Misplaced Pages

Triruthenium dodecacarbonyl: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 11:03, 3 May 2011 editWikitanvirBot (talk | contribs)144,145 editsm r2.7.1) (robot Modifying: ja:ドデカカルボニル三ルテニウム← Previous edit Latest revision as of 20:27, 16 November 2024 edit undoSmokefoot (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers75,035 edits Reactions: ref 
(53 intermediate revisions by 34 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| Watchedfields = changed
| verifiedrevid = 385833358 | verifiedrevid = 428796625
| Name = Triruthenium dodecacarbonyl | Name = Triruthenium dodecacarbonyl
| ImageFile = Ru3(CO)12.png
| ImageFile = Trirutheniumdodecacarbonyl.svg
| ImageSize = 200px
| ImageSize =
| ImageFile1 = Triruthenium-dodecacarbonyl-from-xtal-3D-balls.png | ImageFile1 = Triruthenium-dodecacarbonyl-from-xtal-3D-balls.png
| IUPACName = ''cyclo''-tris(tetracarbonylruthenium)<br/>(3 ''Ru''—''Ru'')
| ImageFile2 = FreshRu3(CO)12.jpg
| OtherNames = Ruthenium carbonyl
| ImageSize2 = 244
| Section1 = {{Chembox Identifiers
| IUPACName = ''cyclo''-tris(tetracarbonylruthenium)<wbr/>(3 ''Ru''—''Ru'')
| CASNo = 15243-33-1
| OtherNames = Ruthenium carbonyl
| CASNo_Ref = {{cascite}}
| Section1 = {{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 15243-33-1
| ChemSpiderID = 24589240
| EC_number = 239-287-4
| PubChem = 6096991
| StdInChI=1S/12CO.3Ru/c12*1-2;;;
| StdInChIKey = NQZFAUXPNWSLBI-UHFFFAOYSA-N
| SMILES = 1(C#)(C#)(C#)(C#)(C#)(C#)(C#)(C#)1(C#)(C#)(C#)(C#)
}} }}
| Section2 = {{Chembox Properties | Section2 = {{Chembox Properties
| Formula = C<sub>12</sub>O<sub>12</sub>Ru<sub>3</sub> | Formula = C<sub>12</sub>O<sub>12</sub>Ru<sub>3</sub>
| MolarMass = 639.33 g/mol | MolarMass = 639.33 g/mol
| Appearance = orange solid | Appearance = orange solid
| Density = 2.48 g/cm<sup>3</sup> | Density = 2.48 g/cm<sup>3</sup>
| Solubility = insoluble | Solubility = insoluble
| SolubleOther = soluble | SolubleOther = soluble
| Solvent = organic solvents | Solvent = organic solvents
| MeltingPt = 224 °C | MeltingPtC = 224
| BoilingPt = sublimes in vacuum | BoilingPt = sublimes in vacuum
}} }}
| Section3 = {{Chembox Structure | Section3 = {{Chembox Structure
| CrystalStruct = | CrystalStruct =
| MolShape = ''D<sub>3h</sub>'' cluster | MolShape = ''D<sub>3h</sub>'' cluster
| Dipole = 0 ] | Dipole = 0 ]
}} }}
| Section7 = {{Chembox Hazards | Section7 = {{Chembox Hazards
| ExternalMSDS = | ExternalSDS =
| MainHazards = Toxic | MainHazards = Toxic, ] Source
| GHSPictograms = {{GHS07}}
| RPhrases =
| GHSSignalWord = Warning
| SPhrases =
| HPhrases = {{H-phrases|302|315|319|332|335}}
| PPhrases = {{P-phrases|261|264|270|271|280|301+312|302+352|304+312|304+340|305+351+338|312|321|330|332+313|337+313|362|403+233|405|501}}
}} }}
| Section8 = {{Chembox Related | Section8 = {{Chembox Related
| OtherCpds = ]<br/>] | OtherCompounds = ]<br/>]
}} }}
}} }}


Triruthenium dodecacarbonyl is the ] with the formula Ru<sub>3</sub>(CO)<sub>12</sub>. This orange-colored ] is a precursor to other ]s. '''Triruthenium dodecacarbonyl''' is the ] with the formula Ru<sub>3</sub>(CO)<sub>12</sub>. Classified as ], it is a dark orange-colored solid that is soluble in nonpolar organic solvents. The compound serves as a precursor to other ]s.


==Structure and synthesis== ==Structure and synthesis==
The cluster has ''D<sub>3h</sub>'' ], consisting of an ] of Ru atoms, each of which bears two axial and two equatorial CO ligands.<ref>Slebodnick, C.; Zhao, J.; Angel, R.; Hanson, B. E.; Song, Y.; Liu, Z.; Hemley, R. J., "High Pressure Study of Ru<sub>3</sub>(CO)<sub>12</sub> by X-ray Diffraction, Raman, and Infrared Spectroscopy", Inorg. Chem., 2004, 43, 5245-52. {{doi|10.1021/ic049617y }}</ref> ] has the same structure, whereas ] is different, with two bridging CO ligands, resulting in C<sub>2v</sub> symmetry. The cluster has ''D<sub>3h</sub>'' ], consisting of an ] of Ru atoms, each of which bears two axial and two equatorial CO ligands. The Ru-Ru distance is 284 ].<ref>{{cite journal|last1=Slebodnick|first1=C.|last2=Zhao|first2=J.|last3=Angel|first3=R.|last4=Hanson|first4=B. E.|last5=Song|first5=Y.|last6=Liu|first6=Z.|last7=Hemley|first7=R. J.|title=High Pressure Study of Ru<sub>3</sub>(CO)<sub>12</sub> by X-ray Diffraction, Raman, and Infrared Spectroscopy|journal=Inorg. Chem.|year=2004|volume= 43|issue=17 |pages=5245–5252 |doi=10.1021/ic049617y |pmid=15310201 }}</ref> ] has the same structure. In ], two CO ligands are ], resulting in C<sub>2v</sub> symmetry. In solution, {{chem2|Ru3(CO)12}} is ] as indicated by the observation of a single CO signal in the room temperature <sup>13</sup>C NMR spectrum. The barrier is estimated at 20 kJ/mol<ref>{{cite journal |doi=10.1039/A608514H |title=Dynamics and fluxionality in metal carbonyl clusters: Some old and new problems |date=1997 |last1=Farrugia |first1=Louis J. |journal=Journal of the Chemical Society, Dalton Transactions |issue=11 |pages=1783–1792 }}</ref>


Ru<sub>3</sub>(CO)<sub>12</sub> is prepared by treating solutions of ] with ], usually under high pressure.<ref>Bruce, M. I.; Jensen, C. M.; Jones, N. L. “Dodecacarbonyltriruthenium, Ru<sub>3</sub>(CO)<sub>12</sub>” Inorganic Syntheses, 1989, volume 26, pages 259-61. ISBN 0-471-50485-8.</ref><ref>M. Faure, C. Saccavini, G. Lavigne “Dodecacarbonyltriruthenium, Ru<sub>3</sub>(CO)<sub>12</sub>” Inorganic Syntheses, 2004 Vol 34, p. 110. ISBN 0-471-64750-0.</ref> The stoichiometry of the reaction is uncertain, one possibility being the following: {{chem2|Ru3(CO)12}} is prepared by treating solutions of ] with ] in the presence of a base. ] is an intermediate.<ref>{{cite book|last1=Bruce|first1=M. I.|last2=Jensen|first2=C. M.|last3=Jones|first3=N. L.|chapter=Polynuclear Ruthenium Complexes |title=Inorganic Syntheses|year=1989|volume=26|pages=259–61|doi=10.1002/9780470132579.ch45|isbn=978-0-471-50485-6 }}</ref><ref>{{cite book|first1=Matthieu|last1=Fauré|first2=Catherine|last2=Saccavini|first3=Guy|last3=Lavigne|chapter=Transition Metal Carbonyl Compounds |title=Inorganic Syntheses|doi=10.1002/0471653683.ch3|page=110|volume=34|year=2004|isbn=978-0-471-64750-8 }}</ref> The stoichiometry of the reaction is uncertain, one possibility being the following:
:6 RuCl<sub>3</sub> + 33 CO + 18 CH<sub>3</sub>OH → 2 Ru<sub>3</sub>(CO)<sub>12</sub> + 9 ] + 18 HCl :6 RuCl<sub>3</sub> + 33 CO + 18 CH<sub>3</sub>OH → 2 Ru<sub>3</sub>(CO)<sub>12</sub> + 9 ] + 18 HCl


==Reactions== ==Reactions==
The chemical properties of Ru<sub>3</sub>(CO)<sub>12</sub> have been widely studied, and the cluster has been converted to hundreds of derivatives. High pressures of CO convert the cluster to the monomeric pentacarbonyl, which reverts back to the parent cluster upon standing. The chemical properties of Ru<sub>3</sub>(CO)<sub>12</sub> have been widely studied, and the cluster has been converted to hundreds of derivatives. High pressures of CO convert the cluster to the monomeric ], which reverts to the parent cluster upon standing.
:Ru<sub>3</sub>(CO)<sub>12</sub> + 3 CO <math>\overrightarrow{\leftarrow}</math> 3 Ru(CO)<sub>5</sub> K<sub>eq</sub> = 3.3 x 10<sup>-7</sup> mol dm<sup>–3</sup> at room temperature :Ru<sub>3</sub>(CO)<sub>12</sub> + 3 CO {{eqm}} 3 Ru(CO)<sub>5</sub> K<sub>eq</sub> = 3.3 x 10<sup>−7</sup> mol dm<sup>−3</sup> at room temperature
The instability of Ru(CO)<sub>5</sub> contrasts with the robustness of the corresponding ]. The ] of Ru(CO)<sub>5</sub> into Ru<sub>3</sub>(CO)<sub>12</sub> proceeds via initial, rate-limiting loss of CO to give the unstable, coordinatively unsaturated species Ru(CO)<sub>4</sub>. This tetracarbonyl binds Ru(CO)<sub>5</sub>, initiating the condensation.<ref>Hastings, W. R.; Roussel, M. R.; Baird, M. C. “Mechanism of the conversion of into Journal of the Chemical Society, Dalton Transactions, 1990, pages 203-205. DOI: 10.1039/DT9900000203</ref> The instability of Ru(CO)<sub>5</sub> contrasts with the robustness of the corresponding ]. The ] of Ru(CO)<sub>5</sub> into Ru<sub>3</sub>(CO)<sub>12</sub> proceeds via initial, rate-limiting loss of CO to give the unstable, coordinatively unsaturated species Ru(CO)<sub>4</sub>. This tetracarbonyl binds Ru(CO)<sub>5</sub>, initiating the condensation.<ref>Hastings, W. R.; Roussel, M. R.; Baird, M. C. "Mechanism of the conversion of into " Journal of the Chemical Society, Dalton Transactions, 1990, pages 203-205. {{doi|10.1039/DT9900000203}}</ref>


Upon warming under a pressure of ], Ru<sub>3</sub>(CO)<sub>12</sub> converts to the ]l cluster H<sub>4</sub>Ru<sub>4</sub>(CO)<sub>12</sub>.<ref>Bruce, M. I.; Williams, M. L. “Dodecacarbonyl(tetrahydrido)tetraruthenium, Ru<sub>4</sub>(μ-H)<sub>4</sub>(CO)<sub>12</sub> Inorganic Syntheses, 1989, volume 26, pages 262-63. ISBN 0-471-50485-8.</ref> Ru<sub>3</sub>(CO)<sub>12</sub> undergoes substitution reactions with Lewis bases: Upon warming under a pressure of ], Ru<sub>3</sub>(CO)<sub>12</sub> converts to the ] cluster H<sub>4</sub>Ru<sub>4</sub>(CO)<sub>12</sub>.<ref>Bruce, M. I.; Williams, M. L. "Dodecacarbonyl(tetrahydrido)tetraruthenium, Ru<sub>4</sub>(μ-H)<sub>4</sub>(CO)<sub>12</sub>" Inorganic Syntheses, 1989, volume 26, pages 262-63. {{ISBN|0-471-50485-8}}.</ref> Ru<sub>3</sub>(CO)<sub>12</sub> undergoes substitution reactions with Lewis bases:
:Ru<sub>3</sub>(CO)<sub>12</sub> + n L &rarr; Ru<sub>3</sub>(CO)<sub>12-n</sub>L<sub>n</sub> + n CO (n = 1, 2, or 3) :Ru<sub>3</sub>(CO)<sub>12</sub> + ''n'' L Ru<sub>3</sub>(CO)<sub>12-''n''</sub>L<sub>''n''</sub> + ''n'' CO (''n'' = 1, 2, or 3)
where L is a tertiary ] or an ]. where L is a tertiary ] or an ]. It forms complexes with ].<ref>{{cite journal|first1 =Yukihiro|last1=Motoyama |first2=Chikara|last2=Itonaga |first3=Toshiki |last3=Ishida |first4=Mikihiro |last4=Takasaki |first5=Hideo|last5=Nagashima
| year=2005|title=Catalytic Reduction of Amides to Amines with Hydrosilanes Using a Triruthenium Cluster as the Catalyst |volume=82|at=188|doi= 10.15227/orgsyn.082.0188|journal=Organic Syntheses}}</ref>

{{chem2|Ru3(CO)12}} forms a variety of alkene complexes, some where the Ru3 core remains intact but often with fragmentation. Upon treatment with ] gives the monoRu tricarbonyl derivative:<ref>{{cite book|volume=28|first1=A. J. P.|last1=Domingos|first2=J. A. S.|last2=Howell|first3=B. F. G.|last3=Johnson|first4=J.|last4=Lewis|title=Inorganic Syntheses |chapter=Reagents for the Synthesis of η-Diene Complexes of Tricarbonnyliron and Tricarbonylruthenium |pages=52–55|year=1990|doi=10.1002/9780470132593.ch11|isbn=978-0-471-52619-3 }}</ref>
:{{chem2|Ru3(CO)12 + 3 C8H12 -> 3 Ru(C8H12)(CO)3 + 3 CO}}
Upon ], Ru<sub>3</sub>(CO)<sub>12</sub> converts to an insoluble polymeric form.<ref>{{cite journal |doi=10.1021/ic00236a054 |title=A new form of ruthenium tetracarbonyl |date=1986 |last1=Hastings |first1=W. Ross |last2=Baird |first2=Michael C. |journal=Inorganic Chemistry |volume=25 |issue=16 |pages=2913–2915 }}</ref>


===Ru-carbido clusters=== ===Ru-carbido clusters===
At high temperatures, Ru<sub>3</sub>(CO)<sub>12</sub> converts to a series of clusters that contain interstitial ] ligands. These include Ru<sub>6</sub>C(CO)<sub>17</sub> and Ru<sub>5</sub>C(CO)<sub>15</sub>. Anionic carbido clusters are also known, including <sup>2-</sup> and the ] cluster <sup>2-</sup>.<ref>Nicholls, J. N.; Vargas, M. D. “Carbido-Carbonyl Ruthenium Cluster Complexes” Inorganic Syntheses, 1989, volume 26, pages 280-85. ISBN 0-471-50485-8ISBN.</ref> At high temperatures, Ru<sub>3</sub>(CO)<sub>12</sub> converts to a series of clusters that contain interstitial ] ligands. These include Ru<sub>6</sub>C(CO)<sub>17</sub> and Ru<sub>5</sub>C(CO)<sub>15</sub>. Anionic carbido clusters are also known, including <sup>2−</sup> and the ] cluster <sup>2−</sup>.<ref>Nicholls, J. N.; Vargas, M. D. "Carbido-Carbonyl Ruthenium Cluster Complexes" Inorganic Syntheses, 1989, volume 26, pages 280-85. {{doi|10.1002/9780470132579.ch49}}</ref> Ru<sub>3</sub>(CO)<sub>12</sub> -derived carbido compounds have been used to synthesize nanoparticles for catalysis. These particles consist of 6-7 atoms and thus are all surface, resulting in extraordinary activity.

Ru<sub>3</sub>(CO)<sub>12</sub> -derived carbido compounds have been used to synthesize nanoparticles for catalysis. These particles consist of 6-7 atoms and thus are all surface, resulting in extraordinary activity.


==References== ==References==
{{reflist}} {{reflist}}
{{Ruthenium compounds}}


] ]
] ]
]

]
]
]
]

Latest revision as of 20:27, 16 November 2024

Triruthenium dodecacarbonyl
Names
IUPAC name cyclo-tris(tetracarbonylruthenium)(3 RuRu)
Other names Ruthenium carbonyl
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.035.701 Edit this at Wikidata
EC Number
  • 239-287-4
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/12CO.3Ru/c12*1-2;;;Key: NQZFAUXPNWSLBI-UHFFFAOYSA-N
SMILES
  • 1(C#)(C#)(C#)(C#)(C#)(C#)(C#)(C#)1(C#)(C#)(C#)(C#)
Properties
Chemical formula C12O12Ru3
Molar mass 639.33 g/mol
Appearance orange solid
Density 2.48 g/cm
Melting point 224 °C (435 °F; 497 K)
Boiling point sublimes in vacuum
Solubility in water insoluble
Solubility in organic solvents soluble
Structure
Molecular shape D3h cluster
Dipole moment 0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Toxic, CO Source
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H302, H315, H319, H332, H335
Precautionary statements P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P312, P321, P330, P332+P313, P337+P313, P362, P403+P233, P405, P501
Related compounds
Related compounds Triiron dodecacarbonyl
Triosmium dodecacarbonyl
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Triruthenium dodecacarbonyl is the chemical compound with the formula Ru3(CO)12. Classified as metal carbonyl cluster, it is a dark orange-colored solid that is soluble in nonpolar organic solvents. The compound serves as a precursor to other organoruthenium compounds.

Structure and synthesis

The cluster has D3h symmetry, consisting of an equilateral triangle of Ru atoms, each of which bears two axial and two equatorial CO ligands. The Ru-Ru distance is 284 pm. Os3(CO)12 has the same structure. In Fe3(CO)12, two CO ligands are bridging, resulting in C2v symmetry. In solution, Ru3(CO)12 is fluxional as indicated by the observation of a single CO signal in the room temperature C NMR spectrum. The barrier is estimated at 20 kJ/mol

Ru3(CO)12 is prepared by treating solutions of ruthenium trichloride with carbon monoxide in the presence of a base. Dichlororuthenium tricarbonyl dimer is an intermediate. The stoichiometry of the reaction is uncertain, one possibility being the following:

6 RuCl3 + 33 CO + 18 CH3OH → 2 Ru3(CO)12 + 9 CO(OCH3)2 + 18 HCl

Reactions

The chemical properties of Ru3(CO)12 have been widely studied, and the cluster has been converted to hundreds of derivatives. High pressures of CO convert the cluster to the monomeric ruthenium pentacarbonyl, which reverts to the parent cluster upon standing.

Ru3(CO)12 + 3 CO ⇌ 3 Ru(CO)5 Keq = 3.3 x 10 mol dm at room temperature

The instability of Ru(CO)5 contrasts with the robustness of the corresponding Fe(CO)5. The condensation of Ru(CO)5 into Ru3(CO)12 proceeds via initial, rate-limiting loss of CO to give the unstable, coordinatively unsaturated species Ru(CO)4. This tetracarbonyl binds Ru(CO)5, initiating the condensation.

Upon warming under a pressure of hydrogen, Ru3(CO)12 converts to the tetrahedral cluster H4Ru4(CO)12. Ru3(CO)12 undergoes substitution reactions with Lewis bases:

Ru3(CO)12 + n L → Ru3(CO)12-nLn + n CO (n = 1, 2, or 3)

where L is a tertiary phosphine or an isocyanide. It forms complexes with acenaphthylene.

Ru3(CO)12 forms a variety of alkene complexes, some where the Ru3 core remains intact but often with fragmentation. Upon treatment with 1,5-cyclooctadiene gives the monoRu tricarbonyl derivative:

Ru3(CO)12 + 3 C8H12 → 3 Ru(C8H12)(CO)3 + 3 CO

Upon irradiation with UV light, Ru3(CO)12 converts to an insoluble polymeric form.

Ru-carbido clusters

At high temperatures, Ru3(CO)12 converts to a series of clusters that contain interstitial carbido ligands. These include Ru6C(CO)17 and Ru5C(CO)15. Anionic carbido clusters are also known, including and the bioctahedral cluster . Ru3(CO)12 -derived carbido compounds have been used to synthesize nanoparticles for catalysis. These particles consist of 6-7 atoms and thus are all surface, resulting in extraordinary activity.

References

  1. Slebodnick, C.; Zhao, J.; Angel, R.; Hanson, B. E.; Song, Y.; Liu, Z.; Hemley, R. J. (2004). "High Pressure Study of Ru3(CO)12 by X-ray Diffraction, Raman, and Infrared Spectroscopy". Inorg. Chem. 43 (17): 5245–5252. doi:10.1021/ic049617y. PMID 15310201.
  2. Farrugia, Louis J. (1997). "Dynamics and fluxionality in metal carbonyl clusters: Some old and new problems". Journal of the Chemical Society, Dalton Transactions (11): 1783–1792. doi:10.1039/A608514H.
  3. Bruce, M. I.; Jensen, C. M.; Jones, N. L. (1989). "Polynuclear Ruthenium Complexes". Inorganic Syntheses. Vol. 26. pp. 259–61. doi:10.1002/9780470132579.ch45. ISBN 978-0-471-50485-6.
  4. Fauré, Matthieu; Saccavini, Catherine; Lavigne, Guy (2004). "Transition Metal Carbonyl Compounds". Inorganic Syntheses. Vol. 34. p. 110. doi:10.1002/0471653683.ch3. ISBN 978-0-471-64750-8.
  5. Hastings, W. R.; Roussel, M. R.; Baird, M. C. "Mechanism of the conversion of into " Journal of the Chemical Society, Dalton Transactions, 1990, pages 203-205. doi:10.1039/DT9900000203
  6. Bruce, M. I.; Williams, M. L. "Dodecacarbonyl(tetrahydrido)tetraruthenium, Ru4(μ-H)4(CO)12" Inorganic Syntheses, 1989, volume 26, pages 262-63. ISBN 0-471-50485-8.
  7. Motoyama, Yukihiro; Itonaga, Chikara; Ishida, Toshiki; Takasaki, Mikihiro; Nagashima, Hideo (2005). "Catalytic Reduction of Amides to Amines with Hydrosilanes Using a Triruthenium Cluster as the Catalyst". Organic Syntheses. 82. 188. doi:10.15227/orgsyn.082.0188.
  8. Domingos, A. J. P.; Howell, J. A. S.; Johnson, B. F. G.; Lewis, J. (1990). "Reagents for the Synthesis of η-Diene Complexes of Tricarbonnyliron and Tricarbonylruthenium". Inorganic Syntheses. Vol. 28. pp. 52–55. doi:10.1002/9780470132593.ch11. ISBN 978-0-471-52619-3.
  9. Hastings, W. Ross; Baird, Michael C. (1986). "A new form of ruthenium tetracarbonyl". Inorganic Chemistry. 25 (16): 2913–2915. doi:10.1021/ic00236a054.
  10. Nicholls, J. N.; Vargas, M. D. "Carbido-Carbonyl Ruthenium Cluster Complexes" Inorganic Syntheses, 1989, volume 26, pages 280-85. doi:10.1002/9780470132579.ch49
Ruthenium compounds
Ru(0)
Ru(I)
Ru(II)
Ru(II,III)
Ru(III)
Ru(IV)
Ru(V)
Ru(VI)
Ru(VII)
Ru(VIII)
Categories:
Triruthenium dodecacarbonyl: Difference between revisions Add topic