\displaystyle U} ⁠; otherwise it is meromorphic.

If one identifies ⁠ C {\displaystyle \mathbb {C} } ⁠ with the real plane R 2 {\displaystyle \textstyle \mathbb {R} ^{2}} ⁠, then the holomorphic functions coincide with those functions of two real variables with continuous first derivatives which solve the Cauchy–Riemann equations, a set of two partial differential equations.

Every holomorphic function can be separated into its real and imaginary parts ⁠ f ( x + i y ) = u ( x , y ) + i v ( x , y ) {\displaystyle f(x+iy)=u(x,y)+i\,v(x,y)} ⁠, and each of these is a harmonic function on ⁠ R 2 {\displaystyle \textstyle \mathbb {R} ^{2}} ⁠ (each satisfies Laplace's equation 2 u = 2 v = 0 {\displaystyle \textstyle \nabla ^{2}u=\nabla ^{2}v=0} ⁠), with ⁠ v {\displaystyle v} ⁠ the harmonic conjugate of ⁠ u {\displaystyle u} ⁠. Conversely, every harmonic function ⁠ u ( x , y ) {\displaystyle u(x,y)} ⁠ on a simply connected domain ⁠ Ω R 2 {\displaystyle \textstyle \Omega \subset \mathbb {R} ^{2}} ⁠ is the real part of a holomorphic function: If ⁠ v {\displaystyle v} ⁠ is the harmonic conjugate of ⁠ u {\displaystyle u} ⁠, unique up to a constant, then ⁠ f ( x + i y ) = u ( x , y ) + i v ( x , y ) {\displaystyle f(x+iy)=u(x,y)+i\,v(x,y)} ⁠ is holomorphic.

Cauchy's integral theorem implies that the contour integral of every holomorphic function along a loop vanishes:

γ f ( z ) d z = 0. {\displaystyle \oint _{\gamma }f(z)\,\mathrm {d} z=0.}

Here ⁠ γ {\displaystyle \gamma } ⁠ is a rectifiable path in a simply connected complex domain U C {\displaystyle U\subset \mathbb {C} } ⁠ whose start point is equal to its end point, and ⁠ f : U C {\displaystyle f\colon U\to \mathbb {C} } ⁠ is a holomorphic function.

Cauchy's integral formula states that every function holomorphic inside a disk is completely determined by its values on the disk's boundary. Furthermore: Suppose ⁠ U C {\displaystyle U\subset \mathbb {C} } ⁠ is a complex domain, ⁠ f : U C {\displaystyle f\colon U\to \mathbb {C} } ⁠ is a holomorphic function and the closed disk ⁠ D { z : {\displaystyle D\equiv \{z:} ⁠ is completely contained in ⁠ U {\displaystyle U} ⁠. Let ⁠ γ {\displaystyle \gamma } ⁠ be the circle forming the boundary of ⁠ D {\displaystyle D} ⁠. Then for every ⁠ a {\displaystyle a} ⁠ in the interior of ⁠ D {\displaystyle D} ⁠:

f ( a ) = 1 2 π i γ f ( z ) z a d z {\displaystyle f(a)={\frac {1}{2\pi i}}\oint _{\gamma }{\frac {f(z)}{z-a}}\,\mathrm {d} z}

where the contour integral is taken counter-clockwise.

The derivative ⁠ f ( a ) {\displaystyle {f'}(a)} ⁠ can be written as a contour integral using Cauchy's differentiation formula:

f ( a ) = 1 2 π i γ f ( z ) ( z a ) 2 d z , {\displaystyle f'\!(a)={\frac {1}{2\pi i}}\oint _{\gamma }{\frac {f(z)}{(z-a)^{2}}}\,\mathrm {d} z,}

for any simple loop positively winding once around ⁠ a {\displaystyle a} ⁠, and

f ( a ) = lim γ a i 2 A ( γ ) γ f ( z ) d z ¯ , {\displaystyle f'\!(a)=\lim \limits _{\gamma \to a}{\frac {i}{2{\mathcal {A}}(\gamma )}}\oint _{\gamma }f(z)\,\mathrm {d} {\bar {z}},}

for infinitesimal positive loops ⁠ γ {\displaystyle \gamma } ⁠ around ⁠ a {\displaystyle a} ⁠.

In regions where the first derivative is not zero, holomorphic functions are conformal: they preserve angles and the shape (but not size) of small figures.

Every holomorphic function is analytic. That is, a holomorphic function ⁠ f {\displaystyle f} ⁠ has derivatives of every order at each point ⁠ a {\displaystyle a} ⁠ in its domain, and it coincides with its own Taylor series at ⁠ a {\displaystyle a} ⁠ in a neighbourhood of ⁠ a {\displaystyle a} ⁠. In fact, ⁠ f {\displaystyle f} ⁠ coincides with its Taylor series at ⁠ a {\displaystyle a} ⁠ in any disk centred at that point and lying within the domain of the function.

From an algebraic point of view, the set of holomorphic functions on an open set is a commutative ring and a complex vector space. Additionally, the set of holomorphic functions in an open set ⁠ U {\displaystyle U} ⁠ is an integral domain if and only if the open set ⁠ U {\displaystyle U} ⁠ is connected. In fact, it is a locally convex topological vector space, with the seminorms being the suprema on compact subsets.

From a geometric perspective, a function ⁠ f {\displaystyle f} ⁠ is holomorphic at ⁠ z 0 {\displaystyle z_{0}} ⁠ if and only if its exterior derivative d f {\displaystyle \mathrm {d} f} ⁠ in a neighbourhood ⁠ U {\displaystyle U} ⁠ of ⁠ z 0 {\displaystyle z_{0}} ⁠ is equal to ⁠ f ( z ) d z {\displaystyle f'(z)\,\mathrm {d} z} ⁠ for some continuous function ⁠ f {\displaystyle f'} ⁠. It follows from

0 = d 2 f = d ( f d z ) = d f d z {\displaystyle 0=\mathrm {d} ^{2}f=\mathrm {d} (f'\,\mathrm {d} z)=\mathrm {d} f'\wedge \mathrm {d} z}

that ⁠ d f {\displaystyle \mathrm {d} f'} ⁠ is also proportional to ⁠ d z {\displaystyle \mathrm {d} z} ⁠, implying that the derivative ⁠ d f {\displaystyle \mathrm {d} f'} ⁠ is itself holomorphic and thus that ⁠ f {\displaystyle f} ⁠ is infinitely differentiable. Similarly, ⁠ d ( f d z ) = f d z d z = 0 {\displaystyle \mathrm {d} (f\,\mathrm {d} z)=f'\,\mathrm {d} z\wedge \mathrm {d} z=0} ⁠ implies that any function ⁠ f {\displaystyle f} ⁠ that is holomorphic on the simply connected region ⁠ U {\displaystyle U} ⁠ is also integrable on ⁠ U {\displaystyle U} ⁠.

(For a path ⁠ γ {\displaystyle \gamma } ⁠ from ⁠ z 0 {\displaystyle z_{0}} ⁠ to ⁠ z {\displaystyle z} ⁠ lying entirely in ⁠ U {\displaystyle U} ⁠, define ⁠ F γ ( z ) = F ( 0 ) + γ f d z {\displaystyle F_{\gamma }(z)=F(0)+\int _{\gamma }f\,\mathrm {d} z} ⁠; in light of the Jordan curve theorem and the generalized Stokes' theorem, ⁠ F γ ( z ) {\displaystyle F_{\gamma }(z)} ⁠ is independent of the particular choice of path ⁠ γ {\displaystyle \gamma } ⁠, and thus ⁠ F ( z ) {\displaystyle F(z)} ⁠ is a well-defined function on ⁠ U {\displaystyle U} ⁠ having ⁠ d F = f d z {\displaystyle \mathrm {d} F=f\,\mathrm {d} z} ⁠ or ⁠ f = d F d z {\displaystyle f={\frac {\mathrm {d} F}{\mathrm {d} z}}} ⁠.

Examples

All polynomial functions in ⁠ z {\displaystyle z} ⁠ with complex coefficients are entire functions (holomorphic in the whole complex plane ⁠ C {\displaystyle \mathbb {C} } ⁠), and so are the exponential function exp z {\displaystyle \exp z} ⁠ and the trigonometric functions cos z = 1 2 ( exp ( + i z ) + exp ( i z ) ) {\displaystyle \cos {z}={\tfrac {1}{2}}{\bigl (}\exp(+iz)+\exp(-iz){\bigr )}} ⁠ and ⁠ sin z = 1 2 i ( exp ( + i z ) exp ( i z ) ) {\displaystyle \sin {z}=-{\tfrac {1}{2}}i{\bigl (}\exp(+iz)-\exp(-iz){\bigr )}} ⁠ (cf. Euler's formula). The principal branch of the complex logarithm function ⁠ log z {\displaystyle \log z} ⁠ is holomorphic on the domain ⁠ C { z R : z 0 } {\displaystyle \mathbb {C} \smallsetminus \{z\in \mathbb {R} :z\leq 0\}} ⁠. The square root function can be defined as ⁠ z exp ( 1 2 log z ) {\displaystyle {\sqrt {z}}\equiv \exp {\bigl (}{\tfrac {1}{2}}\log z{\bigr )}} ⁠ and is therefore holomorphic wherever the logarithm ⁠ log z {\displaystyle \log z} ⁠ is. The reciprocal function 1 z {\displaystyle {\tfrac {1}{z}}} ⁠ is holomorphic on ⁠ C { 0 } {\displaystyle \mathbb {C} \smallsetminus \{0\}} ⁠. (The reciprocal function, and any other rational function, is meromorphic on ⁠ C {\displaystyle \mathbb {C} } ⁠.)

As a consequence of the Cauchy–Riemann equations, any real-valued holomorphic function must be constant. Therefore, the absolute value | z | {\displaystyle |z|} , the argument arg z {\displaystyle \arg z} ⁠, the real part Re ( z ) {\displaystyle \operatorname {Re} (z)} ⁠ and the imaginary part Im ( z ) {\displaystyle \operatorname {Im} (z)} ⁠ are not holomorphic. Another typical example of a continuous function which is not holomorphic is the complex conjugate z ¯ . {\displaystyle {\bar {z}}.} ⁠ (The complex conjugate is antiholomorphic.)

Several variables

The definition of a holomorphic function generalizes to several complex variables in a straightforward way. A function ⁠ f : ( z 1 , z 2 , , z n ) f ( z 1 , z 2 , , z n ) {\displaystyle f\colon (z_{1},z_{2},\ldots ,z_{n})\mapsto f(z_{1},z_{2},\ldots ,z_{n})} ⁠ in ⁠ n {\displaystyle n} ⁠ complex variables is analytic at a point ⁠ p {\displaystyle p} ⁠ if there exists a neighbourhood of ⁠ p {\displaystyle p} ⁠ in which ⁠ f {\displaystyle f} ⁠ is equal to a convergent power series in ⁠ n {\displaystyle n} ⁠ complex variables; the function ⁠ f {\displaystyle f} ⁠ is holomorphic in an open subset ⁠ U {\displaystyle U} ⁠ of ⁠ C n {\displaystyle \mathbb {C} ^{n}} ⁠ if it is analytic at each point in ⁠ U {\displaystyle U} ⁠. Osgood's lemma shows (using the multivariate Cauchy integral formula) that, for a continuous function ⁠ f {\displaystyle f} ⁠, this is equivalent to ⁠ f {\displaystyle f} ⁠ being holomorphic in each variable separately (meaning that if any ⁠ n 1 {\displaystyle n-1} ⁠ coordinates are fixed, then the restriction of ⁠ f {\displaystyle f} ⁠ is a holomorphic function of the remaining coordinate). The much deeper Hartogs' theorem proves that the continuity assumption is unnecessary: ⁠ f {\displaystyle f} ⁠ is holomorphic if and only if it is holomorphic in each variable separately.

More generally, a function of several complex variables that is square integrable over every compact subset of its domain is analytic if and only if it satisfies the Cauchy–Riemann equations in the sense of distributions.

Functions of several complex variables are in some basic ways more complicated than functions of a single complex variable. For example, the region of convergence of a power series is not necessarily an open ball; these regions are logarithmically-convex Reinhardt domains, the simplest example of which is a polydisk. However, they also come with some fundamental restrictions. Unlike functions of a single complex variable, the possible domains on which there are holomorphic functions that cannot be extended to larger domains are highly limited. Such a set is called a domain of holomorphy.

A complex differential ⁠ ( p , 0 ) {\displaystyle (p,0)} ⁠-form α {\displaystyle \alpha } ⁠ is holomorphic if and only if its antiholomorphic Dolbeault derivative is zero: ⁠ ¯ α = 0 {\displaystyle {\bar {\partial }}\alpha =0} ⁠.

Extension to functional analysis

Main article: infinite-dimensional holomorphy

The concept of a holomorphic function can be extended to the infinite-dimensional spaces of functional analysis. For instance, the Fréchet or Gateaux derivative can be used to define a notion of a holomorphic function on a Banach space over the field of complex numbers.

See also

References

  1. "Analytic functions of one complex variable". Encyclopedia of Mathematics. European Mathematical Society / Springer. 2015 – via encyclopediaofmath.org.
  2. "Analytic function", Encyclopedia of Mathematics, EMS Press, 2001 , retrieved February 26, 2021
  3. Ahlfors, L., Complex Analysis, 3 ed. (McGraw-Hill, 1979).
  4. Henrici, P. (1986) . Applied and Computational Complex Analysis. Wiley. Three volumes, publ.: 1974, 1977, 1986.
  5. Ebenfelt, Peter; Hungerbühler, Norbert; Kohn, Joseph J.; Mok, Ngaiming; Straube, Emil J. (2011). Complex Analysis. Science & Business Media. Springer. ISBN 978-3-0346-0009-5 – via Google.
  6. ^ Markushevich, A.I. (1965). Theory of Functions of a Complex Variable. Prentice-Hall.
  7. ^ Gunning, Robert C.; Rossi, Hugo (1965). Analytic Functions of Several Complex Variables. Modern Analysis. Englewood Cliffs, NJ: Prentice-Hall. ISBN 9780821869536. MR 0180696. Zbl 0141.08601 – via Google.
  8. Gray, J.D.; Morris, S.A. (April 1978). "When is a function that satisfies the Cauchy-Riemann equations analytic?". The American Mathematical Monthly. 85 (4): 246–256. doi:10.2307/2321164. JSTOR 2321164.
  9. The original French terms were holomorphe and méromorphe. Briot, Charles Auguste; Bouquet, Jean-Claude (1875). "§15 fonctions holomorphes". Théorie des fonctions elliptiques (2nd ed.). Gauthier-Villars. pp. 14–15. Lorsqu'une fonction est continue, monotrope, et a une dérivée, quand la variable se meut dans une certaine partie du plan, nous dirons qu'elle est holomorphe dans cette partie du plan. Nous indiquons par cette dénomination qu'elle est semblable aux fonctions entières qui jouissent de ces propriétés dans toute l'étendue du plan. ¶ Une fraction rationnelle admet comme pôles les racines du dénominateur; c'est une fonction holomorphe dans toute partie du plan qui ne contient aucun de ses pôles. ¶ Lorsqu'une fonction est holomorphe dans une partie du plan, excepté en certains pôles, nous dirons qu'elle est méromorphe dans cette partie du plan, c'est-à-dire semblable aux fractions rationnelles. [When a function is continuous, monotropic, and has a derivative, when the variable moves in a certain part of the plane, we say that it is holomorphic in that part of the plane. We mean by this name that it resembles entire functions which enjoy these properties in the full extent of the plane.  ¶ A rational fraction admits as poles the roots of the denominator; it is a holomorphic function in all that part of the plane which does not contain any poles. ¶ When a function is holomorphic in part of the plane, except at certain poles, we say that it is meromorphic in that part of the plane, that is to say it resembles rational fractions.] Harkness, James; Morley, Frank (1893). "5. Integration". A Treatise on the Theory of Functions. Macmillan. p. 161.
  10. Briot & Bouquet had previously also adopted Cauchy’s term synectic (synectique in French), in the 1859 first edition of their book. Briot, Charles Auguste; Bouquet, Jean-Claude (1859). "§10". Théorie des fonctions doublement périodiques. Mallet-Bachelier. p. 11.
  11. Henrici, Peter (1993) . Applied and Computational Complex Analysis. Wiley Classics Library. Vol. 3 (Reprint ed.). New York - Chichester - Brisbane - Toronto - Singapore: John Wiley & Sons. ISBN 0-471-58986-1. MR 0822470. Zbl 1107.30300 – via Google.
  12. Evans, L.C. (1998). Partial Differential Equations. American Mathematical Society.
  13. ^ Lang, Serge (2003). Complex Analysis. Springer Verlag GTM. Springer Verlag.
  14. Rudin, Walter (1987). Real and Complex Analysis (3rd ed.). New York: McGraw–Hill Book Co. ISBN 978-0-07-054234-1. MR 0924157.
  15. Gunning and Rossi. Analytic Functions of Several Complex Variables. p. 2.

Further reading

  • Blakey, Joseph (1958). University Mathematics (2nd ed.). London, UK: Blackie and Sons. OCLC 2370110.

External links

Category:
Holomorphic function: Difference between revisions Add topic