Revision as of 08:02, 13 April 2011 edit85.65.99.40 (talk) →Sociological factors and effects: not relevent← Previous edit | Latest revision as of 14:30, 30 November 2024 edit undoRichard Nowell (talk | contribs)Extended confirmed users4,460 edits →See also: added link to 'Artificial intelligence and elections'. | ||
(573 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|none}} <!-- "none" is preferred when the title is sufficiently descriptive; see ] --> | |||
{{Essay-like|date=March 2010}} Technology in society or '''technology and culture''' refers to cyclical co-dependence, co-influence, co-production of ] and ] upon the other (technology upon culture, and vice-versa). This synergistic relationship occurred from the dawn of humankind, with the invention of simple tools and continues into modern technologies such as the ] and ]s. The academic discipline studying the impacts of science, technology, and society and vice versa is called (and can be found at) ]. | |||
{{Multiple issues| | |||
{{Essay-like|date=March 2010}} | |||
{{original research|date=March 2016}} | |||
}} | |||
{{Sociology}} | |||
'''Technology, society and life''' or '''technology and culture''' refers to the inter-dependency, ], co-influence, and ] of ] and ] upon one another. Evidence for this ] has been found since humanity first started using simple tools. The inter-relationship has continued as modern technologies such as the ] and ]s have helped shape society. The first scientific approach to this relationship occurred with the development of ], the "science of organization", in early twentieth century ].<ref name="AD&ST">{{cite journal |last1=Gare |first1=Arran |title=Aleksandr Bogdanov and Systems Theory |journal=Democracy & Nature |date=November 2000 |volume=6 |issue=3 |pages=341–359 |doi=10.1080/10855660020020230 |url=https://www.researchgate.net/publication/248981084 |language=en|hdl=1959.3/751 |hdl-access=free }}</ref> In modern academia, the interdisciplinary study of the mutual impacts of science, technology, and society, is called ]. | |||
The simplest form of technology is the development and use of basic ]s. The ] discovery of ] and the later ] increased the available sources of food, and the invention of the ] helped humans to travel in and control their environment. Developments in historic times have lessened physical barriers to ] and allowed humans to interact freely on a global scale, such as the ], ], and ]. | |||
==Pre-historical examples== | |||
{{Expand section|date=January 2010}} | |||
The importance of ], circa 2.5 million years ago, is considered fundamental in human development in the ]. | |||
Technology has developed advanced ], such as the modern ], and has led to the rise of a ]. Many technological processes produce by-products known as ], and deplete natural resources to the detriment of Earth's ]. Innovations influence the ] of society and raise new questions in the ]. Examples include the rise of the notion of ] in terms of human ], and the challenges of ]. | |||
It has been suggested, in ''],'' that the ] and the associated development of ] was the spark that radically changed human evolution. | |||
Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the ] or worsens it. ], ], and similar ] movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people. However, proponents of ideologies such as ] and ] view continued technological progress as beneficial to society and the ]. | |||
All these little changes in mobile phones, like Internet access, are further examples of the cycle of co-production. Society's need for being able to call on people and be available everywhere resulted in the research and development of mobile phones. They in turn influenced the way we live our lives. As the populace relies more and more on mobile phones, additional features were requested. | |||
This is also true with today's modern media player. | |||
==Pre-historical== | |||
Society also influenced changes to previous generation media players. In the first personal music players, ] stored music. However, that method seemed fragile and relatively low fidelity when compact disks came along. Later, availability of MP3 and other compact file formats made ] seem too large and limited, so manufactures created ] which are small and hold large amount of data. Societal preferences helped determined the course of events through predictable preferences. | |||
The importance of ]s, circa 2.5 million years ago, is considered fundamental in the human development in the ].{{citation needed|date=July 2020}} | |||
Primatologist, ], theorizes that the ] and the associated development of cooking was the spark that radically changed human evolution.<ref>'']''</ref> Texts such as '']'' suggest that early advances in plant agriculture and husbandry fundamentally shifted the way that collective groups of individuals, and eventually societies, developed. | |||
==Modern examples and effects== | |||
Technology has taken a large role in society and day-to-day life. When societies know more about the development in a technology, they become able to take advantage of it. When an innovation achieves a certain point after it has been presented and promoted, this technology becomes part of the society. The use of technology in education provides students with technology literacy, information literacy, capacity for life-long learning, and other skills necessary for the 21st century workplace.<ref name=Puricelli>{{harv|Puricelli|2011|page=4}}</ref> ] has entered each process and activity made by the ]. In fact, it constructed another worldwide ] in addition to its origin.<ref>{{harv|Rückriem|2009|page=88}}</ref> | |||
A 1982 study by '']'' described a technology assessment study by the ], "peering into the future of an electronic world." The study focused on the emerging videotex industry, formed by the marriage of two older technologies, communications, and computing. It estimated that 40 percent of American households will have two-way videotex service by the end of the century. By comparison, it took television 16 years to penetrate 90 percent of households from the time commercial service was begun. | |||
Since the creation of ]s achieved an entire better approach to transmit and store ]. Digital technology became commonly used for downloading music and watching movies at home either by ]s or purchasing it online. | |||
Digital music records are not quite the same as traditional recording media. Obviously, because ] ones are reproducible, portable and free.<ref>{{harv|Katz|2010|page=185}}</ref> | |||
Around the globe many schools have implemented ] in primary schools, universities and colleges. According to the statistics, in the early beginnings of 1990s the use of Internet in schools was, on average, 2–3%.{{Citation needed|date=April 2019}} Continuously, by the end of 1990s the ] increases rapidly and reaches to 60%, and by the year of 2008 nearly 100% of schools use Internet on educational form. According to ISTE researchers, technological improvements can lead to numerous achievements in classrooms. E-learning system, collaboration of students on project based learning, and technological skills for future results in motivation of students.{{Citation needed|date=April 2019}} | |||
Although these previous examples only show a few of the positive aspects of technology in society, there are negative side effects as well.<ref>{{cite web|last1 = Lynden|first1 = Burke|title = Generation Y Heavily Dependent On Technology, Promotes Laziness|url = http://www.thejambar.com/generation-y-heavily-dependent-on-technology-promotes-laziness/|website = The Jambar| date=12 May 2011 |access-date = 28 October 2015}}</ref> Within this virtual realm, social media platforms such as ], ], and ] have altered the way ] is understanding the world and thus how they view themselves. In recent years, there has been more research on the development of social media depression in users of sites like these. "Facebook Depression" is when users are so affected by their friends' posts and lives that their own jealousy depletes their sense of self-worth. They compare themselves to the posts made by their peers and feel unworthy or monotonous because they feel like their lives are not nearly as exciting as the lives of others.<ref name=Puricelli/> | |||
Technology has a serious effect on youth's health. The overuse of technology is said to be associated with sleep deprivation which is linked to obesity and poor academic performance in the lives of adolescents.<ref>Saudi med J. 2016 pages 436–439</ref> | |||
==Economics and technological development== | ==Economics and technological development== | ||
], ]]] | ], ]]] | ||
In ancient history, ] began when |
In ancient history, ] began when spontaneous exchange of goods and services was replaced over time by deliberate trade structures. Makers of arrowheads, for example, might have realized they could do better by concentrating on making arrowheads and barter for other needs. Regardless of goods and services bartered, some amount of technology was involved—if no more than in the making of shell and bead jewelry. Even the shaman's potions and sacred objects can be said to have involved some technology. So, from the very beginnings, technology can be said to have spurred the development of more elaborate economies. Technology is seen as primary source in economic development.<ref>See, e.g., ], Artemy Malkov, and Daria Khaltourina. {{ISBN|5-484-00414-4}}</ref> | ||
Technology advancement and economic growth are related to each other. The level of technology is important to determine the economic growth. It is the technological process which keeps the economy moving. | |||
In the modern world, superior technologies, resources, geography, and history give rise to robust economies; and in a well-functioning, robust economy, economic excess naturally flows into greater use of technology. Moreover, because technology is such an inseparable part of human society, especially in its economic aspects, funding sources for (new) technological endeavors are virtually illimitable. However, while in the beginning, technological investment involved little more than the time, efforts, and skills of one or a few men, today, such investment may involve the collective labor and skills of many millions. | In the modern world, superior technologies, resources, geography, and history give rise to robust economies; and in a well-functioning, robust economy, economic excess naturally flows into greater use of technology. Moreover, because technology is such an inseparable part of human society, especially in its economic aspects, funding sources for (new) technological endeavors are virtually illimitable. However, while in the beginning, technological investment involved little more than the time, efforts, and skills of one or a few men, today, such investment may involve the collective labor and skills of many millions. | ||
Most recently, because of the ], the proportion of firms employing advanced digital technology in their operations expanded dramatically. It was found that firms that adopted technology were better prepared to deal with the pandemic's disruptions. Adaptation strategies in the form of remote working, 3D printing, and the use of big data analytics and AI to plan activities to adapt to the pandemic were able to ensure positive job growth.<ref name=":344">{{Cite book |last=Bank |first=European Investment |url=https://www.eib.org/en/publications/digitalisation-in-europe-2021-2022 |title=Digitalisation in Europe 2021-2022: Evidence from the EIB Investment Survey |date=2022-05-05 |publisher=European Investment Bank |isbn=978-92-861-5233-7 |language=EN}}</ref><ref>{{Cite web |title=Digital transformation: importance, benefits and EU policy - EU monitor |url=https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vli6iyjgcqxh?ctx=vl8zi7xkljtm |access-date=2022-05-31 |website=www.eumonitor.eu}}</ref><ref>{{Cite web |title=Productivity gains from teleworking in the post COVID-19 era: How can public policies make it happen? |url=https://www.oecd.org/coronavirus/policy-responses/productivity-gains-from-teleworking-in-the-post-covid-19-era-how-can-public-policies-make-it-happen-a5d52e99/ |access-date=2022-05-31 |website=OECD |language=en}}</ref> | |||
===Funding=== | ===Funding=== | ||
Line 25: | Line 49: | ||
The government is a major contributor to the development of new technology in many ways. In the United States alone, many government agencies specifically invest billions of dollars in new technology. | The government is a major contributor to the development of new technology in many ways. In the United States alone, many government agencies specifically invest billions of dollars in new technology. | ||
In 1980, the UK government invested just over six million pounds in a four-year program, later extended to six years, called the ] (MEP), which was intended to give every school in Britain at least one computer, software, training materials, and extensive teacher training. Similar programs have been instituted by governments around the world. | |||
Technology has frequently been driven by the military, with many modern applications developed for the military before they were adapted for civilian use. However, this has always been a two-way flow, with industry often developing and adopting a technology only later adopted by the military. | Technology has frequently been driven by the military, with many modern applications developed for the military before they were adapted for civilian use. However, this has always been a two-way flow, with industry often developing and adopting a technology only later adopted by the military. | ||
Entire government agencies are specifically dedicated to research, such as America's ], the United Kingdom's ], | Entire government agencies are specifically dedicated to research, such as America's ], the United Kingdom's ], America's ] effort. Many other government agencies dedicate a major portion of their budget to research and development. | ||
America's ] effort. Many other government agencies dedicate a major portion of their budget to research and development. | |||
====Private funding==== | ====Private funding==== | ||
] is one of the smallest areas of investments made by corporations toward new and innovative technology. | ] is one of the smallest areas of investments made by corporations toward new and innovative technology. | ||
{{citation needed|date=April 2022}} | |||
<!--source needed--> | |||
Many foundations and other nonprofit organizations contribute to the development of technology. In the ], about two-thirds of ] in scientific and technical fields is carried out by industry, and 98 percent and 10 percent respectively by ] and government. But in poorer countries such as ] and ] the industry contribution is significantly less. The U.S. government spends more than other countries on military research and development, although the proportion has fallen from about 30 percent in the 1980s to less than 10 percent.<ref> |
Many foundations and other nonprofit organizations contribute to the development of technology. In the ], about two-thirds of ] in scientific and technical fields is carried out by industry, and 98 percent and 10 percent, respectively, by ] and government. But in poorer countries such as ] and ] the industry contribution is significantly less. The U.S. government spends more than other countries on military research and development, although the proportion has fallen from about 30 percent in the 1980s to less than 10 percent.<ref>{{cite web |url-status=dead |url=http://www.oecd.org/dataoecd/49/45/24236156.pdf |archive-url=https://web.archive.org/web/20060723051956/http://www.oecd.org/dataoecd/49/45/24236156.pdf|archive-date=July 23, 2006 |website=OECD |title=Key Figures }}</ref> | ||
The 2009 founding of ] allows individuals to receive funding via ] for many technology related products including both new physical creations as well as documentaries, films, and web-series that focus on ]. This circumvents the corporate or government oversight most inventors and artists struggle against but leaves the accountability of the project completely with the individual receiving the funds. | |||
===Other economic considerations=== | ===Other economic considerations=== | ||
* ], sometimes called "intermediate" technology, more of ], refers to compromises between central and expensive technologies of ] |
* ], sometimes called "intermediate" technology, more of ], refers to compromises between central and expensive technologies of ] and those that ] find most effective to deploy given an excess of labour and scarcity of cash. | ||
* |
*]: In ], definitions or assumptions of progress or ] are often related to one or more assumptions about technology's economic influence. Challenging prevailing assumptions about technology and its usefulness has led to alternative ideas like ] or ]. These, and economics itself, can often be described as technologies, specifically, as persuasion technology. | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* |
*] | ||
* ] | * ] | ||
==Relation to science== | |||
==Sociological factors and effects== | |||
The relationship between ] and technology can be complex. Science may drive technological development, by generating demand for new instruments to address a scientific question, or by illustrating technical possibilities previously unconsidered. An environment of encouraged science will also produce scientists and engineers, and technical schools, which encourages innovation and entrepreneurship that are capable of taking advantage of the existing science. In fact, it is recognized that "innovators, like scientists, do require access to technical information and ideas" and "must know enough to recognize useful knowledge when they see it."<ref>{{cite journal | url=https://link.springer.com/content/pdf/10.1007/s11077-011-9137-3.pdf | doi=10.1007/s11077-011-9137-3 | title=Science, technology and innovation in a 21st century context | date=2011 | last1=Marburger | first1=John H. | journal=Policy Sciences | volume=44 | issue=3 }}</ref> Science spillover also contributes to greater technological diffusion.<ref>Otsuka, Kozo. 2007. "Role of Science and Technology on Knowledge Production Function: The Case of Japan and USA". ''International Journal of Technology, Knowledge and Society'' 3 (4): 17–26. {{doi|10.18848/1832-3669/CGP/v03i04/55764}}.</ref> Having a strong policy contributing to basic science allows a country to have access to a strong a knowledge base that will allow them to be "ready to exploit unforeseen developments in technology,"<ref name=":0">Stokes, Donald E. 1997. ''Pasteur's Quadrant : Basic Science and Technological Innovation''. Print. Washington, D.C., United States of America: Brookings Institution Press.</ref> when needed in times of crisis. | |||
{{See also|Social construction of technology}} | |||
For most of human history, technological improvements were arrived at by chance, trial and error, or spontaneous inspiration. Stokes referred to these innovators as {{"'}}improvers of technology'…who knew no science and would not have been helped by it if they had."<ref name=":0" /> This idea is supported by Diamond who further indicated that these individuals are "more likely to achieve a breakthrough if not hold the currently dominant theory in too high regard."<ref>Diamond, Arthur M, Jr. 2019. ''Openness to Creative Destruction: Sustaining Innovative Dynamism''. Kindle. New York, United States of America: Oxford University Press.</ref> ] directed towards immediate technical application is a relatively recent occurrence, arising with the ] and becoming commonplace in the 20th century. In addition, there are examples of economies that do not emphasize science research that have been shown to be technological leaders despite this. For example, the United States relied on the scientific output of Europe in the early 20th century, though it was regarded as a leader in innovation. Another example is the technological advancement of Japan in the latter part of the same century, which emphasized more applied science (directly applicable to technology).<ref name=":0" /> | |||
===Values=== | |||
The implementation of technology influences the ] of a society by changing expectations and realities. The implementation of technology is also influenced by values. There are (at least) three major, interrelated values that inform, and are informed by, technological innovations: | |||
*]: Viewing the universe as a collection of parts, (like a machine), that can be individually analyzed and understood.<ref name = McGinn>{{harv|McGinn|1991}}</ref> This is a form of ] that is rare nowadays. However, the "neo-mechanistic world view" holds that nothing in the universe cannot be understood by the human intellect. Also, while all things are greater than the sum of their parts (e.g., even if we consider nothing more than the information involved in their combination), in principle, even this excess must eventually be understood by human intelligence. That is, no ] or ] principle or essence is involved. | |||
Though the link between science and technology has need for more clarity, what is known is that a society without sufficient building blocks to encourage this link are critical. A nation without emphasis on science is likely to eventually stagnate technologically and risk losing competitive advantage. The most critical areas for focus by policymakers are discouraging too many protections on job security, leading to less mobility of the workforce,<ref>Soete, Luc. 2002. "The European Research Area: Perspectives and Opportunities". ''Prepared for the International Workshop on Research Incentives and Institutions, Italian Ministry of Economics and Finance''. Paper. Rome, Italy.</ref> encouraging the reliable availability of sufficient low-cost capital for investment in R&D, by favorable economic and tax policies,<ref name=":1">Aghion, Phillippe, Paul A David, and Dominique Foray. 2009. "Science, Technology and Innovation for Economic Growth: Linking Policy Research and Practice in 'STIG Systems{{'"}}. ''Research Policy'', no. 38 (March).</ref> and supporting higher education in the sciences to produce scientists and engineers.<ref name=":1" /> | |||
*]: A value, originally applied only to machines, but now applied to all aspects of society, so that each element is expected to attain a higher and higher percentage of its maximal possible performance, output, or ability.<ref name = McGinn/> | |||
*]: The belief that there is such a thing as social progress, and that, in the main, it is beneficent. Before the ], and the subsequent explosion of technology, almost all societies believed in a ] of social movement and, indeed, of all history and the universe. This was, obviously, based on the cyclicity of the seasons, and an agricultural economy's and society's strong ties to that cyclicity. Since much of the world is closer to their agricultural roots, they are still much more amenable to cyclicity than progress in history. This may be seen, for example, in . For a more westernized version of social cyclicity, see ''Generations: The History of America's Future, 1584 to 2069'' (Paperback) by Neil Howe and William Strauss; Harper Perennial; Reprint edition (September 30, 1992); ISBN 0-688-11912-3, and subsequent books by these authors. | |||
==Sociological factors and effects== | |||
====Lifestyle==== | |||
{{See also|Social construction of technology}} | |||
*The rise of a leisure class | |||
*A more informed society | |||
*Sets the stage for more complex learning tasks | |||
*Increases multi-tasking (although this may not be simplifying) | |||
*Global networking | |||
*Creates denser social circles | |||
*Cheaper prices | |||
*Greater specialization in jobs | |||
===Values=== | |||
In other ways, technology complicates life. | |||
The implementation of technology influences the ] of a society by changing expectations and realities. The implementation of technology is also influenced by values. There are (at least) three major, interrelated values that inform, and are informed by, technological innovations: | |||
*Pollution is a serious problem in a technologically advanced society (from acid rain to Chernobyl and Bhopal) | |||
*]: Viewing the universe as a collection of parts (like a machine), that can be individually analyzed and understood.<ref name = McGinn>{{harv|McGinn|1991}}</ref> This is a form of ] that is rare nowadays. However, the "neo-mechanistic world view" holds that nothing in the universe cannot be understood by the human intellect. Also, while all things are greater than the sum of their parts (e.g., even if we consider nothing more than the information involved in their combination), in principle, even this excess must eventually be understood by human intelligence. That is, no ] or ] principle or essence is involved. | |||
*The increase in transportation technology has brought congestion in some areas | |||
*]: A value, originally applied only to machines, but now applied to all aspects of society, so that each element is expected to attain a higher and higher percentage of its maximal possible performance, output, or ability. | |||
*] (although this may not be complicating) | |||
*Social ]: The belief that there is such a thing as social progress, and that, in the main, it is beneficent. Before the ], and the subsequent explosion of technology, almost all societies believed in a ] of social movement and, indeed, of all history and the universe. This was, obviously, based on the cyclicity of the seasons, and an agricultural economy's and society's strong ties to that cyclicity. Since much of the world is closer to their agricultural roots, they are still much more amenable to cyclicity than progress in history. This may be seen, for example, in Prabhat Rainjan Sarkar's modern social cycles theory.<ref>{{cite web | url=http://www.metafuture.org/sarkar/prabhat.htm | title=Prabhat rainjan sarkar's social cycles, world unity and peace; Renaissance 2000 honoring Sarkar's 75th Anniversary, LA 1 | work=Metafuture.org | access-date=July 6, 2016 | author=Galtung, Johan}}</ref> For a more westernized version of social cyclicity, see ''Generations: The History of America's Future, 1584 to 2069'' (Paperback) by Neil Howe and William Strauss; Harper Perennial; Reprint edition (September 30, 1992); {{ISBN|0-688-11912-3}}, and subsequent books by these authors. | |||
*New forms of danger existing as a consequence of new forms of technology, such as the first generation of nuclear reactors | |||
*New forms of entertainment, such as video games and internet access could have possible social effects on areas such as academic performance | |||
*Increased probability of some diseases and disorders, such as obesity | |||
*Social separation of singular human interaction. Technology has increased the need to talk to more people faster. | |||
*Structural unemployment | |||
*Anthropogenic climate change | |||
====Institutions and groups==== | ====Institutions and groups==== | ||
Technology often enables organizational and bureaucratic group structures that otherwise and heretofore were simply not possible. |
Technology often enables organizational and bureaucratic group structures that otherwise and heretofore were simply not possible. Examples of this might include: | ||
*The rise of very large organizations: e.g., governments, the military, health and social welfare institutions, supranational corporations. | *The rise of very large organizations: e.g., governments, the military, health and social welfare institutions, supranational corporations. | ||
*The commercialization of leisure: sports events, products, etc. (McGinn) | *The commercialization of leisure: sports events, products, etc. (McGinn) | ||
Line 86: | Line 95: | ||
===International=== | ===International=== | ||
Technology enables greater knowledge of international issues, values, and cultures. |
Technology enables greater knowledge of international issues, values, and cultures. Due mostly to mass transportation and mass media, the world seems to be a much smaller place, due to the following:<ref name="ubiquity">{{cite web |title=21st century information technology revolution |url=https://ubiquity.acm.org/article.cfm?id=1399619 |website=ubiquity.acm.org |access-date=|date=4 March 2021}}</ref> | ||
*Globalization of ideas | *Globalization of ideas | ||
*Embeddedness of values | *Embeddedness of values | ||
*Population growth and control | *Population growth and control | ||
*Others | |||
==Environment== | ==Environment== | ||
{{ |
{{See also|Environmental technology|Design|Human impact on the environment#Technology impacts}} | ||
]-designs]] | |||
Technology provides an understanding, and an appreciation for the world around us. | |||
Technology can provide understanding of and appreciation for the world around us, enable ] and improve environmental conditions but also degrade the environment and facilitate unsustainability. | |||
Some ] may conclude that certain technologies' environmental detriments and other risks to outweigh their benefits, especially if or once substitutive technologies have been or can be invented, leading to directed technological phase-outs such as the ] and the ]. | |||
Most modern technological processes produce unwanted byproducts in addition to the desired products, which is known as industrial waste and pollution. While most material waste is re-used in the industrial process, many forms are released into the environment, with negative environmental side effects, such as pollution and lack of sustainability. Different social and political systems establish different balances between the value they place on additional goods versus the disvalues of waste products and pollution. Some technologies are designed specifically with the environment in mind, but most are designed first for economic or ergonomic effects. Historically, the value of a clean environment and more efficient productive processes has been the result of an increase in the wealth of society, because once people are able to provide for their basic needs, they are able to focus on less-tangible goods such as clean air and water. | |||
Most modern technological processes produce unwanted byproducts in addition to the desired products, which are known as ] and ]. While material waste is often re-used in ], many processes lead to a release into the environment with negative environmental side effects, such as pollution and lack of sustainability. | |||
The effects of technology on the environment are both obvious and subtle. The more obvious effects include the depletion of nonrenewable natural resources (such as petroleum, coal, ores), and the added ] of air, water, and land. | |||
The more subtle effects include debates over long-term effects (e.g., global warming, deforestation, natural habitat destruction, coastal wetland loss.) | |||
;Development and technologies' implications | |||
Each wave of technology creates a set of waste previously unknown by humans: ], ], ]. | |||
Some technologies are designed specifically with the environment in mind, but most are designed first for financial or economic effects such as the free market's ].<ref>{{cite journal |last1=Martin |first1=Kirsten |last2=Shilton |first2=Katie |last3=Smith |first3=Jeffery |title=Business and the Ethical Implications of Technology: Introduction to the Symposium |journal=Journal of Business Ethics |date=2019-12-01 |volume=160 |issue=2 |pages=307–317 |doi=10.1007/s10551-019-04213-9 |language=en |issn=1573-0697|doi-access=free }}</ref> The effects of a specific technology is often not only dependent on how it is used – e.g. its usage context – but also predetermined by the technology's design or characteristics, as in the theory of "]" which relates to media-technologies in specific. In many cases, such predetermined or built-in implications may vary depending on factors of contextual contemporary conditions such as human biology, ] and socioeconomics. However, many technologies may be harmful to the environment only when used in specific contexts or for specific purposes that not necessarily result from the nature of the technology. | |||
;Values | |||
One of the main problems is the lack of an effective way to remove these pollutants on a large scale expediently. In nature, organisms "recycle" the wastes of other organisms, for example, plants produce oxygen as a by-product of photosynthesis, oxygen-breathing organisms use oxygen to metabolize food, producing carbon dioxide as a by-product, which plants use in a process to make sugar, with oxygen as a waste in the first place. No such mechanism exists for the removal of technological wastes. | |||
Historically, from the perspective of economic agent-centered responsibility, an increased, as of 2021 commonly theoretic and informal, value of healthy environments and more efficient productive processes may be the result of an increase in the ] of society. Once people are able to provide for their ], they can – and are often facilitated to – not only afford more environmentally destructive products and services, but could often also be able to put an – e.g. individual ]-motivated – effort into valuing less tangible goods such as clean air and water if product-, alternatives-, consequences- and services-information are adequate. | |||
From the perspective of ] and ], economies (systems) have economic actors and sectors make decisions based upon a range of system-internal factors with structures – or sometimes forms of leveraging existing structures – that lead to other outcomes being the result of other architectures – or systems-level configurations of the existing designs – which are considered to be possible in the sense that such could be modeled, tested, priorly ], developed and studied. | |||
Humanity at the moment may be compared to a colony of bacteria in a Petri dish with a constant food supply: with no way to remove the wastes of their metabolism, the bacteria eventually poison themselves. | |||
=== Negative effects on the environment === | |||
The effects of technology on the environment are both obvious and subtle. The more obvious effects include the depletion of nonrenewable natural resources (such as petroleum, coal, ores), and the added ], water, and land. The more subtle effects may include long-term effects (e.g. ], ], ], coastal wetland loss.) | |||
;Pollution and energy requirements | |||
Each wave of technology creates a set of waste previously unknown by humans: ], ], ], ], ]. | |||
Electronic waste creates direct environmental impacts through the production and maintaining the infrastructure necessary for using technology and indirect impacts by breaking barriers for global interaction through the use of information and communications technology.<ref>Higón, D. A., Gholami, R., Shirazi, F. , , ''Telematics and Informatics'', 2017</ref> Certain usages of information technology and infrastructure maintenance consume energy ]. This includes software-designs such as international ]<ref name="10.1038/s41467-021-22256-3">{{cite journal |last1=Jiang |first1=Shangrong |last2=Li |first2=Yuze |last3=Lu |first3=Quanying |last4=Hong |first4=Yongmiao |last5=Guan |first5=Dabo |last6=Xiong |first6=Yu |last7=Wang |first7=Shouyang |title=Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China |journal=Nature Communications |date=6 April 2021 |volume=12 |issue=1 |pages=1938 |doi=10.1038/s41467-021-22256-3 |pmid=33824331 |pmc=8024295 |bibcode=2021NatCo..12.1938J |language=en |issn=2041-1723|doi-access=free }} ] Available under .</ref> and most hardware powered by nonrenewable sources. | |||
One of the main problems is the lack of societal ] processes – such as the contemporary ] and ] – that lead to sufficient implementation of existing as well as potential efficient ways to remove, recycle and prevent these pollutants on a large scale expediently. | |||
Digital technologies, however, are important in achieving the ] and specifically, the ] and ]'s environmental targets. Emerging digital technologies, if correctly applied, have the potential to play a critical role in addressing environmental issues. A few examples are: smart city mobility, ], sustainable supply chains, ], and catastrophe prediction.<ref name=":34">{{Cite book |last=Bank |first=European Investment |url=https://www.eib.org/en/publications/digitalisation-in-europe-2021-2022 |title=Digitalisation in Europe 2021-2022: Evidence from the EIB Investment Survey |date=2022-05-05 |publisher=European Investment Bank |isbn=978-92-861-5233-7 |language=EN}}</ref><ref>{{Cite web |title=The potential of digital business models in the new energy economy – Analysis |url=https://www.iea.org/articles/the-potential-of-digital-business-models-in-the-new-energy-economy |access-date=2022-06-05 |website=IEA |date=7 January 2022 |language=en-GB}}</ref> | |||
==Construction and shaping== | ==Construction and shaping== | ||
===Choice=== | ===Choice=== | ||
Society also controls technology through the choices it makes. |
Society also controls technology through the choices it makes. These choices not only include consumer demands; they also include: | ||
*the channels of distribution, how do products go from raw materials to consumption to disposal; | *the channels of distribution, how do products go from raw materials to consumption to disposal; | ||
*the cultural beliefs regarding style, freedom of choice, consumerism, materialism, etc.; | *the cultural beliefs regarding style, freedom of choice, consumerism, materialism, etc.; | ||
*the economic values we place on the environment, individual wealth, government control, capitalism, etc. | *the economic values we place on the environment, individual wealth, government control, capitalism, etc. | ||
According to Williams and Edge,<ref> |
According to Williams and Edge,<ref>{{harv|Williams|Edge|1996}}</ref> the construction and shaping of technology includes the concept of choice (and not necessarily conscious choice). Choice is inherent in both the design of individual artifacts and systems, and in the making of those artifacts and systems. | ||
The idea here is that a single technology may not emerge from the unfolding of a predetermined logic or a single determinant, technology could be a garden of forking paths, with different paths potentially leading to different technological outcomes. This is a position that has been developed in detail by ] Therefore, choices could have differing implications for society and for particular social groups. |
The idea here is that a single technology may not emerge from the unfolding of a predetermined logic or a single determinant, technology could be a garden of forking paths, with different paths potentially leading to different technological outcomes. This is a position that has been developed in detail by ]. Therefore, choices could have differing implications for society and for particular social groups. | ||
===Autonomous technology=== | ===Autonomous technology=== | ||
In one line of thought, technology develops autonomously, in other words, technology seems to feed on itself, moving forward with a force irresistible by humans. To these individuals, technology is "inherently dynamic and self-augmenting."<ref>{{harv|McGinn|1991|p=73}}</ref> | In one line of thought, technology develops autonomously, in other words, technology seems to feed on itself, moving forward with a force irresistible by humans. To these individuals, technology is "inherently dynamic and self-augmenting."<ref>{{harv|McGinn|1991|p=73}}</ref> | ||
] is one proponent of the irresistibleness of technology to humans. |
] is one proponent of the irresistibleness of technology to humans. He espouses the idea that humanity cannot resist the temptation of expanding our knowledge and our technological abilities. However, he does not believe that this seeming autonomy of technology is inherent. But the perceived autonomy is because humans do not adequately consider the responsibility that is inherent in technological processes. | ||
] critiques the idea that ] is essentially beyond the control of individuals or society in his book Autonomous Technology. He argues instead that the apparent autonomy of technology is a result of "technological somnambulism," the tendency of people to uncritically and unreflectively embrace and utilize new technologies without regard for their broader social and political effects. | |||
In 1980, ] published a critique of the automation and computerisation of engineering work under the title "Architect or Bee? The human/technology relationship". The title alludes to a comparison made by ], on the issue of the creative achievements of human imaginative power.<ref>cf Karl Marx, '']''</ref> According to Cooley ""Scientific and technological developments have invariably proved to be double-edged. They produced the beauty of Venice and the hideousness of Chernobyl; the caring therapies of Rontgen's X-rays and the destruction of Hiroshima,"<ref>{{Cite news |title=Expert stresses designs which are orientated towards people |url=https://www.irishtimes.com/news/expert-stresses-designs-which-are-orientated-towards-people-1.82744 |access-date=2023-08-28 |newspaper=The Irish Times |language=en}}</ref> | |||
===Government=== | ===Government=== | ||
Individuals rely on governmental assistance to control the side effects and negative consequences of technology. | Individuals rely on governmental assistance to control the side effects and negative consequences of technology. | ||
*Supposed independence of government. An assumption commonly made about the government is that their governance role is neutral or independent. However some argue that governing is a political process, so government will be influenced by political winds of influence. In addition, because government provides much of the funding for technological research and development, it has a vested interest in certain outcomes. Other point out that the world's biggest ecological disasters, such as the ], ], and ] have been caused by government projects, which are not accountable to consumers. | *Supposed independence of government. An assumption commonly made about the government is that their governance role is neutral or independent. However, some argue that governing is a political process, so government will be influenced by political winds of influence. In addition, because government provides much of the funding for technological research and development, it has a vested interest in certain outcomes. Other point out that the world's biggest ecological disasters, such as the ], ], and ] have been caused by government projects, which are not accountable to consumers. | ||
*Liability. One means for controlling technology is to place responsibility for the harm with the agent causing the harm. Government can allow more or less legal liability to fall to the organizations or individuals responsible for damages. | |||
*Legislation. A source of controversy is the role of industry versus that of government in maintaining a clean environment. While it is generally agreed that industry needs to be held responsible when pollution harms other people, there is disagreement over whether this should be prevented by legislation or civil courts, and whether ecological systems as such should be protected from harm by governments. | |||
*Liability. One means for controlling technology is to place responsibility for the harm with the agent causing the harm. Government can allow more or less legal liability to fall to the organizations or individuals responsible for damages. | |||
*Legislation. A source of controversy is the role of industry versus that of government in maintaining a clean environment. While it is generally agreed that industry needs to be held responsible when pollution harms other people, there is disagreement over whether this should be prevented by legislation or civil courts, and whether ecological systems as such should be protected from harm by governments. | |||
Recently, the social shaping of technology has had new influence in the fields of ] and ] in the United Kingdom, which has made centers focusing on the social shaping of ] a central part of their funding programs. | Recently, the ] has had new influence in the fields of ] and ] in the United Kingdom, which has made centers focusing on the social shaping of ] a central part of their funding programs. | ||
==See also== | ==See also== | ||
{{Portal|Technology}} | {{Portal|Technology}} | ||
{{columns-list|colwidth=20em|* ] | |||
{{Div col}} | |||
* ] | * ] | ||
* {{Annotated link |Artificial intelligence and elections}} | |||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | |||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
* ] | |||
* ] | |||
* ] | * ] | ||
* '']'' | |||
* ] | |||
* ] | * ] | ||
* '']'' | |||
{{Div col end}} | |||
* ]}} | |||
==References== | ==References== | ||
{{ |
{{reflist}} | ||
==Sources== | |||
* {{cite book | url=https://books.google.com/books?id=r_p_Q6TUrQoC |title=Capturing Sound: How Technology Has Changed Music | last= Katz |first= Mark |year=2010 |publisher=University of California Press |isbn=9780520261051}} | |||
* {{cite book | last = McGinn | first = Robert E. | year = 1991 | title = Science, Technology, and Society | publisher = Prentice-Hall | location = Englewood Cliffs, N.J. | isbn = 0-13-794736-4 | url = https://archive.org/details/sciencetechnolog00mcgi }} | |||
* {{cite web |url=http://repository.library.cofc.edu/bitstream/handle/11249/225/7329.pdf?sequence=1 |title=''Early Twentieth Century Transportation Technology and the Creation of Modern American Culture '' |last=Puricelli |first=F |year=2011 |url-status=dead |archive-url=https://web.archive.org/web/20141103173937/http://repository.library.cofc.edu/bitstream/handle/11249/225/7329.pdf?sequence=1 |archive-date=2014-11-03 }} | |||
* {{cite book | url=https://books.google.com/books?id=pyY5EusnjBcC&pg=PA88 |title=Digital technology and mediation: A challenge to activity theory. ''Learning and expanding with activity theory'''| last= Rückriem |first= F |year=2009 |publisher=Cambridge University Press |isbn=9780521760751}} | |||
* {{cite web |url=http://www.rcss.ed.ac.uk/technology/SSTRP.html |title=What is the Social Shaping of Technology? (The Introduction to paper "The Social Shaping of Technology".) |access-date=August 10, 2006 |last1=Williams |first1=Robin |last2=Edge |first2=David |year=1996 |work=Research Policy 25 |url-status=dead |archive-url=https://web.archive.org/web/20060917083937/http://www.rcss.ed.ac.uk/technology/SSTRP.html |archive-date=September 17, 2006 }} | |||
==Further reading== | ==Further reading== | ||
* |
*{{cite book | last = Adas | first = Michael | year = 1989 | title = Machines as the Measure of Men: Science, Technology, and Ideologies of Western Dominance | publisher = Cornell University Press | location = Ithaca | isbn = 0-8014-2303-1 | url-access = registration | url = https://archive.org/details/machinesasmeasur0000adas }} | ||
* Bereano, P. (1977). ''Technology as a Social and Political Phenomenon''. Wiley & Sons, {{ISBN|0471068756}}. | |||
* {{cite web | url=http://www.rcss.ed.ac.uk/technology/SSTRP.html |title=What is the Social Shaping of Technology? (The Introduction to paper "The Social Shaping of Technology".) |accessdate=August 10, 2006 | last1= Williams |first1= Robin |last2=Edge |first2=David |year=1996 |work=Research Policy 25 |ref=harv}} | |||
*{{cite book | last = |
*{{cite book | last = Castells | first = Manuel | title = The Rise of the Network Society | edition = 2nd | year = 2009 | publisher = Wiley-Blackwell | location = Oxford, UK. | isbn = 978-1405196864}} | ||
* {{cite web|url=http://www.ascilite.org.au/ajet/ajet26/cochrane.html|title=Smartphones give you wings: Pedagogical affordances of mobile Web 2.0.|work=Australasian Journal of Educational Technology|last1=Cochrane|first1=T|last2=Bateman|first2=R|year=2010|access-date=2014-11-03|archive-date=2016-03-15|archive-url=https://web.archive.org/web/20160315035731/http://www.ascilite.org.au/ajet/ajet26/cochrane.html|url-status=dead}} | |||
*{{cite book | last = Adas | first = Michael | year = 1989 | title = Machines as the Measure of Men: Science, Technology, and Ideologies of Western Dominance | publisher = Cornell University Press | location = Ithaca | id = ISBN 0-8014-2303-1}} | |||
* Dickson, D. (1977). ''Politics of Alternative Technology''. Universe Publisher, {{ISBN|0876639171}}. | |||
* Easton, T. (2011). ''Taking Sides: Clashing Views in Science, Technology, and Society''. McGraw-Hill/Dushkin, {{ISBN|0078050278}}. | |||
* {{cite book |last=Harrington |first=Jan L. |date=2008 |url=https://books.google.com/books?id=vmInVZOTLH8C |title=Technology and Society |location=Sudbury, Massachusetts |publisher=Jones and Bartlett |isbn=9781449673918}} (] preview) | |||
* Huesemann, Michael H., and Joyce A. Huesemann (2011). , New Society Publishers, Gabriola Island, British Columbia, Canada, {{ISBN|0865717044}}, 464 pp. | |||
* ], Artemy Malkov, and Daria Khaltourina. {{ISBN|5-484-00414-4}} ] | |||
* MacKenzie, D., and J. Wajcman. (1999). ''The Social Shaping of Technology''. McGraw Hill Education, {{ISBN|0335199135}}. | |||
* Mesthene, E.G. (1970). ''Technological Change: Its Impact on Man and Society''. Harvard University Press, {{ISBN|0674872355}}. | |||
* Mumford, L. (2010). ''Technics and Civilization''. University of Chicago Press, {{ISBN|0226550273}}. | |||
*{{Noble1984}} | *{{Noble1984}} | ||
* Postman, N. (1993). ''Technopoly: The Surrender of Culture to Technology''. Vintage, {{ISBN|0679745408}}. | |||
*{{cite book | last = Smil | first = Vaclav | year = 1994 | title = Energy in World History | publisher = Westview Press | location = Boulder | id = ISBN 0-8133-1901-3 | pages = 259–267}} Cited at (accessed September 11, 2005). | |||
* Sclove, R.E. (1995). ''Democracy and Technology''. The Guilford Press, {{ISBN|089862861X}}. | |||
* ], Artemy Malkov, and Daria Khaltourina. ISBN 5-484-00414-4 ] | |||
* ] and Saul Singer, ''Start-up Nation: The Story of Israel's Economic Miracle,'' Hachette Book Group, New York, (2009) {{ISBN|0-446-54146-X}} | |||
* Shaw, Jeffrey M. (2014). ''Illusions of Freedom: Thomas Merton and Jacques Ellul on Technology and the Human Condition''. Eugene, OR: Wipf and Stock. {{ISBN|978-1625640581}}. | |||
* Sicilia, David B.; Wittner, David G. ''Strands of Modernization: The Circulation of Technology and Business Practices in East Asia, 1850–1920'' (University of Toronto Press, 2021) | |||
*{{cite book | last = Smil | first = Vaclav | year = 1994 | title = Energy in World History | publisher = Westview Press | location = Boulder | pages = 259–267 | isbn = 0-8133-1901-3}} Cited at (accessed September 11, 2005). | |||
* Volti, Rudi (2017). ''society and technological change''. New York: Worth. p. 3. {{ISBN|9781319058258}}. | |||
*{{cite book | last = Winston | first = Morton | editor = Morton Winston |editor2=Ralph Edelbach | title = Society, Ethics, and Technology | edition = 2nd | year = 2003 | publisher = ] | location = Belmont, Calif. | chapter = Children of invention | isbn = 0-534-58540-X}} | |||
==External links== | == External links == | ||
{{Commons category|Technology in society}} | |||
*, site for a radio program that tells the story of how our culture is formed by human creativity. | |||
* | * | ||
* | * | ||
* | |||
* | |||
* | |||
* | |||
* | |||
{{ |
{{Clear}} | ||
{{Science and technology studies}} | |||
{{Sociology2}} | |||
{{Authority control}} | |||
{{DEFAULTSORT:Technology And Society}} | {{DEFAULTSORT:Technology And Society}} | ||
] | ] | ||
] | ] | ||
] | ] | ||
] | |||
] | ] | ||
] | ] | ||
] | |||
] | |||
] | |||
] | |||
] |
Latest revision as of 14:30, 30 November 2024
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Technology, society and life or technology and culture refers to the inter-dependency, co-dependence, co-influence, and co-production of technology and society upon one another. Evidence for this synergy has been found since humanity first started using simple tools. The inter-relationship has continued as modern technologies such as the printing press and computers have helped shape society. The first scientific approach to this relationship occurred with the development of tektology, the "science of organization", in early twentieth century Imperial Russia. In modern academia, the interdisciplinary study of the mutual impacts of science, technology, and society, is called science and technology studies.
The simplest form of technology is the development and use of basic tools. The prehistoric discovery of how to control fire and the later Neolithic Revolution increased the available sources of food, and the invention of the wheel helped humans to travel in and control their environment. Developments in historic times have lessened physical barriers to communication and allowed humans to interact freely on a global scale, such as the printing press, telephone, and Internet.
Technology has developed advanced economies, such as the modern global economy, and has led to the rise of a leisure class. Many technological processes produce by-products known as pollution, and deplete natural resources to the detriment of Earth's environment. Innovations influence the values of society and raise new questions in the ethics of technology. Examples include the rise of the notion of efficiency in terms of human productivity, and the challenges of bioethics.
Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar reactionary movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people. However, proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition.
Pre-historical
The importance of stone tools, circa 2.5 million years ago, is considered fundamental in the human development in the hunting hypothesis.
Primatologist, Richard Wrangham, theorizes that the control of fire by early humans and the associated development of cooking was the spark that radically changed human evolution. Texts such as Guns, Germs, and Steel suggest that early advances in plant agriculture and husbandry fundamentally shifted the way that collective groups of individuals, and eventually societies, developed.
Modern examples and effects
Technology has taken a large role in society and day-to-day life. When societies know more about the development in a technology, they become able to take advantage of it. When an innovation achieves a certain point after it has been presented and promoted, this technology becomes part of the society. The use of technology in education provides students with technology literacy, information literacy, capacity for life-long learning, and other skills necessary for the 21st century workplace. Digital technology has entered each process and activity made by the social system. In fact, it constructed another worldwide communication system in addition to its origin.
A 1982 study by The New York Times described a technology assessment study by the Institute for the Future, "peering into the future of an electronic world." The study focused on the emerging videotex industry, formed by the marriage of two older technologies, communications, and computing. It estimated that 40 percent of American households will have two-way videotex service by the end of the century. By comparison, it took television 16 years to penetrate 90 percent of households from the time commercial service was begun.
Since the creation of computers achieved an entire better approach to transmit and store data. Digital technology became commonly used for downloading music and watching movies at home either by DVDs or purchasing it online. Digital music records are not quite the same as traditional recording media. Obviously, because digital ones are reproducible, portable and free.
Around the globe many schools have implemented educational technology in primary schools, universities and colleges. According to the statistics, in the early beginnings of 1990s the use of Internet in schools was, on average, 2–3%. Continuously, by the end of 1990s the evolution of technology increases rapidly and reaches to 60%, and by the year of 2008 nearly 100% of schools use Internet on educational form. According to ISTE researchers, technological improvements can lead to numerous achievements in classrooms. E-learning system, collaboration of students on project based learning, and technological skills for future results in motivation of students.
Although these previous examples only show a few of the positive aspects of technology in society, there are negative side effects as well. Within this virtual realm, social media platforms such as Instagram, Facebook, and Snapchat have altered the way Generation Y culture is understanding the world and thus how they view themselves. In recent years, there has been more research on the development of social media depression in users of sites like these. "Facebook Depression" is when users are so affected by their friends' posts and lives that their own jealousy depletes their sense of self-worth. They compare themselves to the posts made by their peers and feel unworthy or monotonous because they feel like their lives are not nearly as exciting as the lives of others.
Technology has a serious effect on youth's health. The overuse of technology is said to be associated with sleep deprivation which is linked to obesity and poor academic performance in the lives of adolescents.
Economics and technological development
In ancient history, economics began when spontaneous exchange of goods and services was replaced over time by deliberate trade structures. Makers of arrowheads, for example, might have realized they could do better by concentrating on making arrowheads and barter for other needs. Regardless of goods and services bartered, some amount of technology was involved—if no more than in the making of shell and bead jewelry. Even the shaman's potions and sacred objects can be said to have involved some technology. So, from the very beginnings, technology can be said to have spurred the development of more elaborate economies. Technology is seen as primary source in economic development.
Technology advancement and economic growth are related to each other. The level of technology is important to determine the economic growth. It is the technological process which keeps the economy moving.
In the modern world, superior technologies, resources, geography, and history give rise to robust economies; and in a well-functioning, robust economy, economic excess naturally flows into greater use of technology. Moreover, because technology is such an inseparable part of human society, especially in its economic aspects, funding sources for (new) technological endeavors are virtually illimitable. However, while in the beginning, technological investment involved little more than the time, efforts, and skills of one or a few men, today, such investment may involve the collective labor and skills of many millions.
Most recently, because of the COVID-19 pandemic, the proportion of firms employing advanced digital technology in their operations expanded dramatically. It was found that firms that adopted technology were better prepared to deal with the pandemic's disruptions. Adaptation strategies in the form of remote working, 3D printing, and the use of big data analytics and AI to plan activities to adapt to the pandemic were able to ensure positive job growth.
Funding
Consequently, the sources of funding for large technological efforts have dramatically narrowed, since few have ready access to the collective labor of a whole society, or even a large part. It is conventional to divide up funding sources into governmental (involving whole, or nearly whole, social enterprises) and private (involving more limited, but generally more sharply focused) business or individual enterprises.
Government funding for new technology
The government is a major contributor to the development of new technology in many ways. In the United States alone, many government agencies specifically invest billions of dollars in new technology.
In 1980, the UK government invested just over six million pounds in a four-year program, later extended to six years, called the Microelectronics Education Programme (MEP), which was intended to give every school in Britain at least one computer, software, training materials, and extensive teacher training. Similar programs have been instituted by governments around the world.
Technology has frequently been driven by the military, with many modern applications developed for the military before they were adapted for civilian use. However, this has always been a two-way flow, with industry often developing and adopting a technology only later adopted by the military.
Entire government agencies are specifically dedicated to research, such as America's National Science Foundation, the United Kingdom's scientific research institutes, America's Small Business Innovative Research effort. Many other government agencies dedicate a major portion of their budget to research and development.
Private funding
Research and development is one of the smallest areas of investments made by corporations toward new and innovative technology.
Many foundations and other nonprofit organizations contribute to the development of technology. In the OECD, about two-thirds of research and development in scientific and technical fields is carried out by industry, and 98 percent and 10 percent, respectively, by universities and government. But in poorer countries such as Portugal and Mexico the industry contribution is significantly less. The U.S. government spends more than other countries on military research and development, although the proportion has fallen from about 30 percent in the 1980s to less than 10 percent.
The 2009 founding of Kickstarter allows individuals to receive funding via crowdsourcing for many technology related products including both new physical creations as well as documentaries, films, and web-series that focus on technology management. This circumvents the corporate or government oversight most inventors and artists struggle against but leaves the accountability of the project completely with the individual receiving the funds.
Other economic considerations
- Appropriate technology, sometimes called "intermediate" technology, more of an economics concern, refers to compromises between central and expensive technologies of developed nations and those that developing nations find most effective to deploy given an excess of labour and scarcity of cash.
- Persuasion technology: In economics, definitions or assumptions of progress or growth are often related to one or more assumptions about technology's economic influence. Challenging prevailing assumptions about technology and its usefulness has led to alternative ideas like uneconomic growth or measuring well-being. These, and economics itself, can often be described as technologies, specifically, as persuasion technology.
- Technocapitalism
- Technological diffusion
- Technology acceptance model
- Technology life cycle
- Technology transfer
Relation to science
The relationship between science and technology can be complex. Science may drive technological development, by generating demand for new instruments to address a scientific question, or by illustrating technical possibilities previously unconsidered. An environment of encouraged science will also produce scientists and engineers, and technical schools, which encourages innovation and entrepreneurship that are capable of taking advantage of the existing science. In fact, it is recognized that "innovators, like scientists, do require access to technical information and ideas" and "must know enough to recognize useful knowledge when they see it." Science spillover also contributes to greater technological diffusion. Having a strong policy contributing to basic science allows a country to have access to a strong a knowledge base that will allow them to be "ready to exploit unforeseen developments in technology," when needed in times of crisis.
For most of human history, technological improvements were arrived at by chance, trial and error, or spontaneous inspiration. Stokes referred to these innovators as "'improvers of technology'…who knew no science and would not have been helped by it if they had." This idea is supported by Diamond who further indicated that these individuals are "more likely to achieve a breakthrough if not hold the currently dominant theory in too high regard." Research and development directed towards immediate technical application is a relatively recent occurrence, arising with the Industrial Revolution and becoming commonplace in the 20th century. In addition, there are examples of economies that do not emphasize science research that have been shown to be technological leaders despite this. For example, the United States relied on the scientific output of Europe in the early 20th century, though it was regarded as a leader in innovation. Another example is the technological advancement of Japan in the latter part of the same century, which emphasized more applied science (directly applicable to technology).
Though the link between science and technology has need for more clarity, what is known is that a society without sufficient building blocks to encourage this link are critical. A nation without emphasis on science is likely to eventually stagnate technologically and risk losing competitive advantage. The most critical areas for focus by policymakers are discouraging too many protections on job security, leading to less mobility of the workforce, encouraging the reliable availability of sufficient low-cost capital for investment in R&D, by favorable economic and tax policies, and supporting higher education in the sciences to produce scientists and engineers.
Sociological factors and effects
See also: Social construction of technologyValues
The implementation of technology influences the values of a society by changing expectations and realities. The implementation of technology is also influenced by values. There are (at least) three major, interrelated values that inform, and are informed by, technological innovations:
- Mechanistic world view: Viewing the universe as a collection of parts (like a machine), that can be individually analyzed and understood. This is a form of reductionism that is rare nowadays. However, the "neo-mechanistic world view" holds that nothing in the universe cannot be understood by the human intellect. Also, while all things are greater than the sum of their parts (e.g., even if we consider nothing more than the information involved in their combination), in principle, even this excess must eventually be understood by human intelligence. That is, no divine or vital principle or essence is involved.
- Efficiency: A value, originally applied only to machines, but now applied to all aspects of society, so that each element is expected to attain a higher and higher percentage of its maximal possible performance, output, or ability.
- Social progress: The belief that there is such a thing as social progress, and that, in the main, it is beneficent. Before the Industrial Revolution, and the subsequent explosion of technology, almost all societies believed in a cyclical theory of social movement and, indeed, of all history and the universe. This was, obviously, based on the cyclicity of the seasons, and an agricultural economy's and society's strong ties to that cyclicity. Since much of the world is closer to their agricultural roots, they are still much more amenable to cyclicity than progress in history. This may be seen, for example, in Prabhat Rainjan Sarkar's modern social cycles theory. For a more westernized version of social cyclicity, see Generations: The History of America's Future, 1584 to 2069 (Paperback) by Neil Howe and William Strauss; Harper Perennial; Reprint edition (September 30, 1992); ISBN 0-688-11912-3, and subsequent books by these authors.
Institutions and groups
Technology often enables organizational and bureaucratic group structures that otherwise and heretofore were simply not possible. Examples of this might include:
- The rise of very large organizations: e.g., governments, the military, health and social welfare institutions, supranational corporations.
- The commercialization of leisure: sports events, products, etc. (McGinn)
- The almost instantaneous dispersal of information (especially news) and entertainment around the world.
International
Technology enables greater knowledge of international issues, values, and cultures. Due mostly to mass transportation and mass media, the world seems to be a much smaller place, due to the following:
- Globalization of ideas
- Embeddedness of values
- Population growth and control
Environment
See also: Environmental technology, Design, and Human impact on the environment § Technology impactsTechnology can provide understanding of and appreciation for the world around us, enable sustainability and improve environmental conditions but also degrade the environment and facilitate unsustainability.
Some polities may conclude that certain technologies' environmental detriments and other risks to outweigh their benefits, especially if or once substitutive technologies have been or can be invented, leading to directed technological phase-outs such as the fossil fuel phase-out and the nuclear fission power phase-out.
Most modern technological processes produce unwanted byproducts in addition to the desired products, which are known as waste and pollution. While material waste is often re-used in industrial processes, many processes lead to a release into the environment with negative environmental side effects, such as pollution and lack of sustainability.
- Development and technologies' implications
Some technologies are designed specifically with the environment in mind, but most are designed first for financial or economic effects such as the free market's profit motive. The effects of a specific technology is often not only dependent on how it is used – e.g. its usage context – but also predetermined by the technology's design or characteristics, as in the theory of "the medium is the message" which relates to media-technologies in specific. In many cases, such predetermined or built-in implications may vary depending on factors of contextual contemporary conditions such as human biology, international relations and socioeconomics. However, many technologies may be harmful to the environment only when used in specific contexts or for specific purposes that not necessarily result from the nature of the technology.
- Values
Historically, from the perspective of economic agent-centered responsibility, an increased, as of 2021 commonly theoretic and informal, value of healthy environments and more efficient productive processes may be the result of an increase in the wealth of society. Once people are able to provide for their basic needs, they can – and are often facilitated to – not only afford more environmentally destructive products and services, but could often also be able to put an – e.g. individual morality-motivated – effort into valuing less tangible goods such as clean air and water if product-, alternatives-, consequences- and services-information are adequate.
From the perspective of systems science and cybernetics, economies (systems) have economic actors and sectors make decisions based upon a range of system-internal factors with structures – or sometimes forms of leveraging existing structures – that lead to other outcomes being the result of other architectures – or systems-level configurations of the existing designs – which are considered to be possible in the sense that such could be modeled, tested, priorly assessed, developed and studied.
Negative effects on the environment
The effects of technology on the environment are both obvious and subtle. The more obvious effects include the depletion of nonrenewable natural resources (such as petroleum, coal, ores), and the added pollution of air, water, and land. The more subtle effects may include long-term effects (e.g. global warming, deforestation, natural habitat destruction, coastal wetland loss.)
- Pollution and energy requirements
Each wave of technology creates a set of waste previously unknown by humans: toxic waste, radioactive waste, electronic waste, plastic waste, space waste.
Electronic waste creates direct environmental impacts through the production and maintaining the infrastructure necessary for using technology and indirect impacts by breaking barriers for global interaction through the use of information and communications technology. Certain usages of information technology and infrastructure maintenance consume energy that contributes global warming. This includes software-designs such as international cryptocurrencies and most hardware powered by nonrenewable sources.
One of the main problems is the lack of societal decision-making processes – such as the contemporary economy and politics – that lead to sufficient implementation of existing as well as potential efficient ways to remove, recycle and prevent these pollutants on a large scale expediently.
Digital technologies, however, are important in achieving the green transition and specifically, the SDGs and European Green Deal's environmental targets. Emerging digital technologies, if correctly applied, have the potential to play a critical role in addressing environmental issues. A few examples are: smart city mobility, precision agriculture, sustainable supply chains, environmental monitoring, and catastrophe prediction.
Construction and shaping
Choice
Society also controls technology through the choices it makes. These choices not only include consumer demands; they also include:
- the channels of distribution, how do products go from raw materials to consumption to disposal;
- the cultural beliefs regarding style, freedom of choice, consumerism, materialism, etc.;
- the economic values we place on the environment, individual wealth, government control, capitalism, etc.
According to Williams and Edge, the construction and shaping of technology includes the concept of choice (and not necessarily conscious choice). Choice is inherent in both the design of individual artifacts and systems, and in the making of those artifacts and systems.
The idea here is that a single technology may not emerge from the unfolding of a predetermined logic or a single determinant, technology could be a garden of forking paths, with different paths potentially leading to different technological outcomes. This is a position that has been developed in detail by Judy Wajcman. Therefore, choices could have differing implications for society and for particular social groups.
Autonomous technology
In one line of thought, technology develops autonomously, in other words, technology seems to feed on itself, moving forward with a force irresistible by humans. To these individuals, technology is "inherently dynamic and self-augmenting."
Jacques Ellul is one proponent of the irresistibleness of technology to humans. He espouses the idea that humanity cannot resist the temptation of expanding our knowledge and our technological abilities. However, he does not believe that this seeming autonomy of technology is inherent. But the perceived autonomy is because humans do not adequately consider the responsibility that is inherent in technological processes.
Langdon Winner critiques the idea that technological evolution is essentially beyond the control of individuals or society in his book Autonomous Technology. He argues instead that the apparent autonomy of technology is a result of "technological somnambulism," the tendency of people to uncritically and unreflectively embrace and utilize new technologies without regard for their broader social and political effects.
In 1980, Mike Cooley published a critique of the automation and computerisation of engineering work under the title "Architect or Bee? The human/technology relationship". The title alludes to a comparison made by Karl Marx, on the issue of the creative achievements of human imaginative power. According to Cooley ""Scientific and technological developments have invariably proved to be double-edged. They produced the beauty of Venice and the hideousness of Chernobyl; the caring therapies of Rontgen's X-rays and the destruction of Hiroshima,"
Government
Individuals rely on governmental assistance to control the side effects and negative consequences of technology.
- Supposed independence of government. An assumption commonly made about the government is that their governance role is neutral or independent. However, some argue that governing is a political process, so government will be influenced by political winds of influence. In addition, because government provides much of the funding for technological research and development, it has a vested interest in certain outcomes. Other point out that the world's biggest ecological disasters, such as the Aral Sea, Chernobyl, and Lake Karachay have been caused by government projects, which are not accountable to consumers.
- Liability. One means for controlling technology is to place responsibility for the harm with the agent causing the harm. Government can allow more or less legal liability to fall to the organizations or individuals responsible for damages.
- Legislation. A source of controversy is the role of industry versus that of government in maintaining a clean environment. While it is generally agreed that industry needs to be held responsible when pollution harms other people, there is disagreement over whether this should be prevented by legislation or civil courts, and whether ecological systems as such should be protected from harm by governments.
Recently, the social shaping of technology has had new influence in the fields of e-science and e-social science in the United Kingdom, which has made centers focusing on the social shaping of science and technology a central part of their funding programs.
See also
- Anthropology of technology
- Appropriate technology
- Artificial intelligence and elections – Use and impact of AI on political elections
- Critique of technology
- Cultural lag
- High technology
- History of science and technology
- Information culture
- Knowledge economy
- List of emerging technologies
- The Lucas Plan
- Technological convergence
- Technological superpowers
- Technopoly: the Surrender of Culture to Technology
- Theories of technology
References
- Gare, Arran (November 2000). "Aleksandr Bogdanov and Systems Theory". Democracy & Nature. 6 (3): 341–359. doi:10.1080/10855660020020230. hdl:1959.3/751.
- Catching Fire: How Cooking Made Us Human
- ^ (Puricelli 2011, p. 4)
- (Rückriem 2009, p. 88)
- (Katz 2010, p. 185)
- Lynden, Burke (12 May 2011). "Generation Y Heavily Dependent On Technology, Promotes Laziness". The Jambar. Retrieved 28 October 2015.
- Saudi med J. 2016 pages 436–439
- See, e.g., Andrey Korotayev, Artemy Malkov, and Daria Khaltourina. Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth ISBN 5-484-00414-4
- Bank, European Investment (2022-05-05). Digitalisation in Europe 2021-2022: Evidence from the EIB Investment Survey. European Investment Bank. ISBN 978-92-861-5233-7.
- "Digital transformation: importance, benefits and EU policy - EU monitor". www.eumonitor.eu. Retrieved 2022-05-31.
- "Productivity gains from teleworking in the post COVID-19 era: How can public policies make it happen?". OECD. Retrieved 2022-05-31.
- "Key Figures" (PDF). OECD. Archived from the original (PDF) on July 23, 2006.
- Marburger, John H. (2011). "Science, technology and innovation in a 21st century context" (PDF). Policy Sciences. 44 (3). doi:10.1007/s11077-011-9137-3.
- Otsuka, Kozo. 2007. "Role of Science and Technology on Knowledge Production Function: The Case of Japan and USA". International Journal of Technology, Knowledge and Society 3 (4): 17–26. doi:10.18848/1832-3669/CGP/v03i04/55764.
- ^ Stokes, Donald E. 1997. Pasteur's Quadrant : Basic Science and Technological Innovation. Print. Washington, D.C., United States of America: Brookings Institution Press.
- Diamond, Arthur M, Jr. 2019. Openness to Creative Destruction: Sustaining Innovative Dynamism. Kindle. New York, United States of America: Oxford University Press.
- Soete, Luc. 2002. "The European Research Area: Perspectives and Opportunities". Prepared for the International Workshop on Research Incentives and Institutions, Italian Ministry of Economics and Finance. Paper. Rome, Italy.
- ^ Aghion, Phillippe, Paul A David, and Dominique Foray. 2009. "Science, Technology and Innovation for Economic Growth: Linking Policy Research and Practice in 'STIG Systems'". Research Policy, no. 38 (March).
- (McGinn 1991)
- Galtung, Johan. "Prabhat rainjan sarkar's social cycles, world unity and peace; Renaissance 2000 honoring Sarkar's 75th Anniversary, LA 1". Metafuture.org. Retrieved July 6, 2016.
- "21st century information technology revolution". ubiquity.acm.org. 4 March 2021.
- Martin, Kirsten; Shilton, Katie; Smith, Jeffery (2019-12-01). "Business and the Ethical Implications of Technology: Introduction to the Symposium". Journal of Business Ethics. 160 (2): 307–317. doi:10.1007/s10551-019-04213-9. ISSN 1573-0697.
- Higón, D. A., Gholami, R., Shirazi, F. , "ICT and environmental sustainability: A global perspective", Telematics and Informatics, 2017
- Jiang, Shangrong; Li, Yuze; Lu, Quanying; Hong, Yongmiao; Guan, Dabo; Xiong, Yu; Wang, Shouyang (6 April 2021). "Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China". Nature Communications. 12 (1): 1938. Bibcode:2021NatCo..12.1938J. doi:10.1038/s41467-021-22256-3. ISSN 2041-1723. PMC 8024295. PMID 33824331. Available under CC BY 4.0.
- Bank, European Investment (2022-05-05). Digitalisation in Europe 2021-2022: Evidence from the EIB Investment Survey. European Investment Bank. ISBN 978-92-861-5233-7.
- "The potential of digital business models in the new energy economy – Analysis". IEA. 7 January 2022. Retrieved 2022-06-05.
- (Williams & Edge 1996)
- (McGinn 1991, p. 73)
- cf Karl Marx, Capital, Volume I
- "Expert stresses designs which are orientated towards people". The Irish Times. Retrieved 2023-08-28.
Sources
- Katz, Mark (2010). Capturing Sound: How Technology Has Changed Music. University of California Press. ISBN 9780520261051.
- McGinn, Robert E. (1991). Science, Technology, and Society. Englewood Cliffs, N.J.: Prentice-Hall. ISBN 0-13-794736-4.
- Puricelli, F (2011). "Early Twentieth Century Transportation Technology and the Creation of Modern American Culture " (PDF). Archived from the original (PDF) on 2014-11-03.
- Rückriem, F (2009). Digital technology and mediation: A challenge to activity theory. Learning and expanding with activity theory'. Cambridge University Press. ISBN 9780521760751.
- Williams, Robin; Edge, David (1996). "What is the Social Shaping of Technology? (The Introduction to paper "The Social Shaping of Technology".)". Research Policy 25. Archived from the original on September 17, 2006. Retrieved August 10, 2006.
Further reading
- Adas, Michael (1989). Machines as the Measure of Men: Science, Technology, and Ideologies of Western Dominance. Ithaca: Cornell University Press. ISBN 0-8014-2303-1.
- Bereano, P. (1977). Technology as a Social and Political Phenomenon. Wiley & Sons, ISBN 0471068756.
- Castells, Manuel (2009). The Rise of the Network Society (2nd ed.). Oxford, UK.: Wiley-Blackwell. ISBN 978-1405196864.
- Cochrane, T; Bateman, R (2010). "Smartphones give you wings: Pedagogical affordances of mobile Web 2.0". Australasian Journal of Educational Technology. Archived from the original on 2016-03-15. Retrieved 2014-11-03.
- Dickson, D. (1977). Politics of Alternative Technology. Universe Publisher, ISBN 0876639171.
- Easton, T. (2011). Taking Sides: Clashing Views in Science, Technology, and Society. McGraw-Hill/Dushkin, ISBN 0078050278.
- Harrington, Jan L. (2008). Technology and Society. Sudbury, Massachusetts: Jones and Bartlett. ISBN 9781449673918. (Google Books preview)
- Huesemann, Michael H., and Joyce A. Huesemann (2011). Technofix: Why Technology Won't Save Us or the Environment, New Society Publishers, Gabriola Island, British Columbia, Canada, ISBN 0865717044, 464 pp.
- Andrey Korotayev, Artemy Malkov, and Daria Khaltourina. Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth ISBN 5-484-00414-4 ]
- MacKenzie, D., and J. Wajcman. (1999). The Social Shaping of Technology. McGraw Hill Education, ISBN 0335199135.
- Mesthene, E.G. (1970). Technological Change: Its Impact on Man and Society. Harvard University Press, ISBN 0674872355.
- Mumford, L. (2010). Technics and Civilization. University of Chicago Press, ISBN 0226550273.
- Noble, David F. (1984), Forces of Production: A Social History of Industrial Automation, New York, New York, US: Knopf, ISBN 978-0-394-51262-4, LCCN 83048867.
- Postman, N. (1993). Technopoly: The Surrender of Culture to Technology. Vintage, ISBN 0679745408.
- Sclove, R.E. (1995). Democracy and Technology. The Guilford Press, ISBN 089862861X.
- Dan Senor and Saul Singer, Start-up Nation: The Story of Israel's Economic Miracle, Hachette Book Group, New York, (2009) ISBN 0-446-54146-X
- Shaw, Jeffrey M. (2014). Illusions of Freedom: Thomas Merton and Jacques Ellul on Technology and the Human Condition. Eugene, OR: Wipf and Stock. ISBN 978-1625640581.
- Sicilia, David B.; Wittner, David G. Strands of Modernization: The Circulation of Technology and Business Practices in East Asia, 1850–1920 (University of Toronto Press, 2021) online review
- Smil, Vaclav (1994). Energy in World History. Boulder: Westview Press. pp. 259–267. ISBN 0-8133-1901-3. Cited at Technology Chronology (accessed September 11, 2005).
- Volti, Rudi (2017). society and technological change. New York: Worth. p. 3. ISBN 9781319058258.
- Winston, Morton (2003). "Children of invention". In Morton Winston; Ralph Edelbach (eds.). Society, Ethics, and Technology (2nd ed.). Belmont, Calif.: Thomson/Wadsworth. ISBN 0-534-58540-X.
External links
- Science, Technology, and Society: An International Journal
- Scientists for Global Responsibility
- Technology and Society Books and Journal Articles
- Technology and Society Book Reviews
- The Loka Institute
- The New Atlantis: A Journal of Technology and Society
- Union of Concerned Scientists
Sociology | |||
---|---|---|---|
General aspects | |||
Perspectives | |||
Related fields and subfields |
| ||
Major theorists | |||
Methods | |||
Key themes |
| ||
|