Misplaced Pages

Biosequestration: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 10:44, 8 October 2009 edit121.127.207.75 (talk) refs on c4 plants← Previous edit Latest revision as of 15:01, 9 February 2023 edit undoMdewman6 (talk | contribs)Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers21,717 edits rcats 
(416 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
#REDIRECT]
'''Biosequestration''' is the capture of atmospheric ] by ]. It is crucial to the initiation, evolution and preservation of life.


{{R category shell|
== Carbon in the Earth's atmosphere ==
{{R from merge}}
It is generally accepted by ] that the ] content of the ] since before the ] was 0.03 percent.<ref>JE Lovelock. Gaia. A New Look at Life on Earth. Oxford University Press. Oxford. 1989 p80</ref> The capture of atmosphereic C02 level has been largely a function of absorption by sea water, vegetation and soils.<ref>Tim Flannery. The Weather Makers. The History and Future Impact of Climate Change. Text Publishing. Melbourne.2005. p29</ref> The capacity of the oceans to absorb C02 is decreasing.<ref>CL Sabine et al. The oceanic sink for anthropogenic C02 Science 2004; 305:367-71.</ref> Given the potential adverse effects of rising atmospheric C02 levels (see ]) this increases the importance of developing policies and laws that increase photosynthesis and biosequestration.
{{R to section}}

}}
== Enhanced photosynthesis ==
Biosequestration may be enhanced by improving ] by modifying ] genes in plants to increase the catalytic and/or oxygenation activity of that enzyme.<ref>{{cite journal |author=Spreitzer RJ, Salvucci ME |title=Rubisco: structure, regulatory interactions, and possibilities for a better enzyme |journal=Annu Rev Plant Biol |volume=53 |issue= |pages=449–75 |year=2002 |pmid=12221984 |doi=10.1146/annurev.arplant.53.100301.135233 |url=http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.arplant.53.100301.135233?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dncbi.nlm.nih.gov}}</ref>
One such research area involves increasing the earth's proportion of ] photosynthetic plants. C4 plants represent about 5% of Earth's plant biomass and 1% of its known plant species,<ref>Bond, W.J.; Woodward, F.I.; Midgley, G.F. (2005). "The global distribution of ecosystems in a world without fire". New Phytologist 165 (2): 525–538.</ref> but account for around 30% of terrestrial carbon fixation.<ref>Osborne, C.P.; Beerling, D.J. (2006). "Review. Nature's green revolution: the remarkable evolutionary rise of C4 plants". Philosophical Transactions of the Royal Society B: Biological Sciences 361 (1465): 173–194</ref>

== References ==
{{Reflist}}

]
]
]
]

Latest revision as of 15:01, 9 February 2023

Redirect to:

This page is a redirect. The following categories are used to track and monitor this redirect:
  • From a merge: This is a redirect from a page that was merged into another page. This redirect was kept in order to preserve the edit history of this page after its content was merged into the content of the target page. Please do not remove the tag that generates this text (unless the need to recreate content on this page has been demonstrated) or delete this page.
When appropriate, protection levels are automatically sensed, described and categorized.