Revision as of 13:40, 18 November 2005 edit192.67.48.22 (talk) →0.999... < 1 ?← Previous edit | Latest revision as of 07:36, 14 January 2025 edit undoRetimuko (talk | contribs)Extended confirmed users7,300 edits Undid revision 1269353197 by 94.235.36.25 (talk)Tag: Undo | ||
Line 1: | Line 1: | ||
{{Talk header |search=yes |hide_find_sources=yes |custom_header=This is the ] for discussing improvements to the 0.999... article itself. {{br}} This is ] for general discussion of the article's subject. {{br}} ''Please place discussions on the underlying mathematical issues on the ]''. {{br}} For questions about the maths involved, try posting to the ] instead. }} | |||
Because of their length, the previous discussions on this page have been archived. | |||
{{tmbox|image=none|text='''] Archives:''' ], ], ], ], ], ], ], ], ], ], ], ], ]|textstyle=text-align: center;}} | |||
If further archiving is needed, see ]. | |||
{{Article history | |||
|action1=AFD | |||
|action1date=May 5, 2006 | |||
|action1link=Misplaced Pages:Articles for deletion/Proof that 0.999... equals 1 | |||
|action1result=kept | |||
|action1oldid=51422447 | |||
|action2=FAC | |||
|action2date=October 10, 2006 | |||
|action2link=Misplaced Pages:Featured article candidates/0.999... | |||
|action2result=promoted | |||
|action2oldid=80638011 | |||
|action3=FAR | |||
|action3date=15:06, 31 August 2010 | |||
|action3link=Misplaced Pages:Featured article review/0.999.../archive1 | |||
|action3result=kept | |||
|action3oldid=382076790 | |||
|maindate=October 25, 2006 | |||
|currentstatus=FFA | |||
|action4 = FAR | |||
|action4date = 2024-09-24 | |||
|action4link = Misplaced Pages:Featured article review/0.999.../archive2 | |||
|action4result = demoted | |||
|action4oldid = 1243492081 | |||
}} | |||
{{WikiProject banner shell|class=B|collapsed=yes|1= | |||
{{WikiProject Spoken Misplaced Pages}} | |||
{{WikiProject Mathematics|portal=yes|priority=mid}} | |||
{{WikiProject Numbers|importance=Mid}} | |||
}} | |||
{{FAQ}} | |||
{{User:MiszaBot/config | |||
|archiveheader = {{aan}} | |||
|maxarchivesize = 200K | |||
|counter = 20 | |||
|algo = old(31d) | |||
|archive = Talk:0.999.../Archive %(counter)d | |||
}} | |||
== Yet another anon == | |||
'''Previous discussions:''' | |||
''Moved to ] subpage'' | |||
== Intuitive explanation == | |||
*]: | |||
---- | |||
There seems to be an error in the intuitive explanation: | |||
== 0.999... < 1 ? == | |||
For any number x that is less than 1, the sequence 0.9, 0.99, 0.999, and so on will eventually reach a number larger than x. | |||
How can he be wrong? He is referring to sequences with positive sums. What are you talking about? He is correct in stating it will never exceed 1. In fact it will never reach 1 either. As for computing infinite sums, I also, know of no formula. All I learned in high school and university is how to compute the limit of an infinite sum. The two are quite different. Finally, the fact that you can take the sum as close as you want to 1 does not mean it is equal to 1. It means that you can take it as close as you like but you will never reach 1. | |||
If we set x = 0.̅9 then the sequence will never reach a number ''larger'' than x. ] (]) 12:16, 4 October 2024 (UTC) | |||
Just sit down and start adding up the terms and I guarantee you that you will sum until your last breath and still you will not have reached 1. Someone can continue to sum after you and he too will die summing the terms because the sum will always be less than 1. Philosophical grounds - hmmm? No, I think he is just using simple high school math. {{unsigned|68.238.99.105|00:12, 18 October 2005}} | |||
:If x = 0.̅9 then x is not less than 1, so the conditional statement is true. What is the error? ] (]) 12:50, 4 October 2024 (UTC) | |||
::If you presuppose that 0.̅9 is less than one, the argument that should prove you wrong may apprear to be sort of circular. Would it be better to say "to the left of 1 on the number line" instead of "less than 1"? I know it's the same, but then the person believing 0.̅9 to be less than one would have to place it on the number line! ] (]) 14:47, 4 October 2024 (UTC) | |||
:What does the notation 0.̅9 mean? ] (]) 15:43, 4 October 2024 (UTC) | |||
::It means zero followed by the decimal point, followed by an infinite sequence of 9s. ] (]) 00:24, 5 October 2024 (UTC) | |||
:You, also, are wrong. Of course it is correct that it will never exceed 1, and also that it will never exceed 3, but that is '''not''' the meaning of the assertion that the infinite expansion equals 1. If it were, then it would also be equal to 3. What is essential is that 1 is the '''smallest''' number that the finite truncations will never exceed. | |||
:::Thanks! Seems a bit odd that this is curious combination of characters (which I don't know how to type) is not listed in the article on 0.999... ] (]) 01:47, 5 October 2024 (UTC) | |||
:And you are wrong that you learned how to find the limit of an infinite sum. What is taught is how to find the '''limit of the sequence of finite sums, not the limit of an infinite sum'''. | |||
:And you must have meant, '''NOT''' that he was "referring to sequences with positive sums", but to sequences with positive '''terms'''. | |||
:You wrote that "the fact that you can take the sum as close as you want to 1 does not mean it is equal to 1". You're very confused: you can take the sum of the '''finite truncations''' as close as you want to 1, but no one said '''those''' are "equal to 1". It is the '''infinite sum''', not the infinitely many finite sums, that were asserted to be equal to 1. | |||
:Your points are very childish. If you need help in math, you could ask me or some other professional for such help. ] 02:09, 18 October 2005 (UTC) | |||
== B and C == | |||
Your logic is 'impeccable': would it really equal 3? You appear to be very confused. It cannot equal whatever you like. It will never equal, nor exceed 1 - that is the assertion. I am talking about the "limit of an infinite sum", not "limit of the sequence of finite sums". | |||
The formula he quoted is used in determining whether an infinite sum has an upper bound. There | |||
is no assertion that it is equal to this upper bound. Your assertion is plain wrong: there is | |||
a very easy way to check yourself - start adding up the terms and I can gaurantee you, you will always have a sum that is less than 1. Please don't tell me you are dealing with a finite sum because then your assertion that the infinite sum is 1 is absolute nonsense! | |||
You may be confusing yourself with the fact that the terms are getting closer and closer to zero (Cauchy sequence). This does not mean that any term will ever be zero. {{unsigned|68.238.97.2|10:49, 18 October 2005}} | |||
@]. There are other unsourced facts in the given sections. For example: | |||
:Would you please sign your postings, even if only with an IP number, so that we can know whether two anonymous postings are by the same person or different persons? | |||
* There is no source mentions about "Every element of 0.999... is less than 1, so it is an element of the real number 1. Conversely, all elements of 1 are rational numbers that can be written as..." in Dedekind cuts. | |||
:I have taught mathematics at five different universities, including MIT for three years, so I am not ignorant of mathematics, and if you want to understand these matters, you would benefit from listening to what I tell you. | |||
* There is no source mentions about "Continuing this process yields an infinite sequence of ], labeled by an infinite sequence of digits {{math|1=''b''<sub>1</sub>, ''b''<sub>2</sub>, ''b''<sub>3</sub>, ...}}, and one writes..." in Nested intervals and least upper bounds. This is just one of them. | |||
:You wrote: "I am talking about the 'limit of an infinite sum', not 'limit of the sequence of finite sums'". I don't know what "limit of an infinite sum" means in this context, unless it just means "limit of the sequence of finite partial sums", in which case it's a confused and confusing way of saying that. | |||
] (]) 11:00, 30 October 2024 (UTC) | |||
:'''Look:''' The value of an infinite sum '''IS''' the limit of the sequence of finite partial sums. They're the same thing. | |||
:In particular, the value of an infinite repeating decimal expansion such as 0.33333... '''IS''' just the limit of the sequence of finite truncations of it. The limit of the sequence of finite truncations of 0.3333333... is 1/3, so the value of this decimal expansion is 1/3. | |||
:You appear not to understand what "Cauchy sequence" means. To say that the terms of a series are getting closer to 0, or even that they are approaching 0, does not imply that anything is a Cauchy sequence. "Getting closer to 0" does not imply approaching 0 as a limit, since the terms of the sequence (1 + (1/''n'')) get closer to 0 without approaching 0. Moreover, that the terms of a series approach 0 does not imply that its sequence of partial sums or any other sequence associated with it is a Cauchy sequence. | |||
:As I said, if you need help in these matters, you should ask me or some other professional. ] 18:17, 18 October 2005 (UTC) | |||
: The section on Dedekind cuts is sourced to Richman throughout. The paragraph on nested intervals has three different sources attached to it. ] (]) 11:35, 30 October 2024 (UTC) | |||
I think you know exactly what I mean when I talk about Cauchy sequence: the distance between the terms is getting closer to zero. That's the definition of Cauchy sequence, i.e. | |||
::Are you saying that citations in the latter paragraph supports the previous paragraphs? If that's the case, I prefer to attach the same citations into those previous ones. ] (]) 12:52, 30 October 2024 (UTC) | |||
Lt d(p,q) = 0 as min(p,q) approaches infinity. You write: "The value of an infinite sum '''IS''' the limit of the sequence of finite partial sums." This is not true. An infinite sum '''IS''' *indeterminate*. Get that? The formula used in this article to prove that 0.999... equals 1 proves exactly the *opposite*, i.e. that 0.999... does not equal 1. All the formula shows is that the limit of any of the partial sums of this sequence is 1. To say this is the infinite sum, shows extreme ignorance. The limit of any partial sum is *not* the infinite sum. You taught at Mit? So what, do you think I ought to bow down and be intimidated? You are wrong. You have been taught wrong too. This article is non-sense. The fact that you can write what you do, displays a fundamental lack of understanding. This non-truth of 0.999... = 1 has taken hold because most people don't understand that 0.999... is *not* a rational number. Neither is 0.333... a rational number. | |||
:::Not sure what you mean. Both paragraphs have citations. ] (]) 13:09, 30 October 2024 (UTC) | |||
Partial sums from these sequences are used to approximate 1 and 1/3 respectively. I can understand using 0.333 to approximate 1/3 in base 10 (only because it can't be represented finitely in base 10) but cannot understand why 0.999 should be used to approximate 1 which has an *exact* representation. Don't you think it's about time you started thinking for yourself? I know how you will respond: You will say a rational number is any number that can be expressed as a/b where a and b are integers (b not 0). This definition of rational number | |||
is part of the problem. If a number cannot be represented *finitely* in a base that is well defined, then the number is not rational. Pi, e, sqrt(2), etc are irrational because there is | |||
no well defined base in which these can be represented finitely. You can't suggest that Pi, e, etc be respresented in their own base since these numbers cannot be completely determined. | |||
i.e. pi is not equal to 1.0 in base pi because the extent of pi is unknown. Similarly for e or any other irrational number. 15H51 18 October 2005 {{unsigned|68.238.97.2|21:07, 18 October 2005}} | |||
== Intuitive counterproof == | |||
:There is nothing sacred about writing numbers in "bases" like base 10, as opposed to fractions like 1/3. Writing "1/3" or "√2" ''does'' represent these numbers finitely. That doesn't say wether they're rational or not. "1/3" is rational; √2 is irrational, but both are represented "finitely" here. ] 01:38, 19 October 2005 (UTC) | |||
The logic in the so-called intuitive proofs (rather: naïve arguments) relies on extending known properties and algorithms for finite decimals to infinite decimals, without formal definitions or formal proof. Along the same lines: | |||
Not entirely true. You start with 0.333... and then you try to show that it can be expressed | |||
* 0.9 < 1 | |||
as a/b. Or you start with 0.999..., 3.14... or some other representation and then try to show it can be expressed as a/b. A number is rational if it can be expressed in the form a/b (b <>0) with a,b integers. I maintain this is insufficient, you also need to add that the representation must be *finite* in some radix form. If indeed 0.999... is rational (it's not), then so is pi since pi can be expressed in the form a/b (i.e. 3 + 1/10 + 4/100 + ...) | |||
* 0.99 < 1 | |||
But of course pi is not rational because there is no number system besides pi in which pi can be expressed finitely in radix form. In base pi, pi is *rational*, i.e. pi = 10 (i.e pi + 0 units). 0.999... cannot be expressed as a/b in any number system. Please don't tell me it's 1 or 1/1 - this assumes that it is equal to 1. You need to think really hard about this. | |||
* 0.999 < 1 | |||
68.238.97.2 | |||
* ... | |||
* hence 0.999... < 1. | |||
I think this fallacious intuitive argument is at the core of students' misgivings about 0.999... = 1, and I think this should be in the article - but that's just me ... I know I'd need a source. I have not perused the literature, but isn't there a good source saying something like this anywhere? ] (]) 08:50, 29 November 2024 (UTC) | |||
== Greater than or equal to == | |||
:Firstly, to answer one of your questions above: no I did not expect you to be intimidated; I expected you perhaps to be grateful. | |||
:Secondly, base 10 is no more sacred than base 3. The number 0.333..., whose expansion in base 10 is infinite, has a ''finite'' expansion in base 3, and in that base, the number 1/10 does not have a finite expansion, but an infinite repeating one. | |||
:Thirdly, the number 0.9999... with "9" repeating forever, ''does'' have a finite base 10 expansion, since it is 1.0, and ''can'' be written as ''a''/''b'', where ''a'' and ''b'' are integers, since it is 1/1. | |||
:Your notions about what is a "rational number" and what is not are merely an example of what many people like to call "mere semantics". ] 19:16, 19 October 2005 (UTC) | |||
I inserted "or equal to" in the lead, thus: | |||
You have told me nothing I did not know in your first and second points. In fact, if you read my posts, you would see that I said this. Your third point is false and I pointed this out in my previous response. You ''cannot'' prove that 0.999... = 1 because you do not know the difference betwen the limit of an infinite sum and an infinite sum itself. In fact, 0.999... 'is not' equal to 1. You do not understand the formula used to show that the sum of an infinite sequence is bounded from above. Maybe you should sit down and think about it again? You have been unable to refute anything I have said and you have not even tried to understand it. If I am incorrect in stating that finite representation is 'required' for the definition of a rational number, then pi, e and sqrt(2) are all rational seeing these are the sum of their respective expansions. Frankly it has nothing to with semantics, only simple logic that even a ex-professor from MIT can't see or won't see?. 68.238.97.2 | |||
:In ], '''0.999...''' (also written as '''0.{{overline|9}}''', '''0.{{overset|.|9}}''', or '''0.(9)''') denotes the smallest number greater than '''''or equal to''''' every ] in the sequence {{nowrap|(0.9, 0.99, 0.999, ...)}}. It can be proved that this number is{{spaces}}]; that is, | |||
:: <math>0.999... = 1.</math> | |||
(I did ''not'' emphasize the words as shown here.) | |||
But it was reverted by ]. Let me argue why I think it was an improvement, while both versions are correct. | |||
First, "my" version it s correct because it is true: 1 is greater than or equal to every number in the sequence, and any number less than 1 is not. Secondly, if a reader has the misconception that 0.999... is slightly less than 1, they may oppose the idea that the value must be strictly greater than alle numbers in the sequence - and they would be right in opposing that, if not in ''this'' case, then in other cases. E.g., 0.9000... is ''not'' greater than every number in the corresponding sequence, 0.9, 0.90, 0.900, ...; it is in fact equal to all of them. ] (]) 12:07, 29 November 2024 (UTC) | |||
:I think it's confusing because 1 doesn't belong to the sequence, so "or equal" are unnecessary extra words. A reader might wonder why those extra words are there at all, and the lead doesnt seem like the place to flesh this out. ] (]) 13:40, 29 November 2024 (UTC) | |||
::Certainly, both fomulations are correct. This sentence is here for recalling the definition of the notation in this specific case, and must be kept as simple as possible. Therefore, I agree with Tito. The only case for which this definition of ellipsis notation is incorrect is when the ellipsis replaces an infinite sequence of zeros, that is when the notation is useful only for emphasizing that finite decimals are a special case of infinite decimals. Otherwise, notation 0.100... is very rarely used. For people for which this notation of finite decimals has been taught, one could add a footnote such as 'For taking into account the case of an infinity of trailing zeros, one replaces often "greater" with "greater or equal"; the two definitions of the notation are equivalent in all other cases'. I am not sure that this is really needed. ] (]) 14:46, 29 November 2024 (UTC) | |||
:::Could you point to where the values of decimals are defined in this way - in wikipedia, or a good source? I can eassily find definitions in terms of limits, but not so easily with inequality signs (strict or not). | |||
:::I think the version with strict inequality signs is weaker in terms of stating the case clearly for a skeptic. ] (]) 17:45, 30 November 2024 (UTC) | |||
:::Agree that both versions are correct. My inclination from years of mathematical training is to use the simplest, most succinct statement rather than a more complicated one that adds nothing. So, I'm with Tito and D. here. ] (]) 18:24, 30 November 2024 (UTC) | |||
::::I think many mathematicians feel that "greater than or equal to" is the primitive notion and "strictly greater than" is the derived notion, notwithstanding that the former has more words. Therefore it's not at all clear that the "greater than" version is "simpler". --] (]) 03:13, 1 December 2024 (UTC) | |||
:::The general case is "greater than or equal to", and I would support phrasing it that way. I think we don't need to explain why we say "or equal to"; just put it there without belaboring it. --] (]) 03:06, 1 December 2024 (UTC) | |||
== Image == | |||
:That something is '''required''' for rationality does not mean that everything that satisfies it is rational. That confuses a necessary condition with a sufficient condition. A necessary condition for rationality is not a sufficient condition to guarantee rationality. | |||
{{Discussion top|There is no consensus to remove the image, and a rough consensus to keep it. ] (]) 21:42, 10 January 2025 (UTC) }} | |||
:But I congratulate you on the large number of your words. ] 20:26, 19 October 2005 (UTC) | |||
The image included at the top of this article is confusing. Some readers may interpret the image to mean that 0.999... represents a sequence of digits that grows over time as nines are added, and never stops growing. To make this article less confusing I suggest that we explicitly state that 0.999... is not used in that sense, and remove the image. ] (]) 17:31, 1 January 2025 (UTC) | |||
Talk about a lot of 'words'.... | |||
Could your rebuttal possibly be a little more abstract. You know you are wrong and just can't admit it. ... sour grapes? 68.238.97.2 | |||
: I do not see how this is confusing. The caption reads: "Stylistic impression of the number 0.9999..., representing the digit 9 repeating infinitely" - nothing remotely like "sequence... that grows over time". I cannot see how one could meaningfully add a comment that "0.999..." is not used in a sense that has not even been mentioned. Of course lots of people are confused: that is the reason for the article, which in an ideal world would not be needed. ] (]) 04:29, 2 January 2025 (UTC) | |||
:You must be a retired lawyer. ] 00:01, 20 October 2005 (UTC) | |||
::If a sequence of digits grows over time as nines are added, and never stops growing, it is reasonable to conclude that the digit nine is repeating infinitely. ] (]) 18:14, 2 January 2025 (UTC) | |||
:::Yes, notation 0.999... means that the digit nine is repeating infinitely. So, the figure and its caption reflect accurately the content of the article. ] (]) 18:28, 2 January 2025 (UTC) | |||
Wrong again. Retired supermodel. More profitable and unlike teaching/(child minding), no fake power-trips: the runway is a 'real' power-trip. But don't quit your day job. If your posted photo is recent, I can't tell you won't make it. Sorry, don't mean to be rude, just realistic. 68.238.97.2 | |||
::::When we use the word repeating we should expect that some people will think we are referring to a process which occurs over time, like the operation of a ]. ] (]) 22:03, 2 January 2025 (UTC) | |||
:::::You can think of this as a "process" if you like. 0.9999... means the limit of the sequence . Of course in mathematics nothing ever really "occurs over time", though I suppose you could consider it a kind of algorithm which if implemented on an idealization of a physical computer with infinite memory capacity might indefinitely produce nearer and nearer approximations. –] ] 22:20, 2 January 2025 (UTC) | |||
Did you mean 'can tell he won't make it' ? :-) He is probably still figuring out how to make 0.999... add up to 1. {{unsigned|192.67.48.22|13:56, 20 October 2005 (UTC)}} | |||
::::::I think you are going in a very productive direction. We should explain to readers how what they might think we mean, "occurring over time", relates to what we actually mean. ] (]) 00:43, 3 January 2025 (UTC) | |||
:::::::I personally think that would be distracting and not particularly helpful in the lead section. There is further discussion of this in {{alink|Infinite series and sequences}}, though perhaps it could be made more accessible. –] ] 03:42, 3 January 2025 (UTC) | |||
Yes, that should have read: "I can tell you won't make it." I see he has not responded to your rebuttal. Instead he chooses to be sarcastic and rude to a lady. Frankly, he skirts the rebuttals and tries to be cunning and humorous. 68.238.97.2 | |||
::::::::Yes, I agree that detailed discussion does not belong in the lead section. I personally think that the image is distracting and not helpful. In the lead section we can simply state that in mathematics the term 0.999... is used to denote the number one. We can use the rest of the article to explain why. ] (]) 16:23, 3 January 2025 (UTC) | |||
::::::::: Except that it's not true that 0.999... denotes the number one. It denotes the least number greater than every element of the sequence 0.9, 0.99, 0.999,... It's then a theorem that the number denoted in this way is equal to one. ] (]) 16:31, 3 January 2025 (UTC) | |||
:Gee, if I'd realized you were Paris Hilton, I'd have recognized your mathematical brilliance. ] 01:59, 21 October 2005 (UTC) | |||
::::::::::It also denotes the least number greater than every number which is less than one, just as 0.333...denotes the least number greater than every number which is less than one-third. That's why we say it denotes 1/3, and why we also say that the one with 9s denotes 1. ] (]) 17:39, 3 January 2025 (UTC) | |||
::::::::::@], notice that @] just wrote above "we also say that the one with 9's denotes 1". The description "the least number greater than every element of the sequence 0.9, 0.99, 0.999,..." does describe the number one, just as does "the integer greater than zero and less than two". ] (]) 18:21, 3 January 2025 (UTC) | |||
I am sorry but I have no idea who Paris Hilton is? Is he a mathematician? Wait, I can goolge it. Hopefully there aren't too many with that name. Now I know you love chatting but I really wish you would give this subject more thought. I can answer any questions you might have. You ought to be grateful for this. 68.238.97.2 | |||
::::::::::: This is an incorrect use of the word "denotes". Denotes an equality by definition, whereas one instead has that 0.999... and 1 are ''judgementally'' equal. For example, does "All zeros of the Riemann zeta function inside the critical strip have real part 1/2" denote True or False? ] (]) 18:56, 3 January 2025 (UTC) | |||
:This is quite trivial... I think the problem stems from the fact that <math>\infty</math> CANNOT be regarded as a number with a definitive value. It is just said to be the largest number possible (which, of course, does not exist). I mean, the number 0.999... can be regarded as 1 minus the smallest real number possible (which is <math>\infty^{-1}</math> or <math>\frac{1}{\infty}</math>). But since infinity does not have a defined value, this becomes 0. Therefore <math>0.999...=1-\frac{1}{\infty}=1-0=1</math>. | |||
::::::::::::I think you are inventing this - please find reliable sources (dictionaries and things) to back up your claimed meaning of "denote". ] (]) 04:55, 9 January 2025 (UTC) | |||
:The same goes for arguments such as 'does the expression <math>\sum^\infty_{r=0} \frac{1}{r}</math> converge to a limit?' The answer: no. Certainly, the numbers get smaller and smaller and smaller until they become almost equal to zero, but no, THE SUM WILL NOT DIVERGE TO A LIMIT (I will not prove it here). | |||
::::::::::I agree that it is better to write that the term is used to denote the number one, rather than that the term denotes the number one. ] (]) 20:06, 3 January 2025 (UTC) | |||
:This debate has gone on for ages; the problem stems from the fact that non-mathematicians will not understand ] easily, nor will they understand easily that infinity has no defined value. | |||
:::::::::::Its not "used to denote". It is a mathematical theorem that the two terms are equal. ] (]) 20:46, 3 January 2025 (UTC) | |||
:I know I've dragged in quite a bit of other problems here, but my main point is that non-mathematicians will never understand this article fully. | |||
::::::::::I think we can make this issue very clear. Assume that x equals the least number greater than every element of the sequence 0.9, 0.99, 0.999,... . Applying the theorem we learn that x = 1. Substituting 1 for x in the opening sentence of this article we have: In mathematics 0.999... denotes 1. If we also insist that 0.999... does not denote 1, we have a contradiction. ] (]) 18:45, 4 January 2025 (UTC) | |||
:But I am a firm believer that tapping '9' on a calculator forever is not within physical limits. :) ] ] 07:21, 8 November 2005 (UTC) | |||
:::::::::::You have redefined the word "denote" to mean precisely the same as "is equal to", which is confusing and unnecessary. It's better to just say "is equal to" when that's what you mean, so that readers are not confused. –] ] 18:56, 4 January 2025 (UTC) | |||
::::::::::::I agree that redefining the word denote would be confusing and unnecessary. I simply defined a variable x to be equal to a number, the least number. ] (]) 20:04, 4 January 2025 (UTC) | |||
::I think you're assuming that all infinite series are divergent. However, there do exist ] (like the one used in the proof that 0.999... = 1). Take a look through ] and hopefully it will explain convergence well enough. --] 14:46, 8 November 2005 (UTC) | |||
:::::I'm in agreement with @] and @] on this. The image does not suggest a process extended over time, and it correctly reflects the (correct) content of the article, so there is no need to remove it. I'm not persuaded that people will interpret "repeating" as purely temporal rather than spatial. If I say my wallpaper has a repeating pattern, does this confuse people who expect the wallpaper to be a process extended over time? (Are there people who think purely in firearm metaphors?) ] (]) 17:30, 3 January 2025 (UTC) | |||
:::No, I did quite a bit of work on ] so I certainly know that convergence exists. ] ] 03:25, 9 November 2005 (UTC) | |||
::::::Consider the number 999. Like the wallpaper, it contains a repeating pattern. That pattern could be defined over time, one nine at a time. Or it could be defined at one time, using three nines. ] (]) 18:27, 3 January 2025 (UTC) | |||
:Is it OK if I go ahead and edit the article, keeping in mind all the concerns which have been raised with my proposed changes? ] (]) 17:56, 8 January 2025 (UTC) | |||
You must be a non-mathematician because evidently you do not understand this at all. You do not understand geometric series or even what the difference is between an infinite sum and the limit of an infinite sum. You are not alone - most mathematicians don't understand this either. Hardy is a fine example. {{unsigned|192.67.48.22|2005 November 9}} | |||
::Can you be more specific about which changes you want to implement? ] (]) 20:32, 8 January 2025 (UTC) | |||
:Yes, I do understand what the difference is. And I understand that non-mathematicians will never understand this fully until they understand the concept of infinity. And please sign your comments in talk pages using <nowiki>~~~~</nowiki>. ] ] 06:32, 13 November 2005 (UTC) | |||
:::The first change would be to remove the image. ] (]) 15:06, 9 January 2025 (UTC) | |||
::::I'm confused, @]. Where in the above discussion do you see a consensus to remove the image? You have twice said the image should be removed, and I have said it should stay. No matter how many times you express it, your opinion only counts once. Other users have addressed other aspects of your proposal. Do you sincerely think the discussion has come to a decision about the image? ] (]) 13:47, 10 January 2025 (UTC) | |||
You are obviously a fake. No one understands infinity (not as a concept or otherwise) and you don't have a clue of what you are talking about. You are a good example of the mindset erroneous thinkers have who believe that 0.999.. = 1. You have erred and contradicted yourself several times already: First you state that infinity cannot be regarded as a number, then you proceed to write that 0.999... can be regarded as 1 minus the smallest real number possible which *you* say is 1/infinity. How can you define the smallest real number in terms of a number that is not defined?! Contradiction. Next, you fail miserably with your child-logic: "But since infinity does no have a defined value, this becomes 0." How did you reach this conclusion?! You are | |||
::No. I do not think there is agreement on removing the image. (I don't personally think it is spectacularly good, but the argument for removing it appears to me to be completely bogus.) ] (]) 04:57, 9 January 2025 (UTC) | |||
way out of your league. Think carefully before you post again! 192.67.48.22 | |||
:::The term 0.999... is literally a sequence of eight characters, just as y3.p05&9 is. Yet, the term itself implies meaning. I think confusion about the term can be reduced simply by acknowledging different meanings the term might imply. It does imply different meanings to different people. We can respect everyone, including children who are not willing to simply accept everything a teacher tells them. We can do our best to help everyone understand what we mean when we use the term. ] (]) 15:32, 9 January 2025 (UTC) | |||
:::For example, if a child thinks that by 0.999... we mean a sequence of digits growing over time, and the child objects when told that the sequence of digits is equal to one, we can respond by saying something like the following: You are correct that a growing sequence of digits does not represent one, or any number, because the sequence is changing. We don't mean that 0.999... represents a changing or growing sequence of digits. ] (]) 16:12, 9 January 2025 (UTC) | |||
: Actually ]s argument can be nicely formalized as a proof using the ] of the reals: | |||
:::We don't mean a changing or growing sequence of digits. That is what it is confusing to say that we mean a repeating sequence of digits. ] (]) 16:15, 9 January 2025 (UTC) | |||
:::What we mean is a number. ] (]) 16:18, 9 January 2025 (UTC) | |||
: Assume 0.9999... != 1. We will show that this implies that 1-0.999... is an ]. For any reasonable interpretation of 0.999... it must be larger than any finite-length 0.999...9. I.e. <math>\forall n: \sum_{i=1}^{n}\frac{9}{10^i} < 0.999... </math>. Let us call the quantity 1-0.999... for x. To show that x is an infinitesimal we have to show that for all n: <math> \sum_{i=1}^{n} |x| < 1 </math>. So let n be given. Let m be the smallest integer larger than <math> \log_{10} (n) </math>. Obviously <math> 0.999... \leq 1 </math>, so <math> |x| = x = 1-0.999... > 1 - \sum_{i=1}^{m}\frac{9}{10^i} = \frac{1}{10^m} > \frac{1}{10^{\log_{10} (n)}} = \frac{1}{n} </math>. But then <math> \sum_{i=1}^{n} |x| < \sum_{i=1}^{n} \frac{1}{n} = 1 </math>. Thus we arrive at a contradiction: if 0.999... != 1, 1-0.999... is an infinitesimal (or 0.999... < 0.99...9 for a finite-length number, or 0.999... > 1). Since the real numbers possess the Archimedean property and thus possess no infinitesemals, 0.999... = 1. | |||
::::This article is about the meaning of 0.999... '''in mathematics''' not about the possible meanings that people may imagine. If people imagine another meaning, they have to read the article and to understand it (this may need some work), and they will see that their alleged meaning is not what is commonly meant. If a child objects to 0.999... = 1, it must be told to read the elementary proof given in the article and to say which part of the proof seems wrong. ] (]) 16:58, 9 January 2025 (UTC) | |||
: ] ] 19:53, 15 November 2005 (UTC) | |||
:::What do we mean by the term number? A number is a measure, not a sequence of digits. We may denote a number using a sequence of digits, but we don't always. Sometimes we denote a number using a word, like one. Sometimes we use a phrase such as: the least number greater than any number in a certain sequence. We may use a lowercase Greek letter, or even notches in a bone. ] (]) 16:44, 9 January 2025 (UTC) | |||
::::By the term "number", we mean a number (]). It is difficult to define a number, and this took several thousands years to mathematicians to find an acceptable definition. A number is certainly not a measure, since a measure requires a ] and numbers are not associated with any measurement unit. The best that can be said at elementary level is something like "the natural number three is the common property of the nines in 0.999..., of the consecutive dots in the same notation, and of the letters of the word ''one''". ] (]) 17:20, 9 January 2025 (UTC) | |||
You are assuming that an infinitesimal posseses the property that |x|+|x|+.... < 1 no matter how many |x|s we sum. This is untrue and constitutes your first error. An infinitesimal cannot | |||
:::::I see. A number is not a measure, but it is used to measure. Thanks. ] (]) 17:40, 9 January 2025 (UTC) | |||
be quantified. Your second error is you decide to *call* your quantity 1-0.999... | |||
:::::A number is a value used to measure. ] (]) 17:42, 9 January 2025 (UTC) | |||
some 'x' - you cannot reach a contradiction on a false premise and then assume that your conclusion is true. 192.67.48.22 | |||
:::The caption on the image is: Stylistic impression of the number 0.9999..., representing the digit 9 repeating infinitely. | |||
:::The caption can be understood to mean that the term 0.999... '''''is''''' a zero followed by a decimal point followed by the digit 9 repeating infinitely, which meaning is distinct from the meaning that 0.999... '''''denotes''''' the number one. | |||
: x is an infinitesimal if and only if <math>\forall n: \sum_{i=1}^{n} |x| < 1 </math>. That is the definition, not an assumption. Feel free to use another definition, but unless it is equivalent to this one, you are speaking about something else. The ] of the reals is, that it does not contain any numbers (except for zero) that can be summed arbitrarily many times and still be finite. You can conceive of fields that does not have this property, but it is not the reals (see ]s). | |||
:::If we retain the caption, we may communicate to readers that we mean that 0.999... '''''is''''' a repeating sequence, which sequence '''''denotes''''' the number one. That doesn't work because repeating sequences themselves cannot be written completely and and therefore cannot be used to notate. | |||
: Calling 1-0.999... for x does nothing for the proof except improve the readability. Feel free to substitute (1-0.999...) everywhere, it makes no difference for the correctness: Let n be given and choose <math> m > \log_{10} (n) </math>. Then <math> \sum_{i=1}^{n}(1-0.999...) < \sum_{i=1}^{n}(1-\sum_{i=1}^{m}\frac{9}{10^i}) = \sum_{i=1}^{n}(\frac{1}{10^m}) < \sum_{i=1}^{n} \frac{1}{n} = 1 </math>, and we have proven that either 1-0.999... is an infinitesimal, 0.999...<0.99...9 for a finitelength-number, 0.999...>1 or 0.999...=1. | |||
:::0.999... '''''is''''' notation. The purpose of this article should be to help others understand what it denotes. If it denotes a repeating sequence of digits, then we should say so in the lead sentence. ] (]) 18:32, 9 January 2025 (UTC) | |||
: ] ] 21:25, 15 November 2005 (UTC) | |||
:::: How does the first sentence of the article not explain that notation? The meaning of the notation is the smallest number greater than every element of the sequence (0.9,0.99,...). ] (]) 18:39, 9 January 2025 (UTC) | |||
:::::Because it does not make sense to say that the sequence is repeating, because all the nines have not already been added, and at the same time to say that the sequence represents a number, because all the nines have already been added. It is confusing because it is contradictory. | |||
Your definition of infinitesimal is untrue and it is based on an incorrect assumption. You state that whatever the value of n is, the sum will never reach, nor exceed 1. Both are false. If what you say is true, then why do you not concede that the sum of 9/10^i (from 1 to n) < 1? You state that the sum of |x| (from i to n) < 1 but in the same breath you are trying to show that the sum of 9/10^i (from 1 to n) = 1 ?! You are very *confused* my friend. infinitesimal has never been properly defined. How can you quantify the number that is greater than zero yet less than every positive real number? You can give it a name, which we have: 'infinitesimal'. However, in every other respect, it is exactly like pi, e and sqrt(2), i.e. its full dimensions are unknown. To say that the reals posses no infinitesimals and then claim that pi, e and sqrt(2) (just some examples) is in itself a contradiction. Mathematicians shoot themselves in the head when they make statements such as: 'As small as you like' or 'As close you like'. How small? How close? I know mainstream thought is that the reals contain no infinitesimal. If the infinitesimal does not belong to the reals, then pi, e or any other number with similar properties does not belong to the reals also. This includes 0.999..., 0.333..., etc. 192.67.48.22 | |||
:::::When we say that the sequence is repeating, people who are not trained in mathematics will likely assume that we mean that all the nines have not already been added, and therefore that the sequence is changing and therefore, does not represent a number. Which, I believe, is why the subject of this article is not more widely understood. ] (]) 19:05, 9 January 2025 (UTC) | |||
:::::: I think I understand part of the confusion, which I've hopefully tried to correct with an edit. The notation 0.999... refers to a ], a concept which had not been linked. There is a way of associating to any decimal expansion a number as its value. For the repeating decimal 0.999..., that number is 1. ] (]) 19:09, 9 January 2025 (UTC) | |||
: You make a lot of hand-waving here. The definition of infinitesimal I have given is the one used everywhere. You may have a different conception about what an infinitesimal is and be unable to properly define it, but the one I talk about is well-defined and well-understood. Likewise the reals. Likewise most mathematicians have an agreement about what the real numbers are, and which properties they possess. You might have a conception of a number-field that does not include pi, e and sqrt(2), but it is not the same as the one the rest of us call the real numbers. | |||
:::::::I like the edits. Because the least number is one, the meaning of the lead sentence can be understood to be that 0.999... is a recurring decimal whose value '''''is defined as''''' one. The notation below should match. Instead of <math>0.999... = 1</math>, we should write <math>0.999... \ \overset{\underset{\mathrm{def}}{}}{=}\ 1</math>. ] (]) 19:40, 9 January 2025 (UTC) | |||
:::::::: No. The point is that the notation has a definition which is a standard one for repeating decimals of this form. It is a ''theorem'' that this number is one, but that is not the definition. ] (]) 19:47, 9 January 2025 (UTC) | |||
:Anyway: the proof above is interesting because it avoids limits and infinite sums, only drawing on some intuitive correct assumptions about the properties of 0.999... and the ] of the real numbers (which again is a consequence of the ] property). I just mentioned it since you attacked ]s intuitive understanding. There is really no purpose of us discussing the properties of the real numbers here, since the content of the article is governed by ]. Unless you can produce reputable sources for 0.999... ≠ 1, the article will continue to assert that 0.999... = 1. | |||
:::::::::I agree. What you are saying agrees with what I am saying. It is a theorem that the least number is one, not a definition. The notation has a standard definition which defines the notation to be equal to the least number, whatever that least number is. | |||
:::::::::#Given that the notation is defined to be equal to the least number | |||
: ] ] 13:31, 16 November 2005 (UTC) | |||
:::::::::#And given a theorem that the least number does equals one | |||
:::::::::#Therefore the notation is defined to be equal to a number which does equal one. | |||
Talk about hand waving! Your proofs are all fine examples of hand-waving. Contrary to what you think, the definition you provide of infinitesimal is not used everywhere. How can I have a conception of a number field that does not include pi, e or sqrt(2)? If I did, it would be incomplete and thus erroneous for pi, e and sqrt(2) are all very *real* and finite. You state that the Archimedean property is a consequence of the LUB theorem. Actually, it's the other way round. I have provided sufficient proof that 0.999... is not equal to 1 on the pages you archived. Since you are making the statement that 0.999.. is equal to 1, the onus is on you to provide proof which so far you have been unable to do. As for your *proof* being interesting in that it does not use limits and infinite sums, I would more accurately say that it is not a proof at all but mere hand-waving. And what are *reputable sources* if they don't agree with Misplaced Pages's views?! 192.67.48.22 | |||
:::::::::#Note that it does not follow from the givens that the notation is equal to one, or that the notation is equal to the least number. | |||
:::::::::] (]) 20:23, 9 January 2025 (UTC) | |||
: You wave your hands, when you claim that the definition of infinitesimals I used is untrue without supplying references. You claim: "If the infinitesimal does not belong to the reals, then pi, e or any other number with similar properties does not belong to the reals also." From that you must either believe that the reals contain infinitesimals or that pi, e etc. does not belong to the reals. Take your pick. (Btw. it is easy to define a number field that does not include pi, e and sqrt(2). The ]s are one example). | |||
::::::::This is not correct, but I feel like we're talking in circles here. Cf. ]. {{pb}} Let me try one more thing though. If we wanted a more explicit ''definition'' of 0.999..., we might use mathematical notation and write something like <math display=block>0.999\ldots \ \stackrel{\text{def}}{=}\ \sum_{k=1}^{\infty} 9 \cdot 10^{-k} = 1.</math> This is discussed in the article in {{alink|Infinite series and sequences}}. –] ] 02:58, 10 January 2025 (UTC) | |||
:::::::::Can you see that the summation is a process which must occur over time, and can never end? Do you notice that k cannot equal 1 and 2 at the same time? However, if we insist that the summation does occur all at once, then we affirm that k does equal 1 and 2 at the same time. We affirm that we do intend contradiction. If so, then we should clearly communicate that intention. ] (]) 15:14, 10 January 2025 (UTC) | |||
: You claim that the LUB property is a consequence of the Archimedean property. You have also stated that there is no definition of infinitesimals. What is your definition of the Archimedean property? We obviously have different definitions, since it is easy to see your claim is false using my definitions (The ]s obviously have the Archimedean property since '''Q''' ⊂ '''R''', but they do not have the LUB property (<math> \sup_{x \in Q} (x|x^2 < 2) = \sqrt{2} \not\in Q </math>)). | |||
::::Please stop misusing the word ''denotes'' when you mean "is equal to". It's incredibly confusing. –] ] 20:57, 9 January 2025 (UTC) | |||
:::::I agree that the difference between the two is critical. I've tried to be very careful. ] (]) 21:13, 9 January 2025 (UTC) | |||
: Read ] for a discussion about reputable sources. In this case it would be a mathematical text-book or a peer-reviewed article. Proving something in the context of Misplaced Pages consists of referring to a reputable source. Disproving is the same. In case of disagreement as to what a reputable source is, we go by ]. Using this meaning, you have neither disproved that 0.999...=1 or that 0.999...≠1. In the context of mathematics, a proper proof consists of enumerating your definitions and using these to deduce your conclusion. This is done in my proof above and in the (advanced) proofs in the article. Refuting a proof consists of showing that the deductions were incorrect. All you have done is arguing about the definitions. Hand-waving consists of claiming that something is false, but not giving references, counterexamples or proofs. You have done plenty of that. | |||
:::::I don't know if this will help at all, but it may. I think that we have been preoccupied with what infinity means, and have almost completely ignored what it means to be finite. We don't even have an article dedicated to the subject. So, I have begun drafting one: ]. ] (]) 00:00, 10 January 2025 (UTC) | |||
:I think the problem here is that there are two levels of symbol/interpretation. The literal 8-byte string "0.999..." is a "symbol for a symbol", namely for the infinitely long string starting with 0 and a point and followed by infinitely many 9s. Then that infinitely long symbol, in turn, denotes the real number 1. | |||
: ] ] 14:29, 16 November 2005 (UTC) | |||
:It's also possible that people are using "denote" differently; I had trouble following that part of the discussion. But we need to be clear first of all that when we say "0.999..." we're not usually really talking about the 8-byte string, but about the infinitely long string. --] (]) 05:06, 10 January 2025 (UTC) | |||
::This is also a weird use of "denote", in my opinion. For me, the word ''denote'' has to do with notation, as in, symbols that can be physically written down or maybe typed into a little text box. For example, the symbol {{tmath|\pi}} denotes the ]. The symbol {{tmath|1}} denotes the number ]. The mathematical expression {{tmath|1= ax^2 + bx + c = 0}} denotes the general ] with unknown coefficients. {{pb}} An "infinitely long string" is an abstract concept, not anything physically realizable, not notation at all. From my point of view it doesn't even "exist" except as an idea in people's minds, and in my opinion it can't "denote" anything. But again, within some abstract systems this conceptual idea can be said to equal the number 1. –] ] 07:05, 10 January 2025 (UTC) | |||
::I do not need to supply any references to show that your definition of infinitesimal is false. All I have to do is set n = infinity and already I have problems. As far as infinitesimals belonging or not belonging to the reals, it is you who have to take your pick! Firstly, you use the plural form - this is a contradiction in itself. Are there infinitesimals that are smaller than other infinitesimals? Secondly, the completeness principle states that every non-empty set which is bounded from above has a LUB. If you are using this, which you are, then you have to make up your mind whether you are using infinitesimals or not. I am not ignorant of mathematics so your discussion about fields above reveals nothing that I did not already know. Had you read my response in context (which you did not), you would have understood that I am claiming pi, e and sqrt(2) are part of the reals and these numbers have something in common with 0.999..., 0.333... in that they can only be appromixated. You archived the previous posts in which I provided *valid* mathematical proof (nothing hand-waving about this). Go back and read the posts. I pointed out errors in your 'proof' and when you realized that you had in fact written rubbish, you resorted to Wiki's NOR policy. An easy way out for you? 192.67.48.22 | |||
:::While you can't physically ''use'' infinitely long notation, I don't see why it should be thought of as "not notation at all". Heck, this is what ] is all about. In my opinion this is the clearest way of thinking about the topic of this article — it's an infinitely long numeral, which denotes a numerical value, which happens to be the real number 1. <small>The reason I keep writing "the real number 1" is that this is arguably a distinct object from the natural number 1, but that's a fruitless argument for another day. </small> --] (]) 07:15, 10 January 2025 (UTC) | |||
::'''''The''''' infinitely long string. The one that is not growing over time because it already has all of the nines in it, and because it is not growing can be interpreted as a number. The one that is repeating, because it does not at any specific instance in time have all the nines yet. That one? The one that is by definition a contradiction? ] (]) 15:56, 10 January 2025 (UTC) | |||
:::Sigh. Obviously n has to be a ]. But even if we assigned some meaning to n = infinity, the proof would still work. There are no real x≠0, so that <math>\sum_{i=0}^n |x| < 1</math>. As there are no infinitesimals in the reals, we cannot really discuss their properties (in a field that contained infinitesimals, however, it would be trivial to prove that there would be at least countable many). You still haven't given me your definition of infinitesimals or of the Archimedean property. You haven't shown how the Archimedean property implies the LUB property. It looks like you didn't really mean that "If the infinitesimal does not belong to the reals, then pi, e or any other number with similar properties does not belong to the reals also", though. There are no formal mathematical proofs in the archive. Feel free to make one here, however. ] just means that even if you should be able to produce a valid proof for 0.999... ≠ 1 and convince everybody here that it is correct, you do not get to move the article to ]. You would have to produce a reputable source. It doesn't mean that we can't produce lots of talk-page material, that we can move to another archive, once we are done. ] ] 19:43, 16 November 2005 (UTC) | |||
:::"By definition a contradiction". Huh? What are you talking about? If you can find a contradiction in the notion of ], you're wasting your time editing Misplaced Pages. Go get famous. --] (]) 18:25, 10 January 2025 (UTC) | |||
::::Above, I just described P and not P, a contradiction. ] (]) 19:26, 10 January 2025 (UTC) | |||
Really? So how is it that you understand that sum |x| (i to n) < 1 where x is infinitesimal (and you don't know your ear from your nose either, never mind what an infinitesimal is or is not; you are also unable to define it in any rational way) and you use this in your faulty proof to show that 0.999... = 1 ? Look, the fact that you have a master's or a PHd in Mathematics does not mean anything. You are in many ways more ignorant than someone without any qualification at all. I have not given you a definition for infinitesimal because it is a concept that makes no sense to me. If you cannot define any concept rationally, it is in fact *illogical* (any surprise?) and consequently rubbish that cannot be used to prove anything. The Archimedean property is well known. Your webpage says you have a master's and this is something that is taught in real analysis. Were you not required to take this course? Just google it for crying out loud and you will know what it is. | |||
:::::Um. No. You didn't. I would explain why but in my experience this sort of discussion is not productive. You're wandering dangerously close to the sorts of arguments we move to the Arguments page. --] (]) 21:13, 10 January 2025 (UTC) | |||
::::I'm not wasting my time. I believe in Misplaced Pages. ] (]) 19:33, 10 January 2025 (UTC) | |||
As for formal mathematical proofs: There is a proof in the archive and I'll state it again: | |||
::::We look to famous people to tell us what to understand? ] (]) 19:40, 10 January 2025 (UTC) | |||
::::I see Misplaced Pages as a great place for people to learn about and evaluate the ideas of people who, over time, have become famous for their ideas. ] (]) 20:04, 10 January 2025 (UTC) | |||
::::The fact of the matter is that if any theory logically entails a contradiction, then that theory is logically inconsistent. If we accept logical inconsistency as fact, then we can save everyone a lot of time by saying so. ] (]) 20:19, 10 January 2025 (UTC) | |||
Sum (i to n as n approaches infinity) = (ar - ar^n)/(1-r) for |r| < 1 | |||
::I suggest that we address each of the following in our article: | |||
::#The 8-byte term | |||
We cannot compute an infinite sum but we can investigate whether it has a limit or not. In the case of 9/10 + 9/100 + 9/1000 + ... it can be easily verified that this limit is 1. This states | |||
::#(0.9, 0.99, 0.999, ...) | |||
that even if we could sum this to infinity, its value would never reach, nor exceed 1. Thus it is *clearly* evident that 0.999... < 1. | |||
::#The least number | |||
::#The growing sequence | |||
All proofs that try to show it is equal are faulty but the one used most convincingly is a consequence of the Archimedean property: | |||
::#The contradiction | |||
::] (]) 17:11, 10 January 2025 (UTC) | |||
The law of trichotomy applies *only* to finitely represented numbers, so you can't use an algebraic process that leads to 0.999... not less than 1 and 0.999... not greater than 1 implies 0.999... = 1. 0.999... is not a finitely represented number. Any arithmetic on such a number can only be an approximation (like pi, e, sqrt(2) etc). And yes, there should be a page called "Proof that 0.999... < 1" because contrary to what you think, it is not generally agreed that 0.999... = 1. Except perhaps in the case of the fools who run Misplaced Pages? 192.67.48.22 | |||
:::There is no contradiction. There is no growing sequence. 0.999... is indeed infinitely long, and = 1. ] ] 21:14, 10 January 2025 (UTC) | |||
{{Discussion bottom}} | |||
: Hmmm. If you prefer to google, rather than reading a proper textbook on the subject, let us do that: The two top hits are our own ], which uses the exact same definition as me, and , which uses a slightly different, but equivalent formulation (Exercise: show how they are equivalent. Hint: use corollary 1, select y=0.5 and find the ]). So now we have established that there are no non-zero real numbers x, for which <math>\forall n \in N : \sum_{i=0}^n |x| < 1 </math>, we should be able to agree on the validity of the proof! | |||
: As for your 'proof', let me see if we can clear up what you mean. First you type: | |||
:: Sum (i to n as n approaches infinity) = (ar - ar^n)/(1-r) for |r| < 1 | |||
: I assume you mean (you don't specify the left hand side). | |||
:: <math> \lim_{n -> \infty} ( \sum_{i=1}^{n} (a r^i) ) = \lim_{n -> \infty} (\frac{ar - ar^n} {1-r}), |r| < 1</math> | |||
: We can certainly agree on that. | |||
: Then you assert that the limit of 9/10 + 9/100 + 9/1000 + ... is 1. I assume you mean | |||
:: <math>\lim_{n -> \infty} ( \sum_{i=1}^{n} \frac{9}{10^i} )=1</math>. | |||
:That takes some more work to prove, even using the above, but if you accept that <math> \lim_{n -> \infty}{r^n}=0, |r| < 1 </math>, I won't disagree (the proof is not hard, but it takes some work to get all the epsilons and deltas right). | |||
: Then you say: | |||
:: "This states that even if we could sum this to infinity, its value would never reach, nor exceed 1. Thus it is *clearly* evident that 0.999... < 1.". | |||
: When someone says ''*clearly*'' it is a clear sign that they are handwaving. Please prove this assertion! Hint: It might be a nice start to define exactly what you mean by 0.999... . Most people would mean <math>\sum_{i=1}^{\infty} \frac{9}{10^i} = \lim_{n -> \infty} ( \sum_{i=1}^{n} \frac{9}{10^i} )</math> | |||
: Ouch. You now claim that (R,<) isn't trichotomous. Most people ''define'' the real numbers so that (R,≤) is a ]. Care to prove your claim? Or just define your ordering. In any case, if you hold to this claim, you are talking about a different set of numbers than what the rest of us call the ]s (and in that case anything might be true. In Z/2, 1=3). | |||
: By the way, you still haven't shown how the Archimedean property implies the LUB property. | |||
: ] ] 14:32, 17 November 2005 (UTC) | |||
My word but you do love yourself, don't you? And you sure know how to use this system. If I knew it half as well as you did, I would draw some nice sigmas, infinity symbols and why, of course beautiful epsilons and deltas to make every Phd green with envy. Now, there is no handwaving in anything I wrote. It is very clear that the sum on the lhs will never exceed 1: | |||
If we split up the quotient as follows: a/(1-r) - ar^n/(1-r) the first term is independent of n and its value is 1. The second term becomes very small (and using Weierstrass's | |||
faulty logic - 'as small as you like' but always greater than *zero*). Thus we have 1 - s where | |||
s is some value greater than zero. This being the case, when we consider the difference, we always have a value that is *less than 1*. This is very *clear*. Got it? Hey, if you don't get it now, you must be thicker than I thought. Please don't tell me this is not mathematical or robust enough or else you are a disgrace to all the institutions of learning you have ever attended. Look, when I use words like *clear* and phrases like *by definition*, I do not use these in the same ignorant way as most Phds do. So relax. Don't build a brick wall around everyone else when you feel it necessary to do this for yourself. 192.67.48.22 | |||
: You don't need to draw the nice ] formulas to make yourself clear. You do however need to setup the formulas correctly (not being lazy and skipping part of the equations) and be rigorous in how you setup your definitions and how you apply them. You might also want to skip the ] arguments, you can't prove anything in maths using those. That being the case, let us get back to your proof: | |||
: You say: <math> \sum_{i=1}^{n} \frac{9}{10^i} = \frac{9/10}{1-10^{-1}} - \frac{9/10 \times 10^{-n}}{1-10^{-1}} = 1 - 10^{-n} </math>. Obviously <math>1-10^{-n}<1</math> for all <math>n \in N </math>. But for any reasonable definition of 0.999..., there is no natural number n, so that <math> 0.999... = \sum_{i=1}^{n} \frac{9}{10^i} </math>, so you can't prove anything from that. Now it comes down to how you define 0.999... (which you haven't done yet). Most of us define 0.999... as <math>\sum_{i=1}^{\infty} \frac{9}{10^i} = \lim_{n -> \infty} ( \sum_{i=1}^{n} \frac{9}{10^i} )</math>; but I guess you are thinking of some other definition? Anyway, just claiming that it is "*clear*" that because something holds for any finite n, it somehow also applies in the limit, doesn't make it true. You will have to prove it. And you can't really prove ''anything'' about 0.999... if you don't first make it clear which number you are talking about. While you are at it, please show me where to find your alternate definition of the Archimedean property, how to show that the Archimedean property implies the LUB property and give me your definition of the real numbers that doesn't include a total ordering. | |||
: ] ] 20:22, 17 November 2005 (UTC) | |||
Firstly, I am not attacking you or anyone else and your psychoanalysis is deeply in error just as is your mathematics. Your above formula is incorrect: It's not (9/10 x 10^-n)/(1-.1) but rather (9/10 + 10^-n)/(1-.1). While you are enjoying Latex so much, you may as well do the job right. Okay, so you made a typo. I'll forgive you for this. Now let's move on. You say there is no natural number s.t 0.999... = sum (i to n) 9/10^i Well aside from stating the obvious, what are you trying to say? My proof considers what happens to the difference as n becomes infinitely large. There is nothing strange about this - it's used in limits and calculus and many other branches of mathematics. Regarding my proof: it is very *accurate* and *valid*. The problem is not with my proof but with your *understanding*. You are very confused. You have not answered my question: | |||
You state that sum |x| (i to n) < 1 where x is infinitesimal (yet you are unable to define infinitesimal in any rational way) and you use this in your faulty proof to show that 0.999... = 1 ? | |||
While you are trying to answer this, let me pose some more questions to you: | |||
If the real number system has 'holes' (as you claim it does), then how can you use epsilon-delta proofs at all? What does 'as small as you like' and 'as close as you like' mean? How small is small and how close is close? | |||
This is true handwaving mathematics that has been taught the last 100 years. Real analysis is mostly a load of rubbish. Unfortunately you are the product of Weierstrass' ideas and logic that have some serious flaws. | |||
In answer to your question: I know the Archimedean principle the same way as it is published on planet math. 192.67.48.22 |
Latest revision as of 07:36, 14 January 2025
This is the talk page for discussing improvements to the 0.999... article itself. This is not a forum for general discussion of the article's subject. Please place discussions on the underlying mathematical issues on the arguments page. For questions about the maths involved, try posting to the reference desk instead. |
|
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20Auto-archiving period: 31 days |
Arguments Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |
0.999... is a former featured article. Please see the links under Article milestones below for its original nomination page (for older articles, check the nomination archive) and why it was removed. | ||||||||||||||||||||||
This article appeared on Misplaced Pages's Main Page as Today's featured article on October 25, 2006. | ||||||||||||||||||||||
|
This article is rated B-class on Misplaced Pages's content assessment scale. It is of interest to multiple WikiProjects. | |||||||||||||||||||||||||||||||
|
view · edit Frequently asked questions
|
Yet another anon
Moved to Arguments subpage
Intuitive explanation
There seems to be an error in the intuitive explanation:
For any number x that is less than 1, the sequence 0.9, 0.99, 0.999, and so on will eventually reach a number larger than x.
If we set x = 0.̅9 then the sequence will never reach a number larger than x. 2A01:799:39E:1300:F896:4392:8DAA:D475 (talk) 12:16, 4 October 2024 (UTC)
- If x = 0.̅9 then x is not less than 1, so the conditional statement is true. What is the error? MartinPoulter (talk) 12:50, 4 October 2024 (UTC)
- If you presuppose that 0.̅9 is less than one, the argument that should prove you wrong may apprear to be sort of circular. Would it be better to say "to the left of 1 on the number line" instead of "less than 1"? I know it's the same, but then the person believing 0.̅9 to be less than one would have to place it on the number line! Nø (talk) 14:47, 4 October 2024 (UTC)
- What does the notation 0.̅9 mean? Johnjbarton (talk) 15:43, 4 October 2024 (UTC)
- It means zero followed by the decimal point, followed by an infinite sequence of 9s. Mr. Swordfish (talk) 00:24, 5 October 2024 (UTC)
- Thanks! Seems a bit odd that this is curious combination of characters (which I don't know how to type) is not listed in the article on 0.999... Johnjbarton (talk) 01:47, 5 October 2024 (UTC)
- It means zero followed by the decimal point, followed by an infinite sequence of 9s. Mr. Swordfish (talk) 00:24, 5 October 2024 (UTC)
B and C
@Tito Omburo. There are other unsourced facts in the given sections. For example:
- There is no source mentions about "Every element of 0.999... is less than 1, so it is an element of the real number 1. Conversely, all elements of 1 are rational numbers that can be written as..." in Dedekind cuts.
- There is no source mentions about "Continuing this process yields an infinite sequence of nested intervals, labeled by an infinite sequence of digits b1, b2, b3, ..., and one writes..." in Nested intervals and least upper bounds. This is just one of them.
Dedhert.Jr (talk) 11:00, 30 October 2024 (UTC)
- The section on Dedekind cuts is sourced to Richman throughout. The paragraph on nested intervals has three different sources attached to it. Tito Omburo (talk) 11:35, 30 October 2024 (UTC)
- Are you saying that citations in the latter paragraph supports the previous paragraphs? If that's the case, I prefer to attach the same citations into those previous ones. Dedhert.Jr (talk) 12:52, 30 October 2024 (UTC)
- Not sure what you mean. Both paragraphs have citations. Tito Omburo (talk) 13:09, 30 October 2024 (UTC)
- Are you saying that citations in the latter paragraph supports the previous paragraphs? If that's the case, I prefer to attach the same citations into those previous ones. Dedhert.Jr (talk) 12:52, 30 October 2024 (UTC)
Intuitive counterproof
The logic in the so-called intuitive proofs (rather: naïve arguments) relies on extending known properties and algorithms for finite decimals to infinite decimals, without formal definitions or formal proof. Along the same lines:
- 0.9 < 1
- 0.99 < 1
- 0.999 < 1
- ...
- hence 0.999... < 1.
I think this fallacious intuitive argument is at the core of students' misgivings about 0.999... = 1, and I think this should be in the article - but that's just me ... I know I'd need a source. I have not perused the literature, but isn't there a good source saying something like this anywhere? Nø (talk) 08:50, 29 November 2024 (UTC)
Greater than or equal to
I inserted "or equal to" in the lead, thus:
- In mathematics, 0.999... (also written as 0.9, 0..9, or 0.(9)) denotes the smallest number greater than or equal to every number in the sequence (0.9, 0.99, 0.999, ...). It can be proved that this number is 1; that is,
(I did not emphasize the words as shown here.) But it was reverted by user:Tito Omburo. Let me argue why I think it was an improvement, while both versions are correct. First, "my" version it s correct because it is true: 1 is greater than or equal to every number in the sequence, and any number less than 1 is not. Secondly, if a reader has the misconception that 0.999... is slightly less than 1, they may oppose the idea that the value must be strictly greater than alle numbers in the sequence - and they would be right in opposing that, if not in this case, then in other cases. E.g., 0.9000... is not greater than every number in the corresponding sequence, 0.9, 0.90, 0.900, ...; it is in fact equal to all of them. Nø (talk) 12:07, 29 November 2024 (UTC)
- I think it's confusing because 1 doesn't belong to the sequence, so "or equal" are unnecessary extra words. A reader might wonder why those extra words are there at all, and the lead doesnt seem like the place to flesh this out. Tito Omburo (talk) 13:40, 29 November 2024 (UTC)
- Certainly, both fomulations are correct. This sentence is here for recalling the definition of the notation in this specific case, and must be kept as simple as possible. Therefore, I agree with Tito. The only case for which this definition of ellipsis notation is incorrect is when the ellipsis replaces an infinite sequence of zeros, that is when the notation is useful only for emphasizing that finite decimals are a special case of infinite decimals. Otherwise, notation 0.100... is very rarely used. For people for which this notation of finite decimals has been taught, one could add a footnote such as 'For taking into account the case of an infinity of trailing zeros, one replaces often "greater" with "greater or equal"; the two definitions of the notation are equivalent in all other cases'. I am not sure that this is really needed. D.Lazard (talk) 14:46, 29 November 2024 (UTC)
- Could you point to where the values of decimals are defined in this way - in wikipedia, or a good source? I can eassily find definitions in terms of limits, but not so easily with inequality signs (strict or not).
- I think the version with strict inequality signs is weaker in terms of stating the case clearly for a skeptic. Nø (talk) 17:45, 30 November 2024 (UTC)
- Agree that both versions are correct. My inclination from years of mathematical training is to use the simplest, most succinct statement rather than a more complicated one that adds nothing. So, I'm with Tito and D. here. Mr. Swordfish (talk) 18:24, 30 November 2024 (UTC)
- I think many mathematicians feel that "greater than or equal to" is the primitive notion and "strictly greater than" is the derived notion, notwithstanding that the former has more words. Therefore it's not at all clear that the "greater than" version is "simpler". --Trovatore (talk) 03:13, 1 December 2024 (UTC)
- The general case is "greater than or equal to", and I would support phrasing it that way. I think we don't need to explain why we say "or equal to"; just put it there without belaboring it. --Trovatore (talk) 03:06, 1 December 2024 (UTC)
- Certainly, both fomulations are correct. This sentence is here for recalling the definition of the notation in this specific case, and must be kept as simple as possible. Therefore, I agree with Tito. The only case for which this definition of ellipsis notation is incorrect is when the ellipsis replaces an infinite sequence of zeros, that is when the notation is useful only for emphasizing that finite decimals are a special case of infinite decimals. Otherwise, notation 0.100... is very rarely used. For people for which this notation of finite decimals has been taught, one could add a footnote such as 'For taking into account the case of an infinity of trailing zeros, one replaces often "greater" with "greater or equal"; the two definitions of the notation are equivalent in all other cases'. I am not sure that this is really needed. D.Lazard (talk) 14:46, 29 November 2024 (UTC)
Image
- The following discussion is closed. Please do not modify it. Subsequent comments should be made in a new section. A summary of the conclusions reached follows.
- There is no consensus to remove the image, and a rough consensus to keep it. Mr. Swordfish (talk) 21:42, 10 January 2025 (UTC)
The image included at the top of this article is confusing. Some readers may interpret the image to mean that 0.999... represents a sequence of digits that grows over time as nines are added, and never stops growing. To make this article less confusing I suggest that we explicitly state that 0.999... is not used in that sense, and remove the image. Kevincook13 (talk) 17:31, 1 January 2025 (UTC)
- I do not see how this is confusing. The caption reads: "Stylistic impression of the number 0.9999..., representing the digit 9 repeating infinitely" - nothing remotely like "sequence... that grows over time". I cannot see how one could meaningfully add a comment that "0.999..." is not used in a sense that has not even been mentioned. Of course lots of people are confused: that is the reason for the article, which in an ideal world would not be needed. Imaginatorium (talk) 04:29, 2 January 2025 (UTC)
- If a sequence of digits grows over time as nines are added, and never stops growing, it is reasonable to conclude that the digit nine is repeating infinitely. Kevincook13 (talk) 18:14, 2 January 2025 (UTC)
- Yes, notation 0.999... means that the digit nine is repeating infinitely. So, the figure and its caption reflect accurately the content of the article. D.Lazard (talk) 18:28, 2 January 2025 (UTC)
- When we use the word repeating we should expect that some people will think we are referring to a process which occurs over time, like the operation of a Repeating firearm. Kevincook13 (talk) 22:03, 2 January 2025 (UTC)
- You can think of this as a "process" if you like. 0.9999... means the limit of the sequence . Of course in mathematics nothing ever really "occurs over time", though I suppose you could consider it a kind of algorithm which if implemented on an idealization of a physical computer with infinite memory capacity might indefinitely produce nearer and nearer approximations. –jacobolus (t) 22:20, 2 January 2025 (UTC)
- I think you are going in a very productive direction. We should explain to readers how what they might think we mean, "occurring over time", relates to what we actually mean. Kevincook13 (talk) 00:43, 3 January 2025 (UTC)
- I personally think that would be distracting and not particularly helpful in the lead section. There is further discussion of this in § Infinite series and sequences, though perhaps it could be made more accessible. –jacobolus (t) 03:42, 3 January 2025 (UTC)
- Yes, I agree that detailed discussion does not belong in the lead section. I personally think that the image is distracting and not helpful. In the lead section we can simply state that in mathematics the term 0.999... is used to denote the number one. We can use the rest of the article to explain why. Kevincook13 (talk) 16:23, 3 January 2025 (UTC)
- Except that it's not true that 0.999... denotes the number one. It denotes the least number greater than every element of the sequence 0.9, 0.99, 0.999,... It's then a theorem that the number denoted in this way is equal to one. Tito Omburo (talk) 16:31, 3 January 2025 (UTC)
- It also denotes the least number greater than every number which is less than one, just as 0.333...denotes the least number greater than every number which is less than one-third. That's why we say it denotes 1/3, and why we also say that the one with 9s denotes 1. Imaginatorium (talk) 17:39, 3 January 2025 (UTC)
- @Tito Omburo, notice that @Imaginatorium just wrote above "we also say that the one with 9's denotes 1". The description "the least number greater than every element of the sequence 0.9, 0.99, 0.999,..." does describe the number one, just as does "the integer greater than zero and less than two". Kevincook13 (talk) 18:21, 3 January 2025 (UTC)
- This is an incorrect use of the word "denotes". Denotes an equality by definition, whereas one instead has that 0.999... and 1 are judgementally equal. For example, does "All zeros of the Riemann zeta function inside the critical strip have real part 1/2" denote True or False? Tito Omburo (talk) 18:56, 3 January 2025 (UTC)
- I think you are inventing this - please find reliable sources (dictionaries and things) to back up your claimed meaning of "denote". Imaginatorium (talk) 04:55, 9 January 2025 (UTC)
- This is an incorrect use of the word "denotes". Denotes an equality by definition, whereas one instead has that 0.999... and 1 are judgementally equal. For example, does "All zeros of the Riemann zeta function inside the critical strip have real part 1/2" denote True or False? Tito Omburo (talk) 18:56, 3 January 2025 (UTC)
- I agree that it is better to write that the term is used to denote the number one, rather than that the term denotes the number one. Kevincook13 (talk) 20:06, 3 January 2025 (UTC)
- Its not "used to denote". It is a mathematical theorem that the two terms are equal. Tito Omburo (talk) 20:46, 3 January 2025 (UTC)
- I think we can make this issue very clear. Assume that x equals the least number greater than every element of the sequence 0.9, 0.99, 0.999,... . Applying the theorem we learn that x = 1. Substituting 1 for x in the opening sentence of this article we have: In mathematics 0.999... denotes 1. If we also insist that 0.999... does not denote 1, we have a contradiction. Kevincook13 (talk) 18:45, 4 January 2025 (UTC)
- You have redefined the word "denote" to mean precisely the same as "is equal to", which is confusing and unnecessary. It's better to just say "is equal to" when that's what you mean, so that readers are not confused. –jacobolus (t) 18:56, 4 January 2025 (UTC)
- I agree that redefining the word denote would be confusing and unnecessary. I simply defined a variable x to be equal to a number, the least number. Kevincook13 (talk) 20:04, 4 January 2025 (UTC)
- You have redefined the word "denote" to mean precisely the same as "is equal to", which is confusing and unnecessary. It's better to just say "is equal to" when that's what you mean, so that readers are not confused. –jacobolus (t) 18:56, 4 January 2025 (UTC)
- Except that it's not true that 0.999... denotes the number one. It denotes the least number greater than every element of the sequence 0.9, 0.99, 0.999,... It's then a theorem that the number denoted in this way is equal to one. Tito Omburo (talk) 16:31, 3 January 2025 (UTC)
- Yes, I agree that detailed discussion does not belong in the lead section. I personally think that the image is distracting and not helpful. In the lead section we can simply state that in mathematics the term 0.999... is used to denote the number one. We can use the rest of the article to explain why. Kevincook13 (talk) 16:23, 3 January 2025 (UTC)
- I personally think that would be distracting and not particularly helpful in the lead section. There is further discussion of this in § Infinite series and sequences, though perhaps it could be made more accessible. –jacobolus (t) 03:42, 3 January 2025 (UTC)
- I think you are going in a very productive direction. We should explain to readers how what they might think we mean, "occurring over time", relates to what we actually mean. Kevincook13 (talk) 00:43, 3 January 2025 (UTC)
- I'm in agreement with @Imaginatorium and @D.Lazard on this. The image does not suggest a process extended over time, and it correctly reflects the (correct) content of the article, so there is no need to remove it. I'm not persuaded that people will interpret "repeating" as purely temporal rather than spatial. If I say my wallpaper has a repeating pattern, does this confuse people who expect the wallpaper to be a process extended over time? (Are there people who think purely in firearm metaphors?) MartinPoulter (talk) 17:30, 3 January 2025 (UTC)
- Consider the number 999. Like the wallpaper, it contains a repeating pattern. That pattern could be defined over time, one nine at a time. Or it could be defined at one time, using three nines. Kevincook13 (talk) 18:27, 3 January 2025 (UTC)
- You can think of this as a "process" if you like. 0.9999... means the limit of the sequence . Of course in mathematics nothing ever really "occurs over time", though I suppose you could consider it a kind of algorithm which if implemented on an idealization of a physical computer with infinite memory capacity might indefinitely produce nearer and nearer approximations. –jacobolus (t) 22:20, 2 January 2025 (UTC)
- When we use the word repeating we should expect that some people will think we are referring to a process which occurs over time, like the operation of a Repeating firearm. Kevincook13 (talk) 22:03, 2 January 2025 (UTC)
- Yes, notation 0.999... means that the digit nine is repeating infinitely. So, the figure and its caption reflect accurately the content of the article. D.Lazard (talk) 18:28, 2 January 2025 (UTC)
- If a sequence of digits grows over time as nines are added, and never stops growing, it is reasonable to conclude that the digit nine is repeating infinitely. Kevincook13 (talk) 18:14, 2 January 2025 (UTC)
- Is it OK if I go ahead and edit the article, keeping in mind all the concerns which have been raised with my proposed changes? Kevincook13 (talk) 17:56, 8 January 2025 (UTC)
- Can you be more specific about which changes you want to implement? MartinPoulter (talk) 20:32, 8 January 2025 (UTC)
- The first change would be to remove the image. Kevincook13 (talk) 15:06, 9 January 2025 (UTC)
- I'm confused, @Kevincook13. Where in the above discussion do you see a consensus to remove the image? You have twice said the image should be removed, and I have said it should stay. No matter how many times you express it, your opinion only counts once. Other users have addressed other aspects of your proposal. Do you sincerely think the discussion has come to a decision about the image? MartinPoulter (talk) 13:47, 10 January 2025 (UTC)
- The first change would be to remove the image. Kevincook13 (talk) 15:06, 9 January 2025 (UTC)
- No. I do not think there is agreement on removing the image. (I don't personally think it is spectacularly good, but the argument for removing it appears to me to be completely bogus.) Imaginatorium (talk) 04:57, 9 January 2025 (UTC)
- The term 0.999... is literally a sequence of eight characters, just as y3.p05&9 is. Yet, the term itself implies meaning. I think confusion about the term can be reduced simply by acknowledging different meanings the term might imply. It does imply different meanings to different people. We can respect everyone, including children who are not willing to simply accept everything a teacher tells them. We can do our best to help everyone understand what we mean when we use the term. Kevincook13 (talk) 15:32, 9 January 2025 (UTC)
- For example, if a child thinks that by 0.999... we mean a sequence of digits growing over time, and the child objects when told that the sequence of digits is equal to one, we can respond by saying something like the following: You are correct that a growing sequence of digits does not represent one, or any number, because the sequence is changing. We don't mean that 0.999... represents a changing or growing sequence of digits. Kevincook13 (talk) 16:12, 9 January 2025 (UTC)
- We don't mean a changing or growing sequence of digits. That is what it is confusing to say that we mean a repeating sequence of digits. Kevincook13 (talk) 16:15, 9 January 2025 (UTC)
- What we mean is a number. Kevincook13 (talk) 16:18, 9 January 2025 (UTC)
- This article is about the meaning of 0.999... in mathematics not about the possible meanings that people may imagine. If people imagine another meaning, they have to read the article and to understand it (this may need some work), and they will see that their alleged meaning is not what is commonly meant. If a child objects to 0.999... = 1, it must be told to read the elementary proof given in the article and to say which part of the proof seems wrong. D.Lazard (talk) 16:58, 9 January 2025 (UTC)
- What do we mean by the term number? A number is a measure, not a sequence of digits. We may denote a number using a sequence of digits, but we don't always. Sometimes we denote a number using a word, like one. Sometimes we use a phrase such as: the least number greater than any number in a certain sequence. We may use a lowercase Greek letter, or even notches in a bone. Kevincook13 (talk) 16:44, 9 January 2025 (UTC)
- By the term "number", we mean a number (the word is not the thing). It is difficult to define a number, and this took several thousands years to mathematicians to find an acceptable definition. A number is certainly not a measure, since a measure requires a measurement unit and numbers are not associated with any measurement unit. The best that can be said at elementary level is something like "the natural number three is the common property of the nines in 0.999..., of the consecutive dots in the same notation, and of the letters of the word one". D.Lazard (talk) 17:20, 9 January 2025 (UTC)
- I see. A number is not a measure, but it is used to measure. Thanks. Kevincook13 (talk) 17:40, 9 January 2025 (UTC)
- A number is a value used to measure. Kevincook13 (talk) 17:42, 9 January 2025 (UTC)
- By the term "number", we mean a number (the word is not the thing). It is difficult to define a number, and this took several thousands years to mathematicians to find an acceptable definition. A number is certainly not a measure, since a measure requires a measurement unit and numbers are not associated with any measurement unit. The best that can be said at elementary level is something like "the natural number three is the common property of the nines in 0.999..., of the consecutive dots in the same notation, and of the letters of the word one". D.Lazard (talk) 17:20, 9 January 2025 (UTC)
- The caption on the image is: Stylistic impression of the number 0.9999..., representing the digit 9 repeating infinitely.
- The caption can be understood to mean that the term 0.999... is a zero followed by a decimal point followed by the digit 9 repeating infinitely, which meaning is distinct from the meaning that 0.999... denotes the number one.
- If we retain the caption, we may communicate to readers that we mean that 0.999... is a repeating sequence, which sequence denotes the number one. That doesn't work because repeating sequences themselves cannot be written completely and and therefore cannot be used to notate.
- 0.999... is notation. The purpose of this article should be to help others understand what it denotes. If it denotes a repeating sequence of digits, then we should say so in the lead sentence. Kevincook13 (talk) 18:32, 9 January 2025 (UTC)
- How does the first sentence of the article not explain that notation? The meaning of the notation is the smallest number greater than every element of the sequence (0.9,0.99,...). Tito Omburo (talk) 18:39, 9 January 2025 (UTC)
- Because it does not make sense to say that the sequence is repeating, because all the nines have not already been added, and at the same time to say that the sequence represents a number, because all the nines have already been added. It is confusing because it is contradictory.
- When we say that the sequence is repeating, people who are not trained in mathematics will likely assume that we mean that all the nines have not already been added, and therefore that the sequence is changing and therefore, does not represent a number. Which, I believe, is why the subject of this article is not more widely understood. Kevincook13 (talk) 19:05, 9 January 2025 (UTC)
- I think I understand part of the confusion, which I've hopefully tried to correct with an edit. The notation 0.999... refers to a repeating decimal, a concept which had not been linked. There is a way of associating to any decimal expansion a number as its value. For the repeating decimal 0.999..., that number is 1. Tito Omburo (talk) 19:09, 9 January 2025 (UTC)
- I like the edits. Because the least number is one, the meaning of the lead sentence can be understood to be that 0.999... is a recurring decimal whose value is defined as one. The notation below should match. Instead of , we should write . Kevincook13 (talk) 19:40, 9 January 2025 (UTC)
- No. The point is that the notation has a definition which is a standard one for repeating decimals of this form. It is a theorem that this number is one, but that is not the definition. Tito Omburo (talk) 19:47, 9 January 2025 (UTC)
- I agree. What you are saying agrees with what I am saying. It is a theorem that the least number is one, not a definition. The notation has a standard definition which defines the notation to be equal to the least number, whatever that least number is.
- Given that the notation is defined to be equal to the least number
- And given a theorem that the least number does equals one
- Therefore the notation is defined to be equal to a number which does equal one.
- Note that it does not follow from the givens that the notation is equal to one, or that the notation is equal to the least number.
- Kevincook13 (talk) 20:23, 9 January 2025 (UTC)
- I agree. What you are saying agrees with what I am saying. It is a theorem that the least number is one, not a definition. The notation has a standard definition which defines the notation to be equal to the least number, whatever that least number is.
- This is not correct, but I feel like we're talking in circles here. Cf. WP:LISTEN. Let me try one more thing though. If we wanted a more explicit definition of 0.999..., we might use mathematical notation and write something like This is discussed in the article in § Infinite series and sequences. –jacobolus (t) 02:58, 10 January 2025 (UTC)
- Can you see that the summation is a process which must occur over time, and can never end? Do you notice that k cannot equal 1 and 2 at the same time? However, if we insist that the summation does occur all at once, then we affirm that k does equal 1 and 2 at the same time. We affirm that we do intend contradiction. If so, then we should clearly communicate that intention. Kevincook13 (talk) 15:14, 10 January 2025 (UTC)
- No. The point is that the notation has a definition which is a standard one for repeating decimals of this form. It is a theorem that this number is one, but that is not the definition. Tito Omburo (talk) 19:47, 9 January 2025 (UTC)
- I like the edits. Because the least number is one, the meaning of the lead sentence can be understood to be that 0.999... is a recurring decimal whose value is defined as one. The notation below should match. Instead of , we should write . Kevincook13 (talk) 19:40, 9 January 2025 (UTC)
- I think I understand part of the confusion, which I've hopefully tried to correct with an edit. The notation 0.999... refers to a repeating decimal, a concept which had not been linked. There is a way of associating to any decimal expansion a number as its value. For the repeating decimal 0.999..., that number is 1. Tito Omburo (talk) 19:09, 9 January 2025 (UTC)
- Please stop misusing the word denotes when you mean "is equal to". It's incredibly confusing. –jacobolus (t) 20:57, 9 January 2025 (UTC)
- I agree that the difference between the two is critical. I've tried to be very careful. Kevincook13 (talk) 21:13, 9 January 2025 (UTC)
- I don't know if this will help at all, but it may. I think that we have been preoccupied with what infinity means, and have almost completely ignored what it means to be finite. We don't even have an article dedicated to the subject. So, I have begun drafting one: Draft:Finiteness. Kevincook13 (talk) 00:00, 10 January 2025 (UTC)
- How does the first sentence of the article not explain that notation? The meaning of the notation is the smallest number greater than every element of the sequence (0.9,0.99,...). Tito Omburo (talk) 18:39, 9 January 2025 (UTC)
- Can you be more specific about which changes you want to implement? MartinPoulter (talk) 20:32, 8 January 2025 (UTC)
- I think the problem here is that there are two levels of symbol/interpretation. The literal 8-byte string "0.999..." is a "symbol for a symbol", namely for the infinitely long string starting with 0 and a point and followed by infinitely many 9s. Then that infinitely long symbol, in turn, denotes the real number 1.
- It's also possible that people are using "denote" differently; I had trouble following that part of the discussion. But we need to be clear first of all that when we say "0.999..." we're not usually really talking about the 8-byte string, but about the infinitely long string. --Trovatore (talk) 05:06, 10 January 2025 (UTC)
- This is also a weird use of "denote", in my opinion. For me, the word denote has to do with notation, as in, symbols that can be physically written down or maybe typed into a little text box. For example, the symbol denotes the circle constant. The symbol denotes the number one. The mathematical expression denotes the general quadratic equation with unknown coefficients. An "infinitely long string" is an abstract concept, not anything physically realizable, not notation at all. From my point of view it doesn't even "exist" except as an idea in people's minds, and in my opinion it can't "denote" anything. But again, within some abstract systems this conceptual idea can be said to equal the number 1. –jacobolus (t) 07:05, 10 January 2025 (UTC)
- While you can't physically use infinitely long notation, I don't see why it should be thought of as "not notation at all". Heck, this is what infinitary logic is all about. In my opinion this is the clearest way of thinking about the topic of this article — it's an infinitely long numeral, which denotes a numerical value, which happens to be the real number 1. The reason I keep writing "the real number 1" is that this is arguably a distinct object from the natural number 1, but that's a fruitless argument for another day. --Trovatore (talk) 07:15, 10 January 2025 (UTC)
- The infinitely long string. The one that is not growing over time because it already has all of the nines in it, and because it is not growing can be interpreted as a number. The one that is repeating, because it does not at any specific instance in time have all the nines yet. That one? The one that is by definition a contradiction? Kevincook13 (talk) 15:56, 10 January 2025 (UTC)
- "By definition a contradiction". Huh? What are you talking about? If you can find a contradiction in the notion of completed infinity, you're wasting your time editing Misplaced Pages. Go get famous. --Trovatore (talk) 18:25, 10 January 2025 (UTC)
- Above, I just described P and not P, a contradiction. Kevincook13 (talk) 19:26, 10 January 2025 (UTC)
- Um. No. You didn't. I would explain why but in my experience this sort of discussion is not productive. You're wandering dangerously close to the sorts of arguments we move to the Arguments page. --Trovatore (talk) 21:13, 10 January 2025 (UTC)
- I'm not wasting my time. I believe in Misplaced Pages. Kevincook13 (talk) 19:33, 10 January 2025 (UTC)
- We look to famous people to tell us what to understand? Kevincook13 (talk) 19:40, 10 January 2025 (UTC)
- I see Misplaced Pages as a great place for people to learn about and evaluate the ideas of people who, over time, have become famous for their ideas. Kevincook13 (talk) 20:04, 10 January 2025 (UTC)
- The fact of the matter is that if any theory logically entails a contradiction, then that theory is logically inconsistent. If we accept logical inconsistency as fact, then we can save everyone a lot of time by saying so. Kevincook13 (talk) 20:19, 10 January 2025 (UTC)
- Above, I just described P and not P, a contradiction. Kevincook13 (talk) 19:26, 10 January 2025 (UTC)
- "By definition a contradiction". Huh? What are you talking about? If you can find a contradiction in the notion of completed infinity, you're wasting your time editing Misplaced Pages. Go get famous. --Trovatore (talk) 18:25, 10 January 2025 (UTC)
- I suggest that we address each of the following in our article:
- The 8-byte term
- (0.9, 0.99, 0.999, ...)
- The least number
- The growing sequence
- The contradiction
- Kevincook13 (talk) 17:11, 10 January 2025 (UTC)
- There is no contradiction. There is no growing sequence. 0.999... is indeed infinitely long, and = 1. Hawkeye7 (discuss) 21:14, 10 January 2025 (UTC)
- This is also a weird use of "denote", in my opinion. For me, the word denote has to do with notation, as in, symbols that can be physically written down or maybe typed into a little text box. For example, the symbol denotes the circle constant. The symbol denotes the number one. The mathematical expression denotes the general quadratic equation with unknown coefficients. An "infinitely long string" is an abstract concept, not anything physically realizable, not notation at all. From my point of view it doesn't even "exist" except as an idea in people's minds, and in my opinion it can't "denote" anything. But again, within some abstract systems this conceptual idea can be said to equal the number 1. –jacobolus (t) 07:05, 10 January 2025 (UTC)
- Misplaced Pages former featured articles
- Featured articles that have appeared on the main page
- Featured articles that have appeared on the main page once
- B-Class mathematics articles
- Mid-priority mathematics articles
- Featured articles on Mathematics Portal
- B-Class Numbers articles
- Mid-importance Numbers articles
- WikiProject Numbers articles