Misplaced Pages

Dirichlet's principle: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 05:45, 12 March 2009 edit128.12.108.90 (talk)No edit summary← Previous edit Latest revision as of 16:03, 5 November 2024 edit undoShashvat Verma (talk | contribs)Extended confirmed users1,390 edits Added short descriptionTags: Mobile edit Mobile app edit Android app edit App description add 
(40 intermediate revisions by 31 users not shown)
Line 1: Line 1:
{{Short description|Concept in potential theory}}
In ], '''Dirichlet's principle''' in ] states that, if the function ''u''(''x'') is the solution to ]
{{distinguish|Pigeonhole principle}}
In ], and particularly in ], '''Dirichlet's principle''' is the assumption that the minimizer of a certain ] is a solution to ].


==Formal statement==
:<math>\Delta u + f = 0\,</math>
'''Dirichlet's principle''' states that, if the function <math> u ( x ) </math> is the solution to ]


:<math>\Delta u + f = 0</math>
on a ] <math>\Omega</math> of <math>\mathbb{R}^n</math> with ]


on a ] <math>\Omega</math> of <math>\mathbb{R}^n</math> with ]
:<math>u=g\text{ on }\partial\Omega,\,</math>


:<math>u=g</math> on the ] <math>\partial\Omega</math>,
then ''u'' can be obtained as the minimizer of the ]

then ''u'' can be obtained as the minimizer of the ]


:<math>E = \int_\Omega \left(\frac{1}{2}|\nabla v|^2 - vf\right)\,\mathrm{d}x</math> :<math>E = \int_\Omega \left(\frac{1}{2}|\nabla v|^2 - vf\right)\,\mathrm{d}x</math>


amongst all twice differentiable functions <math>v</math> such that <math>v=g</math> on <math>\partial\Omega</math> (provided that there exists at least one function making the Dirichlet's integral finite). This concept is named after the German mathematician ]. amongst all twice differentiable functions <math>v</math> such that <math>v=g</math> on <math>\partial\Omega</math> (provided that there exists at least one function making the Dirichlet's integral finite). This concept is named after the German mathematician ].


==History==
Since the Dirichlet's integral is bounded from below, the existence of an ] is guaranteed. That this infimum is attained was taken for granted by ] (who coined the term ''Dirichlet's principle'') and others until ] gave an example of a functional that does not attain its minimum. ] later justified Riemann's use of Dirichlet's principle.
The name "Dirichlet's principle" is due to ], who applied it in the study of ].<ref>Monna 1975, p. 33</ref>

Riemann (and others such as ] and ]) knew that Dirichlet's integral is bounded below, which establishes the existence of an ]; however, he took for granted the existence of a function that attains the minimum. ] published the first criticism of this assumption in 1870, giving an example of a functional that has a greatest lower bound which is not a minimum value. Weierstrass's example was the functional

:<math>J(\varphi) = \int_{-1}^{1} \left( x \frac{d\varphi}{dx} \right)^2 \, dx </math>

where <math>\varphi</math> is continuous on <math></math>, continuously differentiable on <math>(-1,1)</math>, and subject to boundary conditions <math>\varphi(-1)=a</math>, <math>\varphi(1)=b</math> where <math>a</math> and <math>b</math> are constants and <math>a \ne b</math>. Weierstrass showed that <math>\textstyle \inf_\varphi J(\varphi) = 0</math>, but no admissible function <math>\varphi</math> can make <math>J(\varphi)</math> equal 0. This example did not disprove Dirichlet's principle ''per se'', since the example integral is different from Dirichlet's integral. But it did undermine the reasoning that Riemann had used, and spurred interest in proving Dirichlet's principle as well as broader advancements in the ] and ultimately ].<ref>Monna 1975, p. 33–37,43–44</ref><ref>Giaquinta and Hildebrand, p. 43–44</ref>

In 1900, ] later justified Riemann's use of Dirichlet's principle by developing the ].<ref>Monna 1975, p. 55–56, citing {{citation | last=Hilbert | first=David | title=Über das Dirichletsche Prinzip | journal=Journal für die reine und angewandte Mathematik | year=1905 | volume=1905 | issue=129 | pages=63–67 | doi=10.1515/crll.1905.129.63 | s2cid=120074769 | language=de}}</ref>


==See also== ==See also==
* ]
* ]
* ] * ]
* ] * ]

==Notes==
{{reflist}}


==References== ==References==
*{{citation|last=Courant|first= R.|author-link=Richard Courant|title=Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. Appendix by M. Schiffer|publisher= Interscience |year= 1950}}
* {{cite book | author=Lawrence C. Evans | title=Partial Differential Equations | publisher=American Mathematical Society | year=1998 | isbn=978-0821807729 }} * {{citation | author=Lawrence C. Evans | title=Partial Differential Equations |author-link=Lawrence C. Evans | publisher=American Mathematical Society | year=1998 | isbn=978-0-8218-0772-9 }}
* {{citation | last1=Giaquinta | first1=Mariano | author1-link=Mariano Giaquinta | last2=Hildebrandt | first2=Stefan | title=Calculus of Variations I | publisher=Springer | year=1996 }}
* {{citation | author=A. F. Monna | title=Dirichlet's principle: A mathematical comedy of errors and its influence on the development of analysis | publisher=Oosthoek, Scheltema & Holkema | year=1975 }}
* {{MathWorld | urlname=DirichletsPrinciple | title=Dirichlet's Principle}} * {{MathWorld | urlname=DirichletsPrinciple | title=Dirichlet's Principle}}


]
] ]
] ]
] ]
]

]
]
]

Latest revision as of 16:03, 5 November 2024

Concept in potential theory Not to be confused with Pigeonhole principle.

In mathematics, and particularly in potential theory, Dirichlet's principle is the assumption that the minimizer of a certain energy functional is a solution to Poisson's equation.

Formal statement

Dirichlet's principle states that, if the function u ( x ) {\displaystyle u(x)} is the solution to Poisson's equation

Δ u + f = 0 {\displaystyle \Delta u+f=0}

on a domain Ω {\displaystyle \Omega } of R n {\displaystyle \mathbb {R} ^{n}} with boundary condition

u = g {\displaystyle u=g} on the boundary Ω {\displaystyle \partial \Omega } ,

then u can be obtained as the minimizer of the Dirichlet energy

E [ v ( x ) ] = Ω ( 1 2 | v | 2 v f ) d x {\displaystyle E=\int _{\Omega }\left({\frac {1}{2}}|\nabla v|^{2}-vf\right)\,\mathrm {d} x}

amongst all twice differentiable functions v {\displaystyle v} such that v = g {\displaystyle v=g} on Ω {\displaystyle \partial \Omega } (provided that there exists at least one function making the Dirichlet's integral finite). This concept is named after the German mathematician Peter Gustav Lejeune Dirichlet.

History

The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions.

Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum. Karl Weierstrass published the first criticism of this assumption in 1870, giving an example of a functional that has a greatest lower bound which is not a minimum value. Weierstrass's example was the functional

J ( φ ) = 1 1 ( x d φ d x ) 2 d x {\displaystyle J(\varphi )=\int _{-1}^{1}\left(x{\frac {d\varphi }{dx}}\right)^{2}\,dx}

where φ {\displaystyle \varphi } is continuous on [ 1 , 1 ] {\displaystyle } , continuously differentiable on ( 1 , 1 ) {\displaystyle (-1,1)} , and subject to boundary conditions φ ( 1 ) = a {\displaystyle \varphi (-1)=a} , φ ( 1 ) = b {\displaystyle \varphi (1)=b} where a {\displaystyle a} and b {\displaystyle b} are constants and a b {\displaystyle a\neq b} . Weierstrass showed that inf φ J ( φ ) = 0 {\displaystyle \textstyle \inf _{\varphi }J(\varphi )=0} , but no admissible function φ {\displaystyle \varphi } can make J ( φ ) {\displaystyle J(\varphi )} equal 0. This example did not disprove Dirichlet's principle per se, since the example integral is different from Dirichlet's integral. But it did undermine the reasoning that Riemann had used, and spurred interest in proving Dirichlet's principle as well as broader advancements in the calculus of variations and ultimately functional analysis.

In 1900, Hilbert later justified Riemann's use of Dirichlet's principle by developing the direct method in the calculus of variations.

See also

Notes

  1. Monna 1975, p. 33
  2. Monna 1975, p. 33–37,43–44
  3. Giaquinta and Hildebrand, p. 43–44
  4. Monna 1975, p. 55–56, citing Hilbert, David (1905), "Über das Dirichletsche Prinzip", Journal für die reine und angewandte Mathematik (in German), 1905 (129): 63–67, doi:10.1515/crll.1905.129.63, S2CID 120074769

References

Categories: