Misplaced Pages

Jet injector: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 22:42, 7 May 2011 editTristanb (talk | contribs)Extended confirmed users4,614 editsm fixed two refs← Previous edit Latest revision as of 12:02, 27 October 2024 edit undo86.16.89.189 (talk) Simplifying this and making it more specific.Tags: references removed Mobile edit Mobile web edit 
(288 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Needle-free medical injection syringe}}
{{Multiple issues|advert=August 2010|citation style=November 2010}}
], United States]]


]A '''jet injector''' is a type of medical ] ] that uses a high-] narrow jet of the injection liquid instead of a ] to penetrate the ]. They are powered by compressed air or gas, either by a pressure hose from a large ], or from a built-in gas cartridge or small cylinder. A '''jet injector''' is a type of medical ] ] device used for a method of drug delivery known as '''jet injection'''. A narrow, high-] stream of liquid is made to penetrate the outermost layer of the skin (stratum corneum) to deliver medication to targeted underlying tissues of the ] or dermis ("cutaneous" injection, also known as classical "]" injection), fat ("subcutaneous" injection), or muscle ("intramuscular" injection).


The jet stream is usually generated by the pressure of a piston in an enclosed liquid-filled chamber. The piston is usually pushed by the release of a compressed metal spring, although devices being studied may use piezoelectric effects and other novel technologies to pressurize the liquid in the chamber. The springs of currently marketed and historical devices may be compressed by operator muscle power, hydraulic fluid, built-in battery-operated motors, compressed air or gas, and other means. Gas-powered and hydraulically powered devices may involve hoses that carry compressed gas or hydraulic fluid from separate cylinders of gas, electric air pumps, foot-pedal pumps, or other components to reduce the size and weight of the hand-held part of the system and to allow faster and less-tiring methods to perform numerous consecutive vaccinations.
They are used for mass ], or as an alternative to needle syringes for ] to inject ]. As well as health uses, similar devices are used in other industries to inject grease or other fluid.
Jet injectors were used for mass ], and as an alternative to needle syringes for ] to inject ]. However, the ] no longer recommends jet injectors for vaccination due to risks of disease transmission.<ref name="who"/> Similar devices are used in other industries to inject grease or other fluid.


The term "]", although better known from its usage in the 1960s television show ], is attested in the medical literature as early as 1956.
==Types of jet injector==

==Types==
] ]
The '''Jet Injector Gun''' and the '''Ped-O-Jet''' are air-powered medical injector devices designed to administer ]s in an extremely efficient manner. Invented by Aaron Ismach, these medical devices were bought in mass quantities by the US Government and provided to governments around the world to eradicate ] and other diseases. Servicemen in the Armed Forces were routinely injected with these medical devices to immunize them, and civilian usage included vaccinations during flu epidemics and the like. The Jet Injector is powered by electricity, while the Ped-O-Jet version is powered by a foot pump and does not require electricity to administer the vaccines. These devices have various specialized nozzles for different medication densities and also permitted the efficient inoculation of animal populations as well.


A jet injector, also known as a jet gun injector, air gun, or pneumatic injector, is a medical instrument that uses a high-pressure jet of liquid medication to penetrate the skin and deliver medication under the skin without a needle. Jet injectors can be single-dose or multi-dose.
The '''Biojector 2000''' is a make of gas-cartridge-powered jet injector. It is claimed that it can deliver ]s and ]s up to 1 milliliter. The part which touches the patient's skin is single-use and can be replaced easily. It can be powered from a big compressed ] instead of gas cartridges. It is made by .

Throughout the years jet injectors have been redesigned to overcome the risk of carrying contamination to successive subjects. To try to stop the risk, researchers placed a single-use protective cap over the reusable nozzle. The protective cap was intended to act as a shield between the reusable nozzle and the patient's skin. After each injection the cap would be discarded and replaced with a sterile one. These devices were known as protector cap needle-free injectors or PCNFI.<ref name="What Is A Jet Injector">{{cite web|last1=Jet Infectors|title=What Is A Jet Injector?|url=https://jetinfectors.com/2016/10/23/what-are-jet-injectors/|website=jetinfectors.com|access-date=October 23, 2016|date=2016-10-23}}</ref> A safety test by Kelly and colleagues (2008)<ref>{{cite journal|last1=Kelly|first1=K|title=Preventing contamination between injections with multiple-use nozzle needle-free injectors: a safety trial.|journal=Vaccine|date=March 4, 2008|volume=26|issue=10|pages=1344–1352|doi=10.1016/j.vaccine.2007.12.041|pmid=18272265}}</ref> found a PCNFI device failed to prevent contamination. After administering injections to ] patients, researchers found hepatitis B had penetrated the protective cap and contaminated the internal components of the jet injector, showing that the internal fluid pathway and patient-contacting parts cannot safely be reused.

Researchers developed a new jet injection design by combining the drug reservoir, plunger and nozzle into a single-use disposable cartridge. The cartridge is placed onto the tip of the jet injector and, when activated, a rod pushes the plunger forward. This device is known as a disposable-cartridge jet injector (DCJI).<ref name="What Is A Jet Injector"/>

The International Standards Organization recommended abandoning the use of the name "jet injector", which is associated with a risk of cross-contamination and rather refer to newer devices as "needle-free injectors".<ref>{{cite report|last1=International Standards Organization|title=Needle-free injectors for medical use |date=June 3, 1999|url=http://www.cdc.gov/nip/dev/N2Minutes1stmeeting.pdf|url-status=dead|archive-url=https://web.archive.org/web/20000303235732/http://www.cdc.gov/nip/dev/N2Minutes1stmeeting.pdf|archive-date=March 3, 2000}}</ref>

===Modern needle-free injector brands===
Since the late 1970s, jet injectors have been increasingly used by diabetics in the United States. These devices have all been spring-loaded. At their peak, jet injectors accounted for 7% of the injector market. Currently, the only model available in the United States is the Injex 23. In the United Kingdom, the Insujet has recently entered the market. As of June 2015, the Insujet is available in the UK and a few select countries.{{citation needed|date=July 2021}}

Researchers from the ] in the Netherlands patented a Jet Injection System, comprising a microfluidic device for jet ejection and a laser-based heating system. A continuous laser beam – also called a continuous-wave laser – heats the liquid to be administered, which is launched in a droplet form across the epidermis and slows down into the tissue below.<ref>{{Cite web|last1=Rivas|first1=David Fernandez|last2=Galvez|first2=Loreto Alejandra Oyarte|date=2020|title=Jet injection system|url=https://research.utwente.nl/en/publications/jet-injection-system|language=English}}</ref>


==Concerns== ==Concerns==
Despite wide use by the military and in large-scale vaccination campaigns, there have been few reported incidents of transmission of disease between users. Because the jet injector breaks barrier of the skin, there is a potential that biological material is transferred from one user to the next. Some viruses such as ] require less than one millionth of a millilitre to be transmitted<ref name="modeltoassess"> Since the jet injector breaks the barrier of the skin, there is a risk of blood and biological material being transferred from one user to the next. Research on the risks of cross-contamination arose immediately after the invention of jet injection technology.

There are three inherent problems with jet injectors:

===Splash-back===
Splash-back refers to the jet stream penetrating the outer skin at a high velocity, causing the jet stream to ricochet backward and contaminate the nozzle.<ref name="jetinjectwp">{{cite web|last1=Jet Infectors|title=Inherent Problems With Jet Injectors|url=https://jetinfectors.files.wordpress.com/2016/01/jet-infectors-2-inherent-problems-with-jet-injectors.pdf|website=Jet Infectors|access-date=July 31, 2017|archive-date=August 3, 2017|archive-url=https://web.archive.org/web/20170803074426/https://jetinfectors.files.wordpress.com/2016/01/jet-infectors-2-inherent-problems-with-jet-injectors.pdf|url-status=dead}}</ref>

Instances of splash-back have been published by several researchers. Samir Mitragrotri visually captured splash-back after discharging a multi-use nozzle jet injector using high-speed ].<ref>{{cite journal|last1=Mitragotri|first1=Samir|title=Current status and future prospects of needle-free liquid jet injectors|journal=Nat Rev Drug Discov|date=July 2006|volume=5|issue=7|pages=543–548|doi=10.1038/nrd2076|pmid=16816837|s2cid=11758107|doi-access=free}}</ref> Hoffman and colleagues (2001) also observed the nozzle and internal fluid pathway of the jet injector becoming contaminated.<ref name="ReferenceA">{{cite journal|last1=Hoffman|first1=Peter|last2=Abuknesha|first2=RA|last3=Andrews|first3=NJ|last4=Samuel|first4=D|last5=Lloyd|first5=JS|title=A model to assess the infection potential of jet injectors used in mass immunization|journal=Vaccine|date=2001|volume=19|issue=28–29|pages=4020–4027|pmid=11427278|doi=10.1016/s0264-410x(01)00106-2}}</ref>

===Fluid suck-back===
Fluid suck-back occurs when blood left on the nozzle of the jet injector is sucked back into the injector orifice, contaminating the next dose to be fired.<ref name="jetinjectwp" />

The CDC has acknowledged that the most widely used jet injector in the world, the Ped-O-Jet, sucked fluid back into the gun. "After injections, they observed fluid remaining on the Ped-O-Jet nozzle being sucked back into the device upon its cocking and refilling for the next injection (beyond the reach of alcohol swabbing or acetone swabbing)," stated Dr. Bruce Weniger.<ref>{{cite web|last1=Weniger|first1=BG|last2=Jones|first2=TS|last3=Chen|first3=RT|title=The Unintended Consequences of Vaccine Delivery Devices Used to Eradicate Smallpox: Lessons for Future Vaccination Methods|url=https://jetinfectors.files.wordpress.com/2016/02/weniger-jones-chen-unintended-consequences-of-smallpox-eradication-the-unintended-consequences-of-vaccine-delivery-devices-used-to-eradicate-smallpox-lessons-for-future-vaccination.pdf|website=Jet Infectors|access-date=October 23, 2016|archive-date=October 24, 2016|archive-url=https://web.archive.org/web/20161024041002/https://jetinfectors.files.wordpress.com/2016/02/weniger-jones-chen-unintended-consequences-of-smallpox-eradication-the-unintended-consequences-of-vaccine-delivery-devices-used-to-eradicate-smallpox-lessons-for-future-vaccination.pdf|url-status=dead}}</ref>

===Retrograde flow===
Retrograde flow happens after the jet stream penetrates the skin and creates a hole, if the pressure of the jet stream causes the spray, after mixing with tissue fluids and blood, to rebound back out of the hole, against the incoming jet stream and back into the nozzle orifice.<ref name="jetinjectwp" />

This problem has been reported by numerous researchers.<ref>{{cite journal|last1=Kale|first1=TR|last2=Momin|first2=M|title=Needle free injection technology – An overview|journal= Innovations in Pharmacy|date=2014|volume=5|issue=1|doi=10.24926/iip.v5i1.330|doi-access=free|hdl=11299/171730|hdl-access=free}}</ref><ref>{{cite journal|last1=Suria|first1=H|last2=Van Enk|first2=R|last3=Gordon|first3=R|last4=Mattano|first4=LA Jr.|title=Risk of cross-patient infection with clinical use of a needleless injector device|journal= American Journal of Infection Control|date=1999|volume=27|issue=5|pages=444–7|pmid=10511493|doi=10.1016/s0196-6553(99)70012-x}}</ref><ref name="ReferenceA"/><ref>{{cite web|last1=World Health Organization|title=STEERING GROUP ON THE DEVELOPMENT OF JET INJECTION FOR IMMUNIZATION|url=https://asknod.files.wordpress.com/2015/12/1997-steering-group-report-on-jetguns.pdf|website=asknod.org|access-date=October 23, 2016}}</ref><ref>{{cite journal|last1=Kelly|first1=K|last2=Loskutov|first2=A|last3=Zehrung|first3=D|last4=Puaa|first4=K|last5=LaBarre|first5=P|last6=Muller|first6=N|last7=Guiqiang|first7=W|last8=Ding|first8=H|last9=Hu|first9=D|last10=Blackwelder|first10=WC|title=Preventing contamination between injections with multi-use nozzle needle-free injectors: a safety trial|journal=Vaccine|date=2008|volume=26|issue=10|pages=1344–1352|doi=10.1016/j.vaccine.2007.12.041|pmid=18272265}}</ref>

] can be transmitted by less than one nanolitre<ref name="modeltoassess">
{{Cite journal {{Cite journal
| doi = 10.1016/S0264-410X(01)00106-2 | doi = 10.1016/S0264-410X(01)00106-2
| issn = 0264-410X
| volume = 19 | volume = 19
| issue = 28-29 | issue = 28–29
| pages = 4020-4027 | pages = 4020–7
| last = Hoffman | last = Hoffman
| first = P.N |author2=R.A Abuknesha |author3=N.J Andrews |author4=D Samuel |author5=J.S Lloyd
| first = P.N
| title = A model to assess the infection potential of jet injectors used in mass immunisation. Population risk (Veterans and children) for another deadly virus, previously known as "non A- non B" or Chronic Hepatitis C "CHC or HCV".
| coauthors = R.A Abuknesha, N.J Andrews, D Samuel, J.S Lloyd
| title = A model to assess the infection potential of jet injectors used in mass immunisation
| journal = Vaccine | journal = Vaccine
| accessdate = 2011-05-06
| date = 2001-07-16 | date = 2001-07-16
| pmid=11427278
| url = http://www.sciencedirect.com/science/article/B6TD4-439VBP9-10/2/33e5b070b089aee5203f25662f6f0a7f
}}</ref> so makers of injectors need to ensure there is no cross-contamination between applications. Regarding vaccination, the ] states that jet injectors "are no longer recommended due to risks of disease transmission".<ref name="who">{{Cite web }}</ref> so makers of injectors must ensure there is no cross-contamination between applications. The ] no longer recommends jet injectors for vaccination due to risks of disease transmission.<ref name="who">{{cite web
| last = World Health Organization | last = World Health Organization
| title = Solutions: Choosing Technologies for Safe Injections | title = Solutions: Choosing Technologies for Safe Injections
| accessdate = 2011-05-06 | access-date = 2011-05-06
| date = 2005-07-13 | date = 2005-07-13
| url = https://apps.who.int/vaccines-access/injection/injection_safety/safe_injections_choosing_technologies.htm | url = https://apps.who.int/vaccines-access/injection/injection_safety/safe_injections_choosing_technologies.htm
| archive-url=https://web.archive.org/web/20120921104456/https://apps.who.int/vaccines-access/injection/injection_safety/safe_injections_choosing_technologies.htm
| archive-date=21 September 2012
}}</ref> }}</ref>


An experiment using ], published in 1985, showed that jets injectors would frequently transfer the viral infection ] from one mouse to another.<ref name="mice">{{Cite journal Numerous studies have found cross-infection of diseases from jet injections. An experiment using ], published in 1985, showed that jet injectors would frequently transmit the viral infection ] (LDV) from one mouse to another.<ref name="mice">{{Cite journal
| doi = 10.1099/00222615-20-3-393 | doi = 10.1099/00222615-20-3-393
| volume = 20 | volume = 20
| issue = 3 | issue = 3
| pages = 393-397 | pages = 393–7
| last = BRINK | last1 = Brink
| first = P. R. G. | first1 = P.R.G.
| first2 = M.
| coauthors = M. VAN LOON, J. C. M. TROMMELEN, W. J. GRIBNAU, I. R. O. SMALE-NOVAKOVA
| last2 = Van Loon
| first3 = J.C.M.
| last3 = Trommelen
| first4 = W.J.
| last4 = Gribnau
| first5 = I.R.O.
| last5 = Smale-Novakova
| title = Virus Transmission by Subcutaneous Jet Injection | title = Virus Transmission by Subcutaneous Jet Injection
| journal = J Med Microbiol | journal = J Med Microbiol
| accessdate = 2011-05-06
| date = 1985-12-01 | date = 1985-12-01
| pmid = 4068027
| url = http://jmm.sgmjournals.org/cgi/content/abstract/20/3/393
| doi-access = free
}}</ref> Another study used the device on a calf, then tested the fluid remaining in the injector for blood. Every injector they tested had detectable blood in a quantity sufficient to pass on a virus such as hepatitis B.<ref name="modeltoassess"/> }}</ref> Another study used the device on a calf, then tested the fluid remaining in the injector for blood. Every injector they tested had detectable blood in a quantity sufficient to pass on a virus such as hepatitis B.<ref name="modeltoassess"/>


From 1984-1985 a weight-loss clinic in ] injected a pregnancy hormone into their clients, mostly using a jet injector. It was noted that a number of these patients became sick with hepatitis. When studied, 57 out of 239 people who received the jet injection tested positive for ].<ref name="hepbbrazil">{{Cite journal From 1984 to 1985, a weight-loss clinic in Los Angeles administered ] (hCG) with a Med-E-Jet injector. A CDC investigation found 57 out of 239 people who had received the jet injection tested positive for hepatitis B.<ref name="hepbbrazil">{{Cite journal
| doi = 10.1001/archinte.1990.00390200105020 | doi = 10.1001/archinte.1990.00390200105020
| volume = 150 | volume = 150
| issue = 9 | issue = 9
| pages = 1923-1927 | pages = 1923–1927
| last = Canter | last = Canter
| first = Jeffrey | first = Jeffrey
| coauthors = Katherine Mackey, Loraine S. Good, Ronald R. Roberto, James Chin, Walter W. Bond, Miriam J. Alter, John M. Horan |author2=Katherine Mackey |author3=Loraine S. Good |author4=Ronald R. Roberto |author5=James Chin |author6=Walter W. Bond |author7=Miriam J. Alter |author8=John M. Horan
| title = An Outbreak of Hepatitis B Associated With Jet Injections in a Weight Reduction Clinic | title = An Outbreak of Hepatitis B Associated With Jet Injections in a Weight Reduction Clinic
| journal = Arch Intern Med | journal = Arch Intern Med
| accessdate = 2011-05-06
| date = 1990-09-01 | date = 1990-09-01
| pmid = 2393323
| url = http://archinte.ama-assn.org/cgi/content/abstract/150/9/1923
}}</ref> }}</ref>


As well as transmission between patients, jet injectors have inoculated bacteria from the environment into users. In 1988 a podiatry clinic used a jet injector to deliver ] into patients' toes. Eight of these patients developed infections caused by '']''. The injector was stored in a container of water and disinfectant between use, and the container grew the same organism.<ref name="mycobact_inj1">{{Cite journal Jet injectors have also been found to inoculate bacteria from the environment into users. In 1988 a podiatry clinic used a jet injector to deliver ] into patients' toes. Eight of these patients developed infections caused by '']''. The injector was stored in a container of water and disinfectant between use, but the organism grew in the container.<ref name="mycobact_inj1">{{Cite journal
| doi = 10.1001/jama.1990.03450030097040 | doi = 10.1001/jama.1990.03450030097040
| volume = 264 | volume = 264
| issue = 3 | issue = 3
| pages = 373 -376 | pages = 373–6
| last = Wenger | last = Wenger
| first = Jay D. | first = Jay D.
| coauthors = John S. Spika, Ronald W. Smithwick, Vickie Pryor, David W. Dodson, G. Alexander Carden, Karl C. Klontz |author2=John S. Spika |author3=Ronald W. Smithwick |author4=Vickie Pryor |author5=David W. Dodson |author6=G. Alexander Carden |author7=Karl C. Klontz
| title = Outbreak of Mycobacterium chelonae Infection Associated With Use of Jet Injectors | title = Outbreak of ''Mycobacterium chelonae'' Infection Associated With Use of Jet Injectors
| journal = JAMA: The Journal of the American Medical Association | journal = JAMA
| accessdate = 2011-05-06
| date = 1990-07-18 | date = 1990-07-18
| pmid = 2362334
| url = http://jama.ama-assn.org/content/264/3/373.abstract
}}</ref> This species of bacteria is sometimes found in tap water, and had been previously associated with infections from jet injectors.<ref name="inman">{{Cite journal }}</ref> This species of bacteria is sometimes found in tap water, and had been previously associated with infections from jet injectors.<ref name="inman">{{Cite journal
| issn = 0003-987X
| volume = 100 | volume = 100
| issue = 2 | issue = 2
| pages = 141-147 | pages = 141–7
| last = Inman | last1 = Inman
| first = P M | first1 = P.M.
| coauthors = A Beck, A E Brown, J L Stanford | first2 = A. |last2=Beck |first3=A.E. |last3=Brown |first4=J.L. |last4=Stanford
| title = Outbreak of injection abscesses due to Mycobacterium abscessus | title = Outbreak of injection abscesses due to ''Mycobacterium abscessus''
| journal = Archives of Dermatology | journal = Archives of Dermatology
| date = August 1969
| accessdate = 2011-05-06
| pmid=5797954
| date = 1969-08
| doi=10.1001/archderm.100.2.141
| url = http://www.ncbi.nlm.nih.gov/pubmed/5797954
}}</ref> }}</ref>


==History== ==History==
]
<!-- :''See also ].''-->
], Guinea-Bissau]]
*19th century: Workmen in France had accidental jet injections with high-powered ]s {{Dead link|date=January 2010}}
*1920s: ]s begin to be made in large quantities: thus beginning of serious risk of accidental jet-injection by their ]s as workshop accidents.
*1937: First ''known recorded'' accidental jet injection by a ]'s ].<ref>Rees CE. "''Penetration of tissue by fuel oil under high pressure from diesel engine.''" ] 1937;109:866-7</ref>
*1960: Aaron Ismach invented and patented the Jet Injector medical device which was used for quick mass ] for smallpox and other diseases. Ismach was assisted by Dr. Abram Benenson in developing the Jet Injector Gun. The new method met with tremendous success as teams vaccinated large numbers of people at collecting points in the affected countries. The foot operated gun was called the Ped-O-Jet and the electric operated gun was called the Jet Injector Gun.
*1962: Robert Andrew Hingson claimed to have invented a ] jet injector and called it the '''peace gun''', for quick mass ]. But sometimes the injection process dislodged infected matter from a patient onto the nozzle of the injector, risking cross-infection.
*1964: Aaron Ismach was presented with a Gold Medal from the US Government for his efforts related to the Jet Injector Gun. The Jet Injector also appeared on postage stamps as a commemorative of his efforts.
*September 1966: The ] series started, exposing the public to the idea of jet injectors under the name "]".
*1976: The USA Agency for International Development published a book called War on Hunger which detailed the War Against Smallpox which Ismach's Jet Injector gun was used to eradicate the disease in Africa and Asia. The US Government spent $150 million a year to prevent its recurrence in North America.
*1997: The USA ], the jet injector's biggest user, announced that it would stop using it for mass vaccinations due to concerns about infection.


* 19th century: Workmen in France had ]s with high-powered ].<ref>{{cite web|url=http://www.healthfreelancing.com/samples/nopainIV.php |title=at |publisher=Healthfreelancing.com |access-date=5 April 2011 |url-status=dead |archive-url=https://web.archive.org/web/20100910122757/http://healthfreelancing.com/samples/nopainIV.php |archive-date=10 September 2010 |df=dmy-all }}</ref>
==Popular culture==
* December 18, 1866: Jules-Auguste Béclard presented Dr. Jean Sales-Girons invention, Appareil pour l'aquapuncture to l'Académie Impériale de Médecine in Paris. This is the earliest documented jet injector to administer water or medicine under enough pressure to penetrate the skin without the use of a needle.<ref>{{cite journal|last1=Béclard|first1=F|title=Présentation de l'injecteur de Galante, Séance du 18 décembre 1866, Présidence de M. Bouchardat .|journal=Bulletin de l'Académie Impériale de Médecine|date=1866|volume=32|pages=321–327|url=https://books.google.com/books?id=yP5SAAAAcAAJ&pg=PA323}}</ref>
In the '']'' franchise, and sometimes in other fictional scenarios and occasionally in the real world, it is called a ].
* 1920s: ]s began to be made in large quantities: thus the start of serious risk of accidental jet-injection by their ]s in workshop accidents.

* 1935: Arnold K. Sutermeister, a mechanical engineer, witnessed a worker injure his hand from a high-pressure jet stream and theorized of using the concept to administer medicine. Sutermeister collaborates with Dr. John Roberts in creating a prototype jet injector.<ref>{{cite journal|last1=Roberts|first1=JF|title=Local infiltration of tissues from a machine designed to deliver high pressure, high velocity jets of fluid .|journal=Columbia University. College of Physicians and Surgeons|date=1935}}</ref>
==Accidental jet injection==<!-- This section is linked from ] -->
* 1937: First ''published'' accidental jet injection by a ]'s ].<ref>{{cite journal |author=Rees CE |title=Penetration of tissue by fuel oil under high pressure from diesel engine |journal=] |volume=109 |issue=11 |pages=866–7 |date=11 September 1937 |doi=10.1001/jama.1937.92780370004012c }}</ref>
Accidents have happened in vehicle repair garages and elsewhere where one of these has unintentionally acted as a hypodermic jet injector:
* 1936: Marshall Lockhart, an engineer, filed a patent for his idea of a jet injector after learning of Sutermeister's invention.<ref>{{cite web|last1=Lockhart|first1=Marshall|title=Hypodermic Injector. Patent Number US 2322244|date=June 22, 1943|url=https://patents.google.com/patent/US2322244}}</ref>
* A ] of a ].
* 1947: Lockhart's jet injector, known as the Hypospray, was introduced for clinical evaluation by ] and Dr. James Hughes.<ref>{{cite journal|last1=Hingson|first1=RA|last2=Hughes|first2=JG|title=Clinical studies with jet injection. A new method of drug administration|journal=Current Researches in Anesthesia and Analgesia|date=1947|volume=26|issue=6|pages=221–230|pmid=18917536}}</ref>
* A high-pressure ].
* 1951: The Commission on Immunization of the Armed Forces Epidemiological Board requested the Army Medical Service Graduate School to develop "jet injection equipment specifically intended for rapid semiautomatic operation in large-scale immunization programs."<ref name="jamanetwork.com">{{cite journal|last1=Warren|first1=J|last2=Ziherl|first2=FA|last3=Kish|first3=AW|last4=Ziherl|first4=LA|title=Large-scale administration of vaccines by means of an automatic jet injection syringe.|journal=JAMA|date=1955|volume=157|issue=8|pages=633–637|doi=10.1001/jama.1955.02950250007003|pmid=13232991}}</ref> This device became known as the multi-use nozzle jet injector (MUNJI).
* A pinhole leak in a tube supplying a high-powered grease gun from a separate grease pressure-tank.
* 1954–1967: Dr. Robert Hingson partook in numerous health expeditions with his charity, Brother's Brother Foundation. Hingson stated he vaccinated upwards of 2 million people across the globe using various multi-use nozzle jet injectors.<ref>{{cite journal|last1=Rosenberg|first1=Henry|last2=Axelrod|first2=Jean|title=Robert Andrew Hingson: His Unique Contributions to World Health as Well as to Anesthesiology|journal=Bulletin of Anesthesia History|date=July 1998|volume=16|issue=3|pages=10–12|doi=10.1016/s1522-8649(98)50046-7}}</ref>
* A pinhole leak in a tube of high pressure ] oil equipment.
* 1955: Warren and colleagues (1955) reported on the introduction of a prototype multi-dose jet injector, known as the Press-O-Jet, which had successfully undergone clinical testing upon 1,685 soldiers within the U.S. Army.<ref name="jamanetwork.com"/>
* A high pressure ].
* 1959: Abram Benenson, the Lieutenant Colonel for the Division of Immunology at Walter Reed Army Institute of Research, reported on the development of what became widely known as the Ped-O-Jet. The invention was the collaboration of Dr. Benenson and Aaron Ismach. Ismach was a civilian scientist working for the US Army Medical Equipment and Research Development Laboratory.<ref>{{cite conference|last1=Benenson|first1=AS|title=Mass immunization by jet injection |conference=International Symposium of Immunology, Opatija, Yugoslavia, 28 September – 1 October 1959|date=1959|pages=393–399}}</ref>
* A pressure washer.
* 1961: The Department of the Army made multi-use nozzle jet injectors the standard for administering immunizations.<ref>{{cite web|last1=Department of the Army|title=Annual Report of the Surgeon General United States Army Fiscal Year 1961.|url=http://history.amedd.army.mil/booksdocs/AnnualReportoftheSG1961/preventivemedicine.htm|website=U.S. Army|access-date=July 31, 2017}}</ref>

* 1961: The CDC implemented mass vaccination programs across the United States called Babies and Breadwinners to combat polio. These vaccination events used multi-use nozzle jet injectors.<ref>{{cite web|last1=Jet Infectors|title=Babies and Breadwinners: 1961 Mass Polio Vaccination Campaign|url=https://jetinfectors.com/2017/04/04/babies-and-breadwinners-1961-mass-polio-vaccination-campaign/|website=Jet Infectors|access-date=July 31, 2017|date=2017-04-04}}</ref>
High pressure injections of oil or paint can cause very serious injuries which may require amputation and can induce fatal blood poisoning. Particular care must be taken around high pressure sprays of this kind to avoid such injuries.
* 1964: ] invented an intradermal nozzle for the Ped-O-Jet injector, which allowed delivery of the shallower smallpox vaccinations.<ref>{{cite web|last1=Ismach|first1=A|title=Intradermal nozzle for jet injection devices. Patent Number US 3140713|date=July 14, 1964|url=https://www.google.ch/patents/US3140713}}</ref>
*1964: Aaron Ismach was awarded the Exceptional Civilian Service Award at the Eighth Annual Secretary of the Army Awards ceremonies for his invention of the intradermal nozzle.<ref>{{cite journal|last1=Army Research and Development|title=1968 R&D Achievement Awards Won By 18 Individuals, 5 Teams|journal=Army Research and Development Magazine|date=June 1968|volume=9|issue=6|page=3}}</ref>
* 1966: Oscar Banker, an engineer, patented his invention of a portable multi-use nozzle jet injector that utilizes {{CO2}} as its energy source. This would become known as the Med-E-Jet.<ref>{{cite web|last1=Banker|first1=Oscar|title=Jet Type Portable Inoculator. Patent Number US 3292621A|date=December 20, 1966|url=https://patents.google.com/patent/US3292621|access-date=July 31, 2017}}</ref>
* September 1966: The '']'' series started to use its own jet injector device under the name "]".
* 1967: Nicaraguans undergoing smallpox vaccinations nicknamed the gun-like jet injectors (Ped-O-Jet and Med-E-Jet) as "la pistola de la paz", meaning "the pistol of peace". The name "Peace Guns" stuck.<ref>{{cite web|last1=Lord|first1=A|title=The Peace Gun|url=http://americanhistory.si.edu/blog/peace-gun|website=Smithsonian|access-date=July 31, 2017|date=2015-08-25}}</ref>
* 1976: The United States Agency for International Development (USAID) published a book called ''War on Hunger'' which detailed the War Against Smallpox which Ismach's Jet Injector gun was used to eradicate the disease in Africa and Asia. The US government spent $150 million a year to prevent its recurrence in North America.
* 1986: A hepatitis B outbreak occurs amongst 57 patients at a Los Angeles clinic due to a Med-E-Jet injector.<ref name="hepbbrazil"/>
* 1997: The US ], the jet injector's biggest user, announced that it would stop using it for mass vaccinations due to concerns about infection.<ref>{{Cite web |url=http://usamma.detrick.army.mil/ftp/mmqc_messages/Q971169.txt |title=The DoD order |access-date=2007-11-28 |archive-url=https://archive.today/20121212204654/http://usamma.detrick.army.mil/ftp/mmqc_messages/Q971169.txt |archive-date=2012-12-12 |url-status=dead }}</ref><ref>{{Cite web |url=http://www.hcvets.com/data/transmission_methods/jet_injection.htm |title=Veterans info page |access-date=2007-11-28 |archive-url=https://web.archive.org/web/20071205185110/http://www.hcvets.com/data/transmission_methods/jet_injection.htm |archive-date=2007-12-05 |url-status=dead }}</ref>
* 2003: The US ] recognized for the first time that a veteran acquired Hepatitis C from his military jet injections and awarded service-connection for his disability.<ref>{{cite web|last1=Cleveland Veterans Affairs Regional Office|title=There is Hope for Hepatitis C|url=https://groups.yahoo.com/neo/groups/hopeforhepc/conversations/messages/837|publisher=Yahoo|access-date=July 31, 2017}}</ref>
* April 2010: A laser-based reusable microjet injector for transdermal drug delivery was made by Tae-hee Han and Jack J. Yoh.<ref>{{Cite journal|doi = 10.1063/1.3430989|title = A laser based reusable microjet injector for transdermal drug delivery|year = 2010|last1 = Han|first1 = Tae-hee|last2 = Yoh|first2 = Jack J.|journal = Journal of Applied Physics|volume = 107|issue = 10|pages = 103110–103110–3|bibcode = 2010JAP...107j3110H}}</ref>
* February 13, 2013: The PharmaJet Stratis Needle-Free Injector received ] PQS Certification.<ref>{{cite journal |title=PharmaJet's Stratis® Needle-free Injector Receives WHO PQS Certification as a Pre-qualified Delivery Device for Vaccine Administration |journal=FierceVaccines |date=2013-02-13 |url=http://www.fiercevaccines.com/press-releases/pharmajets-stratis-needle-free-injector-receives-who-pqs-certification-pre |url-status=usurped |archive-url=https://web.archive.org/web/20160303223345/http://www.fiercevaccines.com/press-releases/pharmajets-stratis-needle-free-injector-receives-who-pqs-certification-pre |archive-date=2016-03-03}}</ref>
* 2013: The most comprehensive review and history of jet injection to date is published in the 6th edition of the textbook ''Vaccines''.<ref>{{Cite web | url=http://siamlotus.com/Pubs/WenigerBG-PapaniaMJ-AlternVaccDelivMeth-Ch61-Vaccines6thEd-2013+refs_LoRes.pdf | archive-url=https://web.archive.org/web/20140420041751/http://siamlotus.com/Pubs/WenigerBG-PapaniaMJ-AlternVaccDelivMeth-Ch61-Vaccines6thEd-2013+refs_LoRes.pdf | url-status=dead | archive-date=2014-04-20 | title=Weniger BG, Papania MJ. Alternative Vaccine Delivery Methods . In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines, 6th ed. Philadelphia: Elsevier/Saunders; 2013, pp. 1200–31. | type=In the public domain as the work of an ] | access-date=2020-09-12 }}</ref>
* August 14, 2014: The U.S. Food and Drug Administration (FDA) approved the use of the PharmaJet Stratis 0.5ml Needle-free Jet Injector for delivery of one particular flu vaccine (AFLURIA by bioCSL Inc.) in people 18 through 64 years of age.<ref>{{Cite web | url=https://www.cdc.gov/flu/protect/vaccine/jet-injector.htm | title=Flu Vaccination by Jet Injector &#124; CDC| date=2017-10-12}}</ref><ref>{{Cite journal | url=https://www.fda.gov/vaccines-blood-biologics/vaccines/fda-updated-communication-use-jet-injectors-inactivated-influenza-vaccines | title=FDA Updated Communication on Use of Jet Injectors with Inactivated Influenza Vaccines; FDA| journal=FDA| date=2020-02-07}}</ref>
* October 2017: A group of scientists publishes an academic study in the ], about a new jet injection technique of jet injection by continuous-wave laser cavitation aimed to "develop a needle-free device for eliminating major global healthcare problems caused by needles".<ref>{{Cite journal |last=Rodríguez |first=Carla Berrospe |last2=Visser |first2=Claas Willem |last3=Schlautmann |first3=Stefan |last4=Rivas |first4=David Fernandez |last5=Ramos-García |first5=Rubén |date=October 2017 |title=Toward jet injection by continuous-wave laser cavitation |url=https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-22/issue-10/105003/Toward-jet-injection-by-continuous-wave-laser-cavitation/10.1117/1.JBO.22.10.105003.full |journal=Journal of Biomedical Optics |volume=22 |issue=10 |pages=105003 |doi=10.1117/1.JBO.22.10.105003 |issn=1083-3668|doi-access=free }}</ref>


==References== ==References==
{{Reflist|30em}}
<references />


==External links== ==External links==
{{Commons category|Jet injectors}}
{{External links|date=January 2010}}
*
{{commons|Jet injectors}}
*
*
* {{cite journal |vauthors=Burke F, Brady O |title=Veterinary and industrial high pressure injection injuries |journal=BMJ |volume=312 |issue=7044 |pages=1436 |date=June 1996 |pmid=8664612 |pmc=2351199 |doi=10.1136/bmj.312.7044.1436}}
*


{{Dosage forms|state=collapsed}}
===Web pages using "hypospray" for a real jet injector===
These three references are all to articles in ]s:-
* (1975)
* (1969)
* (1967)
* uses the name "hypospray" for an automatic ].

===External links about accidental jet injection===
*http://bmj.bmjjournals.com/cgi/content/full/312/7044/1436 (registration required)
*http://www.napavalleypetroleum.com/msds_napa_no2_diesel_fuel.htm (scroll down to section 7)

{{Dosage forms|state=show}}
{{Routes of administration}}


{{DEFAULTSORT:Jet Injector}} {{DEFAULTSORT:Jet Injector}}
Line 146: Line 177:
] ]
] ]
]

]
]
]

Latest revision as of 12:02, 27 October 2024

Needle-free medical injection syringe
A jet injector being used in mass vaccinations, 1976 swine flu outbreak, United States

A jet injector is a type of medical injecting syringe device used for a method of drug delivery known as jet injection. A narrow, high-pressure stream of liquid is made to penetrate the outermost layer of the skin (stratum corneum) to deliver medication to targeted underlying tissues of the epidermis or dermis ("cutaneous" injection, also known as classical "intradermal" injection), fat ("subcutaneous" injection), or muscle ("intramuscular" injection).

The jet stream is usually generated by the pressure of a piston in an enclosed liquid-filled chamber. The piston is usually pushed by the release of a compressed metal spring, although devices being studied may use piezoelectric effects and other novel technologies to pressurize the liquid in the chamber. The springs of currently marketed and historical devices may be compressed by operator muscle power, hydraulic fluid, built-in battery-operated motors, compressed air or gas, and other means. Gas-powered and hydraulically powered devices may involve hoses that carry compressed gas or hydraulic fluid from separate cylinders of gas, electric air pumps, foot-pedal pumps, or other components to reduce the size and weight of the hand-held part of the system and to allow faster and less-tiring methods to perform numerous consecutive vaccinations.

Jet injectors were used for mass vaccination, and as an alternative to needle syringes for diabetics to inject insulin. However, the World Health Organization no longer recommends jet injectors for vaccination due to risks of disease transmission. Similar devices are used in other industries to inject grease or other fluid.

The term "hypospray", although better known from its usage in the 1960s television show Star Trek, is attested in the medical literature as early as 1956.

Types

A Med-E-Jet vaccination gun from 1980

A jet injector, also known as a jet gun injector, air gun, or pneumatic injector, is a medical instrument that uses a high-pressure jet of liquid medication to penetrate the skin and deliver medication under the skin without a needle. Jet injectors can be single-dose or multi-dose.

Throughout the years jet injectors have been redesigned to overcome the risk of carrying contamination to successive subjects. To try to stop the risk, researchers placed a single-use protective cap over the reusable nozzle. The protective cap was intended to act as a shield between the reusable nozzle and the patient's skin. After each injection the cap would be discarded and replaced with a sterile one. These devices were known as protector cap needle-free injectors or PCNFI. A safety test by Kelly and colleagues (2008) found a PCNFI device failed to prevent contamination. After administering injections to hepatitis B patients, researchers found hepatitis B had penetrated the protective cap and contaminated the internal components of the jet injector, showing that the internal fluid pathway and patient-contacting parts cannot safely be reused.

Researchers developed a new jet injection design by combining the drug reservoir, plunger and nozzle into a single-use disposable cartridge. The cartridge is placed onto the tip of the jet injector and, when activated, a rod pushes the plunger forward. This device is known as a disposable-cartridge jet injector (DCJI).

The International Standards Organization recommended abandoning the use of the name "jet injector", which is associated with a risk of cross-contamination and rather refer to newer devices as "needle-free injectors".

Modern needle-free injector brands

Since the late 1970s, jet injectors have been increasingly used by diabetics in the United States. These devices have all been spring-loaded. At their peak, jet injectors accounted for 7% of the injector market. Currently, the only model available in the United States is the Injex 23. In the United Kingdom, the Insujet has recently entered the market. As of June 2015, the Insujet is available in the UK and a few select countries.

Researchers from the University of Twente in the Netherlands patented a Jet Injection System, comprising a microfluidic device for jet ejection and a laser-based heating system. A continuous laser beam – also called a continuous-wave laser – heats the liquid to be administered, which is launched in a droplet form across the epidermis and slows down into the tissue below.

Concerns

Since the jet injector breaks the barrier of the skin, there is a risk of blood and biological material being transferred from one user to the next. Research on the risks of cross-contamination arose immediately after the invention of jet injection technology.

There are three inherent problems with jet injectors:

Splash-back

Splash-back refers to the jet stream penetrating the outer skin at a high velocity, causing the jet stream to ricochet backward and contaminate the nozzle.

Instances of splash-back have been published by several researchers. Samir Mitragrotri visually captured splash-back after discharging a multi-use nozzle jet injector using high-speed microcinematography. Hoffman and colleagues (2001) also observed the nozzle and internal fluid pathway of the jet injector becoming contaminated.

Fluid suck-back

Fluid suck-back occurs when blood left on the nozzle of the jet injector is sucked back into the injector orifice, contaminating the next dose to be fired.

The CDC has acknowledged that the most widely used jet injector in the world, the Ped-O-Jet, sucked fluid back into the gun. "After injections, they observed fluid remaining on the Ped-O-Jet nozzle being sucked back into the device upon its cocking and refilling for the next injection (beyond the reach of alcohol swabbing or acetone swabbing)," stated Dr. Bruce Weniger.

Retrograde flow

Retrograde flow happens after the jet stream penetrates the skin and creates a hole, if the pressure of the jet stream causes the spray, after mixing with tissue fluids and blood, to rebound back out of the hole, against the incoming jet stream and back into the nozzle orifice.

This problem has been reported by numerous researchers.

Hepatitis B can be transmitted by less than one nanolitre so makers of injectors must ensure there is no cross-contamination between applications. The World Health Organization no longer recommends jet injectors for vaccination due to risks of disease transmission.

Numerous studies have found cross-infection of diseases from jet injections. An experiment using mice, published in 1985, showed that jet injectors would frequently transmit the viral infection lactate dehydrogenase elevating virus (LDV) from one mouse to another. Another study used the device on a calf, then tested the fluid remaining in the injector for blood. Every injector they tested had detectable blood in a quantity sufficient to pass on a virus such as hepatitis B.

From 1984 to 1985, a weight-loss clinic in Los Angeles administered human chorionic gonadotropin (hCG) with a Med-E-Jet injector. A CDC investigation found 57 out of 239 people who had received the jet injection tested positive for hepatitis B.

Jet injectors have also been found to inoculate bacteria from the environment into users. In 1988 a podiatry clinic used a jet injector to deliver local anaesthetic into patients' toes. Eight of these patients developed infections caused by Mycobacterium chelonae. The injector was stored in a container of water and disinfectant between use, but the organism grew in the container. This species of bacteria is sometimes found in tap water, and had been previously associated with infections from jet injectors.

History

Hypospray Jet Injector used in typhus vaccination at a US military base, 1959
A jet injector being used in 1973, in Campada, Guinea-Bissau
  • 19th century: Workmen in France had accidental jet injections with high-powered grease guns.
  • December 18, 1866: Jules-Auguste Béclard presented Dr. Jean Sales-Girons invention, Appareil pour l'aquapuncture to l'Académie Impériale de Médecine in Paris. This is the earliest documented jet injector to administer water or medicine under enough pressure to penetrate the skin without the use of a needle.
  • 1920s: Diesel engines began to be made in large quantities: thus the start of serious risk of accidental jet-injection by their fuel injectors in workshop accidents.
  • 1935: Arnold K. Sutermeister, a mechanical engineer, witnessed a worker injure his hand from a high-pressure jet stream and theorized of using the concept to administer medicine. Sutermeister collaborates with Dr. John Roberts in creating a prototype jet injector.
  • 1937: First published accidental jet injection by a diesel engine's fuel injector.
  • 1936: Marshall Lockhart, an engineer, filed a patent for his idea of a jet injector after learning of Sutermeister's invention.
  • 1947: Lockhart's jet injector, known as the Hypospray, was introduced for clinical evaluation by Dr. Robert Hingson and Dr. James Hughes.
  • 1951: The Commission on Immunization of the Armed Forces Epidemiological Board requested the Army Medical Service Graduate School to develop "jet injection equipment specifically intended for rapid semiautomatic operation in large-scale immunization programs." This device became known as the multi-use nozzle jet injector (MUNJI).
  • 1954–1967: Dr. Robert Hingson partook in numerous health expeditions with his charity, Brother's Brother Foundation. Hingson stated he vaccinated upwards of 2 million people across the globe using various multi-use nozzle jet injectors.
  • 1955: Warren and colleagues (1955) reported on the introduction of a prototype multi-dose jet injector, known as the Press-O-Jet, which had successfully undergone clinical testing upon 1,685 soldiers within the U.S. Army.
  • 1959: Abram Benenson, the Lieutenant Colonel for the Division of Immunology at Walter Reed Army Institute of Research, reported on the development of what became widely known as the Ped-O-Jet. The invention was the collaboration of Dr. Benenson and Aaron Ismach. Ismach was a civilian scientist working for the US Army Medical Equipment and Research Development Laboratory.
  • 1961: The Department of the Army made multi-use nozzle jet injectors the standard for administering immunizations.
  • 1961: The CDC implemented mass vaccination programs across the United States called Babies and Breadwinners to combat polio. These vaccination events used multi-use nozzle jet injectors.
  • 1964: Aaron Ismach invented an intradermal nozzle for the Ped-O-Jet injector, which allowed delivery of the shallower smallpox vaccinations.
  • 1964: Aaron Ismach was awarded the Exceptional Civilian Service Award at the Eighth Annual Secretary of the Army Awards ceremonies for his invention of the intradermal nozzle.
  • 1966: Oscar Banker, an engineer, patented his invention of a portable multi-use nozzle jet injector that utilizes CO2 as its energy source. This would become known as the Med-E-Jet.
  • September 1966: The Star Trek series started to use its own jet injector device under the name "hypospray".
  • 1967: Nicaraguans undergoing smallpox vaccinations nicknamed the gun-like jet injectors (Ped-O-Jet and Med-E-Jet) as "la pistola de la paz", meaning "the pistol of peace". The name "Peace Guns" stuck.
  • 1976: The United States Agency for International Development (USAID) published a book called War on Hunger which detailed the War Against Smallpox which Ismach's Jet Injector gun was used to eradicate the disease in Africa and Asia. The US government spent $150 million a year to prevent its recurrence in North America.
  • 1986: A hepatitis B outbreak occurs amongst 57 patients at a Los Angeles clinic due to a Med-E-Jet injector.
  • 1997: The US Department of Defense, the jet injector's biggest user, announced that it would stop using it for mass vaccinations due to concerns about infection.
  • 2003: The US Department of Veterans Affairs recognized for the first time that a veteran acquired Hepatitis C from his military jet injections and awarded service-connection for his disability.
  • April 2010: A laser-based reusable microjet injector for transdermal drug delivery was made by Tae-hee Han and Jack J. Yoh.
  • February 13, 2013: The PharmaJet Stratis Needle-Free Injector received WHO PQS Certification.
  • 2013: The most comprehensive review and history of jet injection to date is published in the 6th edition of the textbook Vaccines.
  • August 14, 2014: The U.S. Food and Drug Administration (FDA) approved the use of the PharmaJet Stratis 0.5ml Needle-free Jet Injector for delivery of one particular flu vaccine (AFLURIA by bioCSL Inc.) in people 18 through 64 years of age.
  • October 2017: A group of scientists publishes an academic study in the Journal of Biomedical Optics, about a new jet injection technique of jet injection by continuous-wave laser cavitation aimed to "develop a needle-free device for eliminating major global healthcare problems caused by needles".

References

  1. ^ World Health Organization (2005-07-13). "Solutions: Choosing Technologies for Safe Injections". Archived from the original on 21 September 2012. Retrieved 2011-05-06.
  2. ^ Jet Infectors (2016-10-23). "What Is A Jet Injector?". jetinfectors.com. Retrieved October 23, 2016.
  3. Kelly, K (March 4, 2008). "Preventing contamination between injections with multiple-use nozzle needle-free injectors: a safety trial". Vaccine. 26 (10): 1344–1352. doi:10.1016/j.vaccine.2007.12.041. PMID 18272265.
  4. International Standards Organization (June 3, 1999). Needle-free injectors for medical use [draft report] (PDF) (Report). Archived from the original (PDF) on March 3, 2000.
  5. Rivas, David Fernandez; Galvez, Loreto Alejandra Oyarte (2020). "Jet injection system".
  6. ^ Jet Infectors. "Inherent Problems With Jet Injectors" (PDF). Jet Infectors. Archived from the original (PDF) on August 3, 2017. Retrieved July 31, 2017.
  7. Mitragotri, Samir (July 2006). "Current status and future prospects of needle-free liquid jet injectors". Nat Rev Drug Discov. 5 (7): 543–548. doi:10.1038/nrd2076. PMID 16816837. S2CID 11758107.
  8. ^ Hoffman, Peter; Abuknesha, RA; Andrews, NJ; Samuel, D; Lloyd, JS (2001). "A model to assess the infection potential of jet injectors used in mass immunization". Vaccine. 19 (28–29): 4020–4027. doi:10.1016/s0264-410x(01)00106-2. PMID 11427278.
  9. Weniger, BG; Jones, TS; Chen, RT. "The Unintended Consequences of Vaccine Delivery Devices Used to Eradicate Smallpox: Lessons for Future Vaccination Methods" (PDF). Jet Infectors. Archived from the original (PDF) on October 24, 2016. Retrieved October 23, 2016.
  10. Kale, TR; Momin, M (2014). "Needle free injection technology – An overview". Innovations in Pharmacy. 5 (1). doi:10.24926/iip.v5i1.330. hdl:11299/171730.
  11. Suria, H; Van Enk, R; Gordon, R; Mattano, LA Jr. (1999). "Risk of cross-patient infection with clinical use of a needleless injector device". American Journal of Infection Control. 27 (5): 444–7. doi:10.1016/s0196-6553(99)70012-x. PMID 10511493.
  12. World Health Organization. "STEERING GROUP ON THE DEVELOPMENT OF JET INJECTION FOR IMMUNIZATION" (PDF). asknod.org. Retrieved October 23, 2016.
  13. Kelly, K; Loskutov, A; Zehrung, D; Puaa, K; LaBarre, P; Muller, N; Guiqiang, W; Ding, H; Hu, D; Blackwelder, WC (2008). "Preventing contamination between injections with multi-use nozzle needle-free injectors: a safety trial". Vaccine. 26 (10): 1344–1352. doi:10.1016/j.vaccine.2007.12.041. PMID 18272265.
  14. ^ Hoffman, P.N; R.A Abuknesha; N.J Andrews; D Samuel; J.S Lloyd (2001-07-16). "A model to assess the infection potential of jet injectors used in mass immunisation. Population risk (Veterans and children) for another deadly virus, previously known as "non A- non B" or Chronic Hepatitis C "CHC or HCV"". Vaccine. 19 (28–29): 4020–7. doi:10.1016/S0264-410X(01)00106-2. PMID 11427278.
  15. Brink, P.R.G.; Van Loon, M.; Trommelen, J.C.M.; Gribnau, W.J.; Smale-Novakova, I.R.O. (1985-12-01). "Virus Transmission by Subcutaneous Jet Injection". J Med Microbiol. 20 (3): 393–7. doi:10.1099/00222615-20-3-393. PMID 4068027.
  16. ^ Canter, Jeffrey; Katherine Mackey; Loraine S. Good; Ronald R. Roberto; James Chin; Walter W. Bond; Miriam J. Alter; John M. Horan (1990-09-01). "An Outbreak of Hepatitis B Associated With Jet Injections in a Weight Reduction Clinic". Arch Intern Med. 150 (9): 1923–1927. doi:10.1001/archinte.1990.00390200105020. PMID 2393323.
  17. Wenger, Jay D.; John S. Spika; Ronald W. Smithwick; Vickie Pryor; David W. Dodson; G. Alexander Carden; Karl C. Klontz (1990-07-18). "Outbreak of Mycobacterium chelonae Infection Associated With Use of Jet Injectors". JAMA. 264 (3): 373–6. doi:10.1001/jama.1990.03450030097040. PMID 2362334.
  18. Inman, P.M.; Beck, A.; Brown, A.E.; Stanford, J.L. (August 1969). "Outbreak of injection abscesses due to Mycobacterium abscessus". Archives of Dermatology. 100 (2): 141–7. doi:10.1001/archderm.100.2.141. PMID 5797954.
  19. "at". Healthfreelancing.com. Archived from the original on 10 September 2010. Retrieved 5 April 2011.
  20. Béclard, F (1866). "Présentation de l'injecteur de Galante, Séance du 18 décembre 1866, Présidence de M. Bouchardat [Presentation of Jet Injector of Galante, H., meeting of 18 December 1866, Monsieur Bouchardat presiding]". Bulletin de l'Académie Impériale de Médecine. 32: 321–327.
  21. Roberts, JF (1935). "Local infiltration of tissues from a machine designed to deliver high pressure, high velocity jets of fluid ". Columbia University. College of Physicians and Surgeons.
  22. Rees CE (11 September 1937). "Penetration of tissue by fuel oil under high pressure from diesel engine". JAMA. 109 (11): 866–7. doi:10.1001/jama.1937.92780370004012c.
  23. Lockhart, Marshall (June 22, 1943). "Hypodermic Injector. Patent Number US 2322244".
  24. Hingson, RA; Hughes, JG (1947). "Clinical studies with jet injection. A new method of drug administration". Current Researches in Anesthesia and Analgesia. 26 (6): 221–230. PMID 18917536.
  25. ^ Warren, J; Ziherl, FA; Kish, AW; Ziherl, LA (1955). "Large-scale administration of vaccines by means of an automatic jet injection syringe". JAMA. 157 (8): 633–637. doi:10.1001/jama.1955.02950250007003. PMID 13232991.
  26. Rosenberg, Henry; Axelrod, Jean (July 1998). "Robert Andrew Hingson: His Unique Contributions to World Health as Well as to Anesthesiology". Bulletin of Anesthesia History. 16 (3): 10–12. doi:10.1016/s1522-8649(98)50046-7.
  27. Benenson, AS (1959). Mass immunization by jet injection. International Symposium of Immunology, Opatija, Yugoslavia, 28 September – 1 October 1959. pp. 393–399.
  28. Department of the Army. "Annual Report of the Surgeon General United States Army Fiscal Year 1961". U.S. Army. Retrieved July 31, 2017.
  29. Jet Infectors (2017-04-04). "Babies and Breadwinners: 1961 Mass Polio Vaccination Campaign". Jet Infectors. Retrieved July 31, 2017.
  30. Ismach, A (July 14, 1964). "Intradermal nozzle for jet injection devices. Patent Number US 3140713".
  31. Army Research and Development (June 1968). "1968 R&D Achievement Awards Won By 18 Individuals, 5 Teams". Army Research and Development Magazine. 9 (6): 3.
  32. Banker, Oscar (December 20, 1966). "Jet Type Portable Inoculator. Patent Number US 3292621A". Retrieved July 31, 2017.
  33. Lord, A (2015-08-25). "The Peace Gun". Smithsonian. Retrieved July 31, 2017.
  34. "The DoD order". Archived from the original on 2012-12-12. Retrieved 2007-11-28.
  35. "Veterans info page". Archived from the original on 2007-12-05. Retrieved 2007-11-28.
  36. Cleveland Veterans Affairs Regional Office. "There is Hope for Hepatitis C". Yahoo. Retrieved July 31, 2017.
  37. Han, Tae-hee; Yoh, Jack J. (2010). "A laser based reusable microjet injector for transdermal drug delivery". Journal of Applied Physics. 107 (10): 103110–103110–3. Bibcode:2010JAP...107j3110H. doi:10.1063/1.3430989.
  38. "PharmaJet's Stratis® Needle-free Injector Receives WHO PQS Certification as a Pre-qualified Delivery Device for Vaccine Administration". FierceVaccines. 2013-02-13. Archived from the original on 2016-03-03.
  39. "Weniger BG, Papania MJ. Alternative Vaccine Delivery Methods [Chapter 61]. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines, 6th ed. Philadelphia: Elsevier/Saunders; 2013, pp. 1200–31" (PDF) (In the public domain as the work of an author on official duties as employee of the U.S. Government.). Archived from the original (PDF) on 2014-04-20. Retrieved 2020-09-12.
  40. "Flu Vaccination by Jet Injector | CDC". 2017-10-12.
  41. "FDA Updated Communication on Use of Jet Injectors with Inactivated Influenza Vaccines; FDA". FDA. 2020-02-07.
  42. Rodríguez, Carla Berrospe; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-García, Rubén (October 2017). "Toward jet injection by continuous-wave laser cavitation". Journal of Biomedical Optics. 22 (10): 105003. doi:10.1117/1.JBO.22.10.105003. ISSN 1083-3668.

External links

Routes of administration, dosage forms
Oral
Digestive tract (enteral)
Solids
Liquids
Oral mucosa (buccal, sublabial, sublingual)
Solids
Liquids
Respiratory tract (inhalation)
Solids
0
0
Liquids
Gas
Ophthalmic,
otic, nasal
Urogenital
  • Ointment
  • Pessary
  • Vaginal ring
  • Douche
  • Intrauterine device (IUD)
  • Extra-amniotic infusion
  • Intravesical infusion
  • Rectal (enteral)
    Dermal (topical)
  • Ointment
  • Topical cream
  • Topical gel
  • Liniment
  • Paste
  • Film
  • DMSO solution
  • Iontophoresis
  • Hydrogel
  • Liposomes
  • Transfersome vesicles
  • Cream
  • Lotion
  • Lip balm
  • Medicated shampoo
  • Dermal patch
  • Transdermal patch
  • Transdermal spray
  • Jet injector

  • (into tissue/blood)
    Skin (transdermal)
  • Intradermal
  • Subcutaneous
  • Transdermal implant
  • Organs
    Central nervous system
    Circulatory,
    musculoskeletal
    Categories: