Misplaced Pages

Intertropical Convergence Zone: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 05:28, 3 March 2011 editArthur Rubin (talk | contribs)Extended confirmed users, Rollbackers130,168 editsm Reverted edits by 99.112.214.29 (talk) to last version by Arthur Rubin← Previous edit Latest revision as of 18:56, 20 December 2024 edit undo2603:8000:8e00:d700:7d7e:fcd:ca7:f220 (talk) grammarTag: Visual edit 
(310 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{short description|Meteorological phenomenon}}
]
{{redirect|The Calms|other uses|Calm (disambiguation)}}
] image from ] 14 showing the intertropical convergence zone.]]
{{redirect|Doldrums|other uses|Doldrums (disambiguation)}}
]
]


The '''Intertropical Convergence Zone''' ('''ITCZ''' {{IPAc-en|ɪ|tʃ}} {{respell|ITCH}}, or '''ICZ'''),<ref>{{cite web |url=https://www.weather.gov/jetstream/itcz |title=ITCZ |publisher=]}}</ref> known by sailors as the '''doldrums'''<ref>{{cite EB1911 |wstitle=Doldrums |volume=8 |page=386}}</ref> or the '''calms''' because of its monotonous windless weather, is the area where the northeast and the southeast ] converge. It encircles Earth near the ] though its specific position varies seasonally. When it lies near the geographic ], it is called the '''near-equatorial trough'''. Where the ITCZ is drawn into and merges with a ] circulation, it is sometimes referred to as a '']'' (a usage that is more common in Australia and parts of Asia).
The '''Intertropical Convergence Zone''' (ITCZ) is the area encircling the earth near the ] where winds originating in the northern and southern hemispheres come together.


==Meteorology==
The ITCZ was originally identified from the 1920s to the 1940s as the "Intertropical Front" (ITF), but after the recognition in the 1940s and 1950s of the significance of ] in ] weather production, the term "ITCZ" was then applied.<ref>{{Cite book | author=Barry, Roger Graham; Chorley, Richard J.|title=Atmosphere, weather, and climate|year=1992|oclc=249331900|url=http://books.google.com/books?id=bIw9AAAAIAAJ&dq=Atmosphere,+weather,+and+climate&printsec=frontcover&source=bn&hl=en&ei=B1MpSuKOOqPoNOy_3MwJ&sa=X&oi=book_result&ct=result&resnum=4#PPR5,M1|publisher=Routledge|location=London|isbn=9780415077606|pages=}}</ref> When it lies near the equator, it is called the ]. Where the ITCZ is drawn into and merges with a ], it is sometimes referred to as a ], a usage more common in Australia and parts of Asia. In the seamen's speech the zone is referred as the ] because of its erratic weather patterns with stagnant calms and violent thunderstorms.
The ITCZ was originally identified from the 1920s to the 1940s as the ''Intertropical Front'' (''ITF''), but after the recognition in the 1940s and the 1950s of the significance of ] in ] weather production, the term ''Intertropical Convergence Zone'' (''ITCZ'') was then applied.<ref>{{Cite book |author1=Barry, Roger Graham |author2-link=Richard Chorley |author2=Chorley, Richard J. |title=Atmosphere, weather, and climate|year=1992|oclc=249331900|url=https://archive.org/details/atmosphereweathe0000barr_l0e0|url-access=registration|quote=Atmosphere, weather, and climate.|publisher=Routledge|location=London|isbn=978-0-415-07760-6|author1-link=Roger G. Barry }}</ref>


The ITCZ appears as a band of clouds, usually thunderstorms, that circle the globe near the ]. In the ], the ] move in a southwestern direction from the northeast, while in the ], they move northwestward from the southeast. When the ITCZ is positioned north or south of the equator, these directions change according to the ] imparted by the rotation of the earth. For instance, when the ITCZ is situated north of the equator, the southeast trade wind changes to a southwest wind as it crosses the equator. The ITCZ is formed by vertical motion largely appearing as ] activity of ]s driven by solar heating, which effectively draw air in; these are the trade winds.<ref name="noaa">{{cite web|title=Inter-Tropical Convergence Zone|url=http://www.srh.noaa.gov/jetstream//tropics/itcz.htm|work=JetStream - Online School for Weather| publisher=]|date=2007-10-24|accessdate=2009-06-04}}</ref> The ITCZ is effectively a tracer of the ascending branch of the ], and is wet. The dry descending branch is the ]. The ITCZ appears as a band of clouds, usually thunderstorms, that encircle the globe near the Equator. In the ], the ] move in a southwestward direction from the northeast, while in the ], they move northwestward from the southeast. When the ITCZ is positioned north or south of the Equator, these directions change according to the ] imparted by ]. For instance, when the ITCZ is situated north of the Equator, the southeast trade wind changes to a southwest wind as it crosses the Equator. The ITCZ is formed by vertical motion largely appearing as ] activity of thunderstorms driven by solar heating, which effectively draw air in; these are the trade winds.<ref name="noaa">{{cite web|title=Inter-Tropical Convergence Zone|url=http://www.srh.noaa.gov/jetstream//tropics/itcz.htm|work=JetStream - Online School for Weather| publisher=]|date=2007-10-24|access-date=2009-06-04}}</ref> The ITCZ is effectively a tracer of the ascending branch of the ] and is wet. The dry descending branch is the ].


The location of the intertropical convergence zone varies over time. Over land, it moves back and forth across the equator following the sun's ] point. Over the oceans, where the convergence zone is better defined, the seasonal cycle is more subtle, as the convection is constrained by the distribution of ocean temperatures. Sometimes, a double ITCZ forms, with one located north and another south of the equator. When this occurs, a narrow ridge of high pressure forms between the two convergence zones, one of which is usually stronger than the other. The location of the ITCZ gradually varies with the seasons, roughly corresponding with the location of the thermal equator. As the heat capacity of the oceans is greater than air over land, migration is more prominent over land. Over the oceans, where the ] is better defined, the seasonal cycle is more subtle, as the convection is constrained by the distribution of ocean temperatures.<ref>{{Cite web|url=https://www.skybrary.aero/index.php/Inter_Tropical_Convergence_Zone_(ITCZ)|title=Inter Tropical Convergence Zone (ITCZ) - SKYbrary Aviation Safety|website=www.skybrary.aero|language=en|access-date=2018-04-12}}</ref> Sometimes, a double ITCZ forms, with one located north and another south of the Equator, one of which is usually stronger than the other. When this occurs, a narrow ridge of high pressure forms between the two convergence zones.


== ITCZ over oceans vs. land ==
==South Pacific Convergence Zone==
with modification). This schematic shows that the ITCZ and the region of maximum rainfall can be decoupled over the continents.<ref name=":0">{{Cite journal|last=Dezfuli|first=Amin|date=2017-03-29|title=Climate of Western and Central Equatorial Africa|url=https://oxfordre.com/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-511|journal=Oxford Research Encyclopedia of Climate Science|language=en|doi=10.1093/acrefore/9780190228620.013.511|isbn=9780190228620}}</ref>]]
The ] (SPCZ) is a reverse-oriented, or west-northwest to east-southeast aligned, trough extending from the west Pacific warm pool southeastwards towards ]. It lies just south of the Equator during the ] warm season, but can be more extratropical in nature, especially east of the ]. It is considered the largest and most important piece of the ITCZ, and has the least dependence upon heating from a nearby landmass during the summer than any other portion of the ].<ref>E. Linacre and B. Geerts. Retrieved on 2006-11-26.</ref> The southern ITCZ in the southeast Pacific and southern Atlantic, known as the SITCZ, occurs during the ] fall between ] and ] of the ] east of the ] longitude during cool or neutral ] patterns. When ENSO reaches its warm phase, otherwise known as El Niño, the tongue of lowered sea surface temperatures due to upwelling off the South American continent disappears, which causes this convergence zone to vanish as well.<ref>{{cite web|author=Semyon A. Grodsky and James A. Carton|url=http://www.atmos.umd.edu/~carton/pdfs/grodsky&carton03.pdf|date=2003-02-15|publisher=]|title=The Intertropical Convergence Zone in the South Atlantic and the Equatorial Cold Tongue|accessdate=2009-06-05}}</ref>

The ITCZ is commonly defined as an equatorial zone where the trade winds converge. Rainfall seasonality is traditionally attributed to the north–south migration of the ITCZ, which follows the sun. Although this is largely valid over the equatorial oceans, the ITCZ and the region of maximum rainfall can be decoupled over the continents.<ref name=":0" /><ref>{{Cite journal|last=Nicholson|first=Sharon E.|date=February 2018|title=The ITCZ and the Seasonal Cycle over Equatorial Africa|journal=Bulletin of the American Meteorological Society |volume=99 |issue=2 |pages=337–348 |doi=10.1175/bams-d-16-0287.1 |bibcode=2018BAMS...99..337N |issn=0003-0007}}</ref> The equatorial precipitation over land is not simply a response to just the surface convergence. Rather, it is modulated by a number of regional features such as local atmospheric jets and waves, proximity to the oceans, terrain-induced convective systems, moisture recycling, and spatiotemporal variability of land cover and albedo.<ref name=":0" /><ref>{{Cite journal |last1=Gonzalez |first1=Alex O. |last2=Ganguly |first2=Indrani |last3=McGraw |first3=Marie C. |last4=Larson |first4=James G. |date=2022-02-15 |title=Rapid Dynamical Evolution of ITCZ Events over the East Pacific |url=https://journals.ametsoc.org/view/journals/clim/35/4/JCLI-D-21-0216.1.xml |journal=Journal of Climate |volume=35 |issue=4 |pages=1197–1213 |doi=10.1175/JCLI-D-21-0216.1 |bibcode=2022JCli...35.1197G |s2cid=244551794 |issn=0894-8755}}</ref><ref>{{Cite journal |last1=Ganguly |first1=Indrani |last2=Gonzalez |first2=Alex O. |last3=Karnauskas |first3=Kristopher B. |date=2023-10-20 |title=On the role of wind-evaporation-SST feedbacks in the sub-seasonal variability of the east Pacific ITCZ |journal=Journal of Climate |volume=-1 |issue=aop |pages=129–143 |doi=10.1175/JCLI-D-22-0849.1 |s2cid=264384015 |issn=0894-8755|doi-access=free }}</ref>

==South Pacific convergence zone==
]; descent (positive values) is more diffuse]]

The ] (SPCZ) is a reverse-oriented, or west-northwest to east-southeast aligned, trough extending from the west Pacific warm pool southeastwards towards ]. It lies just south of the equator during the Southern Hemisphere warm season, but can be more extratropical in nature, especially east of the ]. It is considered the largest and most important piece of the ITCZ, and has the least dependence upon heating from a nearby ] during the summer than any other portion of the ].<ref>E. Linacre and B. Geerts. Retrieved on 2006-11-26.</ref> The southern ITCZ in the southeast Pacific and southern Atlantic, known as the SITCZ, occurs during the Southern Hemisphere fall between ] and ] of the equator east of the ] longitude during cool or neutral ] (ENSO) patterns. When ENSO reaches its warm phase, otherwise known as El Niño, the tongue of lowered ]s due to upwelling off the South American continent disappears, which causes this convergence zone to vanish as well.<ref>{{cite web|author1=Semyon A. Grodsky |author2=James A. Carton |url=http://www.atmos.umd.edu/~carton/pdfs/grodsky&carton03.pdf|date=2003-02-15|publisher=University of Maryland, College Park|title=The Intertropical Convergence Zone in the South Atlantic and the Equatorial Cold Tongue|access-date=2009-06-05}}</ref>


==Effects on weather== ==Effects on weather==
] ]
Variation in the location of the intertropical convergence zone drastically affects rainfall in many equatorial ]s, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the intertropical convergence zone can result in severe droughts or flooding in nearby areas.


Variation in the location of the intertropical convergence zone drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the intertropical convergence zone can result in severe ]s or flooding in nearby areas.
In some cases, the ITCZ may become narrow, especially when it moves away from the equator; the ITCZ can then be interpreted as a ] along the leading edge of the equatorial air.<ref>Djurić, D: "Weather Analysis". Prentice Hall, 1994. ISBN 0-13-501149-3.</ref> There appears to be a 15-25 day cycle in thunderstorm activity along the ITCZ, which is roughly half the wavelength of the ], or MJO.<ref>Patrick A. Harr. Retrieved on 2006-11-26.</ref>


In some cases, the ITCZ may become narrow, especially when it moves away from the equator; the ITCZ can then be interpreted as a ] along the leading edge of the equatorial air.<ref>Djurić, D: ''Weather Analysis''. Prentice Hall, 1994. {{ISBN|0-13-501149-3}}.</ref> There appears to be a 15 to 25-day cycle in thunderstorm activity along the ITCZ, which is roughly half the wavelength of the ] (MJO).<ref>Patrick A. Harr. ] Retrieved on 2006-11-26. {{webarchive |url=https://web.archive.org/web/20071129132952/http://www.onr.navy.mil/sci_tech/32/reports/docs/05/mmharr.pdf |date=November 29, 2007 }}</ref>
Within the ITCZ the average winds are slight, unlike the zones north and south of the equator where the ]s feed. Early sailors named this belt of calm ''the ]'' because of the inactivity and stagnation they found themselves in after days of no wind. To find oneself becalmed in this region in a hot and muggy climate could mean death in an era when wind was the only effective way to propel ships across the ocean. Even today the leisure and competitive sailors attempt to cross the zone as quickly as possible as the erratic weather and wind patterns may cause unexpected delays.

Within the ITCZ the average winds are slight, unlike the zones north and south of the equator where the trade winds feed. As trans-equator sea voyages became more common, sailors in the eighteenth century named this belt of calm ''the doldrums'' because of the calm, stagnant, or inactive winds.


==Role in tropical cyclone formation== ==Role in tropical cyclone formation==
] and ] in the eastern Pacific and the precursor to ] in the Intertropical Convergence Zone. (2010)]]
] depends upon low-level ] as one of its six requirements, and the ITCZ fills this role as it is a zone of wind change and speed, otherwise known as horizontal ]. As the ITCZ migrates more than 500&nbsp;km from the equator during the respective hemisphere's summer season, increasing ] makes the formation of ]s within this zone more possible. In the north Atlantic and the northeastern Pacific oceans, ]s move along the axis of the ITCZ causing an increase in thunderstorm activity, and under weak vertical wind shear, these clusters of thunderstorms can become tropical cyclones.

] depends upon low-level ] as one of its six requirements, and the ITCZ fills this role as it is a zone of wind change and speed, otherwise known as horizontal ]. As the ITCZ migrates to tropical and subtropical latitudes and even beyond during the respective hemisphere's summer season, increasing ] makes the formation of ]s within this zone more possible. Surges of higher pressure from high latitudes can enhance tropical disturbances along its axis.<ref>C.-P. Chang, J.E. Erickson, and K.M. Lau. {{Dead link|date=September 2024 |bot=InternetArchiveBot |fix-attempted=yes }} Retrieved on 2007-04-26.</ref> In the north Atlantic and the northeastern Pacific oceans, ]s move along the axis of the ITCZ causing an increase in thunderstorm activity, and clusters of thunderstorms can develop under weak vertical wind shear.{{citation needed|date=December 2020}}


==Hazards== ==Hazards==
In the ], to find oneself becalmed in this region in a hot and muggy climate could mean death when wind was the only effective way to propel ships across the ocean. Calm periods within the doldrums could strand ships for days or weeks.<ref> NOAA. National Ocean Atmospheric Administration's National Weather Service website, 01/07/20.</ref> Even today, leisure and competitive sailors attempt to cross the zone as quickly as possible as the erratic weather and wind patterns may cause unexpected delays.
Some aviation experts are proposing that the Intertropical Convergence Zone might have played a role in the loss of ], which left Rio de Janeiro's Galeão International Airport on Sunday, May 31, 2009, at 7 p.m. (4:00 p.m. EDT) and had been expected to land at Paris's ] on Monday June 1, 2009, at 11:15 a.m.<ref>The Guardian - Q & A Turbulences http://www.guardian.co.uk/world/2009/jun/01/air-france-crash-air-turbulence</ref> However, this area rarely causes any problems to civil aviation and the loss of the aeroplane is unexplained at this time.


In 2009, thunderstorms along the Intertropical Convergence Zone played a role in the loss of ], which crashed while flying from ] to ] near ].<ref>. '']'' (1 June 2009).</ref> The aircraft crashed with no survivors while flying through a series of large ITCZ thunderstorms, and ice forming rapidly on airspeed sensors was the precipitating cause for a cascade of human errors which ultimately doomed the flight. Most aircraft flying these routes are able to avoid the larger ] cells without incident.
==Notes==
{{Reflist}}


== Effects of climate change ==
==References==
{{see also|Effects of climate change on the water cycle}}
*
] concentrations in sediment within the ] have been used as a paleoclimate proxy to infer shifts in the ITCZ.<ref name="Haug et al. 2001">{{cite journal |last1=Haug |first1=Gerald H. |last2=Hughen |first2=Konrad A. |last3=Sigman |first3=Daniel M. |last4=Peterson |first4=Larry C. |last5=Röhl |first5=Ursula |author1-link=Gerald Haug |author3-link=Daniel Sigman |title=Southward Migration of the Intertropical Convergence Zone Through the Holocene |journal=Science |date=17 August 2001 |volume=293 |issue=5533 |pages=1304–1308 |doi=10.1126/science.1059725|publisher=]|pmid=11509727 |bibcode=2001Sci...293.1304H |s2cid=24591761 }}</ref>|alt=Line graph showing titanium concentrations over time within Cariaco Basin sediment]]
Based on ], the position and intensity of the ITCZ varied in prehistoric times along with ]. During ]s within the last 100&nbsp;ka, a southward shift of the ITCZ coincided with the intensification of the Northern Hemisphere Hadley cell coincident with weakening of the Southern Hemisphere Hadley cell. The ITCZ shifted north during the ] but migrated south following changes in ] during the late-Holocene towards its current position. The ITCZ has also undergone periods of contraction and expansion within the last millennium.<ref name="AR6.1.2">{{cite book |last1=Gulev |first1=Sergey K. |last2=Thorne |first2=Peter W. |display-authors=etal |author1-link=Sergey Gulev |author2-link=Peter Thorne (climatologist) |editor1-last=Masson-Delmotte |editor1-first=Valerie |editor2-last=Zhai |editor2-first=Panmao |editor1-link=Valerie Masson-Delmotte |editor2-link=Panmao Zhai |display-editors=etal|title=Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change |date=2021 |publisher=Cambridge University Press |location=Cambridge, United Kingdom |pages=287&ndash;422 |url=https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter02.pdf |access-date=18 January 2023 |language=en |chapter=Changing State of the Climate System}}</ref> A southward shift of the ITCZ commencing after the 1950s and continuing into the 1980s may have been associated with ] by ]s in the Northern Hemisphere based on results from ]s; a northward rebound began subsequently following ] in the gradient in temperature between the Northern and Southern hemispheres. These fluctuations in ITCZ positioning had robust effects on climate; for instance, displacement of the ITCZ may have led to ] in the 1980s.<ref name="AR6.1.3">{{cite book |last1=Eyring |first1=Veronika |last2=Gillett |first2=Nathan P. |display-authors=etal |editor1-last=Masson-Delmotte |editor1-first=Valerie |editor2-last=Zhai |editor2-first=Panmao |title=Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change |date=2021 |publisher=Cambridge University Press |location=Cambridge, United Kingdom |pages=423&ndash;551 |url=https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter03.pdf |access-date=18 January 2023 |language=en |chapter=Human Influence on the Climate System}}</ref><ref name="AR6.1.8" />

] may become stronger and more concentrated at the center of the ITCZ in response to a globally warming climate, resulting in sharpened contrasts in precipitation between the ITCZ core (where precipitation would be amplified) and its edges (where precipitation would be suppressed). ] suggest that the ITCZ over the Pacific has narrowed and intensified since at least 1979, in agreement with data collected by satellites and in-situ precipitation measurements. The drier ITCZ fringes are also associated with an increase in ] outward of those areas, particularly over land within the mid-latitudes and the ]. This change in the ITCZ is also reflected by increasing salinity within the Atlantic and Pacific underlying the ITCZ fringes and decreasing salinity underlying central belt of the ITCZ. The ] indicated "medium agreement" from studies regarding the strengthening and tightening of the ITCZ due to anthropogenic climate change.<ref name="AR6.1.8" />

Less certain are the regional and global shifts in ITCZ position as a result of climate change, with paleoclimate data and model simulations highlighting contrasts stemming from asymmetries in forcing from aerosols, volcanic activity, and ], as well as uncertainties associated with changes in ]s and the ]. The climate simulations run as part of ] (CMIP5) did not show a consistent global displacement of the ITCZ under anthropogenic climate change. In contrast, most of the same simulations show narrowing and intensification under the same prescribed conditions. However, simulations in ] (CMIP6) have shown greater agreement over some regional shifts of the ITCZ in response to anthropogenic climate change, including a northward displacement over the Indian Ocean and eastern Africa and a southward displacement over the eastern Pacific and Atlantic oceans.<ref name="AR6.1.8">{{cite book |last1=Douville |first1=Hervé |last2=Raghavan |first2=Krishnan |last3=Renwick |first3=James |author3-link=James Renwick (climate scientist) |display-authors=etal |editor1-last=Masson-Delmotte |editor1-first=Valerie |editor2-last=Zhai |editor2-first=Panmao |title=Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change |date=2021 |publisher=Cambridge University Press |location=Cambridge, United Kingdom |pages=1055&ndash;1210 |url=https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter08.pdf |access-date=18 January 2023 |language=en |chapter=Human Influence on the Climate System}}</ref>

==In literature==
The doldrums are notably described in ]'s poem '']'' (1798) and also provide a metaphor for the initial state of boredom and indifference of Milo, the child hero of ]'s classic 1961 children's novel '']''. It is also cited in the 1939 book '']''.

==See also==
{{Portal|Earth sciences|Weather}}
* ]
* ]
* ]
* ]
* ]
* ]

== References ==
{{Reflist}}


==External links== ==External links==
{{wiktionary|doldrums}}
*
{{Commons category}}
* via the ]
* , '']'' (March 2011)
* Duane E. Waliser and Catherine Gautier, November 1993: . ''J. Climate'', '''6''', 2162–2174.


{{Authority control}}
]
]


]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 18:56, 20 December 2024

Meteorological phenomenon "The Calms" redirects here. For other uses, see Calm (disambiguation). "Doldrums" redirects here. For other uses, see Doldrums (disambiguation).
The ITCZ is visible as a band of clouds encircling Earth near the Equator.

The Intertropical Convergence Zone (ITCZ /ɪtʃ/ ITCH, or ICZ), known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the thermal equator though its specific position varies seasonally. When it lies near the geographic equator, it is called the near-equatorial trough. Where the ITCZ is drawn into and merges with a monsoonal circulation, it is sometimes referred to as a monsoon trough (a usage that is more common in Australia and parts of Asia).

Meteorology

The ITCZ was originally identified from the 1920s to the 1940s as the Intertropical Front (ITF), but after the recognition in the 1940s and the 1950s of the significance of wind field convergence in tropical weather production, the term Intertropical Convergence Zone (ITCZ) was then applied.

The ITCZ appears as a band of clouds, usually thunderstorms, that encircle the globe near the Equator. In the Northern Hemisphere, the trade winds move in a southwestward direction from the northeast, while in the Southern Hemisphere, they move northwestward from the southeast. When the ITCZ is positioned north or south of the Equator, these directions change according to the Coriolis effect imparted by Earth's rotation. For instance, when the ITCZ is situated north of the Equator, the southeast trade wind changes to a southwest wind as it crosses the Equator. The ITCZ is formed by vertical motion largely appearing as convective activity of thunderstorms driven by solar heating, which effectively draw air in; these are the trade winds. The ITCZ is effectively a tracer of the ascending branch of the Hadley cell and is wet. The dry descending branch is the horse latitudes.

The location of the ITCZ gradually varies with the seasons, roughly corresponding with the location of the thermal equator. As the heat capacity of the oceans is greater than air over land, migration is more prominent over land. Over the oceans, where the convergence zone is better defined, the seasonal cycle is more subtle, as the convection is constrained by the distribution of ocean temperatures. Sometimes, a double ITCZ forms, with one located north and another south of the Equator, one of which is usually stronger than the other. When this occurs, a narrow ridge of high pressure forms between the two convergence zones.

ITCZ over oceans vs. land

Seasonal variability of the Intertropical Convergence Zone (ITCZ), Congo air boundary (CAB), tropical rainbelt, and surface winds over Africa (adapted from Dezfuli 2017 with modification). This schematic shows that the ITCZ and the region of maximum rainfall can be decoupled over the continents.

The ITCZ is commonly defined as an equatorial zone where the trade winds converge. Rainfall seasonality is traditionally attributed to the north–south migration of the ITCZ, which follows the sun. Although this is largely valid over the equatorial oceans, the ITCZ and the region of maximum rainfall can be decoupled over the continents. The equatorial precipitation over land is not simply a response to just the surface convergence. Rather, it is modulated by a number of regional features such as local atmospheric jets and waves, proximity to the oceans, terrain-induced convective systems, moisture recycling, and spatiotemporal variability of land cover and albedo.

South Pacific convergence zone

Vertical air velocity at 500 hPa, July average. Ascent (negative values) is concentrated close to the solar equator; descent (positive values) is more diffuse

The South Pacific convergence zone (SPCZ) is a reverse-oriented, or west-northwest to east-southeast aligned, trough extending from the west Pacific warm pool southeastwards towards French Polynesia. It lies just south of the equator during the Southern Hemisphere warm season, but can be more extratropical in nature, especially east of the International Date Line. It is considered the largest and most important piece of the ITCZ, and has the least dependence upon heating from a nearby land mass during the summer than any other portion of the monsoon trough. The southern ITCZ in the southeast Pacific and southern Atlantic, known as the SITCZ, occurs during the Southern Hemisphere fall between and 10° south of the equator east of the 140th meridian west longitude during cool or neutral El Niño–Southern Oscillation (ENSO) patterns. When ENSO reaches its warm phase, otherwise known as El Niño, the tongue of lowered sea surface temperatures due to upwelling off the South American continent disappears, which causes this convergence zone to vanish as well.

Effects on weather

The ITCZ moves farther away from the equator during the Northern summer than the Southern one due to the North-heavy arrangement of the continents.

Variation in the location of the intertropical convergence zone drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the intertropical convergence zone can result in severe droughts or flooding in nearby areas.

In some cases, the ITCZ may become narrow, especially when it moves away from the equator; the ITCZ can then be interpreted as a front along the leading edge of the equatorial air. There appears to be a 15 to 25-day cycle in thunderstorm activity along the ITCZ, which is roughly half the wavelength of the Madden–Julian oscillation (MJO).

Within the ITCZ the average winds are slight, unlike the zones north and south of the equator where the trade winds feed. As trans-equator sea voyages became more common, sailors in the eighteenth century named this belt of calm the doldrums because of the calm, stagnant, or inactive winds.

Role in tropical cyclone formation

Hurricanes Celia and Darby in the eastern Pacific and the precursor to Hurricane Alex in the Intertropical Convergence Zone. (2010)

Tropical cyclogenesis depends upon low-level vorticity as one of its six requirements, and the ITCZ fills this role as it is a zone of wind change and speed, otherwise known as horizontal wind shear. As the ITCZ migrates to tropical and subtropical latitudes and even beyond during the respective hemisphere's summer season, increasing Coriolis force makes the formation of tropical cyclones within this zone more possible. Surges of higher pressure from high latitudes can enhance tropical disturbances along its axis. In the north Atlantic and the northeastern Pacific oceans, tropical waves move along the axis of the ITCZ causing an increase in thunderstorm activity, and clusters of thunderstorms can develop under weak vertical wind shear.

Hazards

In the Age of Sail, to find oneself becalmed in this region in a hot and muggy climate could mean death when wind was the only effective way to propel ships across the ocean. Calm periods within the doldrums could strand ships for days or weeks. Even today, leisure and competitive sailors attempt to cross the zone as quickly as possible as the erratic weather and wind patterns may cause unexpected delays.

In 2009, thunderstorms along the Intertropical Convergence Zone played a role in the loss of Air France Flight 447, which crashed while flying from Rio de Janeiro–Galeão International Airport to Charles de Gaulle Airport near Paris. The aircraft crashed with no survivors while flying through a series of large ITCZ thunderstorms, and ice forming rapidly on airspeed sensors was the precipitating cause for a cascade of human errors which ultimately doomed the flight. Most aircraft flying these routes are able to avoid the larger convective cells without incident.

Effects of climate change

See also: Effects of climate change on the water cycle
Line graph showing titanium concentrations over time within Cariaco Basin sediment
Titanium concentrations in sediment within the Cariaco Basin have been used as a paleoclimate proxy to infer shifts in the ITCZ.

Based on paleoclimate proxies, the position and intensity of the ITCZ varied in prehistoric times along with changes in global climate. During Heinrich events within the last 100 ka, a southward shift of the ITCZ coincided with the intensification of the Northern Hemisphere Hadley cell coincident with weakening of the Southern Hemisphere Hadley cell. The ITCZ shifted north during the mid-Holocene but migrated south following changes in insolation during the late-Holocene towards its current position. The ITCZ has also undergone periods of contraction and expansion within the last millennium. A southward shift of the ITCZ commencing after the 1950s and continuing into the 1980s may have been associated with cooling induced by aerosols in the Northern Hemisphere based on results from climate models; a northward rebound began subsequently following forced changes in the gradient in temperature between the Northern and Southern hemispheres. These fluctuations in ITCZ positioning had robust effects on climate; for instance, displacement of the ITCZ may have led to drought in the Sahel in the 1980s.

Atmospheric convection may become stronger and more concentrated at the center of the ITCZ in response to a globally warming climate, resulting in sharpened contrasts in precipitation between the ITCZ core (where precipitation would be amplified) and its edges (where precipitation would be suppressed). Atmospheric reanalyses suggest that the ITCZ over the Pacific has narrowed and intensified since at least 1979, in agreement with data collected by satellites and in-situ precipitation measurements. The drier ITCZ fringes are also associated with an increase in outgoing longwave radiation outward of those areas, particularly over land within the mid-latitudes and the subtropics. This change in the ITCZ is also reflected by increasing salinity within the Atlantic and Pacific underlying the ITCZ fringes and decreasing salinity underlying central belt of the ITCZ. The IPCC Sixth Assessment Report indicated "medium agreement" from studies regarding the strengthening and tightening of the ITCZ due to anthropogenic climate change.

Less certain are the regional and global shifts in ITCZ position as a result of climate change, with paleoclimate data and model simulations highlighting contrasts stemming from asymmetries in forcing from aerosols, volcanic activity, and orbital variations, as well as uncertainties associated with changes in monsoons and the Atlantic meridional overturning circulation. The climate simulations run as part of Coupled Model Intercomparison Project Phase 5 (CMIP5) did not show a consistent global displacement of the ITCZ under anthropogenic climate change. In contrast, most of the same simulations show narrowing and intensification under the same prescribed conditions. However, simulations in Coupled Model Intercomparison Project Phase 6 (CMIP6) have shown greater agreement over some regional shifts of the ITCZ in response to anthropogenic climate change, including a northward displacement over the Indian Ocean and eastern Africa and a southward displacement over the eastern Pacific and Atlantic oceans.

In literature

The doldrums are notably described in Samuel Taylor Coleridge's poem The Rime of the Ancient Mariner (1798) and also provide a metaphor for the initial state of boredom and indifference of Milo, the child hero of Norton Juster's classic 1961 children's novel The Phantom Tollbooth. It is also cited in the 1939 book Wind, Sand and Stars.

See also

References

  1. "ITCZ". National Weather Service.
  2. Chisholm, Hugh, ed. (1911). "Doldrums" . Encyclopædia Britannica. Vol. 8 (11th ed.). Cambridge University Press. p. 386.
  3. Barry, Roger Graham; Chorley, Richard J. (1992). Atmosphere, weather, and climate. London: Routledge. ISBN 978-0-415-07760-6. OCLC 249331900. Atmosphere, weather, and climate.
  4. "Inter-Tropical Convergence Zone". JetStream - Online School for Weather. NOAA. 2007-10-24. Retrieved 2009-06-04.
  5. "Inter Tropical Convergence Zone (ITCZ) - SKYbrary Aviation Safety". www.skybrary.aero. Retrieved 2018-04-12.
  6. ^ Dezfuli, Amin (2017-03-29). "Climate of Western and Central Equatorial Africa". Oxford Research Encyclopedia of Climate Science. doi:10.1093/acrefore/9780190228620.013.511. ISBN 9780190228620.
  7. Nicholson, Sharon E. (February 2018). "The ITCZ and the Seasonal Cycle over Equatorial Africa". Bulletin of the American Meteorological Society. 99 (2): 337–348. Bibcode:2018BAMS...99..337N. doi:10.1175/bams-d-16-0287.1. ISSN 0003-0007.
  8. Gonzalez, Alex O.; Ganguly, Indrani; McGraw, Marie C.; Larson, James G. (2022-02-15). "Rapid Dynamical Evolution of ITCZ Events over the East Pacific". Journal of Climate. 35 (4): 1197–1213. Bibcode:2022JCli...35.1197G. doi:10.1175/JCLI-D-21-0216.1. ISSN 0894-8755. S2CID 244551794.
  9. Ganguly, Indrani; Gonzalez, Alex O.; Karnauskas, Kristopher B. (2023-10-20). "On the role of wind-evaporation-SST feedbacks in the sub-seasonal variability of the east Pacific ITCZ". Journal of Climate. -1 (aop): 129–143. doi:10.1175/JCLI-D-22-0849.1. ISSN 0894-8755. S2CID 264384015.
  10. E. Linacre and B. Geerts. Movement of the South Pacific convergence zone Retrieved on 2006-11-26.
  11. Semyon A. Grodsky; James A. Carton (2003-02-15). "The Intertropical Convergence Zone in the South Atlantic and the Equatorial Cold Tongue" (PDF). University of Maryland, College Park. Retrieved 2009-06-05.
  12. Djurić, D: Weather Analysis. Prentice Hall, 1994. ISBN 0-13-501149-3.
  13. Patrick A. Harr. Tropical Cyclone Formation/Structure/Motion Studies. Office of Naval Research Retrieved on 2006-11-26. Archived November 29, 2007, at the Wayback Machine
  14. C.-P. Chang, J.E. Erickson, and K.M. Lau. Northeasterly Cold Surges and Near-Equatorial Disturbances over the Winter MONEX Area during December 1974. Part I: Synoptic Aspects. Retrieved on 2007-04-26.
  15. "What are the doldrums?" NOAA. National Ocean Atmospheric Administration's National Weather Service website, 01/07/20.
  16. "Q & A Turbulences". The Guardian (1 June 2009).
  17. Haug, Gerald H.; Hughen, Konrad A.; Sigman, Daniel M.; Peterson, Larry C.; Röhl, Ursula (17 August 2001). "Southward Migration of the Intertropical Convergence Zone Through the Holocene". Science. 293 (5533). American Association for the Advancement of Science: 1304–1308. Bibcode:2001Sci...293.1304H. doi:10.1126/science.1059725. PMID 11509727. S2CID 24591761.
  18. Gulev, Sergey K.; Thorne, Peter W.; et al. (2021). "Changing State of the Climate System". In Masson-Delmotte, Valerie; Zhai, Panmao; et al. (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (PDF). Cambridge, United Kingdom: Cambridge University Press. pp. 287–422. Retrieved 18 January 2023.
  19. Eyring, Veronika; Gillett, Nathan P.; et al. (2021). "Human Influence on the Climate System". In Masson-Delmotte, Valerie; Zhai, Panmao (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (PDF). Cambridge, United Kingdom: Cambridge University Press. pp. 423–551. Retrieved 18 January 2023.
  20. ^ Douville, Hervé; Raghavan, Krishnan; Renwick, James; et al. (2021). "Human Influence on the Climate System". In Masson-Delmotte, Valerie; Zhai, Panmao (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (PDF). Cambridge, United Kingdom: Cambridge University Press. pp. 1055–1210. Retrieved 18 January 2023.

External links

Categories: