Misplaced Pages

Cold fusion: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 09:04, 7 November 2011 edit84.106.26.81 (talk) no source but ok?← Previous edit Latest revision as of 05:34, 19 November 2024 edit undoSnowFire (talk | contribs)Extended confirmed users, Pending changes reviewers26,410 edits partially undo old, non-standard change from 2021 to reference headings.. although separating out the long citations is still a little odd. 
Line 1: Line 1:
{{Short description|Hypothetical type of nuclear reaction}}
{{About|the Fleischmann–Pons claims of ] at room temperature|the original use of the term 'cold fusion'|Muon-catalyzed fusion|all other definitions|Cold fusion (disambiguation)}}
{{Hatnote group|{{About|the Fleischmann–Pons claims of nuclear fusion at room temperature, and subsequent research|the original use of the term "cold fusion"|muon-catalyzed fusion|all other definitions|Cold fusion (disambiguation)}}
] used at the New Hydrogen Energy Institute in Japan]]
{{Distinguish|cold welding}}
}}
{{Use dmy dates|date=March 2019}}
] used at the New Hydrogen Energy Institute in Japan]]


'''Cold fusion''' is a hypothesized type of ] that would occur at, or near, ]. It would contrast starkly with the ] that is known to take place naturally within ] and artificially in ] and prototype ] under immense pressure and at temperatures of millions of degrees, and be distinguished from ]. There is currently no accepted theoretical model that would allow cold fusion to occur.
'''Cold fusion''', also called Low-Energy Nuclear Reaction ('''LENR'''), refers to the ] that ] might explain the results of a group of experiments conducted at ordinary temperatures (]). Both the experimental results and the hypothesis are disputed. The ideas gained attention after the reports of ], then one of the world's leading ],<ref>{{Cite news
|author=
|title=60 Minutes: Once Considered Junk Science, Cold Fusion Gets A Second Look By Researchers
|url=http://www.cbsnews.com/stories/2009/04/17/60minutes/main4952167.shtml
|publisher=]
|accessdate=
| date=2009-04-17
}}</ref> and ] in 1989 that they had produced anomalous heat ("excess heat") of a magnitude they asserted would defy explanation except in terms of nuclear processes. They further reported measuring small amounts of nuclear reaction byproducts, including ] and ].<ref>{{harvnb|Fleischmann|Pons|1989|p=301}} ("It is inconceivable that this could be due to anything but nuclear processes... We realise that the results reported here raise more questions than they provide answers...")</ref> The small tabletop experiment involved ] of ] on the surface of a ] (Pd) electrode.<ref name="Voss 1999 ref=CITEREFVoss1999">{{harvnb|Voss|1999|ref=CITEREFVoss1999}}</ref>


In 1989, two ] at the University of Utah, ] and ], reported that their apparatus had produced anomalous heat ("excess heat") of a magnitude they asserted would defy explanation except in terms of nuclear processes.<ref>{{cite web
The reported results received wide media attention,<ref name="Voss 1999 ref=CITEREFVoss1999"/> and raised hopes of a cheap and abundant source of energy.<ref name="Browne_1989_para1">{{harvnb|Browne|1989|loc=para. 1}}</ref> Many scientists tried to replicate the experiment with the few details available, some to prove it wrong, and some because they wanted to be part of this new exciting discovery. Hopes fell with the big number of negative replications, the withdrawal of many positive replications, the discovery of flaws and sources of experimental error in the original experiment, and finally the discovery that Fleischmann and Pons had not actually detected nuclear reaction byproducts.<ref>{{harvnb|Browne|1989}}, {{harvnb|Close|1992}}, {{harvnb|Huizenga|1993}}, {{harvnb|Taubes|1993}}</ref>
|mode = cs2
|title = 60 Minutes: Once Considered Junk Science, Cold Fusion Gets A Second Look By Researchers
|url = https://www.cbsnews.com/news/cold-fusion-is-hot-again/
|publisher = ]
|date = 17 April 2009
|url-status = live
|archive-url = https://web.archive.org/web/20120212001503/http://www.cbsnews.com/stories/2009/04/17/60minutes/main4952167.shtml
|archive-date = 12 February 2012
}}</ref> They further reported measuring small amounts of nuclear reaction byproducts, including ] and ].<ref name=FP1989>{{harvnb|Fleischmann|Pons|1989|p=301}} ("It is inconceivable that this could be due to anything but nuclear processes... We realise that the results reported here raise more questions than they provide answers...")</ref> The small tabletop experiment involved ] of ] on the surface of a ] (Pd) electrode.{{sfn|ps=|Voss|1999a}} The reported results received wide media attention{{sfn|ps=|Voss|1999a}} and raised hopes of a cheap and abundant source of energy.{{sfn|ps=|Browne|1989|loc=para. 1}}


By late 1989, most scientists considered cold fusion claims dead,<ref name="Browne_1989" /><ref name="most scientists">{{harvnb|Taubes|1993|pp=262, 265–266, 269–270, 273, 285, 289, 293, 313, 326, 340–344, 364, 366, 404–406}}, {{harvnb|Goodstein|1994}}, {{harvnb|Van Noorden|2007}}, {{harvnb|Kean|2010}}</ref> and cold fusion subsequently gained a reputation as ].<ref name="nytdoe"> Many scientists tried to ] the experiment with the few details available. Expectations diminished as a result of numerous failed replications, the retraction of several previously reported positive replications, the identification of methodological flaws and experimental errors in the original study, and, ultimately, the confirmation that Fleischmann and Pons had not observed the expected nuclear reaction byproducts.<ref>{{harvnb|Browne|1989}}, {{harvnb|Close|1992}}, {{harvnb|Huizenga|1993}}, {{harvnb|Taubes|1993}}</ref> By late 1989, most scientists considered cold fusion claims dead,{{sfn|ps=|Browne|1989}}<ref name="most scientists">{{harvnb|Taubes|1993|pp=262, 265–266, 269–270, 273, 285, 289, 293, 313, 326, 340–344, 364, 366, 404–406}}, {{harvnb|Goodstein|1994}}, {{harvnb|Van Noorden|2007}}, {{harvnb|Kean|2010}}</ref> and cold fusion subsequently gained a reputation as ].<ref name="nytdoe">
{{Cite news {{cite news|mode=cs2
|date=25 March 2004
|author=
|date=2004-03-25
|title=US will give cold fusion a second look |title=US will give cold fusion a second look
|url=https://www.nytimes.com/2004/03/25/us/us-will-give-cold-fusion-second-look-after-15-years.html
|url=http://query.nytimes.com/gst/fullpage.html?res=9C01E0DC1530F936A15750C0A9629C8B63
|publisher=The New York Times |newspaper=The New York Times
|access-date=8 February 2009
|accessdate=2009-02-08
| first=Kenneth | first=Kenneth
| last=Chang | last=Chang
}}</ref> }}</ref><ref name="Ouellette">
{{cite web

|mode = cs2
In 1989, the majority of a review panel organized by the ] (DOE) found that the evidence for the discovery of a new nuclear process was not persuasive enough to start a special program, but was "sympathetic toward modest support" for experiments "within the present funding system." A second DOE review, convened in 2004 to look at new research, reached conclusions similar to the first.<ref>{{harvnb|Choi|2005}}, {{harvnb|Feder|2005}}, {{harvnb|US DOE|2004|ref=CITEREFDOE2004r}}</ref>
|date = 23 December 2011
|title = Could Starships Use Cold Fusion Propulsion?
|url = http://news.discovery.com/space/could-interstellar-starships-use-cold-fusion-propulsion-111223.html
|work = Discovery News
|first = Jennifer
|last = Ouellette
|url-status = live
|archive-url = https://web.archive.org/web/20120107185538/http://news.discovery.com/space/could-interstellar-starships-use-cold-fusion-propulsion-111223.html
|archive-date = 7 January 2012
}}</ref> In 1989 the ] (DOE) concluded that the reported results of excess heat did not present convincing evidence of a useful source of energy and decided against allocating funding specifically for cold fusion. A second DOE review in 2004, which looked at new research, reached similar conclusions and did not result in DOE funding of cold fusion.<ref>{{harvnb|US DOE|2004}}, {{harvnb|Choi|2005}}, {{harvnb|Feder|2005}}</ref> Presently, since articles about cold fusion are rarely published in ] mainstream ]s, they do not attract the level of scrutiny expected for mainstream ].<ref>{{harvnb|Goodstein|1994}}, {{harvnb|Labinger|Weininger|2005|p=1919}}</ref>


A small community of researchers continues to investigate cold fusion,<ref name="Browne_1989"/><ref name="small community">{{harvnb|Broad|1989b}}, {{harvnb|Voss|1999}}, {{harvnb|Platt|1998}}, {{harvnb|Goodstein|1994}}, {{harvnb|Van Noorden|2007}}, {{harvnb|Beaudette|2002}}, {{harvnb|Feder|2005}}, {{harvnb|Adam|2005|quote=Advocates insist that there is just too much evidence of unusual effects in the thousands of experiments since Pons and Fleischmann to be ignored}}, {{harvnb|Hutchinson|2006}}, {{harvnb|Kruglinksi|2006}}, {{harvnb|Adam|2005}}, {{harvnb|Alfred|2009|ref=CITEREFAlfred2009}}</ref> claiming to replicate Fleischmann and Pons' results including nuclear reaction byproducts.<ref name="ACS Press Release"> Nevertheless, some interest in cold fusion has continued through the decades—for example, a Google-funded failed replication attempt was published in a 2019 issue of ].<ref name=":0">{{Cite web|last=Koziol|first=Michael|date=22 March 2021|title=Whether Cold Fusion or Low-Energy Nuclear Reactions, U.S. Navy Researchers Reopen Case|url=https://spectrum.ieee.org/cold-fusion-or-low-energy-nuclear-reactions-us-navy-researchers-reopen-case|access-date=2021-03-23|website=IEEE Spectrum: Technology, Engineering, and Science News|language=en}}</ref><ref>{{cite journal | last1 = Berlinguette | first1 = C.P. | last2 = Chiang | first2 = YM. | last3 = Munday | first3 = J.N. | display-authors = etal | year = 2019| title = Revisiting the cold case of cold fusion | url = | journal = Nature | volume = 570 | issue = 7759| pages = 45–51 | doi = 10.1038/s41586-019-1256-6 | pmid = 31133686 | bibcode = 2019Natur.570...45B | s2cid = 167208748 }}</ref> A small community of researchers continues to investigate it,{{sfn|ps=|Browne|1989}}<ref name=Broad1989b/><ref name="small community">{{harvnb|Goodstein|1994}}, {{harvnb|Platt|1998}}, {{harvnb|Voss|1999a}}, {{harvnb|Beaudette|2002}}, {{harvnb|Feder|2005}}, {{harvnb|Adam|2005}} "Advocates insist that there is just too much evidence of unusual effects in the thousands of experiments since Pons and Fleischmann to be ignored", {{harvnb|Kruglinski|2006}}, {{harvnb|Van Noorden|2007}}, {{harvnb|Alfred|2009}}. {{harvnb|Daley|2004}} calculates between 100 and 200 researchers, with damage to their careers.</ref> often under the alternative designations ''low-energy nuclear reactions'' (''LENR'') or ''condensed matter nuclear science'' (''CMNS'').<ref name="ACS Press Release">
{{cite press {{cite web
|mode = cs2
|url=http://www.eurekalert.org/pub_releases/2009-03/acs-fr031709.php
|url = http://www.eurekalert.org/pub_releases/2009-03/acs-fr031709.php
|title='Cold fusion' rebirth? New evidence for existence of controversial energy source
|title = 'Cold fusion' rebirth? New evidence for existence of controversial energy source
|publisher=]
|publisher = ]
}}</ref><ref name="Hagelstein et al. 2004">{{harvnb|Hagelstein et al.|2004|ref=CITEREFDOE2004}}</ref> Since cold fusion articles are rarely published in refereed scientific journals, the results do not receive as much scrutiny as more mainstream topics,<ref>{{harvnb|Goodstein|1994}}, {{harvnb|Labinger|2005|p=1919}}</ref> and many scientists aren't even aware that there is new research.<ref name=cartwright /> Mainstream scientists perceive the field as the remains of the controversy of the early 1990s.<ref name=cartwright>{{harvnb|Cartwright|2009}}</ref>
|url-status = live
|archive-url = https://web.archive.org/web/20141221073942/http://www.eurekalert.org/pub_releases/2009-03/acs-fr031709.php
|archive-date = 21 December 2014
}}</ref>{{sfn|ps=|Hagelstein|McKubre|Nagel|Chubb|2004}}<ref>{{cite web |title=ICMNS FAQ |url=http://www.iscmns.org/FAQ.HTM#ref2 |publisher=International Society of Condensed Matter Nuclear Science |url-status=live |archive-url= https://web.archive.org/web/20151103020057/http://iscmns.org/FAQ.HTM#ref2 |archive-date=3 November 2015}}</ref>{{sfn|ps=|Biberian|2007}}


==History== ==History==
] is normally understood to occur at temperatures in the tens of millions of degrees. This is called "]". Since the 1920s, there has been speculation that nuclear fusion might be possible at much lower temperatures by ] fusing hydrogen absorbed in a metal catalyst. In 1989, a claim by Stanley Pons and Martin Fleischmann (then one of the world's leading ]) that such cold fusion had been observed caused a brief ] before the majority of scientists criticized their claim as incorrect after many found they could not replicate the excess heat. Since the initial announcement, cold fusion research has continued by a small community of researchers who believe that such reactions happen and hope to gain wider recognition for their experimental evidence.
=== {{anchor|Before the Fleischmann-Pons experiment}}Before the Fleischmann&ndash;Pons experiment ===
The ability of palladium to absorb hydrogen was recognized as early as the nineteenth century by ].<ref name="DOE_1989_7">{{harvnb|US DOE|1989|ref=CITEREFDOE1989|p=7}}</ref> In the late 1920s, two Austrian born scientists, ] and ], originally reported the transformation of hydrogen into helium by spontaneous nuclear catalysis when hydrogen was absorbed by finely divided palladium at room temperature. However, the authors later retracted that report, acknowledging that the helium they measured was due to background from the air.<ref name="DOE_1989_7" /><ref>{{harvnb|Paneth and Peters|1926|ref=CITEREFPanethPeters1926}}</ref>


===Early research===
In 1927, Swedish scientist J. Tandberg stated that he had fused hydrogen into helium in an ] with palladium electrodes.<ref name="DOE_1989_7"/> On the basis of his work, he applied for a Swedish patent for "a method to produce helium and useful reaction energy". After ] was discovered in 1932, Tandberg continued his experiments with ]. Due to Paneth and Peters' retraction, Tandberg's patent application was eventually denied.<ref name="DOE_1989_7"/> His application for a patent in 1927 was denied as he could not explain the physical process.<ref>, Ny Teknik, Kaianders Sempler, 9 February 2011</ref>
The ability of ] was recognized as early as the nineteenth century by ].{{sfn|ps=|US DOE|1989|p=7}}<ref>{{Cite journal|title = On the Absorption and Dialytic Separation of Gases by Colloid Septa|journal = Philosophical Transactions of the Royal Society of London|date = 1 January 1866|issn = 0261-0523|pages = 399–439|volume = 156|doi = 10.1098/rstl.1866.0018|first = Thomas|last = Graham|doi-access = free}}</ref> In the late 1920s, two Austrian-born scientists, ] and ], originally reported the transformation of hydrogen into helium by nuclear catalysis when hydrogen was absorbed by finely divided palladium at room temperature. However, the authors later retracted that report, saying that the helium they measured was due to background from the air.{{sfn|ps=|US DOE|1989|p=7}}{{sfn|ps=|Paneth|Peters|1926}}


In 1927, Swedish scientist John Tandberg reported that he had fused hydrogen into helium in an ] with palladium electrodes.{{sfn|ps=|US DOE|1989|p=7}} On the basis of his work, he applied for a Swedish patent for "a method to produce helium and useful reaction energy".{{sfn|ps=|US DOE|1989|p=7}} Due to Paneth and Peters's retraction and his inability to explain the physical process, his patent application was denied.{{sfn|ps=|US DOE|1989|p=7}}<ref> {{webarchive|url=https://web.archive.org/web/20160303210020/http://www.nyteknik.se/popular_teknik/smatt_gott/article3092779.ece |date=3 March 2016 }}, Ny Teknik, Kaianders Sempler, 9 February 2011</ref> After ] was discovered in 1932, Tandberg continued his experiments with ].{{sfn|ps=|US DOE|1989|p=7}} The final experiments made by Tandberg with heavy water were similar to the original experiment by Fleischmann and Pons.<ref name="similar_to_tandberg">{{harvnb|Pool|1989}}, {{harvnb|Wilner|1989}}, {{harvnb|Close|1992|pp=19–21}} {{harvnb|Huizenga|1993|pp=13–14, 271}}, {{harvnb|Taubes|1993|p=214}}</ref> Fleischmann and Pons were not aware of Tandberg's work.<ref>{{harvnb|Huizenga|1993|pp=13–14}}</ref><ref group="text" name="tandberg_not_known_by_FP" /><ref group="text" name="tandberg_not_known_by_FP2" />
The term "cold fusion" was used as early as 1956 in a New York Times article about ]'s work on muon-catalyzed fusion.<ref>{{harvnb|Laurence|1956}}</ref> ] of ] also used the term "cold fusion" in 1986 in an investigation of "geo-fusion", the possible existence of fusion in a ].<ref name="Kowalski_2004_IIA2">{{harvnb|Kowalski|2004|loc=II.A2}}</ref>


The term "cold fusion" was used as early as 1956 in an article in ''The New York Times'' about ]'s work on ].{{sfn|ps=|Laurence|1956}} ] and then ] of ] used the term "cold fusion" in 1986 in an investigation of "geo-fusion", the possible existence of fusion involving hydrogen isotopes in a ].{{sfn|ps=|Kowalski|2004|loc=II.A2}} In his original paper on this subject with Clinton Van Siclen, submitted in 1985, Jones had coined the term "piezonuclear fusion".{{sfn|ps=|Kowalski|2004|loc=II.A2}}<ref>C. DeW. Van Siclen and S. E. Jones, "Piezonuclear fusion in isotopic hydrogen molecules," J. Phys. G: Nucl. Phys. 12: 213–221 (March 1986).</ref>
Then the term was used strictly to refer to the Pons and Fleischmann experiment, today "cold fusion" is also used to refer to Low Energy Nuclear Reactions in general.


==={{anchor|Fleischmann-Pons experiment}}Fleischmann&ndash;Pons experiment=== ===Fleischmann–Pons experiment===
The most famous cold fusion claims were made by Stanley Pons and Martin Fleischmann in 1989. After a brief period of interest by the wider scientific community, their reports were called into question by nuclear physicists. Pons and Fleischmann never retracted their claims, but moved their research program from the US to France after the controversy erupted.
==== Events preceding announcement ====


====Events preceding announcement====
]] of the ] and ] of the ] hypothesized that the high compression ratio and mobility of ] that could be achieved within palladium metal using electrolysis might result in nuclear fusion.<ref name="FleischmannPons_1989_301">{{harvnb|Fleischmann|Pons|1989|p=301}}</ref> To investigate, they conducted electrolysis experiments using a palladium cathode and heavy water within a calorimeter, an insulated vessel designed to measure process heat. Current was applied continuously for many weeks, with the ] being renewed at intervals.<ref name="FleischmannPons_1989_301"/> Some deuterium was thought to be accumulating within the cathode, but most was allowed to bubble out of the cell, joining oxygen produced at the anode.<ref name="FleischmannPons_1990">{{harvnb|Fleischmann et al.|1990|ref=CITEREFFleischmann1990}}</ref> For most of the time, the power input to the cell was equal to the calculated power leaving the cell within measurement accuracy, and the cell temperature was stable at around 30&nbsp;°C. But then, at some point (in some of the experiments), the temperature rose suddenly to about 50&nbsp;°C without changes in the input power. These high temperature phases would last for two days or more and would repeat several times in any given experiment once they had occurred. The calculated power leaving the cell was significantly higher than the input power during these high temperature phases. Eventually the high temperature phases would no longer occur within a particular cell.<ref name="FleischmannPons_1990"/>
]
] of the ] and ] of the ] hypothesized that the high compression ratio and mobility of ] that could be achieved within palladium metal using electrolysis might result in nuclear fusion.{{sfn|ps=|Fleischmann|Pons|1989|p=301}} To investigate, they conducted electrolysis experiments using a palladium cathode and heavy water within a ], an insulated vessel designed to measure process heat. Current was applied continuously for many weeks, with the ] being renewed at intervals.{{sfn |ps= |Fleischmann |Pons |1989 |p=301}} Some deuterium was thought to be accumulating within the cathode, but most was allowed to bubble out of the cell, joining oxygen produced at the anode.{{sfn |ps= |Fleischmann |Pons |Anderson |Li |1990}} For most of the time, the power input to the cell was equal to the calculated power leaving the cell within measurement accuracy, and the cell temperature was stable at around 30&nbsp;°C. But then, at some point (in some of the experiments), the temperature rose suddenly to about 50&nbsp;°C without changes in the input power. These high temperature phases would last for two days or more and would repeat several times in any given experiment once they had occurred. The calculated power leaving the cell was significantly higher than the input power during these high temperature phases. Eventually the high temperature phases would no longer occur within a particular cell.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}}


In 1988, Fleischmann and Pons applied to the ] for funding towards a larger series of experiments. Up to this point they had been funding their experiments using a small device built with $100,000 ].<ref name="LADN_092489">{{harvnb|Crease|Samios|1989|p=V1}}</ref> The grant proposal was turned over for ], and one of the reviewers was ] of ].<ref name="LADN_092489"/> Jones had worked for some time on ], a known method of inducing nuclear fusion without high temperatures, and had written an article on the topic entitled "Cold nuclear fusion" that had been published in '']'' in July 1987. Fleischmann and Pons and co-workers met with Jones and co-workers on occasion in ] to share research and techniques. During this time, Fleischmann and Pons described their experiments as generating considerable "excess energy", in the sense that it could not be explained by ]s alone.<ref name="FleischmannPons_1990"/> They felt that such a discovery could bear significant commercial value and would be entitled to ]. Jones, however, was measuring neutron flux, which was not of commercial interest.<ref name="LADN_092489"/> In order to avoid problems in the future, the teams appeared to agree to simultaneously publish their results, although their accounts of their March 6 meeting differ.<ref name="Lewenstein_1994_8">{{harvnb|Lewenstein|1994|pp=8–9}}</ref> In 1988, Fleischmann and Pons applied to the ] for funding towards a larger series of experiments. Up to this point they had been funding their experiments using a small device built with $100,000 ].{{sfn|ps=|Crease|Samios|1989|p=V1}} The grant proposal was turned over for ], and one of the reviewers was ] of ].{{sfn|ps=|Crease|Samios|1989|p=V1}} Jones had worked for some time on ], a known method of inducing nuclear fusion without high temperatures, and had written an article on the topic entitled "Cold nuclear fusion" that had been published in '']'' in July 1987. Fleischmann and Pons and co-workers met with Jones and co-workers on occasion in ] to share research and techniques. During this time, Fleischmann and Pons described their experiments as generating considerable "excess energy", in the sense that it could not be explained by ]s alone.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}} They felt that such a discovery could bear significant commercial value and would be entitled to ] protection. Jones, however, was measuring neutron flux, which was not of commercial interest.{{sfn|ps=|Crease|Samios|1989|p=V1}}{{clarify|date=November 2015}} To avoid future problems, the teams appeared to agree to publish their results simultaneously, though their accounts of their 6 March meeting differ.{{sfn|ps=|Lewenstein|1994|pp=8–9}}


====Announcement==== ====Announcement====
In mid-March 1989, both research teams were ready to publish their findings, and Fleischmann and Jones had agreed to meet at an airport on March 24 to send their papers to '']'' via ].<ref name="Lewenstein_1994_8"/> Fleischmann and Pons, however, pressured by the University of Utah which wanted to establish priority on the discovery,<ref name="utah patent"/> broke their apparent agreement, submitting their paper to the ''Journal of Electroanalytical Chemistry'' on March 11, and disclosing their work via a press release <ref name=Utahpress1989>{{cite web|last=University of Utah|title='Simple experiment' results in sustained n-fusion at room temperature for first time|url=http://newenergytimes.com/v2/reports/UniversityOfUtahPressRelease.shtml|accessdate=28 July 2011}}</ref> and press conference on March 23.<ref name="LADN_092489"/> Jones, upset, faxed in his paper to '']'' after the press conference.<ref name="Lewenstein_1994_8"/> In mid-March 1989, both research teams were ready to publish their findings, and Fleischmann and Jones had agreed to meet at an airport on 24 March to send their papers to '']'' via ].{{sfn|ps=|Lewenstein|1994|pp=8–9}} Fleischmann and Pons, however, pressured by the University of Utah, which wanted to establish priority on the discovery,<ref name="utah patent"/> broke their apparent agreement, disclosing their work at a press conference on 23 March<ref name="nature-lessons">{{Cite journal |last=Ball |first=Philip |date=2019-05-27 |title=Lessons from cold fusion, 30 years on |journal=Nature |language=EN |volume=569 |issue=7758 |pages=601 |doi=10.1038/d41586-019-01673-x|pmid=31133704 |bibcode=2019Natur.569..601B |doi-access=free }}</ref> (they claimed in the press release that it would be published in ''Nature''<ref name="nature-lessons" /> but instead submitted their paper to the ''Journal of Electroanalytical Chemistry'').{{sfn|ps=|Crease|Samios|1989|p=V1}} Jones, upset, faxed in his paper to '']'' after the press conference.{{sfn|ps=|Lewenstein|1994|pp=8–9}}


Fleischmann and Pons' announcement drew wide media attention.<ref name=Brooks>For example, in 1989, the ''Economist'' editorialized that the cold fusion "affair" was "exactly what science should be about." {{Citation|first=JK|last=Footlick|title=Truth and Consequences: how colleges and universities meet public crises|isbn=9780897749701|page=51|location=Phoenix|publisher=Oryx Press|year=1997}} as cited in {{Citation|first=M|last=Brooks|title=]|isbn=978-1-60751-666-8|page=67|location=New York|publisher=]|year=2008}}</ref> The 1986 discovery of ] had caused the scientific community to be more open to revelations of unexpected scientific results that could have huge economic repercussions and that could be replicated reliably even if they had not been predicted by established conjecture.<ref>{{harvnb|Simon|2002|pp=57–60}}, {{harvnb|Goodstein|1994}}</ref> Cold fusion was proposing the counterintuitive idea that a nuclear reaction could be caused to occur inside a chemically bound crystal structure. Many scientists were reminded of the ], a process involving ] in a solid. Its discovery 30 years earlier had also been unexpected, though it was quickly replicated and explained within the existing physics framework.<ref name="Goodstein_1994">{{harvnb|Goodstein|1994}}</ref> Fleischmann and Pons' announcement drew wide media attention,{{refn|group="notes"|name=Brooks|For example, in 1989, the ''Economist'' editorialized that the cold fusion "affair" was "exactly what science should be about."<ref>{{Cite book|mode=cs2|first=J. K.|last=Footlick|title=Truth and Consequences: how colleges and universities meet public crises|isbn=978-0-89774-970-1|page= |location=Phoenix|publisher=Oryx Press |year=1997 |url=https://archive.org/details/truthconsequence0000foot/page/51}} as cited in {{Cite book|mode=cs2 |first=M|last=Brooks|title=13 Things That Don't Make Sense|isbn=978-1-60751-666-8 |page=67|location=New York|publisher=]|year=2008|title-link=13 Things That Don't Make Sense}}</ref>}} as well as attention from the scientific community. The 1986 discovery of ] had made scientists more open to revelations of unexpected but potentially momentous scientific results that could be replicated reliably even if they could not be explained by established theories.<ref>{{harvnb|Simon|2002|pp=57–60}}, {{harvnb|Goodstein|1994}}</ref> Many scientists were also reminded of the ], a process involving ] in a solid. Its discovery 30 years earlier had also been unexpected, though it was quickly replicated and explained within the existing physics framework.{{sfn|ps=|Goodstein|1994}}


The announcement of a new clean source of energy came at a crucial time: everyone still remembered the ] and the problems caused by oil dependence, anthropogenic ] was starting to become notorious, the ] was labeling nuclear power plants as dangerous and getting them closed, people had in mind the consequences of ], ] and the ], and, to top it all, the ] happened the day after the announcement.<ref>{{harvnb|Petit|2009|ref=CITEREFPetit2009}}, {{harvnb|Park|2000|p=16}}</ref> In the press conference, ], Fleischmann and Pons, backed by the solidity of their scientific credentials, repeatedly assured the journalists that cold fusion would solve all of these problems, and would provide a limitless inexhaustible source of clean energy, using only seawater as fuel.<ref>{{harvnb|Taubes|1993|p=xviii-xx}}, {{harvnb|Park|2000|p=16}}</ref> They said the results had been confirmed dozens of times and they had no doubts about them.<ref>{{harvnb|Taubes|1993|p=xx-xxi}}</ref> In the accompanying press release Fleischmann was quoted saying: "What we have done is to open the door of a new research area, our indications are that the discovery will be relatively easy to make into a usable technology for generating heat and power, but continued work is needed, first, to further understand the science and secondly, to deter­mine its value to energy economics." <ref name="Utahpress1989"/> The announcement of a new purported clean source of energy came at a crucial time: adults still remembered the ] and the problems caused by oil dependence, anthropogenic ] was starting to become notorious, the ] was labeling nuclear power plants as dangerous and getting them closed, people had in mind the consequences of ], ], the ] and the ], which happened the day after the announcement.<ref>{{harvnb|Petit|2009}}, {{harvnb|Park|2000|p=16}}</ref> In the press conference, ], Fleischmann and Pons, backed by the solidity of their scientific credentials, repeatedly assured the journalists that cold fusion would solve environmental problems, and would provide a limitless inexhaustible source of clean energy, using only seawater as fuel.<ref>{{harvnb|Taubes|1993|pp=xviii–xx}}, {{harvnb|Park|2000|p=16}}</ref> They said the results had been confirmed dozens of times and they had no doubts about them.{{sfn|ps=|Taubes|1993|pp=xx–xxi}} In the accompanying press release Fleischmann was quoted saying: "What we have done is to open the door of a new research area, our indications are that the discovery will be relatively easy to make into a usable technology for generating heat and power, but continued work is needed, first, to further understand the science and secondly, to determine its value to energy economics."{{sfn|ps=|Scanlon|Hill|1999|p=212}}


====Response and fallout==== ====Response and fallout====
Although the experimental protocol had not been published, physicists in several countries attempted, and failed, to replicate the excess heat phenomenon. The first paper submitted to ''Nature'' reproducing excess heat, although it passed peer review, was rejected because most similar experiments were negative and there were no theories that could explain a positive result;<ref group="notes" name="Beaudette rejection"/>{{sfn|ps=|Beaudette|2002|pp=183, 313}} this paper was later accepted for publication by the journal ''Fusion Technology''.
Although the experimental protocol had not been published, physicists in several countries attempted, and failed, to replicate the excess heat phenomenon. The first paper submitted to Nature reproducing excess heat, although it passed peer-review, was rejected because most similar experiments were negative and there were no theories that could explain a positive result<ref>{{harvnb|Beaudette|2002|pp=183,313}}</ref>; although this paper was later accepted for publication by the journal Fusion Technology. ], professor of Chemistry at the ], led one of the most ambitious validation efforts, trying many variations on the experiment without success, while ] physicist Douglas R. O. Morrison said that "essentially all" attempts in Western Europe had failed.<ref name="Browne_1989"/> Even those reporting success had difficulty reproducing Fleischmann and Pons' results.<ref name="saeta1999 p 2">{{harvnb|Schaffer|1999|ref=CITEREFSaeta1999|p=2}}</ref> On April 10, a group at ] published results of excess heat and later that day a group at the ] announced neutron production—the strongest replication announced up to that point due to the detection of neutrons and the reputation of the lab.<ref name="Broad_1989">{{harvnb|Broad|1989a}}</ref> In 12 April Pons was acclaimed at a ACS meeting.<ref name="Broad_1989" /> But the Georgia Tech retracted their announcement in 13 April, explaining that their neutron detectors gave false positives when exposed to heat.<ref name="Wilford_1989">{{harvnb|Broad|1989a}}, {{harvnb|Wilford|1989}}</ref> Another attempt at independent replication, headed by ] at ], which also reported early success with a light water control,<ref>Broad, William J. 19 April 1989. , '']''.</ref> saved cold fusion almost single-handedly and became the only scientific support for cold fusion in the 26 April US Congress hearings.<ref>{{harvnb|Taubes|1993|pp=225–226, 229–231|quote= Like those of MIT or harvard or Caltech, and official Stanford University announcement is not something to be taken lightly. (...) With the news out of Stanford, the situation, as one Department of Energy official put it, 'had come to a head'. The department had had its laboratory administrators send emissaries to Washington immediately. (...) the secretary of energy, had made the pursuit of cold fusion the department's highest priority (...) The government laboratories had free reign to pursue their cold fusion, Ianniello said, to use whatever resources they needed, and DOE would cover the expenses. (...) While Huggins may have appeared to be the savior of cold fusion, his results also made him, and Stanford, a prime competitor for patents and rights. }}, {{harvnb|Close|1992|pp=184, 250|quote= The only support for Fleischmann and Pons came from Robert Huggins (...) The British Embassy in Washington rushed news of the proceedings to the Cabinet Office and Department of Energy in London. (...) noting that Huggin's heat measurements lent some support but that he had not checked for radiation, and also emphasizing that none of the US government laboratories had yet managed to replicate the effect. }}, {{harvnb|Huizenga|1993|p=56|quote= Of the above speakers (in the US Congress hearings) only Huggins supported the Fleischmann-Pons claim of excess heat. }}</ref> But, when he finally presented his results, he reported an excess heat of only one ] degree, a result that could be explained by chemical differences between heavy and light water in the presence of lithium,<ref name="differences" group="notes" /> he had not tried to measure any radiation,<ref>{{harvnb|Close|1992|pp=184}}, {{harvnb|Huizenga|1993|p=56}}</ref> and his research was derided by scientists who saw it later.<ref>{{harvnb|Browne|1989}}, {{harvnb|Taubes|1993|pp=253–255, 339–340, 250}}</ref> For the next six weeks, competing claims, counterclaims, and suggested explanations kept what was referred to as "cold fusion" or "fusion confusion" in the news.<ref name="Lewenstein_1994_8"/><ref>{{harvnb|Bowen|1989}}, {{harvnb|Crease|Samios|1989}}</ref>


], professor of chemistry at the ], led one of the most ambitious validation efforts, trying many variations on the experiment without success,<ref name="CAB">{{cite web |last=Aspaturian |first=Heidi |date=14 December 2012<!-- pdf metadata, archive record page updated 2012-12-26 --> |title=Interview with Charles A. Barnes on 13 and 26 June 1989 |publisher=The Caltech Institute Archives |url=http://resolver.caltech.edu/CaltechOH:OH_Barnes_C_coldfusion |access-date=22 August 2014}}</ref> while ] physicist Douglas R. O. Morrison said that "essentially all" attempts in Western Europe had failed.{{sfn|ps=|Browne|1989}} Even those reporting success had difficulty reproducing Fleischmann and Pons' results.{{sfn|ps=|Schaffer|1999|p=2}} On 10 April 1989, a group at ] published results of excess heat and later that day a group at the ] announced neutron production—the strongest replication announced up to that point due to the detection of neutrons and the reputation of the lab.<ref name=Broad1989a/> On 12 April Pons was acclaimed at an ACS meeting.<ref name=Broad1989a/> But Georgia Tech retracted their announcement on 13 April, explaining that their neutron detectors gave false positives when exposed to heat.<ref name=Broad1989a/>{{sfn|ps=|Wilford|1989}}
In April 1989, Fleischmann and Pons published a "preliminary note" in the '']''.<ref name="FleischmannPons_1989_301"/> This paper notably showed a gamma peak without its corresponding ], which indicated they had made a mistake in claiming evidence of fusion byproducts.<ref>{{harvnb|Tate|1989|p=1}}, {{harvnb|Platt|1998}} {{harvnb|Taubes|1993|pp=141,147,167–171,243–248,271–272,288}}, {{harvnb|Close|1992|pp=277–288,362–363}}, {{harvnb|Huizenga|1993|pp=63,138–139}}</ref> Fleischmann and Pons replied to this critique,<ref>{{Citation |title= Measurement of gamma-rays from cold fusion (letter by Fleischmann et al. and reply by Petrasso et al.) |journal= Nature |volume= 339 |date= 29 june 1989 |url= http://www.psfc.mit.edu/icf/Home%20Page/Papers/Petrasso_Nature.pdf |postscript= . }}</ref> but the only thing left clear was that no gamma ray had been registered and that Fleischmann refused to recognize any mistakes in the data.<ref>{{harvnb|Taubes|1993|pp=310–314}}, {{harvnb|Close|1992|pp=286–287}}, {{harvnb|Huizenga|1993|pp=63,138–139}}</ref> A much longer paper published a year later went into details of calorimetry but did not include any nuclear measurements.<ref name="FleischmannPons_1990"/>


Another attempt at independent replication, headed by ] at ], which also reported early success with a light water control,<ref>Broad, William J. 19 April 1989. , '']''.</ref> became the only scientific support for cold fusion in 26 April US Congress hearings.<ref group="text" name="only-support"/> But when he finally presented his results he reported an excess heat of only one degree ], a result that could be explained by chemical differences between heavy and light water in the presence of lithium.<ref group="notes" name="differences"/> He had not tried to measure any radiation<ref>{{harvnb|Close|1992|pp=184}}, {{harvnb|Huizenga|1993|p=56}}</ref> and his research was derided by scientists who saw it later.<ref>{{harvnb|Browne|1989}}, {{harvnb|Taubes|1993|pp=253–255, 339–340, 250}}</ref> For the next six weeks, competing claims, counterclaims, and suggested explanations kept what was referred to as "cold fusion" or "fusion confusion" in the news.{{sfn|ps=|Lewenstein|1994|pp=8–9}}<ref>{{harvnb|Bowen|1989}}, {{harvnb|Crease|Samios|1989}}</ref>
Nevertheless, Fleischmann and Pons and a number of other researchers who found positive results remained convinced of their findings.<ref name="Browne_1989"/> The University of Utah asked Congress to provide $25 million to pursue the research, and Pons was scheduled to meet with representatives of President Bush in early May.<ref name="Browne_1989"/>


In April 1989, Fleischmann and Pons published a "preliminary note" in the '']''.{{sfn|ps=|Fleischmann|Pons|1989|p=301}} This paper notably showed a gamma peak without its corresponding ], which indicated they had made a mistake in claiming evidence of fusion byproducts.<ref>{{harvnb|Tate|1989|p=1}}, {{harvnb|Platt|1998}}, {{harvnb|Close|1992|pp=277–288, 362–363}}, {{harvnb|Taubes|1993|pp=141, 147, 167–171, 243–248, 271–272, 288}}, {{harvnb|Huizenga|1993|pp=63, 138–139}}</ref> Fleischmann and Pons replied to this critique,<ref>{{cite journal|mode=cs2 |title=Measurement of gamma-rays from cold fusion (letter by Fleischmann et al. and reply by Petrasso et al.) |journal=Nature |volume=339 |issue=6227 |date=29 June 1989 |doi=10.1038/339667a0 |bibcode=1989Natur.339..667F |page=667 |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |last3=Hawkins |first3=Marvin |last4=Hoffman |first4=R. J |s2cid=4274005 |doi-access=free }}</ref> but the only thing left clear was that no gamma ray had been registered and that Fleischmann refused to recognize any mistakes in the data.<ref>{{harvnb|Taubes|1993|pp=310–314}}, {{harvnb|Close|1992|pp=286–287}}, {{harvnb|Huizenga|1993|pp=63, 138–139}}</ref> A much longer paper published a year later went into details of calorimetry but did not include any nuclear measurements.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}}
On April 30, 1989, cold fusion was declared dead by the ''New York Times''. The ''Times'' called it a circus the same day, and the ''Boston Herald'' attacked cold fusion the following day.<ref>{{harvnb|Taubes|1993|p=242}} (Boston Herald's is {{harvnb|Tate|1989}}).</ref>


Nevertheless, Fleischmann and Pons and a number of other researchers who found positive results remained convinced of their findings.{{sfn|ps=|Browne|1989}} The University of Utah asked Congress to provide $25&nbsp;million to pursue the research, and Pons was scheduled to meet with representatives of President Bush in early May.{{sfn|ps=|Browne|1989}}
On May 1, 1989, the ] held a session on cold fusion in Baltimore, including many reports of experiments that failed to produce evidence of cold fusion. At the end of the session, eight of the nine leading speakers stated that they considered the initial Fleischmann and Pons claim dead with the ninth, ], abstaining.<ref name="Browne_1989">{{harvnb|Browne|1989}}</ref> ] of ] called the Utah report a result of "''the incompetence and delusion of Pons and Fleischmann''" which was met with a standing ovation.<ref>{{harvnb|Taubes|1993|p=266}}</ref> ], a physicist representing ], was the first to call the episode an example of ].<ref name="Browne_1989"/><ref></ref>


On 30 April 1989, cold fusion was declared dead by ''The New York Times''. The ''Times'' called it a circus the same day, and the ''Boston Herald'' attacked cold fusion the following day.<ref>{{harvnb|Taubes|1993|p=242}} (Boston Herald's is {{harvnb|Tate|1989}}).</ref>
On May 4, due to all this new criticism, the meetings with various representatives from Washington were cancelled.<ref>{{harvnb|Taubes|1993|pp=267–268}}</ref>


On 1 May 1989, the ] held a session on cold fusion in Baltimore, including many reports of experiments that failed to produce evidence of cold fusion. At the end of the session, eight of the nine leading speakers stated that they considered the initial Fleischmann and Pons claim dead, with the ninth, ], abstaining.{{sfn|ps=|Browne|1989}} ] of ] called the Utah report a result of "''the incompetence and delusion of Pons and Fleischmann,''" which was met with a standing ovation.{{sfn|ps=|Taubes|1993|p=266}} ], a physicist representing ], was the first to call the episode an example of ].{{sfn|ps=|Browne|1989}}<ref>{{cite web|url=http://www.ibiblio.org/pub/academic/physics/Cold-fusion/vince-cate/aps.ascii|title=APS Special Session on Cold Fusion, May 1–2, 1989|website=ibiblio.org|url-status=live|archive-url=https://web.archive.org/web/20080726071304/http://www.ibiblio.org/pub/academic/physics/Cold-fusion/vince-cate/aps.ascii|archive-date=26 July 2008}}</ref> On 4 May, due to all this new criticism, the meetings with various representatives from Washington were cancelled.{{sfn|ps=|Taubes|1993|pp=267–268}}
From May 8 only the A&M tritium results kept cold fusion afloat.<ref>{{harvnb|Taubes|1993|pp=275, 326}}</ref>


From 8 May, only the A&M tritium results kept cold fusion afloat.{{sfn|ps=|Taubes|1993|pp=275, 326}}
In July and November 1989, ''Nature'' published papers critical of cold fusion claims.<ref>{{harvnb|Gai et al.|ref=CITEREFGai1989|1989|pp=29–34}}</ref><ref>{{harvnb|Williams et al.|1989|ref=CITEREFWilliams1989|pp=375–384}}</ref> Negative results were also published in several other ]s including '']'', '']'', and '']'' (nuclear physics).<ref name="nature critical papers" group="notes" />


In August 1989, in spite of this trend, the state of ] invested $4.5 million to create the National Cold Fusion Institute.<ref>{{harvnb|Joyce|1990}}</ref> In July and November 1989, ''Nature'' published papers critical of cold fusion claims.{{sfn|ps=|Gai|Rugari|France|Lund|1989|pp=29–34}}{{sfn|ps=|Williams|Findlay|Craston|Sené|1989|pp=375–384}} Negative results were also published in several other ]s including '']'', '']'', and '']'' (nuclear physics).<ref group="notes" name="nature critical papers"/> In August 1989, in spite of this trend, the state of ] invested $4.5&nbsp;million to create the National Cold Fusion Institute.{{sfn|ps=|Joyce|1990}}


The ] organized a special panel to review cold fusion theory and research.<ref name="DOE_1989">{{harvnb|US DOE|1989|ref=CITEREFDOE1989|}}</ref>{{rp|39}} The panel issued its report in November 1989, concluding that results as of that date did not present convincing evidence that useful sources of energy would result from the phenomena attributed to cold fusion.<ref name="DOE_1989" />{{rp|36}} The panel noted the large number of failures to replicate excess heat and the greater inconsistency of reports of nuclear reaction byproducts expected by established ]. Nuclear fusion of the type postulated would be inconsistent with current understanding and, if verified, would require established conjecture, perhaps even theory itself, to be extended in an unexpected way. The panel was against special funding for cold fusion research, but supported modest funding of "focused experiments within the general funding system."<ref name="DOE_1989" />{{rp|37}} Cold fusion supporters continued to argue that the evidence for excess heat was strong, and in September 1990 the National Cold Fusion Institute listed 92 groups of researchers from 10 different countries that had reported corroborating evidence of excess heat. However no further DOE nor NSF funding resulted from the panel's recommendation.<ref>{{harvnb|Mallove|1991|pp=246–248}}</ref> By this point, however, academic consensus had moved decidedly toward labeling cold fusion as a kind of "pathological science".<ref name="nytdoe"/><ref>{{Citation |title= Case Studies in Pathological Science: How the Loss of Objectivity Led to False Conclusions in Studies of Polywater, Infinite Dilution and Cold Fusion |journal= ]| author= ] |date= January–February 1992 |volume= 80 |pages= 54–63 |postscript= . |bibcode = 1992AmSci..80...54R }}</ref> The ] organized a special panel to review cold fusion theory and research.{{sfn|ps=|US DOE|1989|p=39}} The panel issued its report in November 1989, concluding that results as of that date did not present convincing evidence that useful sources of energy would result from the phenomena attributed to cold fusion.{{sfn|ps=|US DOE|1989|p=36}} The panel noted the large number of failures to replicate excess heat and the greater inconsistency of reports of nuclear reaction byproducts expected by established ]. Nuclear fusion of the type postulated would be inconsistent with current understanding and, if verified, would require established conjecture, perhaps even theory itself, to be extended in an unexpected way. The panel was against special funding for cold fusion research, but supported modest funding of "focused experiments within the general funding system".{{sfn|ps=|US DOE|1989|p=37}}


Cold fusion supporters continued to argue that the evidence for excess heat was strong, and in September 1990 the National Cold Fusion Institute listed 92 groups of researchers from 10 countries that had reported corroborating evidence of excess heat, but they refused to provide any evidence of their own arguing that it could endanger their patents.<ref>{{harvnb|Huizenga|1993|p=165}}</ref> However, no further DOE nor NSF funding resulted from the panel's recommendation.{{sfn|ps=|Mallove|1991|pp=246–248}} By this point, however, academic consensus had moved decidedly toward labeling cold fusion as a kind of "pathological science".<ref name="nytdoe"/>{{sfn|Rousseau|1992}}
In early May 1990 one of the two A&M researchers, ], acknowledged the possibility of spiking, but said that the most likely explanation was tritium contamination in the palladium electrodes or simply contamination due to sloppy work.<ref>{{harvnb|Taubes|1993|pp=410–411}}, {{harvnb|Close|1992|pp=270, 322}}, {{harvnb|Huizenga|1993|pp=118–119, 121–122}}</ref> In June 1990 an article in ''Science'' by science writer ] destroyed the public credibility of the A&M tritium results when it accused its group leader ] and one of his graduate students of spiking the cells with tritium.<ref>{{harvnb|Taubes|1993|pp=410–411, 412, 420}}, the Science article was {{harvnb|Taubes|1990}}, {{harvnb|Huizenga|1993|pp=122, 127–128}}.</ref> In October 1990 Wolf finally said that the results were explained by tritium contamination in the rods.<ref>{{harvnb|Huizenga|1993|pp=122–123}}</ref> A A&M cold fusion review panel found that the tritium evidence was not convincing and that, while they couldn't rule out spiking, contamination and measurements problems were more likely explanations.<ref>{{harvnb|Taubes|1993|pp=418–420|quote= While it is not possible for us to categorically exclude spiking as a possibility, it is our opinion, that possibility is much less probable than that of inadvertent contamination or other explained factors in the measurements. }}, {{harvnb|Huizenga|1993|pp=128–129}}</ref> and Bockris never got support from his faculty to resume his research.


In March 1990, Michael H. Salamon, a physicist from the ], and nine co-authors reported negative results.<ref>{{cite journal|last1=Salamon|first1=M. H.|last2=Wrenn|first2=M. E.|last3=Bergeson|first3=H. E.|last4=Crawford|first4=H. C.|last5=Delaney|first5=W. H.|last6=Henderson|first6=C. L.|last7=Li|first7=Y. Q.|last8=Rusho|first8=J. A.|last9=Sandquist|first9=G. M.|last10=Seltzer|first10=S. M. |s2cid=4369849|display-authors= 4|title=Limits on the emission of neutrons, γ-rays, electrons and protons from Pons/Fleischmann electrolytic cells|journal=Nature|date=29 March 1990|volume=344|issue=6265|pages=401–405|doi=10.1038/344401a0|bibcode=1990Natur.344..401S}}</ref> University faculty were then "stunned" when a lawyer representing Pons and Fleischmann demanded the Salamon paper be retracted under threat of a lawsuit. The lawyer later apologized; Fleischmann defended the threat as a legitimate reaction to alleged bias displayed by cold-fusion critics.<ref name="nytimes escapes">{{cite news|last=Broad|first=William J.|title=Cold Fusion Still Escapes Usual Checks Of Science|url=https://www.nytimes.com/1990/10/30/science/cold-fusion-still-escapes-usual-checks-of-science.html?pagewanted=all&src=pm|access-date=27 November 2013|newspaper=The New York Times|date=30 October 1990|url-status=live|archive-url=https://web.archive.org/web/20131219181647/http://www.nytimes.com/1990/10/30/science/cold-fusion-still-escapes-usual-checks-of-science.html?pagewanted=all&src=pm|archive-date=19 December 2013}}</ref>
In 30 June 1991 the National Cold Fusion Institute closed after it ran out of funds;<ref>{{citation|title=National Cold Fusion Institute Records, 1988-1991|url=http://content.lib.utah.edu/cdm4/item_viewer.php?CISOROOT=/UU_EAD&CISOPTR=160}}</ref> it found no excess heat, and its reports of tritium production were met with indifference.<ref name="taubes 424">{{harvnb|Taubes|1993|p=424}}</ref>


In early May 1990, one of the two A&M researchers, ], acknowledged the possibility of spiking, but said that the most likely explanation was tritium contamination in the palladium electrodes or simply contamination due to sloppy work.<ref>{{harvnb|Taubes|1993|pp=410–411}}, {{harvnb|Close|1992|pp=270, 322}}, {{harvnb|Huizenga|1993|pp=118–119, 121–122}}</ref> In June 1990 an article in ''Science'' by science writer ] destroyed the public credibility of the A&M tritium results when it accused its group leader ] and one of his graduate students of spiking the cells with tritium.<ref>{{harvnb|Taubes|1993|pp=410–411, 412, 420}}, the Science article was {{harvnb|Taubes|1990}}, {{harvnb|Huizenga|1993|pp=122, 127–128}}.</ref> In October 1990 Wolf finally said that the results were explained by tritium contamination in the rods.{{sfn|ps=|Huizenga|1993|pp=122–123}} An A&M cold fusion review panel found that the tritium evidence was not convincing and that, while they couldn't rule out spiking, contamination and measurements problems were more likely explanations,<ref group="text" name="spiking"/> and Bockris never got support from his faculty to resume his research.
In 1 January 1991, Pons left his tenure, and both he and Fleischmann quietly left the United States.<ref name="taubes 424" /><ref>{{harvnb|Huizenga|1993|p=184}}</ref> In 1992 they resumed research with ]'s IMRA lab in France.<ref name="taubes 424" /> Fleischmann left for England in 1995, and the contract with Pons was not renewed in 1998 after spending $40 million with no tangible results.<ref name="taubes137">{{harvnb|Taubes|1993|pp=136–138}}</ref> The IMRA laboratory was closed in 1998 after spending £12 million on cold fusion work.<ref>{{harvnb|Voss|1999}}</ref>
Pons has made no public declarations since, and only Fleischmann continues giving talks and publishing papers.<ref name="taubes137"/>


On 30 June 1991, the National Cold Fusion Institute closed after it ran out of funds;<ref>{{cite web|mode=cs2 |title=National Cold Fusion Institute Records, 1988–1991 |url=http://content.lib.utah.edu/cdm4/item_viewer.php?CISOROOT=/UU_EAD&CISOPTR=160 |url-status=live |archive-url=https://archive.today/20120717185323/http://content.lib.utah.edu/cdm4/item_viewer.php?CISOROOT=/UU_EAD&CISOPTR=160 |archive-date=17 July 2012 }}</ref> it found no excess heat, and its reports of tritium production were met with indifference.{{sfn|ps=|Taubes|1993|p=424}}
Several books came out critical of cold fusion research methods and the conduct of cold fusion researchers<ref>For example: {{harvnb|Taubes|1993}}, {{harvnb|Close|1992}}, {{harvnb|Huizenga|1993}}, {{harvnb|Park|2000}}</ref> while only a few came in their defence.<ref>For example: {{harvnb|Mallove|1991}}, {{harvnb|Beaudette|2002|p=277}}</ref> The ] continues to maintain a ] ] regarding the subject due to the lack of experimental reproducibility<ref>{{harvnb|Schaffer|1999|ref=CITEREFSaeta1999|p=3}}</ref> and ].<ref>{{harvnb|Schaffer|1999|ref=CITEREFSaeta1999|p=3}}, {{harvnb|Adam|2005}} - ("Extraordinary claims . . . demand extraordinary proof")</ref> New experimental claims are routinely dismissed or ignored by mainstream scientists and journals.<ref>{{harvnb|Schaffer and Morrison|1999|ref=CITEREFSaeta1999|p=3}} ("You mean it's not dead?" – recounting a typical reaction to hearing a cold fusion conference was held recently)</ref>


On 1 January 1991, Pons left the University of Utah and went to Europe.{{sfn|ps=|Taubes|1993|p=424}}{{sfn|ps=|Huizenga|1993|p=184}} In 1992, Pons and Fleischmann resumed research with ]'s IMRA lab in France.{{sfn|ps=|Taubes|1993|p=424}} Fleischmann left for England in 1995, and the contract with Pons was not renewed in 1998 after spending $40&nbsp;million with no tangible results.{{sfn|ps=|Taubes|1993|pp=136–138}} The IMRA laboratory stopped cold fusion research in 1998 after spending £12&nbsp;million.{{sfn|ps=|Voss|1999a}} Pons has made no public declarations since, and only Fleischmann continued giving talks and publishing papers.{{sfn|ps=|Taubes|1993|pp=136–138}}
===Ongoing scientific work===
] (2005)]]
A small but committed group of cold fusion researchers has continued to conduct experiments using Fleischmann and Pons electrolysis set-ups in spite of the rejection by the mainstream community.<ref name="small community" /><ref name="simon13"/> Often they prefer to name their field "'''Low Energy Nuclear Reaction'''" ('''LENR''') or "'''Chemically Assisted Nuclear Reaction'''" ('''CANR'''),<ref>{{harvnb|Mullins|2004}}</ref> also "'''Lattice Assisted Nuclear Reaction'''" ('''LANR''') and "'''Condensed Matter Nuclear Science'''" ('''CMNS'''), one of the reasons being to avoid the negative connotations associated with "cold fusion".<ref name="simon13" /><ref name="seife154" /> The new names avoid making bold implications, like implying that fusion is happening on them.<ref>{{harvnb|Simon|2002|pp=131}}, citing {{harvnb|Collins|1993|loc=p. 77 in first edition}}</ref> However some in the field don't regard it as just an alternative naming of the same field but as a more accurate description of a completely different phenomena, since they believe the reported effects cannot be explained by nuclear fusion but by other non-fusion nuclear reactions happening at lower energies, like for instance proton capture with subsequent beta decay <ref>{{citation|title=Rossi US Patent application|url=http://newenergytimes.com/v2/sr/RossiECat/docs/2011RossiUSPatentApp.pdf}}</ref>


Mostly in the 1990s, several books were published that were critical of cold fusion research methods and the conduct of cold fusion researchers.<ref>{{harvnb|Close|1992}}, {{harvnb|Taubes|1993}}, {{harvnb|Huizenga|1993}}, and {{harvnb|Park|2000}}</ref> Over the years, several books have appeared that defended them.<ref>{{harvnb|Mallove|1991}}, {{harvnb|Beaudette|2002}}, {{harvnb|Simon|2002}}, {{harvnb|Kozima|2006}}</ref> Around 1998, the University of Utah had already dropped its research after spending over $1&nbsp;million, and in the summer of 1997, Japan cut off research and closed its own lab after spending $20&nbsp;million.<ref name="wired steam"/>
Between 1992 and 1997, Japan's ] sponsored a "New Hydrogen Energy Program" of US$20&nbsp;million to research cold fusion.<ref name="pollack" /> Announcing the end of the program in 1997, the director and one-time proponent of cold fusion research Hideo Ikegami stated "We couldn't achieve what was first claimed in terms of cold fusion. (...) We can't find any reason to propose more money for the coming year or for the future."<ref name="pollack">{{harvnb|Pollack|1992}}, {{harvnb|Pollack|1997|p=C4}}</ref>


== Later research ==
Also in the 1990s, India stopped its research in cold fusion at the ] because of the lack of consensus among mainstream scientists and the US denunciation of the research.<ref name="jayaraman">{{harvnb|Jayaraman|2008}}</ref> Yet, in 2008, the ] has recommended the Indian government to revive this research. Projects were commenced at the ]'s ], the Bhabha Atomic Research Centre and the ].<ref name="jayaraman"/> However, there is still skepticism among scientists and, for all practical purposes, research is still stopped.<ref>{{citation |title= Our dream is a small fusion power generator in each house |work= Times of India |date= 4 February 2011 |url= http://articles.timesofindia.indiatimes.com/2011-02-04/interviews/28358904_1_cold-fusion-hydrogen-and-nickel-scientists }}</ref>


A 1991 review by a cold fusion proponent had calculated "about 600 scientists" were still conducting research.<ref name="small community 600">{{harvnb|Huizenga|1993|pp=210–211}} citing {{cite journal|mode=cs2 |title=Nuclear Fusion in an Atomic Lattice: An Update on the International Status of Cold Fusion Research |last=Srinivisan |first=M.|journal=Current Science |volume=60 |page=471}}</ref> After 1991, cold fusion research only continued in relative obscurity, conducted by groups that had increasing difficulty securing public funding and keeping programs open. These small but committed groups of cold fusion researchers have continued to conduct experiments using Fleischmann and Pons electrolysis setups in spite of the rejection by the mainstream community.<ref name=Broad1989b/><ref name="small community" />{{sfn|ps=|Simon|2002|pp=131–133, 218}} ''The Boston Globe'' estimated in 2004 that there were only 100 to 200 researchers working in the field, most suffering damage to their reputation and career.{{sfn|ps=|Daley|2004}} Since the main controversy over Pons and Fleischmann had ended, cold fusion research has been funded by private and small governmental scientific investment funds in the United States, Italy, Japan, and India. For example, it was reported in ], in May, 2019, that ] had spent approximately $10 million on cold fusion research. A group of scientists at well-known research labs (e.g., ], ], and others) worked for several years to establish experimental protocols and measurement techniques in an effort to re-evaluate cold fusion to a high standard of scientific rigor. Their reported conclusion: no cold fusion.<ref>{{cite magazine |last=Ball |first=David |date= September 2019 |title= Google funds cold fusion research: Results still negative|magazine=] |location=Amherst, NY |publisher=Center for Inquiry}}</ref>
In February 2002, the U.S. Navy revealed that researchers at their ] in ] had been quietly studying cold fusion since 1989. They released a two-volume report, "Thermal and nuclear aspects of the Pd/D<sub>2</sub>O system," with a plea for funding.<ref>, Feb 2002. Reported by {{harvnb|Mullins|2004}}</ref>


In 2021, following ''Nature's'' 2019 publication of anomalous findings that might only be explained by some localized fusion, scientists at the ] announced that they had assembled a group of scientists from the Navy, Army and ] to undertake a new, coordinated study.<ref name=":0" /> With few exceptions, researchers have had difficulty publishing in mainstream journals.{{sfn|ps=|Browne|1989}}<ref name=Broad1989b/><ref name="most scientists" /><ref name="small community" /> The remaining researchers often term their field Low Energy Nuclear Reactions (LENR), Chemically Assisted Nuclear Reactions (CANR),{{sfn|ps=|Mullins|2004}} Lattice Assisted Nuclear Reactions (LANR), Condensed Matter Nuclear Science (CMNS) or Lattice Enabled Nuclear Reactions; one of the reasons being to ] associated with "cold fusion".{{sfn|ps=|Simon|2002|pp=131–133, 218}}{{sfn|ps=|Seife|2008|pp=154–155}} The new names avoid making bold implications, like implying that fusion is actually occurring.<ref>{{harvnb|Simon|2002|pp=131}}, citing {{harvnb|Collins|Pinch|1993|loc=p. 77 in first edition}}</ref>
In May 2008 Japanese researcher ] (Osaka University) demonstrated an experiment with deuterium gas in a cell containing a mixture of palladium and zirconium oxide.<ref>{{citation|title=Physicist Claims First Real Demonstration of Cold Fusion|date = 2008-05-27|work=Physorg.com|url=http://www.physorg.com/news131101595.html}}</ref> The demonstration revived some interest for cold fusion research in India.<ref>{{Citation | title = Cold fusion success in Japan gets warm reception in India | date = 2008-05-27 | work = ] | url = http://www.thaindian.com/newsportal/sci-tech/cold-fusion-success-in-japan-gets-warm-reception-in-india_10053182.html }}</ref>


The researchers who continue their investigations acknowledge that the flaws in the original announcement are the main cause of the subject's marginalization, and they complain of a chronic lack of funding<ref name="bbc march 2009">{{cite web| mode=cs2 | title=Cold fusion debate heats up again | publisher=] | date=23 March 2009 | url=http://news.bbc.co.uk/2/hi/science/nature/7959183.stm | url-status=live | archive-url=https://web.archive.org/web/20160111172930/http://news.bbc.co.uk/2/hi/science/nature/7959183.stm | archive-date=11 January 2016 }}</ref> and no possibilities of getting their work published in the highest impact journals.{{sfn|ps=|Feder|2004|p=27}} University researchers are often unwilling to investigate cold fusion because they would be ridiculed by their colleagues and their professional careers would be at risk.<ref>{{harvnb|Taubes|1993|pp=292, 352, 358}}, {{harvnb|Goodstein|1994}}, {{harvnb|Adam|2005}} (comment attributed to George Miley of the University of Illinois)</ref> In 1994, ], a professor of physics at ], advocated increased attention from mainstream researchers and described cold fusion as:
In April 2011 ], ] at ], stated that LENR is a very "interesting and promising" new technology that is likely to advance "fairly rapidly." <ref name=Bushnell>{{citation|last=Bushnell|first=Dennis M.|title=The Future of Energy (Interview with Dennis Bushnell, Chief Scientist of NASA Langley)|url=http://www.evworld.com/evworld_audio/dennis_bushnell_part1.mp3|accessdate=3 June 2011|work=EV World|type=audio|at=04:24|date=2011-04-23}}</ref>


{{blockquote|1=A pariah field, cast out by the scientific establishment. Between cold fusion and respectable science there is virtually no communication at all. Cold fusion papers are almost never published in refereed scientific journals, with the result that those works don't receive the normal critical scrutiny that science requires. On the other hand, because the Cold-Fusioners see themselves as a community under siege, there is little internal criticism. Experiments and theories tend to be accepted at face value, for fear of providing even more fuel for external critics, if anyone outside the group was bothering to listen. In these circumstances, crackpots flourish, making matters worse for those who believe that there is serious science going on here.{{sfn|ps=|Goodstein|1994}}}}
NASA Langley Research Center has implemented an experimental project consisting of researchers from inside and outside NASA preparing for feasibility tests to begin by summer 2011.<ref>{{citation|title=Lunch and Learn Brown Bag "LENR @ Langley"|date=28 March 2011|url=https://info.aiaa.org/Regions/NE/Hampton_Roads/Lists/Announcements/Attachments/49/AIAA_2011_03_28_LunchTalk%20%282%29.pdf}}</ref>


===Claims of commercialization=== ===United States===
] (2005)]]
Several entrepreneurs have claimed in the past that a working cold fusion energy generator is near to commercialization, yet so far no working machine is available on the market.<!--Rossi's E-Cat is not "available in the market", you can't buy them anywhere except via direct contract with Rossi, who is not taking any orders from customers-->


United States Navy researchers at the ] (SPAWAR) in San Diego have been studying cold fusion since 1989.{{sfn|ps=|Mullins|2004}}<ref name=MosierBoss2009 /> In 2002 they released a two-volume report, "Thermal and nuclear aspects of the Pd/D<sub>2</sub>O system", with a plea for funding.<ref> {{webarchive|url=https://web.archive.org/web/20130216190531/http://www.spawar.navy.mil/sti/publications/pubs/tr/1862/tr1862-vol1.pdf |date=16 February 2013 }}, Feb 2002. Reported by {{harvnb|Mullins|2004}}</ref> This and other published papers prompted a 2004 ] (DOE) review.{{sfn|ps=|Mullins|2004}}
In January 2011 researchers from the ], ] and ], claimed to have successfully demonstrated commercially viable cold fusion in a device called an ]. In March 2011, two Swedish physicists evaluated the device, under the control of Rossi.<ref>{{Citation | title = Swedish Researchers confirm Rossi and Focardi Energy Catalyzer as a Nuclear Process | date = 2011-04-06 | work =nextbigfuture.com | url = http://nextbigfuture.com/2011/04/swedish-researchers-confirm-rossi-and.html}}</ref><ref>{{cite web |title= Experimental test of a mini-Rossi device at the Leonardocorp, Bologna 29 March 2011 |author= Hanno Essén and Sven Kullander |date=3 April 2011 |url= http://www.nyteknik.se/incoming/article3144960.ece/BINARY/Download+the+report+by+Kullander+and+Essén+(pdf). }} Participants in the test: Giuseppe Levi, David Bianchini, Carlo Leonardi, Hanno Essén, Sven Kullander, Andrea Rossi, Sergio Focardi.</ref> As the target is immediate commercialization, the inventors say that details of the invention will not be published yet. Peer-reviewed journals have not published papers on this invention, leading Rossi to create his own online "nuclear experiments blog", called the ''Journal of Nuclear Physics''.<ref>.</ref> The international patent application received an unfavorable ] because it seemed to "offend against the generally accepted laws of physics and established theories" and to overcome this problem the application should have contained either experimental evidence or a firm theoretical basis in current scientific theories.<ref name="lisa">{{Citation | title = Italian Scientists claim to have demonstrated cold fusion | author = Lisa Zyga | date = 2011-01-20 | work =] | url = http://www.physorg.com/news/2011-01-italian-scientists-cold-fusion-video.html}}</ref> Swedish evaluators were not allowed to examine the core of the reactor, and there is still uncertainty about the viability of the invention.<ref name=Nyteknik_Defkalion>{{cite news |last=Lewan |first=Mats |url=http://www.nyteknik.se/nyheter/energi_miljo/energi/article3091266.ece |title=Cold Fusion: Here's the Greek company building 1 MW |work=] |date=February 7, 2011}}</ref> On October 28, 2011, Rossi claimed that he had completed a successful 5.5 hour test of a self-sustaining heat generator that produced 470 kW, and that he had made a sale to a undisclosed customer. However, the independent observers of the test were not allowed to make their own measurements nor closely scrutinize the company's procedures. <ref> and and </ref>


===Publications=== ==== 2004 DOE panel ====
In August 2003, the ], ], ordered the DOE to organize a second review of the field.{{sfn|ps=|Brumfiel|2004}} This was thanks to an April 2003 letter sent by MIT's ],<ref name="Weinberger2004" />{{rp|3}} and the publication of many new papers, including the Italian ENEA and other researchers in the 2003 International Cold Fusion Conference,<ref name="ENEA_Magazin" /> and a two-volume book by U.S. ] in 2002.{{sfn|ps=|Mullins|2004}} Cold fusion researchers were asked to present a review document of all the evidence since the 1989 review. The report was released in 2004. The reviewers were "split approximately evenly" on whether the experiments had produced energy in the form of heat, but "most reviewers, even those who accepted the evidence for excess power production, 'stated that the effects are not repeatable, the magnitude of the effect has not increased in over a decade of work, and that many of the reported experiments were not well documented'". {{sfn|ps=|Brumfiel|2004}}{{sfn|ps=|Feder|2005}} In summary, reviewers found that cold fusion evidence was still not convincing 15 years later, and they did not recommend a federal research program.{{sfn|ps=|Brumfiel|2004}}{{sfn|ps=|Feder|2005}} They only recommended that agencies consider funding individual well-thought studies in specific areas where research "could be helpful in resolving some of the controversies in the field".{{sfn|ps=|Brumfiel|2004}}{{sfn|ps=|Feder|2005}} They summarized its conclusions thus:
The ] identified cold fusion as the scientific topic with the largest number of published papers in 1989, of all scientific disciplines. The number of papers sharply declined after 1990 as scientists abandoned the controversy and journal editors declined to review new papers, and cold fusion fell off the ISI charts.<ref name=simon180 /><ref name=simon209>{{harvnb|Simon|2002|pp=180–183,209}}</ref> The publication in mainstream journals has continued to decline but has not entirely stopped; this has been interpreted variously as the work of aging proponents who refuse to abandon a dying field, or as the normal publication rate in a small field that has found its natural niche.<ref name=simon180 /><ref group="notes">Britz's survey of publications shows "a decay after 1989/90 down to a minimum in 2004-5, and a subsequent rise since then." , Dieter Britz, retrieved June 14, 2011.</ref> Researchers who got negative results abandoned the field, and mostly only believers kept publishing in the field.<ref>{{harvnb|Huizenga|1993|pp=208}}</ref> A 1993 paper in ''Physics Letters A'' was the last paper published by Fleischmann, and "one of the last reports to be formally challenged on technical grounds by a cold fusion skeptic".<ref>{{harvnb|Labinger|2005|p=1919}}</ref>


{{poemquote|While significant progress has been made in the sophistication of calorimeters since the review of this subject in 1989, the conclusions reached by the reviewers today are similar to those found in the 1989 review.
The decline of publications in cold fusion has been described as a "failed information epidemics".<ref>{{harvnb|Ackermann|2006}} "(p. 11) Both the Polywater and Cold Nuclear Fusion journal literatures exhibit episodes of epidemic growth and decline."</ref> The sudden surge of supporters until roughly 50% of scientists support the theory, followed by a decline until there is only a very small number of supporters, has been described as a characteristic of pathological science.<ref>{{harvnb|Close|1992|pp=254–255, 329}} " The usual cycle in such cases, he notes, is that interest suddenly erupts (...) The phenomen then separates the scientists in two camps, believers and skeptics. Interest dies as only a small band of believers is able to 'produce the phenomenon' (...) even in the face of overwhelming evidence to the contrary, the original practitioners may continue to believe in it for the rest of the careers.", {{harvnb|Ball|2001|p=308}}, {{harvnb|Simon|2002|pp=104}}, {{harvnb|Bettencourt|2009}}</ref><ref group="notes">Sixth criteria of Langmuir: "During the course of the controversy the ratio of supporters to critics rises to near 50% and then falls gradually to oblivion. (Langmuir, 1989, pp. 43-44)", quoted in Simon p. 104, paraphrased in Ball p. 308. It has also been applied to the number of published results, in {{harvnb|Huizenga|1993|pp=xi,207–209}} "The ratio of the worldwide positive results on cold fusion to negative results peaked at approximately 50% (...) qualitatively in agreement with Langmuir's sixth criteria."</ref> The lack of a shared set of unifying concepts and techniques has prevented the creation of a dense network of collaboration in the field; researchers perform efforts in their own and in disparate directions, making more difficult the transition of cold fusion into "normal" science.<ref>{{harvnb|Bettencourt|2009}}</ref>


The current reviewers identified a number of basic science research areas that could be helpful in resolving some of the controversies in the field, two of which were: 1) material science aspects of deuterated metals using modern characterization techniques, and 2) the study of particles reportedly emitted from deuterated foils using state-of-the-art apparatus and methods. The reviewers believed that this field would benefit from the peer-review processes associated with proposal submission to agencies and paper submission to archival journals. |Report of the Review of Low Energy Nuclear Reactions, US Department of Energy, December 2004{{sfn|ps=|US DOE|2004}}}}
Cold fusion reports continued to be published in a small cluster of specialized journals like '']'' and '']''. Some papers also appeared in '']'', '']'', '']'', and a number of Japanese and Russian journals of physics, chemistry, and engineering.<ref name=simon180 /> Since 2005, '']'' has published cold fusion papers; in 2009, the journal named a cold fusion researcher to its editorial board.


Cold fusion researchers placed a "rosier spin"{{sfn|ps=|Feder|2005}} on the report, noting that they were finally being treated like normal scientists, and that the report had increased interest in the field and caused "a huge upswing in interest in funding cold fusion research".{{sfn|ps=|Feder|2005}} However, in a 2009 BBC article on an American Chemical Society's meeting on cold fusion, particle physicist ] was quoted stating that the problems that plagued the original cold fusion announcement were still happening: results from studies are still not being independently verified and inexplicable phenomena encountered are being labelled as "cold fusion" even if they are not, in order to attract the attention of journalists.<ref name="bbc march 2009"/>
The ] ] declared himself a supporter of cold fusion in the fall of 1989, after much of the response to the initial reports had turned negative. He tried to publish theoretical papers supporting the possibility of cold fusion in ], but the peer reviewers rejected it so harshly that he felt deeply insulted, and he resigned from the ] (publisher of ''PRL'') in protest.<ref>{{Citation| title=Climbing the Mountain: The Scientific Biography of Julian Schwinger|author=Jagdish Mehra, K. A. Milton, Julian Seymour Schwinger|edition=illustrated|editor=]|year=2000|isbn=0198506589|page=550|url=http://books.google.com/?id=9SmZSN8F164C&pg=PA550&vq=resigned+american+physical+society+cold+fusion&dq=Julian+Schwinger+cold+fusion|publisher=Oxford University Press|location=New York}}, Also {{harvnb|Close|1993|pp=197–198}}</ref>


In February 2012, millionaire ], convinced that cold fusion was worth investing in by a 19 April 2009 interview with physicist ] on the US news show '']'',<ref name=Columbia_Tribune_SKINR /> made a grant of $5.5&nbsp;million to the ] to establish the Sidney Kimmel Institute for Nuclear Renaissance (SKINR). The grant was intended to support research into the interactions of hydrogen with palladium, nickel or platinum under extreme conditions.<ref name=Columbia_Tribune_SKINR>Janese Silvey, {{webarchive |url=https://web.archive.org/web/20121215042347/http://www.columbiatribune.com/news/2012/feb/10/billionaire-helps-fund-mu-energy-research/ |date=15 December 2012 }}, Columbia Daily Tribune, 10 February 2012</ref><ref name=Press_Release_Kimmel>University of Missouri-Columbia {{webarchive |url=https://web.archive.org/web/20160305011010/http://www.eurekalert.org/pub_releases/2012-02/uom-mg021012.php |date=5 March 2016 }}, 10 February 2012, (press release), </ref><ref name=Missourian_SKINR> {{Webarchive|url=https://web.archive.org/web/20120305101814/http://www.columbiamissourian.com/stories/2012/02/10/sidney-kimmel-foundation-awards-55-million-mu-scientists/ |date=5 March 2012 }} Allison Pohle, Missourian, 10 February 2012</ref> In March 2013 Graham K. Hubler, a nuclear physicist who worked for the Naval Research Laboratory for 40 years, was named director.<ref>Christian Basi, {{webarchive |url=https://web.archive.org/web/20160304023438/http://munews.missouri.edu/news-releases/2013/0308-hubler-named-director-of-nuclear-renaissance-institute-at-mu/ |date=4 March 2016}}, (press release) Missouri University News Bureau, 8 March 2013</ref> One of the SKINR projects is to replicate a 1991 experiment in which a professor associated with the project, Mark Prelas, says bursts of millions of neutrons a second were recorded, which was stopped because "his research account had been frozen". He claims that the new experiment has already seen "neutron emissions at similar levels to the 1991 observation".<ref> {{webarchive |url=https://web.archive.org/web/20121102004909/http://www.columbiatribune.com/news/2012/oct/28/professor-revisits-fusion-work-from-two-decades/ |date=2 November 2012 }} Columbia Daily Tribune, 28 October 2012</ref><ref>Mark A. Prelas, Eric Lukosi. {{webarchive|url=https://web.archive.org/web/20130116205612/http://prelas.nuclear.missouri.edu/Publications/LENR%20Korea%20ICCF-17%20Proceedings%20Titanium%20Thermal%20Shock%20v3.pdf |date=16 January 2013 }} (self published)</ref>
The ''Journal of Fusion Technology'' (FT) established a permanent feature in 1990 for cold fusion papers, publishing over a dozen papers per year and giving a mainstream outlet for cold fusion researchers. When editor-in-chief George Miley retired in 2001, the journal stopped accepting new cold fusion papers.<ref name=simon180>{{harvnb|Simon|2002|pp=180–183}}</ref> This has been cited as an example of the importance of sympathetic influential individuals to the publication of cold fusion papers in certain journals.<ref name=simon180 />


In May 2016, the ], in its report on the 2017 National Defense Authorization Act, directed the ] to "provide a briefing on the military utility of recent U.S. industrial base LENR advancements to the House Committee on Armed Services by September 22, 2016".<ref>{{cite web |last=Hambling |first=David |date=May 13, 2016 |work=Popular Mechanics |url=http://www.popularmechanics.com/science/energy/a20874/us-house-cold-fusion/ |access-date=18 May 2016 |title=Congress Is Suddenly Interested in Cold Fusion |url-status=live |archive-url=https://web.archive.org/web/20160518221421/http://www.popularmechanics.com/science/energy/a20874/us-house-cold-fusion/ |archive-date=18 May 2016}}</ref><ref>{{cite web |url=https://www.congress.gov/114/crpt/hrpt537/CRPT-114hrpt537.pdf#page=123 |url-status=live |archive-url=https://web.archive.org/web/20160516124400/https://www.congress.gov/114/crpt/hrpt537/CRPT-114hrpt537.pdf |archive-date=16 May 2016 |title=Committee on Armed Services, House of Representatives Report 114-537 |page=87}}</ref>
In the 1990s, the groups that continued to research cold fusion and their supporters established periodicals such as ''Fusion Facts'', ''Cold Fusion Magazine'', '']'' and ''New Energy Times'' to cover developments in cold fusion and other radical claims in energy production that were being ignored in other venues. In 2007 they established their own peer-reviewed journal, the ''Journal of Condensed Matter Nuclear Science''.<ref>.</ref> The internet has also become a major means of communication and self-publication for CF researchers, allowing for revival of the research.<ref name=simon183>{{harvnb|Simon|2002|pp=183–187}}</ref>


===Conferences=== ===Italy===
Cold fusion researchers were for many years unable to get papers accepted at scientific meetings, prompting the creation of their own conferences. The first International Conference on Cold Fusion (ICCF) was held in 1990, and has met every 12 to 18 months since. By 1994, attendees offered no criticism to papers and presentations for fear of giving ammunition to external critics; according to physicist ], this allowed for the proliferation of crackpots and prevented the normal processes of serious science.<ref name="Goodstein_1994" /> By 2002, critics and skeptics had stopped attending the conferences.<ref>{{harvnb|Simon|2002|p=108}}</ref> With the founding in 2004 of the International Society for Condensed Matter Nuclear Science (ISCMNS), the conference was renamed the International Conference on Condensed Matter Nuclear Science&mdash;an example of the approach the cold fusion community has adopted in avoiding the term ''cold fusion'' and its negative connotations.<ref name="simon13">{{harvnb|Simon|2002|pp=131–133,218}}</ref><ref name="seife154">{{harvnb|Seife|2008|pp=154–155}}</ref><ref name="taubes378">{{harvnb|Taubes|1993|pp=378,427}} " 'anomalous effects in deuterated metals', which was the new, preferred, politically palatable nom de science for cold fusion ."</ref> Cold fusion research is often referenced by proponents as "low-energy nuclear reactions", or LENR,<ref name="bbc march 2009"/> but according to sociologist ] the "cold fusion" label continues to serve a social function in creating a ] for the field.<ref name="simon13"/>


Since the Fleischmann and Pons announcement, the Italian national agency for new technologies, energy and sustainable economic development (]) has funded Franco Scaramuzzi's research into whether excess heat can be measured from metals loaded with deuterium gas.{{sfn|ps=|Goodstein|2010|pp=87–94}} Such research is distributed across ENEA departments, ] laboratories, ], universities and industrial laboratories in Italy, where the group continues to try to achieve reliable reproducibility (i.e. getting the phenomenon to happen in every cell, and inside a certain frame of time). In 2006–2007, the ENEA started a research program which claimed to have found excess power of up to 500 percent, and in 2009, ENEA hosted the 15th cold fusion conference.<ref name=ENEA_Magazin>{{cite journal|mode= cs2 |title= Effetto Fleischmann e Pons: il punto della situazione |journal= Energia Ambiente e Innovazione |issue= 3 |date= May–June 2011 |language= it |url= http://www.enea.it/it/produzione-scientifica/energia-ambiente-e-innovazione-1/anno-2011/indice-world-view-3-2011/fusione-fredda |url-status= live |archive-url= https://web.archive.org/web/20120808194206/http://www.enea.it/it/produzione-scientifica/energia-ambiente-e-innovazione-1/anno-2011/indice-world-view-3-2011/fusione-fredda |archive-date= 8 August 2012 }}</ref>{{sfn|ps=|Martellucci |Rosati |Scaramuzzi |Violante |2009}}
Since 2006, the ] (APS) has included cold fusion sessions at their semiannual meetings, clarifying that this does not imply a softening of skepticism.<ref name="aps meeting">{{harvnb|Chubb et al.|2006|ref=CITEREFAPS2006}}, {{harvnb|Adam|2005}} (". Anyone can deliver a paper. We defend the openness of science" - Bob Park of APS, when asked if hosting the meeting showed a softening of scepticism)</ref><ref name="noorden2007">{{harvnb|Van Noorden|2007}}</ref> Since 2007, the ] (ACS) meetings also include "invited symposium(s)" on cold fusion.<ref name="acs meeting">{{harvnb|Van Noorden|2007|loc=para. 2}}</ref> An ACS program chair said that without a proper forum the matter would never be discussed and, "with the world facing an energy crisis, it is worth exploring all possibilities."<ref name="noorden2007"/>


===Japan===
On 22–25 March 2009, the American Chemical Society meeting included a four-day symposium in conjunction with the 20th anniversary of the announcement of cold fusion. Researchers working at the U.S. Navy's ] (SPAWAR) reported detection of energetic ] using a heavy water electrolysis set-up and a ] detector,<ref name="ACS Press Release"/><ref name="reignites"/> a result previously published in '']''.<ref name="ns march 2009"/> The authors claim that these neutrons are indicative of nuclear reactions;<ref name="afp march 2009">{{Citation |url= http://www.google.com/hostednews/afp/article/ALeqM5j2QobOQnlULUZ7oalSRUVjnlHjng |title=Scientists in possible cold fusion breakthrough |accessdate=2009-03-24 |work= |publisher=] |date= }}</ref> without quantitative analysis of the number, energy, and timing of the neutrons and exclusion of other potential sources, this interpretation is unlikely to be accepted by the wider scientific community.<ref name="ns march 2009"/><ref name="berger"/>


Between 1992 and 1997, Japan's ] sponsored a "New Hydrogen Energy (NHE)" program of US$20&nbsp;million to research cold fusion.<ref name="pollack" /> Announcing the end of the program in 1997, the director and one-time proponent of cold fusion research Hideo Ikegami stated "We couldn't achieve what was first claimed in terms of cold fusion. (...) We can't find any reason to propose more money for the coming year or for the future."<ref name="pollack">{{harvnb|Pollack|1992}}, {{harvnb|Pollack|1997|p=C4}}</ref> In 1999 the Japan C-F Research Society was established to promote the independent research into cold fusion that continued in Japan.<ref name=JCFRS>{{cite web|url=http://jcfrs.org/indexe.html|title=Japan CF-research Society|website=jcfrs.org|url-status=live|archive-url=https://web.archive.org/web/20160121185606/http://jcfrs.org/indexe.html|archive-date=21 January 2016}}</ref> The society holds annual meetings.<ref name=JCFRS2011> {{webarchive|url=https://web.archive.org/web/20160312140405/http://jcfrs.org/JCF12/jcf12-abstracts.pdf |date=12 March 2016 }}</ref> Perhaps the most famous Japanese cold fusion researcher was ], from Osaka University, who claimed in a demonstration to produce excess heat when deuterium gas was introduced into a cell containing a mixture of palladium and zirconium oxide,<ref group="text" name="mixture"/> a claim supported by fellow Japanese researcher Akira Kitamura of Kobe University{{sfn|ps=|Kitamura|Nohmi|Sasaki|Taniike|2009}} and ] at SRI.
===Further reviews and funding issues===
Around 1998 the University of Utah had already dropped its research after spending over $1 million, and in the summer of 1997 Japan cut off research and closed its own lab after spending $20 million.<ref name="wired steam"/> Cold fusion researchers have complained there has been virtually no possibility of obtaining funding for cold fusion research in the United States, and no possibility of getting published.<ref name="Feder_2004_27">{{harvnb|Feder|2004|p=27}}</ref> University researchers are unwilling to investigate cold fusion because they would be ridiculed by their colleagues and their professional careers would be at risk.<ref>{{harvnb|Taubes|1993|pp=292, 352, 358}}, {{harvnb|Goodstein|1994}}, {{harvnb|Adam|2005}} (comment attributed to George Miley of the University of Illinois)</ref> In 1994, ] described cold fusion as:


===India===
{{blockquote|1="a pariah field, cast out by the scientific establishment. Between cold fusion and respectable science there is virtually no communication at all. Cold fusion papers are almost never published in refereed scientific journals, with the result that those works don't receive the normal critical scrutiny that science requires. On the other hand, because the Cold-Fusioners see themselves as a community under siege, there is little internal criticism. Experiments and theories tend to be accepted at face value, for fear of providing even more fuel for external critics, if anyone outside the group was bothering to listen. In these circumstances, crackpots flourish, making matters worse for those who believe that there is serious science going on here."<ref name="Goodstein_1994"/>}}


In the 1990s, India stopped its research in cold fusion at the ] because of the lack of consensus among mainstream scientists and the US denunciation of the research.{{sfn|ps=|Jayaraman|2008}} Yet, in 2008, the ] recommended that the Indian government revive this research. Projects were commenced at ]'s ], the Bhabha Atomic Research Centre and the ].{{sfn|ps=|Jayaraman|2008}} However, there is still skepticism among scientists and, for all practical purposes, research has stalled since the 1990s.<ref>{{cite news|mode= cs2 |title= Our dream is a small fusion power generator in each house |date= 4 February 2011 |url= https://timesofindia.indiatimes.com/home/opinion/interviews/Our-dream-is-a-small-fusion-power-generator-in-each-house/articleshow/7419731.cms |url-status= live |archive-url= http://archive.wikiwix.com/cache/20110826044622/http://articles.timesofindia.indiatimes.com/2011-02-04/interviews/28358904_1_cold-fusion-hydrogen-and-nickel-scientists |work= ] |archive-date= 26 August 2011 }}</ref> A special section in the Indian multidisciplinary journal '']'' published 33 cold fusion papers in 2015 by major cold fusion researchers including several Indian researchers.<ref name="currentscience.ac.in">{{cite web |url=http://www.currentscience.ac.in/php/feat.php?feature=Special+Section:+Low+Energy+Nuclear+Reactions&featid=10094 |title=Category: Special Section: Low Energy Nuclear Reactions |work=Current Science |date=25 Feb 2015 |url-status=dead |archive-url= https://web.archive.org/web/20170805185756/http://www.currentscience.ac.in/php/feat.php?feature=Special+Section:+Low+Energy+Nuclear+Reactions&featid=10094 |archive-date=2017-08-05}}</ref>
Particle physicist ] has gone even further, stating that the problems that plagued the original cold fusion announcement are still happening (as of 2009): results from studies are still not being independently verified and inexplicable phenomena encountered are being labelled as "cold fusion" even if they are not, in order to attract the attention of journalists.<ref name="bbc march 2009"/>


==Reported results==
Cold fusion researchers themselves acknowledge that the flaws in the original announcement still cause their field to be marginalized and to suffer a chronic lack of funding,<ref name="bbc march 2009">{{Citation | title=Cold fusion debate heats up again | work=] | date=2009-03-23 | url=http://news.bbc.co.uk/2/hi/science/nature/7959183.stm}}</ref> but a small number of old and new researchers have remained interested in investigating cold fusion.<ref name="small community" /><ref name="simon13"/>
A cold fusion experiment usually includes:
* a metal, such as ] or ], in bulk, thin films or powder; and
* ], ], or both, in the form of water, gas or plasma.


Electrolysis cells can be either open cell or closed cell. In open cell systems, the electrolysis products, which are gaseous, are allowed to leave the cell. In closed cell experiments, the products are captured, for example by catalytically recombining the products in a separate part of the experimental system. These experiments generally strive for a steady state condition, with the electrolyte being replaced periodically. There are also "heat-after-death" experiments, where the evolution of heat is monitored after the electric current is turned off.
{{anchor|2004 DOE panel}}
In August 2003, responding to a April 2003 letter from MIT's ],<ref name="Weinberger2004"/>{{rp|3}} the energy secretary Spencer Abraham ordered the DOE to organize a second review of the field.<ref name=brumfiel>{{harvnb|Brumfiel|2004|ref=CITEREFBrumfiel2004}}</ref> Cold fusion researchers were asked to present a review document of all the evidence since the 1989 review. The report was released in 2004. The reviewers were "split approximately evenly" on whether the experiments had produced energy in the form of heat, but they all complained about the lack of proof and the poor documentation of the experiments.<ref name=brumfiel /> In summary, the reviewers were not convinced and they didn't recommend a federal research program, but they did recommend individual well-thought studies.<ref name=brumfiel /> They summarized its conclusions thus:


The most basic setup of a cold fusion cell consists of two electrodes submerged in a solution containing palladium and heavy water. The electrodes are then connected to a power source to transmit electricity from one electrode to the other through the solution.<ref name="reignites">{{cite journal
{{quotation|While significant progress has been made in the sophistication of calorimeters since the review of this subject in 1989, the conclusions reached by the reviewers today are similar to those found in the 1989 review.<br><br>
|mode = cs2
The current reviewers identified a number of basic science research areas that could be helpful in
|journal = ]
resolving some of the controversies in the field, two of which were: 1) material science aspects of deuterated metals using modern characterization techniques, and 2) the study of particles reportedly emitted from deuterated foils using state-of-the-art apparatus and methods. The reviewers believed that this field would benefit from the peer-review processes associated with proposal submission to agencies and paper submission to archival journals.|Report of the Review of Low Energy Nuclear Reactions, US Department of Energy, December 2004}}
|author = Mark Anderson
|date = March 2009
|title = New Cold Fusion Evidence Reignites Hot Debate
|url = http://www.spectrum.ieee.org/energy/nuclear/new-cold-fusion-evidence-reignites-hot-debate
|url-status = dead
|archive-url = https://web.archive.org/web/20090710014539/http://www.spectrum.ieee.org/energy/nuclear/new-cold-fusion-evidence-reignites-hot-debate
|archive-date = 10 July 2009
|access-date = 13 June 2009
}}</ref> Even when anomalous heat is reported, it can take weeks for it to begin to appear—this is known as the "loading time," the time required to saturate the palladium electrode with hydrogen (see "Loading ratio" section).


The Fleischmann and Pons early findings regarding helium, neutron radiation and tritium were never replicated satisfactorily, and its levels were too low for the claimed heat production and inconsistent with each other.<ref>{{harvnb|US DOE|1989|p=29}}, {{harvnb|Taubes|1993}}{{Page needed|date=March 2012}}</ref> Neutron radiation has been reported in cold fusion experiments at very low levels using different kinds of detectors, but levels were too low, close to background, and found too infrequently to provide useful information about possible nuclear processes.<ref>{{harvnb|Hoffman|1995|pp=111–112}}</ref>
The mainstream and popular scientific press presented this as a setback for cold fusion researchers, with headlines such as "cold fusion gets chilly encore", but cold fusion researchers placed a "rosier spin"<ref name="Feder 2005">{{harvnb|Feder|2005}}</ref> on the report, noting that it also recommended specific areas where research could resolve the controversies in the field.<ref name=doe2004>{{harvnb|US DOE|2004|ref=CITEREFDOE2004r}}</ref> In 2005, ''Physics Today'' reported that new reports of excess heat and other cold fusion effects were still no more convincing than 15 years previous.<ref name="Feder 2005"/>


==Experiments and reported results== ===Excess heat and energy production===
An excess heat observation is based on an ]. Various sources of energy input and output are continuously measured. Under normal conditions, the energy input can be matched to the energy output to within experimental error. In experiments such as those run by Fleischmann and Pons, an electrolysis cell operating steadily at one temperature transitions to operating at a higher temperature with no increase in applied current.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}} If the higher temperatures were real, and not an experimental artifact, the energy balance would show an unaccounted term. In the Fleischmann and Pons experiments, the rate of inferred excess heat generation was in the range of 10–20% of total input, though this could not be reliably replicated by most researchers.{{sfn|ps=|US DOE|2004|p=3}} Researcher ] discovered that the excess heat in Fleischmann and Pons's original paper was not measured, but estimated from measurements that didn't have any excess heat.{{sfn|ps=|Taubes|1993|pp=256–259}}
A cold fusion experiment usually includes:


Unable to produce excess heat or neutrons, and with positive experiments being plagued by errors and giving disparate results, most researchers declared that heat production was not a real effect and ceased working on the experiments.<ref>{{harvnb|Huizenga|1993|pp=x, 22–40, 70–72, 75–78, 97, 222–223}}, {{harvnb|Close|1992|pp=211–214, 230–232, 254–271}}, {{harvnb|Taubes|1993|pp=264–266, 270–271}} {{harvnb|Choi|2005}}</ref> In 1993, after their original report, Fleischmann reported "heat-after-death" experiments—where excess heat was measured after the electric current supplied to the electrolytic cell was turned off.{{sfn|ps=|Fleischmann|Pons|1993}} This type of report has also become part of subsequent cold fusion claims.<ref>{{harvnb|Mengoli|Bernardini|Manduchi|Zannoni|1998}}, {{harvnb|Szpak|Mosier-Boss|Miles|Fleischmann|2004}}</ref>
* a metal, such as ] or ], in bulk, thin films or powder;
* ] and/or ], in the form of water, gas or plasma; and
* an excitation in the form of ], ], ], ], ] beam(s), or of ].<ref>{{harvnb|Storms|2007|pp=144–150}}</ref>


===Helium, heavy elements, and neutrons===
Electrolysis cells can be either open cell or closed cell. In open cell systems, the electrolysis products, which are gaseous, are allowed to leave the cell. In closed cell experiments, the products are captured, for example by catalytically recombining the products in a separate part of the experimental system. These experiments generally strive for a steady state condition, with the electrolyte being replaced periodically. There are also "heat after death" experiments, where the evolution of heat is monitored after the electric current is turned off.
] plastic radiation detector claimed as evidence for neutron emission from palladium deuteride]]
Known instances of nuclear reactions, aside from producing energy, also produce ]s and particles on readily observable ballistic trajectories. In support of their claim that nuclear reactions took place in their electrolytic cells, Fleischmann and Pons reported a ] of 4,000 neutrons per second, as well as detection of tritium. The classical ] for previously known fusion reactions that produce tritium would predict, with 1 ] of power, the production of 10<sup>12</sup> neutrons per second, levels that would have been fatal to the researchers.<ref>{{harvnb|Simon|2002|p=}}, {{harvnb|Park|2000|pp=}}, {{harvnb|Huizenga|1993|pp=7}}, {{harvnb|Close|1992|pp=306–307}}</ref> In 2009, ] et al. reported what they called the first scientific report of highly energetic neutrons, using ] plastic radiation detectors,<ref name=MosierBoss2009>{{harvnb|Mosier-Boss|Szpak|Gordon|Forsley|2009}}, {{harvnb|Sampson|2009}}</ref> but the claims cannot be validated without a ] of neutrons.{{sfn|ps=|Barras|2009}}{{sfn|ps=|Berger|2009}}


Several medium and heavy elements like calcium, titanium, chromium, manganese, iron, cobalt, copper and zinc have been reported as detected by several researchers, like ] or ]. The report presented to the ] in 2004 indicated that deuterium-loaded foils could be used to detect fusion reaction products and, although the reviewers found the evidence presented to them as inconclusive, they indicated that those experiments did not use state-of-the-art techniques.{{sfn|ps=|US DOE|2004|pp=3, 4, 5}}
The most basic setup of a cold fusion cell consists of two electrodes submerged in a solution of palladium and heavy water. The electrodes are then connected to a power source to transmit electricity from one electrode to the other through the solution.<ref name="reignites">{{Citation
| work = ]
| author = Mark Anderson
| date = march 2009
| title = New Cold Fusion Evidence Reignites Hot Debate
| url = http://www.spectrum.ieee.org/energy/nuclear/new-cold-fusion-evidence-reignites-hot-debate }}</ref> Even when anomalous heat is reported, it can take weeks for it to begin to appear - this is known as the "loading time," the time required to saturate the palladium electrode with hydrogen.


In response to doubts about the lack of nuclear products, cold fusion researchers have tried to capture and measure nuclear products correlated with excess heat.{{sfn|ps=|Hagelstein|2010}} Considerable attention has been given to measuring <sup>4</sup>He production.{{sfn|ps=|Hagelstein|McKubre|Nagel|Chubb|2004}} However, the reported levels are very near to background, so contamination by trace amounts of helium normally present in the air cannot be ruled out. In the report presented to the DOE in 2004, the reviewers' opinion was divided on the evidence for <sup>4</sup>He, with the most negative reviews concluding that although the amounts detected were above background levels, they were very close to them and therefore could be caused by contamination from air.{{sfn|ps=|US DOE|2004|pp=3,4}}
The Fleischmann and Pons early findings regarding helium, neutron radiation and tritium were later discredited.<ref name="DOE_1989_24">{{harvnb|US DOE|1989|ref=CITEREFDOE1989|p=24}}</ref><ref>{{harvnb|Taubes|1993}}</ref> However, neutron radiation has been reported in cold fusion experiments at very low levels using different kinds of detectors, but levels were too low, close to background, and found too infrequently to provide useful information about possible nuclear processes.<ref>{{harvnb|Storms|2007|p=151}}</ref><ref>{{harvnb|Hoffman|1994|ref=CITEREFHoffman1994|pp=111–112}}</ref>


One of the main criticisms of cold fusion was that deuteron-deuteron fusion into helium was expected to result in the production of ]—which were not observed and were not observed in subsequent cold fusion experiments.{{sfn|ps=|Schaffer|1999|p=2}}{{sfn|ps=|Rogers|Sandquist|1990}} Cold fusion researchers have since claimed to find X-rays, helium, neutrons{{sfn|ps=|Simon|2002|p=215}} and ]s.{{sfn|ps=|Simon|2002|pp=150–153, 162}} Some researchers also claim to have found them using only light water and nickel cathodes.{{sfn|ps=|Simon|2002|p=215}} The 2004 DOE panel expressed concerns about the poor quality of the theoretical framework cold fusion proponents presented to account for the lack of gamma rays.{{sfn|ps=|US DOE|2004|pp=3,4}}
===Excess heat and energy production===
An excess heat observation is based on an ]. Various sources of energy input and output are continuously measured. Under normal condition, the energy input can be matched to the energy output to within experimental error. In experiments such as those run by Fleischmann and Pons, a cell operating steadily at one temperature transitions to operating at a higher temperature with no increase in applied current.<ref name="FleischmannPons_1990" /> In other experiments, however, no excess heat was discovered, and, in fact, even the heat from successful experiments was unreliable and could not be replicated independently.<ref name="saeta1999 p 2"/> If higher temperatures were real, and not experimental artifact, the energy balance would show an unaccounted term. In the Fleischmann and Pons experiments, the rate of inferred excess heat generation was in the range of 10-20% of total input. The high temperature condition would last for an extended period, making the total excess heat appear to be disproportionate to what might be obtained by ordinary chemical reaction of the material contained within the cell at any one time, though this could not be reliably replicated.<ref name=doe2004 />{{rp|3}}<ref name="Hubler_2007">{{harvnb|Hubler|2007}}</ref> Subsequent researchers who advocate for cold fusion reported similar results.<ref>{{harvnb|Oriani|Nelson|Lee|Broadhurst|1990|ref=CITEREFOriani1990|pp=652–662}} cited by {{harvnb|Storms|2007|p=61}}, {{harvnb|Bush|Lagowski|Miles|Ostrom|1991|ref=CITEREFBushEtAl1991}} cited by {{harvnb|Biberian|2007}}, {{harvnb|Miles et al.|1993|ref=CITEREFMilesEtAl1993}}, e.g. {{harvnb|Arata|Zhang|1998}}, e.g. {{harvnb|Hagelstein et al.|2004|ref=CITEREFDOE2004}}, {{harvnb|Gozzi|1998|ref=CITEREFGozziEtAl1998}} cited by {{harvnb|Biberian|2007}}, {{harvnb|Niedra|1996}}</ref> Nevertheless, as early as 1997, at least one research group was reporting that, with the proper procedure, "...5 samples out of 6 that had undergone the whole procedure showed very clear excess heat production."<ref name="Scaramuzzi2000_7_9">{{harvnb|Scaramuzzi|2000|ref=CITEREFScaramuzzi2000|pp=7–9}}</ref>


==Proposed mechanisms==
One of the main criticisms of cold fusion was that the predictions from deuteron-deuteron fusion into helium should have resulted in the production of ] which were not observed and have never been observed in any subsequent cold fusion experiments.<ref name="saeta1999 p 2"/><ref>{{harvnb|Vern|1990}}</ref> Cold fusion researchers have since claimed to find X-rays, helium, neutrons and even ]s.<ref name="simon_215">{{harvnb|Simon|2002|p=215}}</ref> Some of them even claim to have found them using only light water and nickel cathodes.<ref name="simon_215" />
Researchers in the field do not agree on a theory for cold fusion.{{sfn|ps=|Simon|2002|pp=153, 214–216}} One proposal considers that hydrogen and its ] can be absorbed in certain solids, including ], at high densities. This creates a high partial pressure, reducing the average separation of hydrogen isotopes. However, the reduction in separation is not enough to create the fusion rates claimed in the original experiment, by a factor of ten.<ref name="distance" /> It was also proposed that a higher density of hydrogen inside the palladium and a lower potential barrier could raise the possibility of fusion at lower temperatures than expected from a simple application of ]. ] of the positive hydrogen nuclei by the negative electrons in the palladium lattice was suggested to the 2004 DOE commission,{{sfn|ps=|Hagelstein|McKubre|Nagel|Chubb|2004|pp=14–15}} but the panel found the theoretical explanations not convincing and inconsistent with current physics theories.{{sfn|ps=|US DOE|2004}}


==Criticism==
In 1993, after the initial discrediting, Fleischmann reported "heat-after-death" experiments: where excess heat was measured after the electric current supplied to the electrolytic cell was turned off.<ref>{{harvnb|Fleischmann|1993|ref=CITEREFFleischmann1993}}</ref> This type of report also became part of subsequent cold fusion claims.<ref>{{harvnb|Mengoli|1998|ref=CITEREFMengoli1998}}, {{harvnb|Szpak|2004}}</ref>
Criticism of cold fusion claims generally take one of two forms: either pointing out the theoretical implausibility that fusion reactions have occurred in electrolysis setups or criticizing the excess heat measurements as being spurious, erroneous, or due to poor methodology or controls. There are several reasons why known fusion reactions are an unlikely explanation for the excess heat and associated cold fusion claims.<ref group="text" name="branching_and_gamma" />


===Repulsion forces===
===Helium, heavy elements, and neutrons===
Because nuclei are all positively charged, they strongly repel one another.{{sfn|ps=|Schaffer|1999|p=2}} Normally, in the absence of a catalyst such as a ], very high ] are required to overcome this ].{{sfn|ps=|Schaffer|1999|p=1}}{{sfn|ps=|Morrison|1999|pp=3–5}} Extrapolating from known fusion rates, the rate for uncatalyzed fusion at room-temperature energy would be 50 orders of magnitude lower than needed to account for the reported excess heat.<ref>{{harvnb|Huizenga|1993|p=viii}} "''Enhancing the probability of a nuclear reaction by 50 orders of magnitude (...) via the chemical environment of a metallic lattice, contradicted the very foundation of nuclear science.''", {{harvnb|Goodstein|1994}}, {{harvnb|Scaramuzzi|2000|p=4}}</ref> In muon-catalyzed fusion there are more fusions because the presence of the muon causes deuterium nuclei to be 207 times closer than in ordinary deuterium gas.<ref>{{harvnb|Close|1992|pp=32, 54}}, {{harvnb|Huizenga|1993|p=112}}</ref> But deuterium nuclei inside a palladium lattice are further apart than in deuterium gas, and there should be fewer fusion reactions, not more.<ref name="distance">{{harvnb|US DOE|1989|pp=7–8, 33, 53–58 (appendix 4.A)}}, {{harvnb|Close|1992|pp=257–258}}, {{harvnb|Huizenga|1993|p=112}}, {{harvnb|Taubes|1993|pp=253–254}} quoting ] in the special cold fusion session of the 1989 spring meeting of the Materials Research Society, {{harvnb|Park|2000|pp=17–18, 122}}, {{harvnb|Simon|2002|p=50}} citing {{cite journal|mode=cs2 |author1=Koonin S.E. |author2=M Nauenberg |s2cid=4335882 |year= 1989 |title= Calculated Fusion Rates in Isotopic Hydrogen Molecules |journal= Nature |issue= 6227|pages= 690–692 |doi= 10.1038/339690a0 |bibcode = 1989Natur.339..690K |volume=339}}</ref>
] plastic radiation detector claimed as evidence for neutron emission from palladium deuteride.]]
Known instances of nuclear reactions, aside from producing energy, also produce nucleons and particles on ballistic trajectories which are readily observable. In support of their claim that nuclear reactions took place in their electrolytic cells, Fleischmann and Pons reported a neutron flux of 4,000 neutrons per second, as well as detections of tritium. The classical branching ratio for previously known fusion reactions that produce tritium would predict, with 1 ] of power, the production of 10<sup>12</sup> neutrons per second, levels that would have been fatal to the researchers.<ref>{{harvnb|Simon|2002|p=}}, {{harvnb|Park|2000|pp=}}, {{harvnb|Huizenga|1993|pp=7}}, {{harvnb|Close|1992|pp=306–307}}</ref> In 2009, Mosier-Boss et al. reported what they called the first scientific report of highly energetic neutrons, using ] plastic radiation detectors,<ref>{{harvnb|Mosier-Boss|Szpak|Gordon|Forsley|2009}}, {{harvnb|Sampson|2009}}</ref> but the claims cannot be validated without a ] of neutrons.<ref name="ns march 2009">{{harvnb|Barras|2009}}</ref><ref name="berger">{{harvnb|Berger|2009}}</ref>


Paneth and Peters in the 1920s already knew that palladium can absorb up to 900 times its own volume of hydrogen gas, storing it at several thousands of times the ].{{sfn|ps=|Close|1992|pp=19–20}} This led them to believe that they could increase the nuclear fusion rate by simply loading palladium rods with hydrogen gas.{{sfn|ps=|Close|1992|pp=19–20}} Tandberg then tried the same experiment but used electrolysis to make palladium absorb more deuterium and force the deuterium further together inside the rods, thus anticipating the main elements of Fleischmann and Pons' experiment.{{sfn|ps=|Close|1992|pp=19–20}}<ref name="similar_to_tandberg" /> They all hoped that pairs of hydrogen nuclei would fuse together to form helium, which at the time was needed in Germany to fill ]s, but no evidence of helium or of increased fusion rate was ever found.{{sfn|ps=|Close|1992|pp=19–20}}
Several medium and heavy elements like calcium, titanium, chromium, manganese, iron, cobalt, copper and zinc have been reported as detected by several researchers, like Tadahiko Mizuno or George Miley; these elemental transmutations are totally unexpected products of nuclear fusion processes and won't be believed by the scientific community until iron-clad reproducible proof has been presented.<ref name="saeta1999 p 2"/> The report presented to the DOE in 2004 indicated that deuterium loaded foils could be used to detect fusion reaction products and, although the reviewers found the evidence presented to them as inconclusive, they indicated that those experiments didn't use ] techniques.<ref name=doe2004 />{{rp|3,4,5}}


This was also the belief of geologist Palmer, who convinced Steven Jones that the helium-3 occurring naturally in Earth perhaps came from fusion involving hydrogen isotopes inside catalysts like nickel and palladium.{{sfn|ps=|Close|1992|pp=63–64}} This led their team in 1986 to independently make the same experimental setup as Fleischmann and Pons (a palladium cathode submerged in heavy water, absorbing deuterium via electrolysis).{{sfn|ps=|Close|1992|pp=64–66}} Fleischmann and Pons had much the same belief,{{sfn|ps=|Close|1992|pp=32–33}} but they calculated the pressure to be of 10<sup>27</sup> ], when cold fusion experiments achieve a loading ratio of only one to one, which has only between 10,000 and 20,000 atmospheres.<ref group="text" name="pressure" /> ] says they had misinterpreted the ], leading them to believe that there was enough pressure to bring deuterons so close to each other that there would be spontaneous fusions.{{sfn|ps=|Huizenga|1993|pp=33, 47}}
In response to skepticism about the lack of nuclear products, cold fusion researchers have tried to capture and measure nuclear products correlated with excess heat.<ref name="Hagelstein 2010">{{harvnb|Hagelstein|2010}}</ref><ref name="Storms 2007">{{harvnb|Storms|2007}}</ref> Considerable attention has been given to measuring <sup>4</sup>He production.<ref name="Hagelstein et al. 2004"/> However, the reported levels are very near to the background, so contamination by trace amounts of helium which are normally present in the air cannot be ruled out. The lack of detection of gamma radiation seen in the fusion of hydrogen or deuterium to <sup>4</sup>He was seen as an explanation that the helium detections are due to experimental error.<ref name="saeta1999 p 2"/> In the report presented to the DOE in 2004, the reviewers' opinion was divided on the evidence for <sup>4</sup>He; with the most negative reviews concluding that although the amounts detected were above background levels, they were very close to them and therefore could be caused by contamination from air. The panel also expressed concerns about the poor-quality of the theoretical framework cold fusion proponents presented to account for the lack of gamma rays.<ref name=doe2004 />{{rp|3,4}}


===Lack of expected reaction products===
In other experiments where laser beams or deuteron beams were used as excitation the reaction rates of D-D fusion were shown to increase.<ref name="enhanced screening">{{harvnb|Sinha|2006}}, one of these experiments is {{harvnb|Czerski|2008}}.</ref> In a paper from similar experiments the researchers conclude that their "findings also provide a first independent support for the claim in cold fusion ..." <ref>{{harvnb|Huke|2006}}</ref>
Conventional deuteron fusion is a two-step process,<ref group="text" name="branching_and_gamma" /> in which an unstable high-energy ] is formed:
== Issues ==
:] + {{sup|2}}H → ]] + 24 ]
Experiments have shown only three decay pathways for this excited-state nucleus, with the ] showing the probability that any given intermediate follows a particular pathway.<ref group="text" name="branching_and_gamma"/> The products formed via these decay pathways are:
:{{sup|4}}He{{sup|*}} → ] + ] + 3.3 MeV (]=50%)
:{{sup|4}}He{{sup|*}} → ] + ] + 4.0 MeV (ratio=50%)
:] + ] + 24 MeV (ratio=10{{sup|−6}})
Only about one in a million of the intermediaries take the third pathway, making its products very rare compared to the other paths.{{sfn|ps=|Schaffer|1999|p=2}} This result is consistent with the predictions of the ].<ref group="text" name="consistent"/> If 1 watt (6.242 × 10{{sup|18}} eV/s){{refn|group="notes"|name=watt-ev|refn=1 W = 1 J/s ; 1 J = 6.242 × 10{{sup|18}} eV since 1 eV = 1.602 × 10{{sup|−19}} joule}} were produced from ~2.2575 × 10{{sup|11}} deuteron fusions per second, with the known branching ratios, the resulting neutrons and tritium ({{sup|3}}H) would be easily measured.{{sfn|ps=|Schaffer|1999|p=2}}{{sfn|ps=|Huizenga|1993|pp=7}} Some researchers reported detecting {{sup|4}}He but without the expected neutron or tritium production; such a result would require branching ratios strongly favouring the third pathway, with the actual rates of the first two pathways lower by at least five orders of magnitude than observations from other experiments, directly contradicting both theoretically predicted and observed branching probabilities.<ref group="text" name="branching_and_gamma" /> Those reports of {{sup|4}}He production did not include detection of ]s, which would require the third pathway to have been changed somehow so that gamma rays are no longer emitted.<ref group="text" name="branching_and_gamma" />


The known rate of the decay process together with the inter-atomic spacing in a ] makes heat transfer of the 24 MeV excess energy into the host metal lattice prior to the intermediary's decay inexplicable by conventional understandings of ] and energy transfer,<ref>{{harvnb|Scaramuzzi|2000|p=4}}, {{harvnb|Goodstein|1994}}, {{harvnb|Huizenga|1993|pp=207–208, 218}}</ref> and even then there would be measurable levels of radiation.<ref>{{harvnb|Close|1992|pp=308–309}} "Some radiation would emerge, either electrons ejected from atoms or X-rays as the atoms are disturbed, but none were seen."</ref> Also, experiments indicate that the ratios of deuterium fusion remain constant at different energies.<ref name="Huizenga_chemical_environment">{{harvnb|Close|1992|pp=268}}, {{harvnb|Huizenga|1993|pp=112–113}}</ref> In general, pressure and chemical environment cause only small changes to fusion ratios.<ref name="Huizenga_chemical_environment" /> An early explanation invoked the ] at low energies, but its magnitude was too small to explain the altered ratios.{{sfn|ps=|Huizenga|1993|pp=75–76, 113}}


===Setup of experiments===
Cold fusion setups utilize an input power source (to ostensibly provide ]), a ] ], a deuterium or hydrogen source, a ], and, at times, detectors to look for byproducts such as helium or neutrons. Critics have variously taken issue with each of these aspects and have asserted that there has not yet been a consistent reproduction of claimed cold fusion results in either energy output or byproducts. Some cold fusion researchers who claim that they can consistently measure an excess heat effect have argued that the apparent lack of reproducibility might be attributable to a lack of quality control in the electrode metal or the amount of hydrogen or deuterium loaded in the system. Critics have further taken issue with what they describe as mistakes or errors of interpretation that cold fusion researchers have made in calorimetry analyses and energy budgets.{{citation needed|date=March 2021}}


====Reproducibility====
=== Incompatibilities with conventional fusion ===
In 1989, after Fleischmann and Pons had made their claims, many research groups tried to reproduce the Fleischmann-Pons experiment, without success. A few other research groups, however, reported successful reproductions of cold fusion during this time. In July 1989, an Indian group from the ] (] and M. Srinivasan) and in October 1989, ]' group from ] reported on the creation of tritium. In December 1990, professor ] of the ] reported excess heat.{{sfn|ps=|Taubes|1993|pp=364–365}}
There are many reasons conventional fusion is an unlikely explanation for the experimental results described above.<ref name="branching_and_gamma" />


Groups that did report successes found that some of their cells were producing the effect, while other cells that were built exactly the same and used the same materials were not producing the effect.{{sfn|ps=|Platt|1998}} Researchers that continued to work on the topic have claimed that over the years many successful replications have been made, but still have problems getting reliable replications.{{sfn|ps=|Simon|2002|pp=145–148}} ] is one of the main principles of the scientific method, and its lack led most physicists to believe that the few positive reports could be attributed to experimental error.{{sfn|ps=|Platt|1998}}<ref group="text" name="reger"/> The DOE 2004 report said among its conclusions and recommendations:
==== Repulsion forces ====
Because nuclei are all positively charged, they strongly repel one another.<ref name="saeta1999 p 2"/> Normally, in the absence of a catalyst such as a ], very high kinetic energies are required to overcome this repulsion.<ref>{{harvnb|Schaffer and Morrison|1999|ref=CITEREFSaeta1999|p=1,3}}</ref> Extrapolating from known fusion rates, the rate for uncatalyzed fusion at room-temperature energy would be 50 orders of magnitude lower than needed to account for the reported excess heat.<ref>{{harvnb|Scaramuzzi|2000|ref=CITEREFScaramuzzi2000|p=4}}, {{harvnb|Goodstein|1994}}, {{harvnb|Huizenga|1993}} page viii "''Enhancing the probability of a nuclear reaction by 50 orders of magnitude (...) via the chemical environment of a metallic lattice, contradicted the very foundation of nuclear science.''"</ref>


{{blockquote|text=Ordinarily, new scientific discoveries are claimed to be consistent and reproducible; as a result, if the experiments are not complicated, the discovery can usually be confirmed or disproved in a few months. The claims of cold fusion, however, are unusual in that even the strongest proponents of cold fusion assert that the experiments, for unknown reasons, are not consistent and reproducible at the present time. (...) Internal inconsistencies and lack of predictability and reproducibility remain serious concerns. (...) The Panel recommends that the cold fusion research efforts in the area of heat production focus primarily on confirming or disproving reports of excess heat.{{sfn|ps=|US DOE|2004}}}}
In muon-catalyzed fusion there are more fusions because the presence of the muon causes deuterium nuclei to be 207 times closer than in ordinary deuterium gas.<ref>{{harvnb|Close|1991|pp=32,54}}, {{harvnb|Huizenga|1993|p=112}}</ref> But deuterium nuclei inside a palladium lattice are further apart than in deuterium gas, and there should be less fusion reactions, not more.<ref>{{harvnb|Huizenga|1993|p=112}}, {{harvnb|Close|1991|pp=257–258}}</ref>


=====Loading ratio=====
Paneth and Peters in the 1920s already knew that palladium can absorb up to 900 times its own volume of hydrogen gas, storing it at several thousands of times the atmospheric pressure.<ref name="pressure_palladium" /> This led them to believe that they could increase the nuclear fusion rate by simply loading palladium rods with hydrogen gas.<ref name="pressure_palladium" /> Tandberg then tried the same experiment but used electrolysis to make palladium absorb more deuterium and force the deuterium further together inside the rods, thus anticipating the main elements of Fleischmann and Pons' experiment.<ref name="pressure_palladium">{{harvnb|Close|1991|pp=19–20}}</ref> They all hoped that pairs of hydrogen nuclei would fuse together to form helium nuclei, which at the time were very needed in Germany to fill ]s, but no evidence of helium or of increased fusion rate was ever found.<ref name="pressure_palladium" /> This was also the belief of geologist Palmer, who convinced Steve Jones that the helium-3 occurring naturally in Earth came from the fusion of deuterium inside catalysts like palladium.<ref>{{harvnb|Close|1991|pp=63–64}}</ref> This led Jones to independently make the same experimental setup as Fleischmann and Pons (a palladium cathode submerged in heavy water, absorbing deuterium via electrolysis).<ref>{{harvnb|Close|1991|pp=64–66}}</ref> Fleischmann and Pons had the same incorrect belief,<ref>{{harvnb|Close|1991|pp=32–33}}</ref> but they calculated the pressure to be of 10<sup>27</sup> atmospheres, when CF experiments only achieve a ratio of one to one, which only has between 10,000 and 20,000 atmospheres.<ref>{{harvnb|Close|1991|pp=257–258}}</ref>
]]]


Cold fusion researchers (] since 1994,{{sfn|ps=|Simon|2002|pp=145–148}} ] in 2011<ref name=ENEA_Magazin/>) have speculated that a cell that is loaded with a deuterium/palladium ratio lower than 100% (or 1:1) will not produce excess heat.{{sfn|ps=|Simon|2002|pp=145–148}} Since most of the negative replications from 1989 to 1990 did not report their ratios, this has been proposed as an explanation for failed reproducibility.{{sfn|ps=|Simon|2002|pp=145–148}} This loading ratio is hard to obtain, and some batches of palladium never reach it because the pressure causes cracks in the palladium, allowing the deuterium to escape.{{sfn|ps=|Simon|2002|pp=145–148}} Fleischmann and Pons never disclosed the deuterium/palladium ratio achieved in their cells;{{sfn|ps=|Huizenga|1993|p=82}} there are no longer any batches of the palladium used by Fleischmann and Pons (because the supplier now uses a different manufacturing process),{{sfn|ps=|Simon|2002|pp=145–148}} and researchers still have problems finding batches of palladium that achieve heat production reliably.{{sfn|ps=|Simon|2002|pp=145–148}}
==== Lack of expected reaction products ====
Conventional deuteron fusion is a two-step process,<ref name="branching_and_gamma" /> in which an unstable high energy intermediary is formed:
:] + D → ]] + 24 ]
Experiments have observed only three decay pathways for this excited-state nucleus, with the branching ratio showing the probability that any given intermediate will follow a particular pathway.<ref name="branching_and_gamma">{{harvnb|Schaffer|1999|ref=CITEREFSaeta1999|p=1,2}}, {{harvnb|Scaramuzzi|2000|ref=CITEREFScaramuzzi2000|p=4}}, {{harvnb|Close|1991|pp=265–268|quote= (...) the equality of the two channels is known to be preserved from high energy through 20 keV and down to about 5 keV. A reason that it is not as well known below this energy because the individual rates are so low. However, the rate is known at room temperature from muon catalysed fusion experiments. (...) theory can even accommodate the subtle variations in the ratio at these low temperatures }}, {{harvnb|Huizenga|1993|pp=6–7,35–36,75,108–109,112–114,118–125,130,139,173.183,217–218,243–245|quote= have been studied over a range of deuteron kinetic energies down to a few kiloelectron volts (keV). (...) appear to be essentially constant at low energies. There is no reason to think that these branching ratios would be measurably altered for cold fusion. The near equality of has been verified also for muon-catalyzed fusion. }}, {{harvnb|Goodstein|1994}} (explaining Pons and Fleischmann would both be dead if they had produced neutrons in proportion to their measurements of excess heat) ("It has been said . . . three 'miracles' are necessary ")</ref> The products formed via these decay pathways are:
:<sup>4</sup>He<sup>*</sup> → ] + ] + 3.3 MeV (]=50%)
:<sup>4</sup>He<sup>*</sup> → ] + ] + 4.0 MeV (ratio=50%)
:] + ] + 24 MeV (ratio=10<sup>&minus;6</sup>)
Only about one in one million of the intermediaries decay along the third pathway, making its products comparatively rare when compared to the other paths.<ref name="saeta1999 p 2"/> This result is consistent with the predictions of the ].<ref>{{harvnb|Huizenga|1993|pp=6–7,35–36|quote= This well established experimental result is consistent with the Bohr model which predicts that the compound nucleus will decay predominantly by particle emission , as opposed to radioactive capture , whenever it is energetically possible.}}</ref> If one watt ( 1 eV = 1.602 x 10<sup>-19</sup> joule) of nuclear power were produced from deuteron fusion consistent with known branching ratios, the resulting neutron and tritium (<sup>3</sup>H) production would be easily measured.<ref name="saeta1999 p 2"/><ref>{{harvnb|Huizenga|1993|pp=7}}</ref> Some researchers reported detecting <sup>4</sup>He but without the expected neutron or tritium production; such a result would require branching ratios strongly favouring the third pathway, with the actual rates of the first two pathways lower by at least five orders of magnitude than observations from other experiments, directly contradicting both theoretically predicted and observed branching probabilities.<ref name="branching_and_gamma" /> Those reports of <sup>4</sup>He production did not include detection of ]s, which would require the third pathway to have been changed somehow so that gamma rays are no longer emitted.<ref name="branching_and_gamma" />


====Misinterpretation of data====
Proponents have proposed that the 24 MeV excess energy is transferred in the form of heat into the host metal lattice prior to the ] decay.<ref name="branching_and_gamma"/> However, the known rate of the decay process together with the inter-atomic spacing in a ] makes such a transfer inexplicable in terms of conventional understandings of momentum and energy transfer,<ref>{{harvnb|Scaramuzzi|2000|ref=CITEREFScaramuzzi2000|p=4}}, {{harvnb|Goodstein|1994}}, {{harvnb|Huizenga|1993|pp=207–208,218}}</ref> and even then we would see measurable levels of radiations.<ref>{{harvnb|Close|1992|pp=308–309}} "Some radiation would emerge, either electrons ejected from atoms or X-rays as the atoms are disturbed, but none were seen."</ref> Also, experiments indicate that the ratios of deuterium fusion remain constant at different energies.<ref name="Huizenga_chemical_environment">{{harvnb|Huizenga|1993|pp=112–113}}, {{harvnb|Close|1991|pp=268}}</ref> In general, pressure and chemical environment only cause small changes to fusion ratios.<ref name="Huizenga_chemical_environment" /> An early explanation invoked the ] at low energies, but its magnitude was too small to explain the altered ratios.<ref>{{harvnb|Huizenga|1993|pp=75–76,113}}</ref>
Some research groups initially reported that they had replicated the Fleischmann and Pons results but later retracted their reports and offered an alternative explanation for their original positive results. A group at ] found problems with their neutron detector, and Texas A&M discovered bad wiring in their thermometers.{{sfn|ps=|Bird|1998|pp=261–262}} These retractions, combined with negative results from some famous laboratories,{{sfn|ps=|Browne|1989}} led most scientists to conclude, as early as 1989, that no positive result should be attributed to cold fusion.{{sfn|ps=|Bird|1998|pp=261–262}}{{sfn|ps=|Saeta|1999|loc= (pages 5–6; "Response"; Heeter, Robert F.)}}


====Calorimetry errors====
=== Reproducibility ===
The calculation of excess heat in electrochemical cells involves certain assumptions.<ref>{{harvnb|Biberian|2007}} "Input power is calculated by multiplying current and voltage, and output power is deduced from the measurement of the temperature of the cell and that of the bath"</ref> Errors in these assumptions have been offered as non-nuclear explanations for excess heat.
In 1989, after Fleischmann and Pons had made their claims, many research groups tried to reproduce the Fleischmann-Pons experiment, without success. A few other research groups however reported successful reproductions of cold fusion during this time.In July 1989 an Indian group of ] (P. K. Iyengar and M. Srinivasan) and in October 1989 a team from USA (Bockris et al.) reported on creation of tritium. In December 1990 Professor Richard Oriani of Minnesota University reported excess heat<ref>{{cite journal|last=Krivit|first=S|title=Low energy nuclear reaction research - Global scenario|journal=Current Science|year=2008|volume=94|issue=7|url=http://newenergytimes.com/v2/library/2008/2008Krivit-CurrentScience.pdf}}</ref><ref group="notes">In January 26, 1990, journal ''Nature'' rejected Oriani's paper, citing the lack of nuclear ash and the general difficulty that others had in replication.{{harvnb|Beaudette|2002|p=183}} It was later published in ''Fusion Technology''.{{harvnb|Oriani|Nelson|Lee|Broadhurst|1990|ref=CITEREFOriani1990|pp=652–662}} Oriani stopped after his calorimeter exploded and hurt a student, and he never resumed his research.{{harvnb|Taubes|1993|pp=364–365}} and {{harvnb|Close|1992|p=94}}</ref>.


One assumption made by Fleischmann and Pons is that the efficiency of electrolysis is nearly 100%, meaning nearly all the electricity applied to the cell resulted in electrolysis of water, with negligible ] and substantially all the electrolysis product leaving the cell unchanged.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}} This assumption gives the amount of energy expended converting liquid D<sub>2</sub>O into gaseous D<sub>2</sub> and O<sub>2</sub>.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990|loc=Appendix}} The efficiency of electrolysis is less than one if hydrogen and oxygen recombine to a significant extent within the calorimeter. Several researchers have described potential mechanisms by which this process could occur and thereby account for excess heat in electrolysis experiments.{{sfn|ps=|Shkedi|McDonald|Breen|Maguire|1995}}{{sfn|ps=|Jones|Hansen|Jones|Shelton|1995|p=1}}{{sfn|ps=|Shanahan|2002}}
] is one of the main principles of the scientific method, and its lack led most physicists to believe that the few positive reports could be attributed to experimental error.<ref name="Platt 1998">{{harvnb|Platt|1998}}</ref>


Another assumption is that heat loss from the calorimeter maintains the same relationship with measured temperature as found when calibrating the calorimeter.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}} This assumption ceases to be accurate if the temperature distribution within the cell becomes significantly altered from the condition under which calibration measurements were made.<ref>{{harvnb|Biberian|2007}} "Almost all the heat is dissipated by radiation and follows the temperature fourth power law. The cell is calibrated ..."</ref> This can happen, for example, if fluid circulation within the cell becomes significantly altered.{{sfn|ps=|Browne|1989|loc=para. 16}}{{sfn|ps=|Wilson|Bray|Kosky|Vakil|1992}} Recombination of hydrogen and oxygen within the calorimeter would also alter the heat distribution and invalidate the calibration.{{sfn|ps=|Shanahan|2002}}{{sfn|ps=|Shanahan|2005}}{{sfn|ps=|Shanahan|2006}}
But even groups that did report successes found that some of their cells were producing the effect where other cells that were built exactly the same and used the same materials were not producing the effect.<ref name="Platt 1998"/> Around 1993 scientists found out that the effect had a very low probability of occurrence when the loading of deuterium into the palladium was below 90% and that the experiments performed by the Caltech lab that debunked the Fleischmann and Pons’s results only had had a maximum loading of 80%.<ref name="cartwright"/> Researchers that continued to work on the topic have claimed that over the years many successful replications have been made.<ref></ref>


== Publications ==
=== Misinterpretation of data ===
The ] identified cold fusion as the scientific topic with the largest number of published papers in 1989, of all scientific disciplines.{{sfn|ps=|Simon|2002|pp=180–183, 209}} The ] ] declared himself a supporter of cold fusion in the fall of 1989, after much of the response to the initial reports had turned negative. He tried to publish his theoretical paper "Cold Fusion: A Hypothesis" in '']'', but the peer reviewers rejected it so harshly that he felt deeply insulted, and he resigned from the ] (publisher of ''PRL'') in protest.{{sfn|ps=|Mehra |Milton |Schwinger |2000|p=}}{{sfn|ps=|Close|1992|pp=197–198}}
Some research groups initially reported that they had replicated the Fleischmann and Pons results but later retracted their reports and offered an alternative explanation for their original positive results. A group at ] found problems with their neutron detector, and ] discovered bad wiring in their thermometers.<ref name="Bird 1998 261–262">{{harvnb|Bird|1998|pp=261–262}}</ref> These retractions, combined with negative results from some famous laboratories,<ref name="Browne_1989"/> led most scientists to conclude that no positive result should be attributed to cold fusion.<ref name="Bird 1998 261–262"/><ref>{{harvnb|Heeter|1999|ref=CITEREFSaeta1999|p=5}}</ref>


The number of papers sharply declined after 1990 because of two simultaneous phenomena: first, scientists abandoned the field; second, journal editors declined to review new papers. Consequently, cold fusion fell off the ISI charts.{{sfn|ps=|Simon|2002|pp=180–183, 209}}{{sfn|ps=|Simon|2002|pp=180–183}} Researchers who got negative results turned their backs on the field; those who continued to publish were simply ignored.{{sfn|ps=|Huizenga|1993|pp=208}} A 1993 paper in ''Physics Letters A'' was the last paper published by Fleischmann, and "one of the last reports to be formally challenged on technical grounds by a cold fusion skeptic."<ref group="text" name="last_challenged" />
=== Calorimetry errors ===
The calculation of excess heat in electrochemical cells involves certain assumptions.<ref>{{harvnb|Biberian|2007}} - (Input power is calculated by multiplying current and voltage, and output power is deduced from the measurement of the temperature of the cell and that of the bath")</ref> Errors in these assumptions have been offered as non-nuclear explanations for excess heat.


The ''Journal of Fusion Technology'' (FT) established a permanent feature in 1990 for cold fusion papers, publishing over a dozen papers per year and giving a mainstream outlet for cold fusion researchers. When editor-in-chief ] retired in 2001, the journal stopped accepting new cold fusion papers.{{sfn|ps=|Simon|2002|pp=180–183}} This has been cited as an example of the importance of sympathetic influential individuals to the publication of cold fusion papers in certain journals.{{sfn|ps=|Simon|2002|pp=180–183}}
One assumption made by Fleischmann and Pons is that the efficiency of electrolysis is nearly 100%, meaning nearly all the electricity applied to the cell resulted in electrolysis of water, with negligible resistive heating and substantially all the electrolysis product leaving the cell unchanged.<ref name="FleischmannPons_1990" /> This assumption gives the amount of energy expended converting liquid D<sub>2</sub>O into gaseous D<sub>2</sub> and O<sub>2</sub>.<ref>{{harvnb|Fleischmann|1990|ref=CITEREFFleischmann1990|loc=Appendix}}</ref> The efficiency of electrolysis will be less than one if hydrogen and oxygen recombine to a significant extent within the calorimeter. Several researchers have described potential mechanisms by which this process could occur and thereby account for excess heat in electrolysis experiments.<ref name="Shkedi_1995">{{harvnb|Shkedi et al.|1995|ref=CITEREFShkedi1995}}</ref><ref name="Jones_1995_1">{{harvnb|Jones et al.|1995|ref=CITEREFJones1995|p=1}}</ref><ref name="Shanahan 2002">{{harvnb|Shanahan|2002}}</ref>


The decline of publications in cold fusion has been described as a "failed information epidemic".<ref group="text" name="fie" /> The sudden surge of supporters until roughly 50% of scientists support the theory, followed by a decline until there is only a very small number of supporters, has been described as a characteristic of ].<ref group="text" name="pathological" /><ref group="notes" name="Langmuir" /> The lack of a shared set of unifying concepts and techniques has prevented the creation of a dense network of collaboration in the field; researchers perform efforts in their own and in disparate directions, making the transition to "normal" science more difficult.{{sfn|ps=|Bettencourt|Kaiser|Kaur|2009}}
Another assumption is that heat loss from the calorimeter maintains the same relationship with measured temperature as found when calibrating the calorimeter.<ref name="FleischmannPons_1990" /> This assumption ceases to be accurate if the temperature distribution within the cell becomes significantly altered from the condition under which calibration measurements were made.<ref>{{harvnb|Biberian|2007}} - ("Almost all the heat is dissipated by radiation and follows the temperature fourth power law. The cell is calibrated . . .")</ref> This can happen, for example, if fluid circulation within the cell becomes significantly altered.<ref name="Browne_1989_para16">{{harvnb|Browne|1989|loc=para. 16}}</ref><ref name="Wilson_1992">{{harvnb|Wilson|1992|ref=CITEREFWilson1992}}</ref> Recombination of hydrogen and oxygen within the calorimeter would also alter the heat distribution and invalidate the calibration.<ref name="Shanahan 2002"/><ref name="Shanahan 2005">{{harvnb|Shanahan|2005}}</ref><ref name="Shanahan 2006">{{harvnb|Shanahan|2006}}</ref>


Cold fusion reports continued to be published in a few journals like '']'' and '']''. Some papers also appeared in '']'', '']'', '']'', and a number of Japanese and Russian journals of physics, chemistry, and engineering.{{sfn|ps=|Simon|2002|pp=180–183}} Since 2005, '']'' has published cold fusion papers; in 2009, the journal named a cold fusion researcher to its editorial board. In 2015 the Indian multidisciplinary journal '']'' published a special section devoted entirely to cold fusion related papers.<ref name="currentscience.ac.in"/>
John R. Huizenga who co-chaired the DOE 1989 panel stated simply a priori: "Furthermore, if the claimed excess heat exceeds that possible by other conventional processes (chemical, mechanical, etc.), one must conclude that an error has been made in measuring the excess heat."<ref>{{harvnb|Huizenga|1993|p=285}}</ref>


In the 1990s, the groups that continued to research cold fusion and their supporters established (non-peer-reviewed) periodicals such as ''Fusion Facts'', ''Cold Fusion Magazine'', '']'' and ''New Energy Times'' to cover developments in cold fusion and other fringe claims in energy production that were ignored in other venues. The internet has also become a major means of communication and self-publication for CF researchers.{{sfn|ps=|Simon|2002|pp=183–187}}
=== Small quantities of reaction products ===
The detected reaction products are barely above background levels. The levels of 4He could have already been present in the surrounding air instead of being created by any nuclear process. Detected neutrons and tritium were often barely above background level.<ref name="Scaramuzzi2000_7_9" />


== Conferences ==
=== Chemical reaction not nuclear reaction ===
Cold fusion researchers were for many years unable to get papers accepted at scientific meetings, prompting the creation of their own conferences. The ] (ICCF) was first held in 1990 and has met every 12 to 18 months since. Attendees at some of the early conferences were described as offering no criticism to papers and presentations for fear of giving ammunition to external critics,{{sfn|ps=|Park|2000|pp=12–13}} thus allowing the proliferation of ] and hampering the conduct of serious science.{{sfn|ps=|Goodstein|1994}}<ref group="notes">The first three conferences are commented in detail in {{harvnb|Huizenga|1993 |pp=237–247, 274–285}}, specially 240, 275–277</ref> Critics and skeptics stopped attending these conferences, with the notable exception of Douglas Morrison,<ref>{{harvnb|Huizenga|1993|pp=276}}, {{harvnb|Park|2000|pp=12–13}}, {{harvnb|Simon|2002|p=108}}</ref> who died in 2001. With the founding in 2004 of the International Society for Condensed Matter Nuclear Science (ISCMNS),<ref>{{cite web|url=https://iscmns.org/mission/faq/#ref1|title=ISCMNS FAQ|website=iscmns.org|url-status=live|archive-url=https://web.archive.org/web/20111223114431/http://www.iscmns.org/faq.htm#ref1|archive-date=23 December 2011}}</ref> the conference was renamed the International Conference on Condensed Matter Nuclear Science{{sfn|ps=|Simon|2002|pp=131–133, 218}}{{sfn|ps=|Seife|2008|pp=154–155}}<ref name="taubes378">{{harvnb|Taubes|1993|pp=378, 427}} ''anomalous effects in deuterated metals,'' which was the new, preferred, politically palatable nom de science for cold fusion ."</ref>—for reasons that are detailed in the ] above—but reverted to the old name in 2008.<ref>{{cite book |url=http://www.iscmns.org/iccf14/ProcICCF14b.pdf |title=Proceedings of the 14th International Conference on Condensed Matter Nuclear Science and the 14th International Conference on Cold Fusion (ICCF-14) – 10–15 August 2008 Washington DC |year=2008 |volume=2 |publisher=New Energy Foundation |editor-last1=Nagel |editor-first1=David J. |editor-last2=Melich |editor-first2=Michael E. |isbn=978-0-578-06694-3 |access-date=31 October 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120731065530/http://www.iscmns.org/iccf14/ProcICCF14b.pdf |archive-date=31 July 2012}}</ref> Cold fusion research is often referenced by proponents as "low-energy nuclear reactions", or LENR,<ref name="bbc march 2009" /> but according to sociologist ] the "cold fusion" label continues to serve a social function in creating a ] for the field.{{sfn|ps=|Simon|2002|pp=131–133, 218}}
Another objection offered the explanation that the heat was not the result of a nuclear reaction, but a chemical reaction, namely the recombination of hydrogen and oxygen.
<ref name="Goodstein_1994"/>
See also ]


Since 2006, the ] (APS) has included cold fusion sessions at their semiannual meetings, clarifying that this does not imply a softening of skepticism.<ref name="aps meeting">{{harvnb|Chubb|McKubre|Krivit|Chubb|2006}}, {{harvnb|Adam|2005}} (". Anyone can deliver a paper. We defend the openness of science"&nbsp;– Bob Park of APS, when asked if hosting the meeting showed a softening of scepticism)</ref>{{sfn|ps=|Van Noorden|2007}} Since 2007, the ] (ACS) meetings also include "invited symposium(s)" on cold fusion.{{sfn|ps=|Van Noorden|2007|loc=para. 2}} An ACS program chair, Gopal Coimbatore, said that without a proper forum the matter would never be discussed and, "with the world facing an energy crisis, it is worth exploring all possibilities."{{sfn|ps=|Van Noorden|2007}}
=== No control experiments were performed ===
] are part of the scientific method to prove that the measured effects do not happen by chance, but are direct results of the experiment. One of the points of criticism of Fleischmann and Pons was the lack of control experiments.<ref name="Goodstein_1994"/>


On 22–25 March 2009, the American Chemical Society meeting included a four-day symposium in conjunction with the 20th anniversary of the announcement of cold fusion. Researchers working at the U.S. Navy's ] (SPAWAR) reported detection of energetic ] using a heavy water electrolysis setup and a ] detector,<ref name="ACS Press Release" /><ref name="reignites" /> a result previously published in '']''.{{sfn|ps=|Barras|2009}} The authors claim that these neutrons are indicative of nuclear reactions.<ref name="afp march 2009">{{cite web|mode=cs2 |url=https://www.google.com/hostednews/afp/article/ALeqM5j2QobOQnlULUZ7oalSRUVjnlHjng |title=Scientists in possible cold fusion breakthrough |access-date=24 March 2009 |publisher=] |url-status=dead |archive-url=https://web.archive.org/web/20090327020127/http://www.google.com/hostednews/afp/article/ALeqM5j2QobOQnlULUZ7oalSRUVjnlHjng |archive-date=27 March 2009 }}</ref> Without quantitative analysis of the number, energy, and timing of the neutrons and exclusion of other potential sources, this interpretation is unlikely to find acceptance by the wider scientific community.{{sfn|ps=|Barras|2009}}{{sfn|ps=|Berger|2009}}
=== Several competing theories ===
Researchers started proposing alternative explanations for Fleischmann and Pons' results even before various other labs reported ]s.<ref>{{Citation
|last=Tate|first=N.
|title=MIT bombshell knocks fusion ‘breakthrough’ cold
|newspaper=Boston Herald
|year=1989
|issue=May 1, 1989
|page=1
|issn=0738-5854
|doi= }}</ref>
Many years after the 1989 experiment, cold fusion researchers still haven't agreed on a single theoretical explanation or on a single experimental method that can produce replicable results <ref>{{harvnb|Simon|2002|pp=214–216}}</ref> and continue to offer new proposals, which also fail to convince mainstream scientists.<ref name="Storms 2007" />

The initial cold fusion explanation was motivated by the high excess heat reported and by the insistence of the initial reviewer, Stephen E. Jones, that nuclear fusion might rationalize the data. Hydrogen and its ] can be absorbed in certain solids, including ], at high densities. This creates a high partial pressure, reducing the average separation of hydrogen atoms. It was proposed that a higher density of hydrogen inside the palladium and a lower potential barrier{{Clarify|date=August 2011}} could raise the possibility of fusion at lower temperatures than expected from a simple application of ]. However, theoretical calculations show that these effects are too small to increase the rate of fusion by any detectable amount.<ref name="saeta1999 p 2"/> ] of the positive hydrogen nuclei by the negative electrons in the palladium lattice was suggested to the 2004 DOE commission,<ref>{{harvnb|Hagelstein et al.|2004|ref=CITEREFDOE2004|pp=14–15}}</ref> but the panel found the theoretical explanations (Charge Element 2) to be the weakest part of cold fusion claims.<ref name="US DOE 2004 ref=CITEREFDOE2004r"/>

Skeptics call cold fusion explanations '']'' and lacking rigor,<ref name="derry">{{harvnb|Derry|2002|pp=179,180}}</ref><ref name="US DOE 2004 ref=CITEREFDOE2004r">{{harvnb|US DOE|2004|ref=CITEREFDOE2004r}}</ref> and state that they are used by proponents simply to disregard the negative experiments—a symptom of pathological science.<ref>{{harvnb|Simon|2002|pp=79,104–105}}, {{harvnb|Close|1992|pp=257–258,308–309}}, {{harvnb|Ball|2001|pp=308,329}}, {{harvnb|Huizenga|1993|pp=xi,207–209,217–218,268–270}} citing Langmuir's criteria of pathological science "(5) Criticism are met by ''ad hoc'' excuses thought up in the spur of the moment." in page 203</ref> Attempts at theoretical justification have either been explicitly rejected by mainstream physicists or lack independent review.<ref>{{harvnb|Schaffer|1999|ref=CITEREFSaeta1999|p=3}}, {{harvnb|Adam|2005}} - ("Extraordinary claims . . . demand extraordinary proof"), {{harvnb|Collins|1993|pp=72–74}}, {{harvnb|Goodstein|1994}}</ref>


==Patents== ==Patents==
Although the details have not surfaced, it appears that the University of Utah forced the 23 March 1989 Fleischmann and Pons announcement in order to establish priority over the discovery and its patents before the joint publication with Jones.<ref name="utah patent"/> The ] (MIT) announced on 12 April 1989 that it had applied for its own patents based on theoretical work of one of its researchers, ], who had been sending papers to journals from the 5th to the 12th of April.<ref name=Broad1989/> On 2 December 1993 the University of Utah licensed all its cold fusion patents to ENECO, a new company created to profit from cold fusion discoveries,<ref name="Lewenstein_1994_43"/> and on March 1998 it said that it would no longer defend its patents.<ref name="wired steam">{{citation |title= Cold Fusion Patents Run Out of Steam |author= Wired News Staff Email |date= 24 March 1998 |publisher= ] |url= http://www.wired.com/science/discoveries/news/1998/03/11179 }}</ref> Although details have not surfaced, it appears that the University of Utah forced the 23 March 1989 Fleischmann and Pons announcement to establish priority over the discovery and its patents before the joint publication with Jones.<ref name="utah patent"/> The ] (MIT) announced on 12 April 1989 that it had applied for its own patents based on theoretical work of one of its researchers, ], who had been sending papers to journals from 5 to 12 April.<ref name=Broad1989/> An MIT graduate student applied for a patent but was reportedly rejected by the USPTO in part by the citation of the "negative" MIT Plasma Fusion Center's cold fusion experiment of 1989. On 2 December 1993 the University of Utah licensed all its cold fusion patents to ENECO, a new company created to profit from cold fusion discoveries,{{sfn|ps=|Lewenstein|1994|p=43}} and in March 1998 it said that it would no longer defend its patents.<ref name="wired steam">{{cite magazine|mode= cs2 |title= Cold Fusion Patents Run Out of Steam |author= Wired News Staff Email |date= 24 March 1998 |magazine= ] |url= https://www.wired.com/science/discoveries/news/1998/03/11179 |archive-url= https://web.archive.org/web/20140104170533/http://www.wired.com/science/discoveries/news/1998/03/11179 |archive-date= 4 January 2014 |url-status= live}}</ref>


The ] (USPTO) now rejects patents claiming cold fusion.<ref name="Weinberger2004"/> Esther Kepplinger, the deputy commissioner of patents in 2004, said that this was done using the same argument as with ]s: that they do not work.<ref name="Weinberger2004"/> Patent applications are required to show that the invention is "useful", and this ] is dependent on the invention's ability to function.<ref name="incredible"/> In general USPTO rejections on the sole grounds of the invention's being "inoperative" are rare, since such rejections need to demonstrate "proof of total incapacity",<ref name="incredible"/> and cases where those rejections are upheld in a Federal Court are even rarer: nevertheless, in 2000, a rejection of a cold fusion patent was appealed in a Federal Court and it was upheld, in part on the grounds that the inventor was unable to establish the utility of the invention.<ref name="incredible"/><ref name="patent case" group="notes" /> The ] (USPTO) now rejects patents claiming cold fusion.<ref name="Weinberger2004"/> Esther Kepplinger, the deputy commissioner of patents in 2004, said that this was done using the same argument as with ]s: that they do not work.<ref name="Weinberger2004"/> Patent applications are required to show that the invention is "useful", and this ] is dependent on the invention's ability to function.<ref name="incredible"/> In general USPTO rejections on the sole grounds of the invention's being "inoperative" are rare, since such rejections need to demonstrate "proof of total incapacity",<ref name="incredible"/> and cases where those rejections are upheld in a Federal Court are even rarer: nevertheless, in 2000, a rejection of a cold fusion patent was appealed in a Federal Court and it was upheld, in part on the grounds that the inventor was unable to establish the utility of the invention.<ref name="incredible"/><ref group="notes" name="patent case"/>


U.S. patents might still be granted when they are given a different name in order to disassociate it from cold fusion,<ref name="simon patent"/> although this strategy has had little success in the US: the very same claims that need to be patented can identify it with cold fusion, and most of these patents cannot avoid mentioning Fleischmann and Pons' research due to legal constraints, thus alerting the patent reviewer that it is a cold-fusion-related patent.<ref name="simon patent"/> David Voss said in 1999 that some patents that closely resemble cold fusion processes, and that use materials used in cold fusion, have been granted by the USPTO.<ref name="voss-science"/> The inventor of three such patents had his applications initially rejected when they were reviewed by experts in nuclear science; but then he rewrote the patents to focus more in the electrochemical parts so they would be reviewed instead by experts in electrochemistry, who approved them.<ref name="voss-science"/><ref>{{citation |title= A Case Study of Inoperable Inventions: Why Is the USPTO Patenting Pseudoscience? |author= Daniel C. Rislove |journal= Wisconsin Law Review |chapter= C. The Cold Fusion patents |year= 2006 |volume= 2006 |issue= 4 |pages= 1302–1304, footnote 269 in page 1307 |url= http://hosted.law.wisc.edu/lawreview/issues/2006-4/rislove.pdf }}</ref> When asked about the resemblance to cold fusion, the patent holder said that it used nuclear processes involving "new nuclear physics" unrelated to cold fusion.<ref name="voss-science"/> Melvin Miles was granted in 2004 a patent for a cold fusion device, and in 2007 he described his efforts to remove all instances of "cold fusion" from the patent description to avoid having it rejected outright.<ref name=Sanderson2007a/> A U.S. patent might still be granted when given a different name to disassociate it from cold fusion,{{sfn|ps=|Simon|2002|pp=193, 233}} though this strategy has had little success in the US: the same claims that need to be patented can identify it with cold fusion, and most of these patents cannot avoid mentioning Fleischmann and Pons' research due to legal constraints, thus alerting the patent reviewer that it is a cold-fusion-related patent.{{sfn|ps=|Simon|2002|pp=193, 233}} David Voss said in 1999 that some patents that closely resemble cold fusion processes, and that use materials used in cold fusion, have been granted by the USPTO.<ref name="voss-science"/> The inventor of three such patents had his applications initially rejected when they were reviewed by experts in nuclear science; but then he rewrote the patents to focus more on the electrochemical parts so they would be reviewed instead by experts in electrochemistry, who approved them.<ref name="voss-science"/><ref>{{cite journal|mode=cs2 |title=A Case Study of Inoperable Inventions: Why Is the USPTO Patenting Pseudoscience? |author=Daniel C. Rislove |journal=Wisconsin Law Review |year=2006 |volume=2006 |issue=4 |pages=1302–1304, footnote 269 in page 1307 |url=http://hosted.law.wisc.edu/lawreview/issues/2006-4/rislove.pdf |url-status=dead |archive-url=https://web.archive.org/web/20150925131935/http://hosted.law.wisc.edu/lawreview/issues/2006-4/rislove.pdf |archive-date=25 September 2015 }}</ref> When asked about the resemblance to cold fusion, the patent holder said that it used nuclear processes involving "new nuclear physics" unrelated to cold fusion.<ref name="voss-science"/> Melvin Miles was granted in 2004 a patent for a cold fusion device, and in 2007 he described his efforts to remove all instances of "cold fusion" from the patent description to avoid having it rejected outright.<ref name=Sanderson2007/>


At least one patent related to cold fusion has been granted by the ].<ref name=Fox1994a/> At least one patent related to cold fusion has been granted by the ].<ref name=Fox1994a/>


A patent only legally prevents others from using or benefiting from one's invention. However, the general public perceives a patent as a stamp of approval, and a holder of three cold fusion patents said the patents were very valuable and had helped in getting investments.<ref name="voss-science"/> A patent only legally prevents others from using or benefiting from one's invention. However, the general public perceives a patent as a stamp of approval, and a holder of three cold fusion patents said the patents were very valuable and had helped in getting investments.<ref name="voss-science"/>

==Cultural references==
A 1990 ] film '']'', starring ] and ], referenced the Fleischmann and Pons experiment. The film – a comedy – concerned conmen trying to steal scientists' purported findings. However, the film had a poor reception, described as "appallingly unfunny".{{sfn|ps=|Radio Times Film Unit|2013|pp=181–182}}

In ''Undead Science'', sociologist Bart Simon gives some examples of cold fusion in popular culture, saying that some scientists use cold fusion as a synonym for outrageous claims made with no supporting proof,{{sfn|ps=|Simon|2002|pp=91–95, 116–118}} and courses of ethics in science give it as an example of pathological science.{{sfn|ps=|Simon|2002|pp=91–95, 116–118}} It has appeared as a joke in '']'' and '']''.{{sfn|ps=|Simon|2002|pp=91–95, 116–118}} It was adopted as a software product name ] and a brand of protein bars (Cold Fusion Foods).{{sfn|ps=|Simon|2002|pp=91–95, 116–118}} It has also appeared in advertising as a synonym for impossible science, for example a 1995 advertisement for ].{{sfn|ps=|Simon|2002|pp=91–95, 116–118}}

The plot of '']'', a 1997 action-adventure film, parallels the story of Fleischmann and Pons, although with a different ending.{{sfn|ps=|Simon|2002|pp=91–95, 116–118}} In ''Undead Science'', Simon posits that film might have affected the public perception of cold fusion, pushing it further into the science fiction realm.{{sfn|ps=|Simon|2002|pp=91–95, 116–118}}

Similarly, the tenth episode of 2000 science fiction TV drama '']'' ("Paradise Island") is also based around cold fusion, specifically the efforts of eccentric scientist Hepzibah McKinley (]), who is convinced she has perfected it based on her father's incomplete research into the subject.<ref name = "The Hill and Beyond" >{{cite book |last=McGown |first=Alistair |author-link= |date=2003 |title=The Hill and Beyond: Children's Television Drama – An Encyclopedia |url=https://archive.org/details/hillbeyondchildr0000mcgo |publisher=BFI |page=266 |isbn=0851708781}}</ref> The episode explores its potential benefits and viability within the ongoing post-apocalyptic ] scenario of the series.<ref name = "The Hill and Beyond" ></ref>

In the 2023 video game '']'', cold fusion is responsible for nearly all of the technological advances.<ref>{{cite web |title=Atomic Heart – Everything You Need to Know |url=https://nexushub.co.za/nexus/atomic-heart-everything-you-need-to-know.html |website=Nexus Hub}}</ref>


==See also== ==See also==
{{Div col|colwidth=22em}}
* ] * ]
* ]
* ]
* ] (E-cat)
* ] * ]
* ] (patent concept)
* ]
* ] * ]
* ] * ]
* ]
* ]
* ]
{{div col end}}


==Notes== == Notes==
{{Reflist|group="notes"|refs= {{Reflist|group="notes"|refs=
<ref group="notes" name="differences">{{harvnb|Taubes|1993|pp=228–229, 255}} "(...) there are indeed chemical differences between heavy and light water, especially once lithium is added, as it was in the Pons-Fleischmann electrolyte. This had been in the scientific literature since 1958. It seems that the electrical conductivity of heavy water with lithium is considerably less than that of light water with lithium. And this difference is more than enough to account for the heavy water cell running hotter (...) (quoting a member of the A&M group) 'they're making the same mistake we did'"</ref>
<ref name="patent case" group="notes">Swartz, 232 F.3d 862, 56 USPQ2d 1703, (Fed. Cir. 2000). . Sources:
*{{Citation|title=2164.07 Relationship of Enablement Requirement to Utility Requirement of 35 U.S.C. 101 - 2100 Patentability. B. Burden on the Examiner. Examiner Has Initial Burden To Show That One of Ordinary Skill in the Art Would Reasonably Doubt the Asserted Utility|publisher=U.S. Patent and Trademark Office|url=http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2164_07.htm}} Manual of Patent Examining Procedure, in reference to {{usc|35|101}}
*{{Citation|title=Patent law essentials: a concise guide|author=Alan L. Durham|edition=2, illustrated|publisher=]|year=2004|isbn=027598205X, 9780275982058|page=72 (footnote 30)|url=http://books.google.com/?id=RzZydAHtUoIC&pg=PA72&dq=patent+cold+fusion}}
*{{Citation|title=How to write a patent application|author=Jeffrey G. Sheldon|edition=illustrated|publisher=]|year=1992|url=http://books.google.com/?id=aIFyzuKs6q0C&pg=RA1-PT332&dq=patent+cold+fusion|isbn=0872240444}}</ref>


<ref name="nature critical papers" group="notes">E.g.: <ref group="notes" name="nature critical papers">E.g.:
*{{Citation | last = Miskelly | first = GM | coauthors = Heben MJ; Kumar A; Penner RM; Sailor MJ; Lewis NL | title = Analysis of the Published Calorimetric Evidence for Electrochemical Fusion of Deuterium in Palladium | journal = ] | volume = 246 | issue = 4931 | year = 1989 | doi = 10.1126/science.246.4931.793 | pages = 793–796 | pmid = 17748706 |bibcode = 1989Sci...246..793M }} * {{cite journal |mode=cs2 | vauthors= Miskelly GM, Heben MJ, Kumar A, Penner RM, Sailor MJ, Lewis NL | s2cid = 42943868 | title = Analysis of the Published Calorimetric Evidence for Electrochemical Fusion of Deuterium in Palladium | journal = ] | volume = 246 | issue = 4931 | year = 1989 | doi = 10.1126/science.246.4931.793 | pages = 793–796 | pmid = 17748706 |bibcode = 1989Sci...246..793M |ref=none}}
* {{Citation | last = Aberdam | first = D | coauthors = Avenier M; Bagieu G; Bouchez J; Cavaignac JF; Collot J et al. | doi = 10.1103/PhysRevLett.65.1196 | title = Limits on neutron emission following deuterium absorption into palladium and titanium | journal = ] | volume = 65 | issue = 10 | pages = 1196–1199 | year = 1990 | bibcode=1990PhRvL..65.1196A}} * {{cite journal |mode=cs2 | vauthors= Aberdam D, Avenier M, Bagieu G, Bouchez J, Cavaignac JF, Collot J | doi = 10.1103/PhysRevLett.65.1196 | title = Limits on neutron emission following deuterium absorption into palladium and titanium | journal = Phys. Rev. Lett. | volume = 65 | issue = 10 | pages = 1196–1199 | year = 1990 | bibcode=1990PhRvL..65.1196A |ref=none|display-authors=etal | pmid=10042199}}
* {{Citation | last = Price | first = PB | coauthors = Barwick SW; Williams WT; Porter JD | title = Search for energetic-charged-particle emission from deuterated Ti and Pd foils | volume = 63 | issue = 18 | journal = ] | year = 1989 | doi = 10.1103/PhysRevLett.63.1926 | page = 1926 | bibcode=1989PhRvL..63.1926P}} * {{cite journal |mode=cs2 | vauthors= Price PB, Barwick SW, Williams WT, Porter JD | title = Search for energetic-charged-particle emission from deuterated Ti and Pd foils | volume = 63 | issue = 18 | pages = 1926–1929 | journal = Phys. Rev. Lett. | year = 1989 | doi = 10.1103/PhysRevLett.63.1926 | bibcode=1989PhRvL..63.1926P |ref=none | pmid=10040716 | url = https://zenodo.org/record/1233870 }}
* {{Citation | last = Roberts | first = DA | coauthors = Becchetti FD; Ben-Jacob E; Garik P; Musser J; Orr B; Tarlé G et al. | title = Energy and flux limits of cold-fusion neutrons using a deuterated liquid scintillator | journal = ] | volume = 42 | issue = 5 | pages = R1809–R1812 | doi = 10.1103/PhysRevC.42.R1809 | year = 1990 |bibcode = 1990PhRvC..42.1809R }} * {{cite journal |mode=cs2 | vauthors= Roberts DA, Becchetti FD, Ben-Jacob E, Garik P, Musser J, Orr B, Tarlé G, Tomasch A, Holder JS, Redina D, Heuser B, Wicker G | title = Energy and flux limits of cold-fusion neutrons using a deuterated liquid scintillator | journal = Phys. Rev. C | volume = 42 | issue = 5 | pages = R1809–R1812 | doi = 10.1103/PhysRevC.42.R1809 | pmid = 9966919 | year = 1990 |bibcode = 1990PhRvC..42.1809R |ref=none|display-authors=4}}
*{{harvnb|Lewis|1989}}</ref> * {{harvnb|Lewis|Barnes|Heben|Kumar|1989}}</ref>


<!-- Not in use
<ref name="differences" group="notes">{{harvnb|Taubes|1993|pp=228–229, 255|quote=(...) there are indeed chemical differences between heavy and light water, especially once lithium is added, as it was in the Pons-Fleischmann electrolyte. This had been in the scientific literature since 1958. It seems that the electrical conductivity of heavy water with lithium is considerably less than that of light water with lithium. And this difference is more than enough to account for the heavy water cell running hotter (...) (quoting a member of the A&M group) 'they're making the same mistake we did' }}</ref>
<ref group="notes" name="watt-ev">1 W = 1 J/s ; 1 J = 6.242 × 10<sup>18</sup> eV = 6.242 × 10<sup>12</sup> MeV since 1 eV = 1.602 × 10<sup>−19</sup> joule</ref>
Not in use-->

<ref group="notes" name="Langmuir">Sixth criterion of Langmuir: "During the course of the controversy the ratio of supporters to critics rises to near 50% and then falls gradually to oblivion. {{harvnb|Langmuir|Hall|1989|pp=43–44}}", quoted in {{harvnb|Simon|2002|p=104}}, paraphrased in {{harvnb|Ball|2001|p=308}}. It has also been applied to the number of published results, in {{harvnb|Huizenga|1993|pp=xi, 207–209}} "The ratio of the worldwide positive results on cold fusion to negative results peaked at approximately 50% (...) qualitatively in agreement with Langmuir's sixth criteria."</ref>

<ref group="notes" name="Beaudette rejection">On 26 January 1990, journal ''Nature'' rejected Oriani's paper, citing the lack of nuclear ash and the general difficulty that others had in replication.{{harvnb|Beaudette|2002|p=183}} It was later published in ''Fusion Technology''.{{harvnb|Oriani|Nelson|Lee|Broadhurst|1990|pp=652–662}}</ref>

<ref group="notes" name="patent case">Swartz, 232 F.3d 862, 56 USPQ2d 1703, (Fed. Cir. 2000). {{webarchive|url=https://web.archive.org/web/20080312055400/http://www.ll.georgetown.edu/FEDERAL/judicial/fed/opinions/00opinions/00-1108.html |date=12 March 2008 }}. Sources:
* {{cite web|mode=cs2 |title=2164.07 Relationship of Enablement Requirement to Utility Requirement of 35 U.S.C. 101&nbsp;– 2100 Patentability. B. Burden on the Examiner. Examiner Has Initial Burden To Show That One of Ordinary Skill in the Art Would Reasonably Doubt the Asserted Utility |publisher=U.S. Patent and Trademark Office |url=http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2164_07.htm |ref=none |archive-url=https://web.archive.org/web/20120912152657/http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2164_07.htm |archive-date=12 September 2012 |url-status=live}} Manual of Patent Examining Procedure, in reference to {{usc|35|101}}
* {{Cite book|mode=cs2|title=Patent law essentials: a concise guide |author=Alan L. Durham |edition=2nd, illustrated |publisher=] |year=2004 |isbn=9780275982058 |page=72 (footnote 30) |url=https://books.google.com/books?id=RzZydAHtUoIC&q=patent+cold+fusion&pg=PA72 |ref=none}}
* {{Cite book|mode=cs2|title=How to write a patent application |author=Jeffrey G. Sheldon |edition=illustrated |publisher=] |year=1992 |isbn=978-0-87224-044-5 |url=https://books.google.com/books?id=aIFyzuKs6q0C&q=patent+cold+fusion&pg=RA1-PT332 |ref=none}}</ref>
}} }}


==References== ==References==
=== Citations ===
{{Reflist|colwidth=35em|refs=
{{Reflist|30em|refs=
<ref name="utah patent">{{harvnb|Shamoo|2003|p=86}}, {{harvnb|Simon|2002|pp=28–36}}</ref>
<ref name="simon patent">{{harvnb|Simon|2002|pp=193,233}}</ref> <ref name="utah patent">{{harvnb|Shamoo|Resnik|2003|p=86}}, {{harvnb|Simon|2002|pp=28–36}}</ref>
{{sfn|ps=|Simon|2002|pp=193, 233}}
<ref name="voss-science">{{harvnb|Voss|1999|ref=CITEREFVoss1999b}}, in reference to US patents , and </ref>
<ref name=Sanderson2007a>{{harvnb|Sanderson|2007}}, in reference to US patent </ref> <ref name="voss-science">{{harvnb|Voss|1999b}}, in reference to US patents {{Patent|US|5,616,219}}, {{Patent|US|5,628,886}} and {{Patent|US|5,672,259}}</ref>
<ref name="Lewenstein_1994_43">{{harvnb|Lewenstein|1994|p=43}}</ref> <ref name=Sanderson2007>{{harvnb|Sanderson|2007}}, in reference to US patent {{Patent|US|6,764,561}}</ref>
{{sfn|ps=|Lewenstein|1994|p=43}}
<ref name=Fox1994a>{{harvnb|Fox|1994}} in reference to Canon's {{patent|EP|568118}}</ref> <ref name=Fox1994a>{{harvnb|Fox|1994}} in reference to Canon's {{patent|EP|568118}}</ref>


<ref name=Broad1989>{{Citation|title='Cold Fusion' Patents Sought|author=Broad, William J.|date=1989-04-13|publisher=New York Times|url=http://www.nytimes.com/1989/04/13/us/cold-fusion-patents-sought.html}}</ref> <ref name=Broad1989>{{cite news |mode=cs2 |title='Cold Fusion' Patents Sought |author=Broad, William J. |author-link=William J. Broad |date=13 April 1989 |newspaper=The New York Times |url=https://www.nytimes.com/1989/04/13/us/cold-fusion-patents-sought.html |url-status=live |archive-url=https://web.archive.org/web/20170129235214/http://www.nytimes.com/1989/04/13/us/cold-fusion-patents-sought.html |archive-date=29 January 2017}}</ref>
<ref name=Broad1989a>{{cite news |mode=cs2 |last=Broad |first=William J. |author-link=William J. Broad |date=14 April 1989 |title=Georgia Tech Team Reports Flaw In Critical Experiment on Fusion |newspaper=The New York Times |url= https://www.nytimes.com/1989/04/14/us/georgia-tech-team-reports-flaw-in-critical-experiment-on-fusion.html |access-date=25 May 2008}}</ref>
<ref name="Weinberger2004">{{Citation|work=]|title=Warming Up to Cold Fusion|first=Sharon|last=Weinberger|date=2004-11-21|page=W22|url=http://www.washingtonpost.com/wp-dyn/articles/A54964-2004Nov16.html}} (page 2 in online version)</ref>
<ref name=Broad1989b>{{cite news |mode=cs2 |last=Broad |first=William J. |author-link=William J. Broad |date=31 October 1989 |title=Despite Scorn, Team in Utah Still Seeks Cold-Fusion Clues |newspaper=The New York Times |page=C1 |url= https://www.nytimes.com/1989/10/31/science/despite-scorn-team-in-utah-still-seeks-cold-fusion-clues.html?pagewanted=all}}</ref>
<ref name="Weinberger2004">{{cite news|mode=cs2|newspaper=]|title=Warming Up to Cold Fusion|first=Sharon|last=Weinberger|date=21 November 2004|page=W22|url=https://www.washingtonpost.com/wp-dyn/articles/A54964-2004Nov16.html|url-status=live|archive-url=https://web.archive.org/web/20161119053757/http://www.washingtonpost.com/wp-dyn/articles/A54964-2004Nov16.html|archive-date=19 November 2016}} (page 2 in online version)</ref>

<ref name="incredible">{{cite web|mode=cs2|title=2107.01 General Principles Governing Utility Rejections (R-5)&nbsp;– 2100 Patentability. II. Wholly inoperative inventions; "incredible" utility |publisher=] |url=http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2107_01.htm |archive-url=https://web.archive.org/web/20120827184025/http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2107_01.htm |archive-date=27 August 2012|url-status=live}} ]</ref>
}}

=== Citations of quotations ===
{{reflist|group=text|35em|refs=
<ref name="only-support">{{harvnb|Taubes|1993|pp=225–226, 229–231}} " Like those of MIT or Harvard or Caltech, and official Stanford University announcement is not something to be taken lightly. (...) With the news out of Stanford, the situation, as one Department of Energy official put it, 'had come to a head'. The department had had its laboratory administrators send emissaries to Washington immediately. (...) the secretary of energy, had made the pursuit of cold fusion the department's highest priority (...) The government laboratories had free {{sic|rei|gn}} to pursue their cold fusion research, Ianniello said, to use whatever resources they needed, and DOE would cover the expenses. (...) While Huggins may have appeared to be the savior of cold fusion, his results also made him, and Stanford, a prime competitor for patents and rights.", {{harvnb|Close|1992|pp=184, 250}} " The only support for Fleischmann and Pons came from Robert Huggins (...) The British Embassy in Washington rushed news of the proceedings to the Cabinet Office and Department of Energy in London. (...) noting that Huggin's heat measurements lent some support but that he had not checked for radiation, and also emphasizing that none of the US government laboratories had yet managed to replicate the effect.", {{harvnb|Huizenga|1993|p=56}} "Of the above speakers (in the US Congress hearings) only Huggins supported the Fleischmann-Pons claim of excess heat."</ref>

<ref name="spiking">{{harvnb|Taubes|1993|pp=418–420}} "While it is not possible for us to categorically exclude spiking as a possibility, it is our opinion, that possibility is much less probable than that of inadvertent contamination or other explained factors in the measurements.", {{harvnb|Huizenga|1993|pp=128–129}}</ref>

<ref name="mixture">{{cite web|mode=cs2|title=Physicist Claims First Real Demonstration of Cold Fusion|date=27 May 2008|website=Physorg.com|url=http://www.physorg.com/news131101595.html|url-status=live |archive-url=https://web.archive.org/web/20120315124847/http://www.physorg.com/news131101595.html|archive-date=15 March 2012}}. The peer reviewed papers referenced at the end of the article are "The Establishment of Solid Nuclear Fusion Reactor"&nbsp;– Journal of High Temperature Society, Vol. 34 (2008), No. 2, pp.85–93 and "Atomic Structure Analysis of Pd Nano-Cluster in Nano-Composite Pd⁄ZrO2 Absorbing Deuterium"&nbsp;– Journal of High Temperature Society, Vol. 33 (2007), No. 3, pp.142–156</ref>

<ref name="fie">{{harvnb|Ackermann|2006}} "(p. 11) Both the Polywater and Cold Nuclear Fusion journal literatures exhibit episodes of epidemic growth and decline."</ref>

<ref name="pathological">{{harvnb|Close|1992|pp=254–255, 329}} " The usual cycle in such cases, he notes, is that interest suddenly erupts (...) The phenomenon then separates the scientists in two camps, believers and skeptics. Interest dies as only a small band of believers is able to 'produce the phenomenon' (...) even in the face of overwhelming evidence to the contrary, the original practitioners may continue to believe in it for the rest of the careers.", {{harvnb|Ball|2001|p=308}}, {{harvnb|Simon|2002|pp=104}}, {{harvnb|Bettencourt|Kaiser|Kaur|2009}}</ref>

<ref name="branching_and_gamma">{{harvnb|US DOE|1989|p=29}}, {{harvnb|Schaffer|1999|pp=1, 2}}, {{harvnb|Scaramuzzi|2000|p=4}}, {{harvnb|Close|1992|pp=265–268}} "(...) the equality of the two channels is known to be preserved from high energy through 20 keV and down to about 5 keV. A reason that it is not as well known below this energy because the individual rates are so low. However, the rate is known at room temperature from muon catalysed fusion experiments. (...) theory can even accommodate the subtle variations in the ratio at these low temperatures ", {{harvnb|Huizenga|1993|pp=6–7, 35–36, 75, 108–109, 112–114, 118–125, 130, 139, 173, 183, 217–218, 243–245}} " have been studied over a range of deuteron kinetic energies down to a few kiloelectron volts (keV). (...) appear to be essentially constant at low energies. There is no reason to think that these branching ratios would be measurably altered for cold fusion. The near equality of has been verified also for muon-catalyzed fusion. ", {{harvnb|Goodstein|1994}} (explaining Pons and Fleischmann would both be dead if they had produced neutrons in proportion to their measurements of excess heat) ("It has been said . . . three 'miracles' are necessary ")</ref>

<ref name="pressure">{{harvnb|Close|1992|pp=257–258}}, {{harvnb|Huizenga|1993|pp=33, 47–48, 79, 99–100, 207, 216}} "By comparing cathode charging of deuterium into palladium with gas charging for a D7Pd ratio of unity, one obtains an equivalent pressure of 1.5x10<sup>4</sup> atmospheres, a value more than 20 orders of magnitude (10<sup>20</sup>) less than the Fleischmann-Pons claimed pressure.", Huizenga also cites {{harvnb|US DOE|2004|pp=33–34}} in chapter ''IV. Materials Characterization: D. 'Relevant' Materials Parameters: 2. Confinement Pressure,'' which has a similar explanation.</ref>

<ref name="consistent">{{harvnb|Huizenga|1993|pp=6–7, 35–36}} " This well established experimental result is consistent with the Bohr model, which predicts that the compound nucleus decays predominantly by particle emission , as opposed to radioactive capture , whenever it is energetically possible."</ref>

<ref name="reger">{{harvnb|Reger|Goode|Ball|2009|pp=814–815}} "After several years and multiple experiments by numerous investigators, most of the scientific community now considers the original claims unsupported by the evidence. Virtually every experiment that tried to replicate their claims failed. Electrochemical cold fusion is widely considered to be discredited."</ref>

<ref name="tandberg_not_known_by_FP">{{harvnb|Taubes|1993|p=214}} says the similarity was discovered on 13 April 1991, by a computer scientist and disseminated via the Internet. Another computer scientist translated an old article in the Swedish technical journal '']''. Taubes says: "''Ny Teknika'' seemed to believe that Tandberg had missed on the discovery of the century, done in by an ignorant patent bureau. When Pons heard the story, he agreed."</ref>


<ref name="tandberg_not_known_by_FP2">Brigham Young University discovered Tandberg's 1927 patent application, and showed it as proof that Utah University didn't have priority for the discovery of cold fusion, cited in {{harvnb|Wilford|1989}}</ref>
<ref name="incredible">{{Citation|title=2107.01 General Principles Governing Utility Rejections (R-5) - 2100 Patentability. II. Wholly inoperative inventions; "incredible" utility|publisher=]|url=http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2107_01.htm}} ]</ref>


<ref name="last_challenged">{{harvnb|Labinger|Weininger|2005|p=1919}} Fleischmann's paper was challenged in {{cite journal|last=Morrison |first=R.O. Douglas |title=Comments on claims of excess enthalpy by Fleischmann and Pons using simple cells made to boil |doi=10.1016/0375-9601(94)91133-9 |journal=Phys. Lett. A |volume=185 |issue=5–6 |date=28 February 1994 |pages=498–502 |bibcode=1994PhLA..185..498M |citeseerx=10.1.1.380.7178 }}</ref>
}} }}


==Bibliography== == Bibliography ==
{{Refbegin}} {{Refbegin|30em}}
* {{cite journal|mode=cs2
* {{Citation
|last=Ackermann|first=Eric | last=Ackermann | first=Eric
|s2cid=29197941
|year=2006|month=February
| date=February 2006
|title=Indicators of failed information epidemics in the scientific journal literature: A publication analysis of Polywater and Cold Nuclear Fusion
| title=Indicators of failed information epidemics in the scientific journal literature: A publication analysis of Polywater and Cold Nuclear Fusion
|journal=Scientometrics
| journal=Scientometrics
|volume=66|issue=3
| volume=66 | issue=3
|pages=451–466
| pages=451–466
|doi=10.1007/s11192-006-0033-0 }}
| doi=10.1007/s11192-006-0033-0
* {{Citation
|last=Adam|first=David
|editor-last=Rusbringer|editor-first=Alan
|title=In from the cold
|newspaper=The Guardian
|date=24 March 2005
|url=http://www.guardian.co.uk/education/2005/mar/24/research.highereducation2
|accessdate=2008-05-25
|issn=
|doi=
| location=London}}
* {{Citation |ref=CITEREFAlfred2009
|last=Alfred|first=Randy
|title=March 23, 1989: Cold Fusion Gets Cold Shoulder
|work=]
|date=2009-03-23
|url=http://www.wired.com/science/discoveries/news/2009/03/dayintech_0323 }}
* {{Citation
|last=Anderson|first=Mark
|title=Cold-Fusion Graybeards Keep the Research Coming
|periodical=Wired Magazine
|year=2007
|month=August
|url=http://www.wired.com/science/discoveries/news/2007/08/cold_fusion
|accessdate=2008-05-25
|issn=
|doi=}}
* {{Citation
|last=Arata|first=Yoshiaki|authorlink=Yoshiaki Arata
|last2=Zhang|first2=Yue-Chang
|title=Anomalous difference between reaction energies generated within D<sub>2</sub>0-cell and H<sub>2</sub>0 Cell
|journal=Japanese Journal of Applied Physics
|volume=37
|issue=11A
|year=1998
|pages=L1274–L1276
|doi=10.1143/JJAP.37.L1274|bibcode = 1998JaJAP..37L1274A }}
* {{Citation
|last=Ball|first=Phillip
|ref=CITEREFBall2001
|title=Life's matrix: a biography of water
|edition=illustrated, reprinted
|publisher=University of California Press
|year=2001
|isbn=9780520230088 }}
* {{Citation
|last=Barras|first=Collin
| ref=CITEREFBarras2009
| title=Neutron tracks revive hopes for cold fusion
| date=2009-03-23
| periodical=]
| url=http://www.newscientist.com/article/dn16820-neutron-tracks-revive-hopes-for-cold-fusion.html }}
* {{Citation
|last=Beaudette|first=Charles G.
|title=Excess Heat & Why Cold Fusion Research Prevailed
|year=2002
|location=South Bristol, Maine
|publisher=Oak Grove Press
|isbn=9-9678548-2-2}}
* {{Citation
|last=Berger|first=Eric
|ref=CITEREFBerger2009
|title=Navy scientist announces possible cold fusion reactions
|periodical=]
|date=2009-03-23
|url=http://www.chron.com/disp/story.mpl/front/6333164.html}}
* {{Citation |ref=CITEREFBettencourt2009
|last=Bettencourt |first=Luís M.A.
|coauthors=David I. Kaiserc and Jasleen Kaur
|year=2009 |month=July
|title=Scientific discovery and topological transitions in collaboration networks
|journal=]
|volume=3 |issue=3
|pages=210–221
|doi=10.1016/j.joi.2009.03.001 }}
* {{Citation |last=Biberian|first=Jean-Paul
|title=Condensed Matter Nuclear Science (Cold Fusion): An Update
|journal=International Journal of Nuclear Energy Science and Technology
|volume=3
|issue=1
|year=2007
|pages=31–42
|doi=10.1504/IJNEST.2007.012439
|url=http://www.jeanpaulbiberian.net/Download/Paper%2056.pdf
|format=PDF}}
* {{Citation
|last=Bird|first=Alexander
|title=Philosophy of Science: Alexander Bird
|edition=illustrated, reprint
|editor=]
|year=1998
|isbn=1857285042
|url=http://books.google.com/?id=czUjWnpAnUQC&pg=PA261
|publisher=UCL Press
|location=London}}
* {{Citation |last=Bockris|first=John|authorlink=John Bockris
|title=Accountability and academic freedom: The battle concerning research on cold fusion at Texas A&M University
|journal=Accountability Res.
|volume=8
|year=2000
|page=103
|doi=10.1080/08989620008573968}}
* {{Citation
|last=Bowen|first=Jerry
|title=Science: Nuclear Fusion
|periodical=CBS Evening News
|date=April 10, 1989
|url=http://tvnews.vanderbilt.edu/program.pl?ID=326384
|accessdate=2008-05-25}}
*{{Citation
|last=Broad|first=William J.
|title=Georgia Tech Team Reports Flaw In Critical Experiment on Fusion
|newspaper=New York Times
|date=April 14, 1989
|year=1989a
|url=http://query.nytimes.com/gst/fullpage.html?res=950DE7DE1130F937A25757C0A96F948260
|accessdate=2008-05-25}}
*{{Citation
|last=Broad|first=William J.
|date=October 31, 1989
|year=1989b
|title=Despite Scorn, Team in Utah Still Seeks Cold-Fusion Clues
|url=http://query.nytimes.com/gst/fullpage.html?res=950DE6DA1331F932A05753C1A96F948260&pagewanted=all
|work=]
|pages=C1
}} }}
* {{Citation * {{cite news
|mode = cs2
|last=Brooks|first=Michael
|last = Adam
|authorlink=Michael Brooks (science writer)
|first = David
|title=]
|editor-last = Rusbringer
|year=2008
|editor-first = Alan
|location=New York
|title = In from the cold
|publisher=Doubleday
|newspaper = The Guardian
|isbn=978-0-385-52068-3}}
|date = 24 March 2005
* {{Citation
|url = https://www.theguardian.com/education/2005/mar/24/research.highereducation2
|last=Britz|first=Dieter
|access-date = 25 May 2008
|title=Book review: The Science of Low Energy Nuclear Reaction
|location = London
|journal=Journal of Scientific Exploration
|url=http://www.scientificexploration.org/journal/reviews/reviews_21_4_britz.pdf
|year=2008
|volume=21
|issue=4
|page=801
|issn=0892-3310
|doi=}}
* {{Citation
|last=Browne|first=M.
|title=Physicists Debunk Claim Of a New Kind of Fusion
|newspaper=New York Times
|date=May 3, 1989
|url=http://partners.nytimes.com/library/national/science/050399sci-cold-fusion.html
|accessdate=2008-05-25}}<!--also http://query.nytimes.com/gst/fullpage.html?res=950DE2D71539F930A35756C0A96F948260&pagewanted=all -->
* {{Citation |ref=CITEREFBrumfiel2004
|last=Brumfiel|first=Geoff
|title=US review rekindles cold fusion debate. Energy panel split over whether experiments produced power
|work=Nature news
|date=2 December 2004
|url=http://www.nature.com/news/2004/041129/full/news041129-11.html
|doi=10.1038/news041129-11 |journal=News@nature
}} }}
* {{cite magazine
* {{Citation |ref=CITEREFBushEtAl1991
|mode = cs2
|last=Bush|first=Ben F.
|last = Alfred
|last2=Lagowski |first2=J.J.
|first = Randy
|authorlink2=J J Lagowski
|title = March 23, 1989: Cold Fusion Gets Cold Shoulder
|last3=Miles|first3=M.H.
|magazine= ]
|last4=Ostrom|first4=Greg S.
|date = 23 March 2009
|year=1991
|url = https://www.wired.com/science/discoveries/news/2009/03/dayintech_0323
|title=Helium Production During the Electrolysis of D<sub>2</sub>O in Cold Fusion
|journal=]
|volume=304
|pages=271–278
|doi=10.1016/0022-0728(91)85510-V}}
* {{Citation
|last=Cartwright|first=Jon
|title=Cold fusion: The Ghost of Free Energy
|date=2009-03-23
|url=http://www.groundreport.com/Arts_and_Culture/The-ghost-of-free-energy
|accessdate=2009-03-24
|publisher=]
|doi=}}
* {{Citation
|last=Charles|first=Dan
|title=Fatal explosion closes cold fusion laboratory
|journal=New Scientist
|year=1992
|url=http://www.newscientist.com/article/mg13318030.600-fatal-explosion-closes-cold-fusion-laboratory-.html
|accessdate=2008-08-29
|issn=0262-4079
|doi=}}
* {{Citation
|last=Choi|first=Charles
|title=Back to Square One
|periodical=Scientific American
|year=2005
|url=http://www.scientificamerican.com/article.cfm?id=back-to-square-one
|accessdate=2008-11-25
|doi=}}
* {{Citation
|last=Chubb|first=Scott et al.
|ref=CITEREFAPS2006
|title=Session W41: Cold Fusion
|publisher=American Physical Society
|year=2006
|url=http://meetings.aps.org/Meeting/MAR06/SessionIndex2/?SessionEventID=45597
|accessdate = 2008-05-25
|doi=}}
* {{Citation
|last=Close|first=Frank E.
|authorlink=Frank Close
|title=Too Hot to Handle: The Race for Cold Fusion
|edition=2
|location=London
|publisher=Penguin
|year=1992
|isbn=0-14-015926-6}}
* {{Citation|ref=CITEREFCollins1993
|last=Collins|first=Harry
|authorlink=Harry Collins
|last2=Pinch|first2=Trevor
|authorlink2=Trevor Pinch
|title= The Golem: What Everyone Should Know About Science
|edition=second edition 1998, reprinted 2005
|publisher=Cambridge University Press
|year=1993
|isbn=0521645506}}
* {{Citation
|last=Crease|first=Robert
|last2=Samios|first2=N.P.
|title=Cold Fusion confusion
|periodical=New York Times Magazine
|pages=34–38
|year=1989
|issue=September 24, 1989|doi=}}
* {{Citation|ref=CITEREFCzerski2008
|last=Czerski|first=K., et. al.
|title=Measurements of enhanced electron screening in d+d reactions under UHV conditions,
|periodical=J. Phys. G: Nucl. Part. Phys.
|year=2008
|issue=35
|doi=10.1088/0954-3899/35/1/014012
|last2=Huke|first2=A
|last3=Martin|first3=L
|last4=Targosz|first4=N
|last5=Blauth|first5=D
|last6=Górska|first6=A
|last7=Heide|first7=P
|last8=Winter|first8=H
|volume=35
|page=014012
|bibcode = 2008JPhG...35a4012C}}
* {{Citation
|title=What Science Is and How It Works
|last=Derry
|first=Gregory Neil
|edition=reprint, illustrated
|publisher=]
|place=Princeton, New Jersey; Oxford
|year=2002
|isbn=9780691095509
|oclc=40693869
|url=http://books.google.com/?id=H7gjz-b7S9IC&pg=PA179}}
* {{Citation
|last=Feder|first=Toni
|title=DOE Warms to Cold Fusion
|journal=Physics Today
|year=2004
|volume=57
|issue=4
|pages=27–28
|url=http://scitation.aip.org/journals/doc/PHTOAD-ft/vol_57/iss_4/27_1.shtml
|doi=10.1063/1.1752414|bibcode = 2004PhT....57d..27F }}
* {{Citation
|last=Feder|first=Toni
|title=Cold Fusion Gets Chilly Encore
|journal=Physics Today
|year=2005
|month=January
|url=http://scitation.aip.org/journals/doc/PHTOAD-ft/vol_58/iss_1/31_1.shtml
|doi=10.1063/1.1881896
|volume=58
|page=31|bibcode = 2005PhT....58a..31F }}
* {{Citation
|last=Fleischmann|first=Martin
|authorlink=Martin Fleischmann
|last2=Pons|first2=Stanley
|title=Electrochemically induced nuclear fusion of deuterium
|journal=Journal of Electroanalytical Chemistry
|volume=261
|issue=2A
|pages=301–308
|year=1989
|doi=10.1016/0022-0728(89)80006-3}}
* {{Citation
|ref=CITEREFFleischmann1990
|last=Fleischmann|first=Martin
|last2=Pons|first2=Stanley
|last3=Anderson|first3=Mark W.
|last4=Li|first4=Lian Jun
|last5=Hawkins|first5=Marvin
|title=Calorimetry of the palladium-deuterium-heavy water system
|journal=Journal of Electroanalytical Chemistry
|volume=287
|year=1990
|pages=293–348
|doi=10.1016/0022-0728(90)80009-U
|issue=2}}
* {{Citation
|ref=CITEREFFleischmann1992
|last=Fleischmann|first=Martin
|last2=Pons|first2=Stanley
|title=Some Comments on The Paper 'Analysis of Experiments on The Calorimetry of LiOD-D<sub>2</sub>O Electrochemical Cells,' R.H. Wilson et al., Journal of Electroanalytical Chemistry, Vol. 332, (1992)
|journal=Journal of Electroanalytical Chemistry
|volume=332
|year=1992
|page=33
|doi=10.1016/0022-0728(92)80339-6}}
* {{Citation |ref=CITEREFFleischmann1993
|last=Fleischmann|first=Martin
|year=1993
|title=Calorimetry of the Pd-D2O system: from simplicity via complications to simplicity
|journal=Physics Letters A
|volume=176
|issue=1–2
|pages=118–129
|doi=10.1016/0375-9601(93)90327-V
|last2=Pons
|first2=S.|bibcode = 1993PhLA..176..118F }}
* {{Citation
|last=Fleischmann|first=Martin
|year=2003
|chapter=Background to cold fusion: the genesis of a concept
|title=Tenth International Conference on Cold Fusion
|location=Cambridge, Massachusetts
|publisher=World Scientific Publishing
|isbn=978-9812565648}}
* {{Citation
|last=Fox|first=Barry
|title=Patents: Cold fusion rides again
|url=http://www.newscientist.com/article/mg14219314.000-patents-cold-fusion-rides-again.html
|journal=New Scientist
|date=June 25, 1994
|issue=1931
|issn=0262-4079}}
* {{Citation
|ref=CITEREFGai1989
|last=Gai|first=M.
|last2=Rugari|first2=S.L.
|last3=France|first3=R.H.
|last4=Lund|first4=B.J.
|last5=Zhao|first5=Z.
|last6=Davenport|first6=A.J.
|last7=Isaacs|first7=H.S.
|last8=Lynn|first8=K.G.
|title=Upper limits on neutron and big gamma-ray emission from cold fusion
|journal=Nature
|volume=340
|pages=29–34
|year=1989
|doi=10.1038/340029a0|bibcode = 1989Natur.340...29G |issue=6228}}
* {{Citation
|last=Goodstein|first=David
|title=Whatever happened to cold fusion?
|journal=American Scholar
|publisher=Phi Beta Kappa Society
|volume=63
|issue=4
|year=1994
|pages=527–541
|url=http://www.its.caltech.edu/~dg/fusion_art.html
|accessdate = 2008-05-25
|issn=0003-0937
|doi=}}
* {{Citation
|last=Gozzi|first=D.
|last2=Cellucci|first2=F.
|last3=Cignini|first3=P.L.
|last4=Gigli|first4=G.
|last5=Tomellini|first5=M.
|ref=CITEREFGozziEtAl1998
|title=X-ray, heat excess and <sup>4</sup>He in the D:Pd system
|publisher=Elsevier
|date=30 September 1997
|journal=Journal of Electroanalytical Chemistry
|volume=435
|issue=1–2
|pages=113–136
|doi=10.1016/S0022-0728(97)00297-0
|last6=Cisbani
|first6=E.
|last7=Frullani
|first7=S.
|last8=Urciuoli
|first8=G.M.}}
* {{Citation
|last=Hagelstein|first=Peter L.
|authorlink=Peter L. Hagelstein
|last2=Michael|first2=McKubre
|last3=Nagel|first3=David
|last4=Chubb|first4=Talbot
|last5=Hekman|first5=Randall
|ref=CITEREFDOE2004
|title=New Physical Effects in Metal Deuterides
|location=Washington
|publisher=US Department of Energy
|year=2004
|url=http://web.archive.org/web/20070106185101/www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/Appendix_1.pdf
|format=PDF}} (manuscript)
* {{Citation
|doi=10.1007/s00114-009-0644-4
|citeref=CITEREFHagelstein2010
|last=Hagelstein|first=Peter L.
|title=Constraints on energetic particles in the Fleischmann–Pons experiment
|year=2010
|journal=Naturwissenschaften
|publisher=Springer
|volume=97
|issue=4 |pages=345–52
|url=http://newenergytimes.com/v2/library/2010/2010HagelsteinP-ConstraintsOnECP.pdf
|format=PDF
|pmid=20143040 |bibcode = 2010NW.....97..345H }}
* {{Citation |ref=CITEREFHoffman1994
|last=Hoffman|first=Nate
|title=A Dialogue on Chemically Induced Nuclear Effects: A Guide for the Perplexed About Cold Fusion
|location=La Grange Park, Illinois
|publisher=American Nuclear Society
|year=1995
|isbn=0-89448-558-X }}
* {{Citation
|last=Hubler|first=G.K.
|title=Anomalous Effects in Hydrogen-Charged Palladium - A Review
|journal=Surface and Coatings Technology
|volume=201
|issue=19–20
|date=5 August 2007
|pages=8568–8573
|doi=10.1016/j.surfcoat.2006.03.062}}<nowiki>from SMMIB 2005, 14th International Conference on Surface Modification of Materials by Ion Beams</nowiki>
* {{Citation
|last=Huizenga|first=John R.
|title=Cold Fusion: The Scientific Fiasco of the Century
|edition=2
|location=Oxford and New York
|publisher=Oxford University Press
|year=1993
|isbn=0-19-855817-1}}
* {{Citation
|last=Huke |first=A.
|coauthors=Czerski K.; Dorsch T.; Biller A.; Heide P.; Ruprecht G.
|title=Evidence for a host-material dependence of the n/p branching ratio of low-energy d+d reactions within metallic environments
|journal=The European Physical Journal A
|year=2006
|volume=27
|doi=10.1140/epja/i2006-08-028-3|bibcode = 2006EPJA...27S.187H }}
* {{Citation
|last=Hutchinson|first=Alex
|title=The Year in Science: Physics
|periodical=Discover Magazine (online)
|date=January 8, 2006
|url=http://discovermagazine.com/2006/jan/physics
|accessdate=2008-06-20
|issn=0274-7529
}} }}
* {{Citation * {{Cite book
|mode = cs2
|last=Iwamura|first=Yasuhiro
|last = Ball
|first2=Mitsuru|last2=Sakano
|first = Phillip
|first3=Takehiko|last3=Itoh
|title = Life's matrix: a biography of water
|title=Elemental Analysis of Pd Complexes: Effects of D<sub>2</sub> Gas Permeation
|edition = illustrated, reprinted
|journal=Japanese Journal of Applied Physics
|publisher = University of California Press
|year=2002
|year = 2001
|volume=41
|isbn = 978-0-520-23008-8
|issue=7A
|url-access = registration
|pages=4642–4650
|url = https://archive.org/details/lifesmatrixbiogr0000ball
|doi=10.1143/JJAP.41.4642|bibcode = 2002JaJAP..41.4642I }}
}}
* {{Citation
* {{cite magazine
|last=Jayaraman|first=K.S.
|mode = cs2
|title=Cold fusion hot again
|last = Barras
|journal=Nature India
|first = Collin
|date=January 17, 2008
|title = Neutron tracks revive hopes for cold fusion
|doi=10.1038/nindia.2008.77
|date = 23 March 2009
|url=http://www.nature.com/nindia/2008/080117/full/nindia.2008.77.html
|magazine = ]
|accessdate=2008-12-07
|url = https://www.newscientist.com/article/dn16820-neutron-tracks-revive-hopes-for-cold-fusion.html
}}
* {{Cite book|mode=cs2
| last=Beaudette | first=Charles G.
| title=Excess Heat & Why Cold Fusion Research Prevailed
| year=2002
| location=South Bristol, Maine
| publisher=Oak Grove Press
| isbn=978-0-9678548-3-0
}}
* {{cite news
|mode = cs2
|last = Berger
|first = Eric
|title = Navy scientist announces possible cold fusion reactions
|newspaper = ]
|date = 23 March 2009
|url = http://www.chron.com/disp/story.mpl/front/6333164.html
}}
* {{cite journal
|mode = cs2
|last1 = Bettencourt
|first1 = Luís M.A.
|last2 = Kaiser
|first2 = David I.
|last3 = Kaur
|first3 = Jasleen
|date = July 2009
|title = Scientific discovery and topological transitions in collaboration networks
|journal = ]
|volume = 3
|issue = 3
|pages = 210–221
|doi = 10.1016/j.joi.2009.03.001
|postscript = ,
|hdl = 1721.1/50230
|url = http://web.mit.edu/dikaiser/www/BKK.Topological.pdf
|citeseerx = 10.1.1.570.8621
|s2cid = 1914074
}} .
* {{cite journal
| mode=cs2
| last=Biberian
| first=Jean-Paul
| title=Condensed Matter Nuclear Science (Cold Fusion): An Update
| journal=International Journal of Nuclear Energy Science and Technology
| volume=3
| issue=1
| year=2007
| pages=31–42
| doi=10.1504/IJNEST.2007.012439
| url=http://www.jeanpaulbiberian.net/Download/Paper%2056.pdf
| citeseerx=10.1.1.618.6441
|archive-url= https://web.archive.org/web/20080530160253/http://www.jeanpaulbiberian.net/Download/Paper%2056.pdf |archive-date=30 May 2008 |url-status=live
}}
* {{Cite book
|mode = cs2
|last = Bird
|first = Alexander
|title = Philosophy of Science: Alexander Bird
|edition = illustrated, reprint
|editor = ]
|year = 1998
|isbn = 978-1-85728-504-8
|url = https://books.google.com/books?id=czUjWnpAnUQC&pg=PA261
|publisher = UCL Press
|location = London
}}
* {{cite news
|mode = cs2
|last = Bowen
|first = Jerry
|title = Science: Nuclear Fusion
|work = CBS Evening News
|date = 10 April 1989
|url = http://tvnews.vanderbilt.edu/program.pl?ID=326384
|access-date = 25 May 2008
}}
* {{cite news
|mode = cs2
|last = Browne
|first = M.
|title = Physicists Debunk Claim Of a New Kind of Fusion
|newspaper =The New York Times
|date = 3 May 1989
|url = http://partners.nytimes.com/library/national/science/050399sci-cold-fusion.html
|access-date = 25 May 2008
}}
* {{cite journal
|mode = cs2
|last = Brumfiel
|first = Geoff
|title = US review rekindles cold fusion debate. Energy panel split over whether experiments produced power
|date = 2 December 2004
|journal = Nature News
|url = http://www.nature.com/news/2004/041129/full/news041129-11.html
|doi = 10.1038/news041129-11
|doi-access= free
}} }}
* {{cite magazine
* {{Citation |ref=CITEREFJones1995
| mode=cs2
|last=Jones|first=J.E.
| last=Choi
|last2=Hansen|first2=L.D.
| first=Charles
|last3=Jones|first3=S.E.
| title=Back to Square One
|last4=Shelton|first4=D.S.
| magazine=Scientific American
|last5=Thorne|first5=J.M.
| year=2005
|title=Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in `cold fusion` cells
| url=http://www.scientificamerican.com/article.cfm?id=back-to-square-one
|journal=Journal of Physical Chemistry
| access-date=25 November 2008
|year=1995
}}
|volume=99
* {{cite conference
|issue=18
|mode = cs2
|pages=6973–6979
|last1 = Chubb
|doi=10.1021/j100018a033}}
|first1 = Scott
* {{Citation
|last2 = McKubre
|last=Joyce|first=Christopher
|first2 = Michael C. H.
|title=Gunfight at the cold fusion corral
|last3 = Krivit
|periodical=New Scientist
|first3 = Steve B.
|issue=1721
|last4 = Chubb
|date=16 June 1990
|first4 = Talbot
|page=22
|last5 = Miley
|url=http://www.newscientist.com/article/mg12617210.700-gunfight-at-the-cold-fusion-corral-.html
|first5 = George H.
|accessdate=2009-10-01
|last6 = Swartz
|issn=0262-4079}}
|first6 = Mitchell
* {{Citation
|last7 = Violante
|last=Kean|first=Sam
|first7 = V.
|title=Palladium: The Cold Fusion Fanatics Can't Get Enough of the Stuff
|last8 = Stringham
|periodical=Slate
|first8 = Roger
|date=26 July 2010
|last9 = Fleischmann
|url=http://www.slate.com/id/2258112/entry/2258878/
|first9 = Martin
|accessdate=2011-07-31}}
|last10 = Li
* {{Citation
|first10 = Zing Z.
|last=Kozima|first=Hideo
|last11 = Biberian
|title=The Science of the Cold Fusion phenomenon
|first11 = J.P.
|publisher=Elsevier Science
|last12 = Collis
|location=New York
|first12 = William
|year=2006
|title = Session W41: Cold Fusion
|isbn=0-08-045110-1}}
|publisher = American Physical Society
* {{Citation
|year = 2006
|last=Krivit|first=Steven B.
|url = http://meetings.aps.org/Meeting/MAR06/SessionIndex2/?SessionEventID=45597
|title=Low Energy Nuclear Reaction Research – Global Scenario
|access-date = 25 May 2008
|journal=Current Science
}}
|date=10 April 2008
* {{Cite book|mode=cs2
|volume=94
| last=Close | first=Frank E.
|issue=7
| author-link=Frank Close
|pages=854–857
| title=Too Hot to Handle: The Race for Cold Fusion
|url=http://www.ias.ac.in/currsci/apr102008/854.pdf
| edition=2
|format=PDF
| location=London
|accessdate = 2008-07-19
| publisher=Penguin
|issn=
| year=1992
|doi= }}
| isbn=978-0-14-015926-4
* {{Citation
}}
|last=Krivit|first=Steven B.
* {{Cite book
|year=2008
|mode = cs2
|ref=CITEREFKrivit2008b
|last1 = Collins
|chapter=Low Energy Nuclear Reactions: The Emergence of Condensed Matter Nuclear Science
|first1 = Harry
|editor=Marwan, Jan and Krivit, Steven B., editors
|author-link = Harry Collins
|title=Low energy nuclear reactions sourcebook
|last2 = Pinch
|publisher=]/]
|first2 = Trevor
|isbn=978-0-8412-6966-8}}
|author-link2 = Trevor Pinch
* {{Citation
|title = The Golem: What Everyone Should Know About Science
|last=Kruglinksi|first=Susan
|edition = 1st
|title=Whatever Happened To... Cold Fusion?
|publisher = Cambridge University Press
|periodical=Discover Magazine
|year = 1993
|date=2006-03-03
|url =https://archive.org/details/golemwhateveryon00harr
|url=http://discovermagazine.com/2006/mar/cold-fusion
|url-access=registration
|accessdate = 2008-06-20
|isbn=0521477360
|issn=0274-7529}}
}}
* {{Citation
* {{cite magazine|mode=cs2
|last=Kowalski|first=Ludwik
| last1=Crease | first1=Robert
|title=Jones’s manuscript on History of Cold Fusion at BYU
| last2=Samios | first2=N.P.
|location=Upper Montclair, New Jersey
| title=Cold Fusion confusion
|publisher=csam.montclair.edu
| periodical=The New York Times Magazine
|year=2004
| pages=34–38
|url=http://pages.csam.montclair.edu/~kowalski/cf/131history.html
| year=1989
|accessdate = 2008-05-25}}
| issue=24 September 1989
* {{Citation | ref=CITEREFLewenstein1992 |title = Cold Fusion and Hot History | journal = Osiris | year = 1992 | first = Bruce V. | last = Lewenstein | volume = 7 | pages = 135–163 | jstor = 301770 | doi=10.1086/368708 }}
}}
* {{Citation
* {{cite news
|last=Lewenstein|first=Bruce V.
|mode = cs2
|title=Cornell cold fusion archive
|last = Daley
|location=collection n°4451, Division of Rare and Manuscript Collections, Cornell University Library
|first = Beth
|year=1994
|title = Heating up a cold theory. MIT professor risks career to reenergize discredited idea
|url=http://rmc.library.cornell.edu/EAD/pdf_guides/RMM04451.pdf
|newspaper= The Boston Globe
|format=PDF
|date = 27 July 2004
|accessdate=2008-05-25}}
|url = https://www.boston.com/news/globe/health_science/articles/2004/07/27/heating_up_a_cold_theory/
* {{Citation |ref=CITEREFLewis1989
}}
|last=Lewis|first=N.S.
* {{Cite book
|last2=Barnes|first2=C.A.
| mode=cs2
|last3=Heben|first3=M.J.
| title=What Science Is and How It Works
|last4=Kumar|first4=A.
| last=Derry
|last5=Lunt|first5=S.R.
| first=Gregory Neil
|last6=McManis|first6=G.E.
| edition=reprint, illustrated
|last7=Miskelly|first7=S.R.
| publisher=]
|last8=Penner|first8=G.M.
| place=Princeton, New Jersey; Oxford
|last9=Sailor|first9=M.J.
| year=2002
|title=Searches for low-temperature nuclear fusion of deuterium in palladium
| isbn=978-0-691-09550-9
|journal=Nature
| oclc=40693869
|year=1989
| url=https://books.google.com/books?id=H7gjz-b7S9IC&pg=PA179
|volume=340
}}
|pages=525–530
* {{cite journal
|doi=10.1038/340525a0|bibcode = 1989Natur.340..525L |issue=6234}}
|mode = cs2
* {{Citation
|last=Mallove|first=Eugene |last = Feder
|first = Toni
|authorlink=Eugene Mallove
|title=Fire from Ice: Searching for the Truth Behind the Cold Fusion Furor |title = DOE Warms to Cold Fusion
|journal = Physics Today
|location=London
|year = 2004
|publisher=Wiley
|volume = 57
|year=1991
|issue = 4
|isbn=0-471-53139-1}}
|pages = 27–28
* {{Citation |ref=CITEREFMengoli1998
|url = http://scitation.aip.org/journals/doc/PHTOAD-ft/vol_57/iss_4/27_1.shtml
|last=Mengoli|first=G.
|doi = 10.1063/1.1752414
|year=1998
|bibcode = 2004PhT....57d..27F
|title=Calorimetry close to the boiling temperature of the D<sub>2</sub>O/Pd electrolytic system
}}
|journal=Journal of Electroanalytical Chemistry
* {{cite journal
|volume=444
|mode = cs2
|pages=155–167
|last = Feder
|doi=10.1016/S0022-0728(97)00634-7
|first = Toni
|last2=Bernardini
|title = Cold Fusion Gets Chilly Encore
|first2=M.
|journal = Physics Today
|last3=Manduchi
|date = January 2005
|first3=C.
|url = http://scitation.aip.org/journals/doc/PHTOAD-ft/vol_58/iss_1/31_1.shtml
|last4=Zannoni
|doi = 10.1063/1.1881896
|first4=G. |issue=2 }}
|volume = 58
* {{Citation
|issue = 1
|last=McKubre|first=M.C.H
|page = 31
|authorlink = Michael McKubre
|bibcode = 2005PhT....58a..31F
|title=Isothermal Flow Calorimetric Investigations of the D/Pd and H/Pd Systems
|doi-access= free
|journal=Journal of Electroanalytical Chemistry
}}
|year=1994
* {{cite journal|mode=cs2
|volume=368
| last1=Fleischmann | first1=Martin
|page=55
| last2=Pons | first2=Stanley
|issn=
| title=Electrochemically induced nuclear fusion of deuterium
|doi=10.1016/0022-0728(93)03070-6
| journal=Journal of Electroanalytical Chemistry
|last2=Crouch-baker
| volume=261
|first2=S.
| issue=2A
|last3=Rocha-filho
| pages=301–308
|first3=R.C.
| year=1989
|last4=Smedley
| doi=10.1016/0022-0728(89)80006-3
|first4=S.I.
}}
|last5=Tanzella
* {{cite journal |mode=cs2
|first5=F.L.
| last1=Fleischmann | first1=Martin
|last6=Passell
| last2=Pons | first2=Stanley
|first6=T.O.
| last3=Anderson | first3=Mark W.
|last7=Santucci
| last4=Li | first4=Lian Jun
|first7=J.}}
| last5=Hawkins | first5=Marvin
* {{Citation
| title=Calorimetry of the palladium-deuterium-heavy water system
|last=Miles|first=Melvin H.
| journal=Journal of Electroanalytical Chemistry
|last2=Hollins|first2=R.A.
| volume=287
|last3=Bush|first3=Ben F.
| year=1990
|last4=Logowski|first4=J.J.
| pages=293–348
|last5=Miles|first5=R.E.
| doi=10.1016/0022-0728(90)80009-U
|ref=CITEREFMilesEtAl1993
| issue=2
|title=Correlation of excess power and helium production during D<sub>2</sub>O and H<sub>2</sub>0 electrolysis using Palladium cathodes
}}
|journal=Journal of Electroanalytical Chemistry
* {{cite journal|mode=cs2
|year=1993
| last1=Fleischmann | first1=Martin
|volume=346
| last2=Pons | first2=S.
|issue=1–2
| year=1993
|pages=99–117
| title=Calorimetry of the Pd-D2O system: from simplicity via complications to simplicity
|issn=
| journal=Physics Letters A
|doi=10.1016/0022-0728(93)85006-3}}
| volume=176
* {{Citation
| issue=1–2
|last=Mullins|first=Justin
| pages=118–129
|title=Cold Fusion Back From the Dead
| doi=10.1016/0375-9601(93)90327-V
|journal=IEEE Spectrum
| bibcode = 1993PhLA..176..118F
|volume=41
}}
|page=22
* {{cite journal
|year=2004
|mode = cs2
|month=September
|last = Fox
|doi=10.1109/MSPEC.2004.1330805
|first = Barry
|issue=9
|title = Patents: Cold fusion rides again
|url=http://spectrum.ieee.org/energy/nuclear/cold-fusion-back-from-the-dead }}
|url = https://www.newscientist.com/article/mg14219314.000-patents-cold-fusion-rides-again.html
* {{Citation
|journal = New Scientist
|last=Mosier-Boss|first=Pamela A.
|date = 25 June 1994
|last2=Szpak|first2=Stanislaw
|issue = 1931
|last3=Gordon|first3=Frank E.
|issn = 0262-4079
|last4=Forsley|first4=L.P.G.
}}
|title=Triple tracks in CR-39 as the result of Pd–D Co-deposition: evidence of energetic neutrons
* {{cite journal
|journal=Naturwissenschaften
|mode = cs2
|year=2009
|last1 = Gai
|volume=96
|issue=1 |first1 = M.
|last2 = Rugari
|pages=135–142
|first2 = S.L.
|doi=10.1007/s00114-008-0449-x
|last3 = France
|pmid=18828003|bibcode = 2009NW.....96..135M }}
|first3 = R.H.
* {{Citation
|last4 = Lund
|ref=CITEREFLabinger2005
|first4 = B.J.
|title= Controversy in chemistry: how do you prove a negative?—the cases of phlogiston and cold fusion
|last5 = Zhao
|first=JA|last=Labinger
|first5 = Z.
|first2=SJ|last2=Weininger
|last6 = Davenport
|journal= Angew Chem Int Ed Engl
|first6 = A.J.
|year=2005
|last7 = Isaacs
|volume=44 |issue=13 |pages=1916–22
|first7 = H.S.
|doi=10.1002/anie.200462084
|last8 = Lynn
|pmid= 15770617
|first8 = K.G.
|quote= So there matters stand: no cold fusion researcher has been able to dispel the stigma of 'pathological science' by rigorously and reproducibly demonstrating effects sufficiently large to exclude the possibility of error (for example, by constructing a working power generator), nor does it seem possible to conclude unequivocally that all the apparently anomalous behavior can be attributed to error. }}
|s2cid = 4331780
* {{Citation
|title = Upper limits on neutron and big gamma-ray emission from cold fusion
|last=Laurence|first=William L.
|journal = Nature
|ref=CITEREFLaurence1956
|volume = 340
|newspaper=]
|pages = 29–34
|title=Cold Fusion of Hydrogen Atoms; A Fourth Method Pulling Together
|year = 1989
|date=1956-12-30
|doi = 10.1038/340029a0
|pages=E7
|bibcode = 1989Natur.340...29G
|url=http://select.nytimes.com/gst/abstract.html?res=F10911F63B5B15738FDDA90B94DA415B8689F1D3&scp=11&sq=%22Cold%20Fusion&st=cse
|issue = 6228
|url = https://zenodo.org/record/1233083
}}
* {{cite journal
|mode = cs2
|last = Goodstein
|first = David
|title = Whatever happened to cold fusion?
|journal = American Scholar
|volume = 63
|issue = 4
|year = 1994
|pages = 527–541
|url = http://www.its.caltech.edu/~dg/fusion_art.html
|access-date = 25 May 2008
|issn = 0003-0937
|archive-url = https://web.archive.org/web/20080516200325/http://www.its.caltech.edu/%7Edg/fusion_art.html
|archive-date = 16 May 2008
|url-status = dead
}}
* {{Cite book |mode=cs2 |title=On Fact and Fraud:Cautionary Tales from the Front Lines of Science |last=Goodstein |first=David L. |author-link=David Goodstein |year=2010 |publisher=Princeton University Press |location=Princeton |isbn=978-0691139661}}
* {{Cite book|mode=cs2 |last1=Hagelstein |first1=Peter L. |author-link=Peter L. Hagelstein |last2=McKubre |first2=Michael |last3=Nagel |first3=David |last4=Chubb |first4=Talbot |last5=Hekman |first5=Randall |chapter=New Physical Effects in Metal Deuterides |title=Condensed Matter Nuclear Science. Proceedings of the 11th International Conference on Cold Fusion. Held 31 October–5 November 2004 in Marseilles |journal=11th Condensed Matter Nuclear Science |volume=11 |pages=23 |year=2004 |chapter-url=http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/Appendix_1.pdf |bibcode=2006cmns...11...23H |doi=10.1142/9789812774354_0003 |citeseerx=10.1.1.233.5518 |isbn=9789812566409 |archive-url=https://web.archive.org/web/20070106185101/http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/Appendix_1.pdf |archive-date=6 January 2007 |url-status=dead |postscript=,}} (manuscript).
* {{cite journal|mode=cs2
| doi=10.1007/s00114-009-0644-4
| last=Hagelstein | first=Peter L.
|s2cid=9496513
| title=Constraints on energetic particles in the Fleischmann–Pons experiment
| year=2010
| journal=Naturwissenschaften
| volume=97
| issue=4 | pages=345–352
| pmid=20143040 | bibcode = 2010NW.....97..345H
| hdl=1721.1/71631| hdl-access=free
}}
* {{Cite book|mode=cs2
| last=Hoffman | first=Nate
| title=A Dialogue on Chemically Induced Nuclear Effects: A Guide for the Perplexed About Cold Fusion
| location=La Grange Park, Illinois
| publisher=American Nuclear Society
| year=1995
| isbn=978-0-89448-558-9
}}
* {{Cite book|mode=cs2
| last=Huizenga | first=John R.
| author-link=John R. Huizenga
| title=Cold Fusion: The Scientific Fiasco of the Century
| edition=2
| location=Oxford and New York
| publisher=Oxford University Press
| year=1993
| isbn=978-0-19-855817-0
}}
* {{cite journal
|mode = cs2
|last = Jayaraman
|first = K.S.
|title = Cold fusion hot again
|journal = Nature India
|date = 17 January 2008
|doi = 10.1038/nindia.2008.77
|url = http://www.nature.com/nindia/2008/080117/full/nindia.2008.77.html
|access-date = 7 December 2008
}}
* {{cite journal|mode=cs2
| last1=Jones | first1=J.E.
| last2=Hansen | first2=L.D.
| last3=Jones | first3=S.E.
| last4=Shelton | first4=D.S.
| last5=Thorne | first5=J.M.
| title=Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in 'cold fusion' cells
| journal=Journal of Physical Chemistry
| year=1995
| volume=99
| issue=18
| pages=6973–6979
| doi=10.1021/j100018a033
}}
* {{cite journal
|mode = cs2
|last = Joyce
|first = Christopher
|title = Gunfight at the cold fusion corral
|periodical = New Scientist
|issue = 1721
|date = 16 June 1990
|page = 22
|url = https://www.newscientist.com/article/mg12617210.700-gunfight-at-the-cold-fusion-corral-.html
|access-date = 1 October 2009
|issn = 0262-4079
}}
* {{cite magazine
|mode = cs2
|last = Kean
|first = Sam
|title = Palladium: The Cold Fusion Fanatics Can't Get Enough of the Stuff
|magazine = Slate
|date = 26 July 2010
|url = http://www.slate.com/id/2258112/entry/2258878/
|access-date = 31 July 2011
}}
* {{cite journal|mode=cs2
| last1=Kitamura | first1=Akira
| last2=Nohmi | first2=Takayoshi
| last3=Sasaki | first3=Yu
| last4=Taniike | first4=Akira
| last5=Takahashi | first5=Akito
| last6=Seto | first6=Reiko
| last7=Fujita | first7=Yushi
| title=Anomalous Effects in Charging of Pd Powders with High Density Hydrogen Isotopes
| journal=Physics Letters A
| volume=373
| issue=35
| pages=3109–3112
| year=2009
| doi=10.1016/j.physleta.2009.06.061 | bibcode = 2009PhLA..373.3109K
| citeseerx=10.1.1.380.6124
}}
* {{cite web
|mode = cs2
|last = Kowalski
|first = Ludwik
|title = Jones's manuscript on History of Cold Fusion at BYU
|location = Upper Montclair, New Jersey
|publisher = csam.montclair.edu
|year = 2004
|url = http://pages.csam.montclair.edu/~kowalski/cf/131history.html
|access-date = 25 May 2008
|archive-url = https://web.archive.org/web/20080506023241/http://pages.csam.montclair.edu/~kowalski/cf/131history.html
|archive-date = 6 May 2008
|url-status = dead
}}
* {{Cite book|mode=cs2
| last=Kozima | first=Hideo
| title=The Science of the Cold Fusion phenomenon
| publisher=Elsevier Science
| location=New York
| year=2006
| isbn=978-0-08-045110-7}}
* {{cite magazine
|mode = cs2
|last = Kruglinski
|first = Susan
|title = Whatever Happened To... Cold Fusion?
|periodical = Discover Magazine
|date = 3 March 2006
|url = http://discovermagazine.com/2006/mar/cold-fusion
|access-date = 20 June 2008
|issn = 0274-7529
}}
* {{cite journal|mode=cs2
| title= Controversy in chemistry: how do you prove a negative? – the cases of phlogiston and cold fusion
| last1=Labinger | first1=JA
| last2=Weininger | first2=SJ
| journal= Angew Chem Int Ed Engl
| year=2005
| volume=44 | issue=13 | pages=1916–1922
| doi=10.1002/anie.200462084
| pmid= 15770617
| quote= So there matters stand: no cold fusion researcher has been able to dispel the stigma of 'pathological science' by rigorously and reproducibly demonstrating effects sufficiently large to exclude the possibility of error (for example, by constructing a working power generator), nor does it seem possible to conclude unequivocally that all the apparently anomalous behavior can be attributed to error.
}} }}
* {{Citation * {{cite news
|mode = cs2
|last=Niedra|first=Janis
|last = Laurence
|format=PDF
|first = William L.
|title=Replication of the Apparent Excess Heat Effect in a Light Water - Potassium Carbonate - Nickel Electrolytic Cell
|url=http://www.grc.nasa.gov/WWW/sensors/PhySen/docs/TM-107167.pdf
|location=NASA Lewis Research Center, Cleveland Ohio
|agency=NASA
|date=February 1996
|year=1996
|accessdate=2011-08-01}}
* {{Citation
|title=Texas Panel Finds No Fraud In Cold Fusion Experiments
|newspaper=New York Times
|agency=Associated Press
|date=November 20, 1990
|url=http://query.nytimes.com/gst/fullpage.html?sec=health&res=9C0CE1DA143EF933A15752C1A966958260
|accessdate=2009-09-24 }}
* {{Citation
|ref=CITEREFOriani1990
|last=Oriani|first=Richard A.
|last2=Nelson|first2=John C.
|last3=Lee|first3=Sung-Kyu
|last4=Broadhurst|first4=J. H.
|title=Calorimetric Measurements of Excess Power Output During the Cathodic Charging of Deuterium into Palladium
|journal=Fusion Technology
|volume=18
|year=1990
|pages=652–662
|issn=0748-1896
|doi= }}
* {{Citation
|ref=CITEREFPanethPeters1926
|title=Über die Verwandlung von Wasserstoff in Helium
|last=Paneth|first=Fritz
|last2=Peters|first2=Kurt
|journal=]
|language=German
|volume=14
|issue=43
|pages=956–962
|year=1926
|doi=10.1007/BF01579126 |bibcode = 1926NW.....14..956P }}
*{{citation
|year=2000
|last=Park
|first=Robert L
|authorlink=Robert L. Park
|title=Voodoo Science: The road from foolishness to fraud
|place=Oxford, U.K. & New York
|publisher=]
|isbn=0-19-860443-2
|url=http://books.google.com/?id=xzCK6-Kqs6QC&printsec=frontcover&dq=%22voodoo+science%22#v=onepage&q&f=false
|accessdate=14 November 2010}}
* {{Citation |ref=CITEREFPetit2009
|last=Petit|first=Petit
|title=Cold panacea: two researchers proclaimed 20 years ago that they'd achieved cold fusion, the ultimate energy solution. The workwent nowhere, but the hope remains
|periodical=Science News
|date=14 March 2009
|doi=10.1002/scin.2009.5591750622 |volume=175 |issue=6 |pages=20–24}}
* {{Citation
|last=Platt|first=Charles
|title=What if Cold Fusion is Real?
|periodical=]
|year=1998
|issue=6.11
|url=http://www.wired.com/wired/archive/6.11/coldfusion.html?pg=1&topic=&topic_set=
|accessdate=2008-05-25}}
* {{Citation
|title=Cold Fusion, Derided in U.S., Is Hot In Japan
|last=Pollack|first=A.
|newspaper =The New York Times |newspaper =The New York Times
|title = Cold Fusion of Hydrogen Atoms; A Fourth Method Pulling Together
|date=November 17, 1992
|date = 30 December 1956
|url=http://www.nytimes.com/1992/11/17/science/cold-fusion-derided-in-us-is-hot-in-japan.html}}
|page = E7
* {{Citation
|url = https://www.nytimes.com/1956/12/30/archives/cold-fusion-of-hydrogen-atoms-a-fourth-method-pulling-together.html?sq=%2522Cold%2520Fusion&scp=11&st=cse
|last=Pollack|first=A.
|title=Japan, Long a Holdout, is Ending its Quest for Cold Fusion
|newspaper=New York Times
|date=August 26, 1997
|volume=79
|pages=243, C4
|url=http://query.nytimes.com/gst/fullpage.html?res=9A0CE0DF1F3EF935A1575BC0A961958260&n=Top/News/Science/Topics/Research }}
* {{Citation |ref=CITEREFSaeta1999
|last=Saeta|first=Peter N.
|last2=Schaffer|first2=Michael J.
|last3=Morrison|first3=Douglas R.O.
|last4=Heeter|first4=Robert F.
|title=What is the current scientific thinking on cold fusion? Is there any possible validity to this phenomenon?
|periodical=Scientific American
|date=October 21, 1999
|series=Ask the Experts
|url=http://www.scientificamerican.com/article.cfm?id=what-is-the-current-scien
|accessdate = 2008-12-17}} - (each author writing separately)
* {{Citation
|last=Sampson|first=Mark T.
|ref=CITEREFSampson2009
|year=2009
|title="Cold fusion" rebirth? New evidence for existence of controversial energy source
|publisher=]
|url=http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=WPCP_012362&use_sec=true&sec_url_var=region1&__uuid=5885551e-7f60-4185-a6f1-c4bfe8d5e26d }}
* {{Citation |ref=CITEREFSanderson2007
|last=Sanderson|first=Katharine
|title=Cold fusion is back at the American Chemical Society
|periodical=Nature news
|date=March 29, 2007
|url=http://www.bioedonline.org/news/news.cfm?art=3234
|accessdate=2009-07-18
|issn=0028-0836}}
* {{Citation |ref=CITEREFScaramuzzi2000
|last=Scaramuzzi|first=F.
|title=Ten years of cold fusion: an eye-witness account
|periodical=]
|year=2000
|issue=1&2
|volume=8
|page=77
|issn=0898-9621
|oclc=17959730}}
*{{Citation
|last=Seife|first=Charles|authorlink=Charles Seife
|title=Sun in a Bottle: The Strange History of Fusion and the Science of Wishful Thinking
|location=New York
|publisher=Viking
|year=2008
|isbn=0670020338}}
*{{Citation
|last=Seife|first=Charles|authorlink=Charles Seife
|title=Department of Energy: Outlook for Cold Fusion Is Still Chilly
|periodical=Science
|date=10 December 2004
|url=http://www.sciencemag.org/cgi/content/full/306/5703/1873a
|accessdate=2008-10-28
|page=1834
|volume=306
|issue=5703
|issn=
|doi=10.1126/science.306.5703.1873a
|pages=1873a
|pmid=15591169}}
*{{Citation |ref=CITEREFShamoo2003
|last=Shamoo|first=Adil E.
|last2=Resnik|first2=David B.
|title= Responsible Conduct of Research
|edition=2, illustrated
|editor=] US
|year=2003
|pages=
|url=http://books.google.com/?id=RLZin-f9eooC&pg=PA86&vq=announcement
|isbn=0195148460 |publisher=Oxford University Press |location=Oxford}}
* {{Citation
|last=Shanahan|first=Kirk L.
|title=A systematic error in mass flow calorimetry demonstrated
|journal=Thermochimica Acta
|volume=382
|issue=2
|date=23 May 2002
|pages=95–100
|doi=10.1016/S0040-6031(01)00832-2}}
* {{Citation
|last=Shanahan|first=Kirk L.
|url=http://sti.srs.gov/fulltext/ms2004528/ms2004528.pdf
|format=PDF
|title=Comments on "Thermal behavior of polarized Pd/D electrodes prepared by co-deposition"
|journal=Thermochimica Acta
|volume=428
|issue=1–2
|year=2005
|month=April
|pages=207–212
|doi=10.1016/j.tca.2004.11.007}}
* {{Citation
|last=Shanahan|first=Kirk L.
|url=http://sti.srs.gov/fulltext/2005/ms2005556.pdf
|format=PDF
|title=Reply to 'Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion', E. Storms, Thermochim. Acta, 2006
|journal=Thermochimica Acta
|volume=441
|issue=2
|date=15 February 2006
|pages=210–214
|issn=0040-6031
|oclc=825205
|doi=10.1016/j.tca.2005.11.029}}
*{{Citation|ref=CITEREFShkedi1995
|last=Shkedi|first=Zvi
|last2=McDonald|first2=Robert C.
|last3=Breen|first3=John J.
|last4=Maguire|first4=Stephen J.
|last5=Veranth|first5=Joe
|title=Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H<sub>2</sub>O Electrolytic Cells
|journal=Fusion Technology
|volume=28
|issue=4
|year=1995
|pages=1720–1731
|issn=0748-1896
|doi=}}
* {{Citation
|last=Shkedi|first=Zvi
|title=Response to Comments on 'Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H<sub>2</sub>O Electrolytic Cells'
|journal=Fusion Technology
|volume=30
|issue=1
|date=1996-10-26
|page=133
|issn=0748-1896
|doi= }}
* {{Citation
|last=Simon|first=Bart
|title=Undead science: science studies and the afterlife of cold fusion
|edition=illustrated
|publisher=]
|year=2002
|page=49
|isbn=9780813531540
|url=http://books.google.com/?id=dEJJqgw8pvwC&pg=PA49
}} }}
* {{cite journal |last1=Langmuir |first1=Irving |first2=Robert N. |last2=Hall |title=Pathological science |journal=] |volume=42 |issue=10 |pages=36–48 |date=1989|doi=10.1063/1.881205 |bibcode=1989PhT....42j..36L }}
* {{Citation
* {{cite web
|last=Sinha|first=K.P.
|mode = cs2
|title=Laser Stimulation of Low-Energy Nuclear Reactions in Deuterated Palladium
|last = Lewenstein
|journal=Current Science
|first = Bruce V.
|volume=91
|title = Cornell cold fusion archive
|issue=7
|work = Collection n°4451, Division of Rare and Manuscript Collections, Cornell University Library
|year=2006
|year = 1994
|pages=907–912
|url=http://www.ias.ac.in/currsci/oct102006/907.pdf |url = http://rmc.library.cornell.edu/EAD/pdf_guides/RMM04451.pdf
|access-date = 25 May 2008
|format=PDF
}}
|accessdate=8 November 2009
* {{cite journal|mode=cs2
|issn=
| last1=Lewis | first1=N.S.
|oclc=
| last2=Barnes | first2=C.A.
|doi= }}
| last3=Heben | first3=M.J.
* {{Citation|ref=CITEREFSzpak1996
| last4=Kumar | first4=A.
|last=Szpak|first=S.
| last5=Lunt | first5=S.R.
|last2=Mossier-Boss|first2=P.A.
| last6=McManis | first6=G.E.
|title=On the Behavior of the Cathodically Polarized Pd/D System: A Response to Vigier's Comments
| last7=Miskelly | first7=S.R.
|journal=Physics Letters A
| last8=Penner | first8=G.M.
|volume=210
| last9=Sailor | first9=M.J.
|issue=6
| last10=Santangelo | first10=P.G.
|year=1996
| last11=Shreve | first11=G. A.
|pages=382–390
| last12=Tufts | first12=B. J.
|issn=
| last13=Youngquist | first13=M.G.
|doi=10.1016/0375-9601(95)00915-9
| last14=Kavanagh | first14=R.W.
|bibcode = 1996PhLA..210..382S }}
| last15=Kellogg | first15=S.E.
* {{Citation
| last16=Vogelaar | first16=R.B.
|last=Storms|first=Edmund
| last17=Wang | first17=T. R.
|title=Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion
| last18=Kondrat | first18=R.
|journal=Thermochimica Acta
| last19=New | first19=R.
|volume=441
|s2cid=4359244
|issue=2
| title=Searches for low-temperature nuclear fusion of deuterium in palladium
|year=2006
| journal=Nature
|page=207
| year=1989
|doi=10.1016/j.tca.2005.11.028 }}
| volume=340
* {{Citation
| pages=525–530
|last=Storms|first=Edmund
| doi=10.1038/340525a0 | bibcode = 1989Natur.340..525L | issue=6234
|title=Science of Low Energy Nuclear Reaction: A Comprehensive Compilation of Evidence and Explanations
|display-authors=8
|location=Singapore
}}
|publisher=World Scientific
* {{Cite book
|year=2007
|mode = cs2
|isbn=9-8127062-0-8 }}
|last = Mallove
* {{Citation
|last=Storms|first=Edmund |first = Eugene
|author-link = Eugene Mallove
|ref=CITEREFStorms2010
|title = Fire from Ice: Searching for the Truth Behind the Cold Fusion Furor
|title=Status of cold fusion (2010)
|location = London
|journal=] (online)
|publisher = Wiley
|volume=97
|year = 1991
|issue=10
|isbn = 978-0-471-53139-5
|year=2010
|url = https://archive.org/details/firefromicesearc00mall_0
|pages=861–881
}}
|month=October
* {{cite book |title=Cold Fusion: The history of research in Italy |year=2009 |editor-first1=Sergio |editor-last1=Martellucci |editor-first2=Angela |editor-last2=Rosati |editor-first3=Francesco |editor-last3=Scaramuzzi |editor-first4=Vittorio |editor-last4=Violante |translator-first=Chiara Maria |translator-last=Costigliola |url=http://www.enea.it/en/publications/volume-pdf/Cold_Fusion_Italy.pdf |url-status=live |archive-url=https://web.archive.org/web/20160313124607/http://www.enea.it/en/publications/volume-pdf/Cold_Fusion_Italy.pdf |archive-date=13 March 2016}} In the foreword by the president of ENEA the belief is expressed that the cold fusion phenomenon is proved.
|pmid=20838756
* {{Cite book |mode=cs2 |last1=Mehra |first1=Jagdish |last2=Milton |first2=K. A. |last3=Schwinger |first3=Julian Seymour |title=Climbing the Mountain: The Scientific Biography of Julian Schwinger |edition=illustrated |location=New York |publisher=] |year=2000 |isbn=978-0-19-850658-4 |url=https://books.google.com/books?id=9SmZSN8F164C}}
|doi=10.1007/s00114-010-0711-x
* {{cite journal|mode=cs2
|url=http://www.springerlink.com/content/9522x473v80352w9/|bibcode = 2010NW.....97..861S }}
| last1=Mengoli | first1=G.
* {{Citation
| last2=Bernardini | first2=M.
|last=Szpak|first=Stanislaw
| last3=Manduchi | first3=C.
|ref=CITEREFSzpak2004
| last4=Zannoni | first4=G.
|last2=Mosier-Boss|first2=Pamela A.
| year=1998
|last3=Miles|first3=Melvin H.
| title=Calorimetry close to the boiling temperature of the D<sub>2</sub>O/Pd electrolytic system
|last4=Fleischmann|first4=Martin
| journal=Journal of Electroanalytical Chemistry
|title=Thermal behavior of polarized Pd/D electrodes prepared by co-deposition
| volume=444
|journal=Thermochimica Acta
| pages=155–167
|volume=410
| doi=10.1016/S0022-0728(97)00634-7
|page=101
| issue=2
|year=2004
}}
|doi=10.1016/S0040-6031(03)00401-5 }}
* {{harvc |last=Morrison |first=Douglas R.O. |c=Assessment |pp=3–5 |in=Saeta |year=1999}}
* {{Citation
* {{cite journal|mode=cs2
|last=Tate|first=N.
| last1=Mosier-Boss | first1=Pamela A.
|title=MIT bombshell knocks fusion ‘breakthrough’ cold
| last2=Szpak | first2=Stanislaw
|newspaper=Boston Herald
| last3=Gordon | first3=Frank E.
|year=1989
| last4=Forsley | first4=L.P.G.
|issue=May 1, 1989
|s2cid=11044813
|page=1
| title=Triple tracks in CR-39 as the result of Pd–D Co-deposition: evidence of energetic neutrons
|issn=0738-5854}}
| journal=Naturwissenschaften
* {{Citation
| year=2009
|last=Taubes|first=Gary
| volume=96
|title=Cold fusion conundrum at Texas A&M
| issue=1
|periodical=]
| pages=135–142
|volume=248
| doi=10.1007/s00114-008-0449-x
|date=15 June 1990
| pmid=18828003 | bibcode = 2009NW.....96..135M
|pages=1299–1304
}}
|issn=
* {{cite journal
|doi=10.1126/science.248.4961.1299
|mode = cs2
|pmid=17735269
|last = Mullins
|issue=4961
|first = Justin
|bibcode=1990Sci...248.1299T}}
|s2cid = 7170843
* {{Citation
|title = Cold Fusion Back From the Dead
|last=Taubes|first=Gary
|journal = IEEE Spectrum
|authorlink=Gary Taubes
|volume = 41
|title=]
|location=New York |page = 22
|date = September 2004
|publisher=Random House
|doi = 10.1109/MSPEC.2004.1330805
|year=1993
|issue = 9
|isbn=0-394-58456-2}}
|url = https://spectrum.ieee.org/cold-fusion-back-from-the-dead
* {{Citation
}}
|author=U.S. Department of Energy
* {{cite journal|mode=cs2
|ref=CITEREFDOE1989
| last1=Oriani | first1=Richard A.
|title=A Report of the Energy Research Advisory Board to the United States Department of Energy
| last2=Nelson | first2=John C.
|year=1989
| last3=Lee | first3=Sung-Kyu
|publisher=U.S. Department of Energy
| last4=Broadhurst | first4=J. H.
|location=Washington, DC
|s2cid=118860562
|url=http://files.ncas.org/erab/
| title=Calorimetric Measurements of Excess Power Output During the Cathodic Charging of Deuterium into Palladium
|accessdate=2008-05-25 }}
| journal=Fusion Technology
* {{Citation |author=U.S. Department of Energy
| volume=18
|ref=CITEREFDOE2004r
|issue=4
|year=2004
| year=1990
|title=Report of the Review of Low Energy Nuclear Reactions
| pages=652–662
|location=Washington, DC
| issn=0748-1896
|publisher=U.S. Department of Energy
| doi=10.13182/FST90-A29259
|url=http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/CF_Final_120104.pdf
| bibcode=1990FuTec..18..652O }}
|format=PDF
* {{cite journal|mode=cs2
|accessdate=2008-07-19
| title=Über die Verwandlung von Wasserstoff in Helium
|archiveurl=http://web.archive.org/web/20080226210800/http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/CF_Final_120104.pdf
| last1=Paneth | first1=Fritz
|archivedate=2008-02-26}}
| last2=Peters | first2=Kurt
* {{Citation
|s2cid=43265081
|last=Van Noorden|first= R.
| journal=]
|title=Cold fusion back on the menu
| language=de
|journal=Chemistry World
| volume=14
|year=2007
| issue=43
|month=April
| pages=956–962
|url=http://www.rsc.org/chemistryworld/News/2007/March/22030701.asp
| year=1926
|accessdate=2008-05-25
| doi=10.1007/BF01579126 | bibcode = 1926NW.....14..956P
|issn=1473-7604
|doi= }} }}
* {{Cite book
* {{Citation|ref= CITEREFVern1990
| mode=cs2
|last=Rogers|first=Vern C.
| year=2000
|last2=Sandquist|first2=Gary M.
| last=Park
|title=Cold fusion reaction products and their measurement
| first=Robert L
|journal=Journal of Fusion Energy
| author-link=Robert L. Park
|month=December|year=1990
| title=Voodoo Science: The road from foolishness to fraud
|volume=9
| place=Oxford, U.K. & New York
|issue=4
| publisher=]
|pages=483–485
| isbn=978-0-19-860443-3
|doi=10.1007/BF01588284
| url=https://books.google.com/books?id=xzCK6-Kqs6QC&q=%22voodoo+science%22
|url= http://www.springerlink.com/content/k57225273v232p10/ }}
| access-date=14 November 2010
* {{Citation |ref=CITEREFVoss1999
}}
|last=Voss|first=David
* {{cite journal|mode=cs2
|title=What Ever Happened to Cold Fusion
| last=Petit | first=Charles
|periodical=Physics World
| title=Cold panacea: two researchers proclaimed 20 years ago that they'd achieved cold fusion, the ultimate energy solution. The workwent nowhere, but the hope remains
|date=March 1, 1999
| periodical=Science News
|url=http://physicsworld.com/cws/article/print/1258
| date=14 March 2009
|accessdate=2008-05-01
| doi=10.1002/scin.2009.5591750622
|issn=0953-8585}}
| volume=175 | issue=6 | pages=20–24
* {{Citation |ref=CITEREFVoss1999b
}}
|last=Voss|first=David
* {{cite journal
|mode = cs2
|last = Platt
|first = Charles
|title = What if Cold Fusion is Real?
|volume = 6
|periodical = ]
|year = 1998
|issue = 11
|url = https://www.wired.com/wired/archive/6.11/coldfusion.html?pg=1&topic=&topic_set=
|access-date = 25 May 2008
}}
* {{cite news
|mode = cs2
|title = Cold Fusion, Derided in U.S., Is Hot In Japan
|last = Pollack
|first = A.
|newspaper =The New York Times
|date = 17 November 1992
|url = https://www.nytimes.com/1992/11/17/science/cold-fusion-derided-in-us-is-hot-in-japan.html
}}
* {{cite news
|mode = cs2
|last = Pollack
|first = A.
|title = Japan, Long a Holdout, is Ending its Quest for Cold Fusion
|newspaper =The New York Times
|date = 26 August 1997
|volume = 79
|pages = 243, C4
|url = https://www.nytimes.com/1997/08/26/science/japan-long-a-holdout-is-ending-its-quest-for-cold-fusion.html?n=Top%2FNews%2FScience%2FTopics%2FResearch
}}
* {{cite journal
|mode = cs2
|last = Pool
|first = Robert
|journal = Science
|title = How cold fusion happened&nbsp;– twice!
|date = 28 April 1989
|volume = 244
|issue = 4903
|pages = 420–423
|doi = 10.1126/science.244.4903.420
|pmid = 17807604
|url = http://www.highbeam.com/doc/1G1-7597573.html
|archive-url = https://web.archive.org/web/20130602212724/http://www.highbeam.com/doc/1G1-7597573.html
|url-status = dead
|archive-date = 2 June 2013
|bibcode = 1989Sci...244..420P
}}
* {{Cite book |title=Radio Times Guide to Films 2014 |author=Radio Times Film Unit |author-link=Radio Times |year=2013 |publisher=Immediate Media Company |isbn=978-0956752369}}
* {{Cite book
|mode = cs2
|title = Chemistry: Principles and Practice
|last1 = Reger
|first1 = Daniel L.
|last2 = Goode
|first2 = Scott R.
|last3 = Ball
|first3 = David W.
|edition = 3rd revised
|publisher = Cengage Learning
|year = 2009
|isbn = 978-0-534-42012-3
|pages = 814–815
|url = https://books.google.com/books?id=OUIaM1V3ThsC
}}
* {{cite journal|mode=cs2
| title= Case Studies in Pathological Science: How the Loss of Objectivity Led to False Conclusions in Studies of Polywater, Infinite Dilution and Cold Fusion
| journal= ]
| last= Rousseau | first=D. L. |author-link = Denis Rousseau
| date= January–February 1992
| volume= 80
|issue=1
| pages= 54–63
| bibcode = 1992AmSci..80...54R
}}
* {{cite magazine
|mode = cs2
|editor-last = Saeta
|editor-first = Peter N.
|title = What is the current scientific thinking on cold fusion? Is there any possible validity to this phenomenon?
|periodical = Scientific American
|pages = 1–6
|date = 21 October 1999
|series = Ask the Experts
|url = http://www.scientificamerican.com/article.cfm?id=what-is-the-current-scien
|access-date = 17 December 2008
}}
* {{cite web|mode=cs2 |last=Sampson |first=Mark T. |year=2009 |title='Cold fusion' rebirth? New evidence for existence of controversial energy source |publisher=] |url=http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=WPCP_012362&use_sec=true&sec_url_var=region1&__uuid=5885551e-7f60-4185-a6f1-c4bfe8d5e26d |url-status=dead |archive-url=https://web.archive.org/web/20111002143748/http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=222&content_id=WPCP_012362&use_sec=true&sec_url_var=region1&__uuid=5885551e-7f60-4185-a6f1-c4bfe8d5e26d |archive-date=2 October 2011 }}
* {{cite journal
|mode = cs2
|last = Sanderson
|first = Katharine
|title = Cold fusion is back at the American Chemical Society
|periodical = Nature News
|date = 29 March 2007
|url = http://www.bioedonline.org/news/news.cfm?art=3234
|access-date = 18 July 2009
|issn = 0028-0836
|archive-url = https://web.archive.org/web/20090827033736/http://www.bioedonline.org/news/news.cfm?art=3234
|archive-date = 27 August 2009
|url-status = dead
}}
* {{Cite book |last1=Scanlon |first1=Eileen |last2=Hill |first2=Roger |date=1999 |title=Communicating science: contexts and channels |publisher=Routledge |isbn=041519752X |location=London |oclc=39180844}}
* {{cite journal|mode=cs2
| last=Scaramuzzi | first=F.
|s2cid=6158268
| title=Ten years of cold fusion: an eye-witness account
| periodical=]
| year=2000
| issue=1&2
| volume=8
| pages=77–101
| issn=0898-9621
| oclc=17959730
| doi=10.1080/08989620008573967
|citeseerx=10.1.1.380.8109
}}
* {{harvc |last=Schaffer |first=Michael J. |c=Historical overview, assessment |pp=1–3 |in=Saeta |year=1999}}
* {{Cite book|mode=cs2
| last=Seife | first=Charles | author-link=Charles Seife
| title=Sun in a Bottle: The Strange History of Fusion and the Science of Wishful Thinking
| location=New York
| publisher=Viking
| year=2008
| isbn=978-0-670-02033-1
}}
* {{Cite book
|mode = cs2
|last1 = Shamoo
|first1 = Adil E.
|author-link = Adil E. Shamoo
|last2 = Resnik
|first2 = David B.
|title = Responsible Conduct of Research
|edition = 2nd illustrated
|editor = ] US
|year = 2003
|url = https://books.google.com/books?id=RLZin-f9eooC&q=announcement&pg=PA86
|isbn = 978-0-19-514846-6
|publisher = Oxford University Press
|location = Oxford
}}
* {{cite journal
|mode = cs2
|last = Shanahan
|first = Kirk L.
|title = A systematic error in mass flow calorimetry demonstrated
|journal = Thermochimica Acta
|volume = 382
|issue = 2
|date = 23 May 2002
|pages = 95–100
|doi = 10.1016/S0040-6031(01)00832-2
|url = https://zenodo.org/record/1259723
}}
* {{cite journal
|mode = cs2
|last = Shanahan
|first = Kirk L.
|url = http://sti.srs.gov/fulltext/ms2004528/ms2004528.pdf
|title = Comments on "Thermal behavior of polarized Pd/D electrodes prepared by co-deposition"
|journal = Thermochimica Acta
|volume = 428
|issue = 1–2
|date = April 2005
|pages = 207–212
|doi = 10.1016/j.tca.2004.11.007
}}
* {{cite journal
|mode = cs2
|last = Shanahan
|first = Kirk L.
|title = Reply to 'Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion', E. Storms
|journal = Thermochimica Acta
|department = Short communication
|volume = 441
|issue = 2
|date = February 2006
|pages = 210–214
|doi = 10.1016/j.tca.2005.11.029
|url = https://digital.library.unt.edu/ark:/67531/metadc874672/
}}
* {{cite journal|mode=cs2
| last1=Shkedi | first1=Zvi
| last2=McDonald | first2=Robert C.
| last3=Breen | first3=John J.
| last4=Maguire | first4=Stephen J.
| last5=Veranth | first5=Joe
| title=Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H<sub>2</sub>O Electrolytic Cells
| journal=Fusion Technology
| volume=28
| issue=4
| year=1995
| pages=1720–1731
| issn=0748-1896
| doi=10.13182/FST95-A30436
| bibcode=1995FuTec..28.1720S }}
* {{Cite book
|mode = cs2
|last = Simon
|first = Bart
|title = Undead Science: Science studies and the afterlife of cold fusion
|publisher = Rutgers University Press
|edition = illustrated
|year = 2002
|page =
|isbn = 978-0-8135-3154-0
|url = https://archive.org/details/undeadsciencesci0000simo
|url-access = registration
|bibcode = 2002usss.book.....S
}}
* {{cite journal|mode=cs2
| last1=Szpak | first1=Stanislaw
| last2=Mosier-Boss | first2=Pamela A.
| last3=Miles | first3=Melvin H.
| last4=Fleischmann | first4=Martin
| title=Thermal behavior of polarized Pd/D electrodes prepared by co-deposition
| journal=Thermochimica Acta
| volume=410
|issue=1–2
| pages=101–107
| year=2004
| doi=10.1016/S0040-6031(03)00401-5
}}
* {{cite news|mode=cs2
| last=Tate | first=N.
| title=MIT bombshell knocks fusion 'breakthrough' cold
| newspaper=Boston Herald
| year=1989
| issue=1 May 1989
| page=1
| issn=0738-5854
}}
* {{cite journal|mode=cs2
| last=Taubes | first=Gary
|s2cid=9602261
| title=Cold fusion conundrum at Texas A&M
| periodical=]
| volume=248
| date=15 June 1990
| pages=1299–1304
| doi=10.1126/science.248.4961.1299
| pmid=17747511
| issue=4961
| bibcode=1990Sci...248.1299T
}}
* {{Cite book|mode=cs2
| last=Taubes | first=Gary
| author-link=Gary Taubes
| title=Bad Science: The Short Life and Weird Times of Cold Fusion
| location=New York
| publisher=Random House
| year=1993
| isbn=978-0-394-58456-0
|title-link=Bad Science: The Short Life and Weird Times of Cold Fusion
}}
* {{cite report
|mode = cs2
|last = US DOE
|first = U.S. Department of Energy
|title = A Report of the Energy Research Advisory Board to the United States Department of Energy
|year = 1989
|publisher = U.S. Department of Energy
|location = Washington, DC
|url = http://files.ncas.org/erab/
|access-date = 25 May 2008
}}
* {{cite report
|mode = cs2
|last = US DOE
|first = U.S. Department of Energy
|year = 2004
|title = Report of the Review of Low Energy Nuclear Reactions
|location = Washington, DC
|publisher = U.S. Department of Energy
|url = http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/CF_Final_120104.pdf
|access-date = 19 July 2008
|archive-url = https://web.archive.org/web/20080226210800/http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/CF_Final_120104.pdf
|archive-date = 26 February 2008
}}
* {{cite journal| mode=cs2 | last=Van Noorden | first=R. | title=Cold fusion back on the menu | journal=Chemistry World | date=April 2007 | url=http://www.rsc.org/chemistryworld/News/2007/March/22030701.asp | access-date=25 May 2008 | issn=1473-7604 }}
* {{cite journal|mode=cs2
| last1=Rogers | first1=Vern C.
| last2=Sandquist | first2=Gary M.
|s2cid=120196723
| title=Cold fusion reaction products and their measurement
| journal=Journal of Fusion Energy
| date=December 1990
| volume=9 | issue=4 | pages=483–485 | doi=10.1007/BF01588284
|bibcode=1990JFuE....9..483R
}}
* {{cite journal
|mode = cs2
|last = Voss
|first = David
|title = What Ever Happened to Cold Fusion
|volume = 12
|issue = 3
|pages = 12–14
|periodical = Physics World
|date = 1 March 1999a
|url = http://physicsworld.com/cws/article/print/1258
|access-date = 1 May 2008
|issn = 0953-8585
|doi = 10.1088/2058-7058/12/3/14
|archive-url=https://web.archive.org/web/20080701133103/http://physicsworld.com/cws/article/print/1258|archive-date=2008-07-01|url-status=dead
}}
* {{cite journal|mode=cs2
|last=Voss | first=David
|s2cid=108860158
|title='New Physics' Finds a Haven at the Patent Office |title='New Physics' Finds a Haven at the Patent Office
|periodical=Science |periodical=Science |date=21 May 1999b
|date=May 21, 1999
|url=http://www.sciencemag.org/content/284/5418/1252.short
|accessdate=2009-07-18
|issn=0036-8075 |issn=0036-8075
|doi=10.1126/science.284.5418.1252 |volume=284 |page=1252 |issue=5418}} |doi=10.1126/science.284.5418.1252 |volume=284 |pages=1252–1254 |issue=5418
}}
*{{Citation * {{cite news
|mode = cs2
|last=Wilford|first=John Noble
|last = Wilford
|title=Fusion Furor: Science's Human Face
|first = John Noble
|newspaper=New York Times
|title = Fusion Furor: Science's Human Face
|date=April 24, 1989
|newspaper =The New York Times
|url=http://query.nytimes.com/gst/fullpage.html?res=950DE7DF133CF937A15757C0A96F948260&sec=&spon=&pagewanted=all
|date = 24 April 1989
|issn=0362-4331
|url = https://www.nytimes.com/1989/04/24/us/fusion-furor-science-s-human-face.html?pagewanted=all
|accessdate=2008-09-23}}
|issn = 0362-4331
* {{Citation |ref=CITEREFWilliams1989
|access-date = 23 September 2008
|last=Williams|first=D.E.
|archive-url = https://web.archive.org/web/20170625044413/http://www.nytimes.com/1989/04/24/us/fusion-furor-science-s-human-face.html?pagewanted=all&src=pm |archive-date=25 June 2017 |url-status=live
|last2=Findlay|first2=D.J.S.
}}
|last3=Craston|first3=D.H.
* {{cite journal|mode=cs2
|last4=Sené|first4=M.R.
| last1=Williams | first1=D.E.
|last5=Bailey|first5=M.
| last2=Findlay | first2=D.J.S.
|last6=Croft|first6=S.
| last3=Craston | first3=D.H.
|last7=Hooton|first7=B.W.
|last8=Jones|first8=C.P. | last4=Sené | first4=M.R.
| last5=Bailey | first5=M.
|last9=Kucernak|first9=A.R.J.
| last6=Croft | first6=S.
|title=Upper bounds on 'cold fusion' in electrolytic cells
| last7=Hooton | first7=B.W.
|journal=Nature
| last8=Jones | first8=C.P.
|volume=342
| last9=Kucernak | first9=A.R.J.
|pages=375–384
| last10=Mason | first10=J.A.
|year=1989
| last11=Taylor | first11=R.I.
|issn=
|s2cid=4347251
|doi=10.1038/342375a0|bibcode = 1989Natur.342..375W |issue=6248}}
| title=Upper bounds on 'cold fusion' in electrolytic cells
* {{Citation |last=Wilson|first=R.H. |ref=CITEREFWilson1992
| journal=Nature | volume=342 | issue=6248 | pages=375–384 | year=1989
|title=Analysis of experiments on the calorimetry of LiOD-D<sub>2</sub>O electrochemical cells
| doi=10.1038/342375a0 | bibcode = 1989Natur.342..375W
|journal=Journal of Electroanalytical Chemistry
|name-list-style=vanc |display-authors=4
|year=1992
}}
|volume=332
* {{cite journal|mode=cs2
|pages=1–31
| last=Wilner
|issn=
| first=Bertil
|doi=10.1016/0022-0728(92)80338-5 |last2=Bray |first2=J.W. |last3=Kosky |first3=P.G. |last4=Vakil |first4=H.B. |last5=Will |first5=F.G. }}
|s2cid=26487447
| title=No new fusion under the Sun
| journal=Nature | volume=339 | issue=6221 | page=180 |date=May 1989 | doi =10.1038/339180a0
|bibcode = 1989Natur.339..180W | doi-access=free}}
* {{cite journal|mode=cs2
| last1=Wilson | first1=R.H.
| last2=Bray | first2=J.W.
| last3=Kosky | first3=P.G.
| last4=Vakil | first4=H.B.
| last5=Will | first5=F.G.
| title=Analysis of experiments on the calorimetry of LiOD-D<sub>2</sub>O electrochemical cells
| journal=Journal of Electroanalytical Chemistry
| year=1992 | volume=332 |issue=1–2
| pages=1–31
| doi=10.1016/0022-0728(92)80338-5
}}
{{Refend}} {{Refend}}


==External links== ==External links==
* (iscmns.org), organizes the ICCF conferences and publishes the ''Journal of Condensed Matter Nuclear Science''. See: of published papers and proceedings.
* {{DMOZ|Science/Physics/Nuclear/Fusion/Cold_Fusion/}}
* {{Webarchive|url=https://web.archive.org/web/20151007025026/http://www.lenr-forum.com/forum/index.php/Attachment/386-IEEE-brief-DeChiaro-9-2015-pdf/ |date=7 October 2015 }}: ] report NSWCDD-PN-15-0040 by Louis F. DeChiaro, PhD, 23 September 2015
*{{Citation |name=Britz|last=Britz|first=Dieter|title=Britz's cold nuclear fusion collection|work=|date=|url=http://www.dieterbritz.dk/fusweb/index.php|accessdate=2011-07-29}}. Lists books, papers and conferences about cold fusion; has of publication rate over time.

*Two video press conferences on "Cold Fusion Rebirth" during the 237th National Meeting of the ], March 23, 2009, , .
{{authority control}}
* , organizes the ICCF conferences and publishes the ''Journal of Condensed Matter Nuclear Science''.


{{DEFAULTSORT:Cold Fusion}} {{DEFAULTSORT:Cold Fusion}}
] ]
] ]
]
] ]
]
] ]
] ]
]
] ]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 05:34, 19 November 2024

Hypothetical type of nuclear reaction This article is about the Fleischmann–Pons claims of nuclear fusion at room temperature, and subsequent research. For the original use of the term "cold fusion", see muon-catalyzed fusion. For all other definitions, see Cold fusion (disambiguation). Not to be confused with cold welding.

Diagram of an open-type calorimeter used at the New Hydrogen Energy Institute in Japan

Cold fusion is a hypothesized type of nuclear reaction that would occur at, or near, room temperature. It would contrast starkly with the "hot" fusion that is known to take place naturally within stars and artificially in hydrogen bombs and prototype fusion reactors under immense pressure and at temperatures of millions of degrees, and be distinguished from muon-catalyzed fusion. There is currently no accepted theoretical model that would allow cold fusion to occur.

In 1989, two electrochemists at the University of Utah, Martin Fleischmann and Stanley Pons, reported that their apparatus had produced anomalous heat ("excess heat") of a magnitude they asserted would defy explanation except in terms of nuclear processes. They further reported measuring small amounts of nuclear reaction byproducts, including neutrons and tritium. The small tabletop experiment involved electrolysis of heavy water on the surface of a palladium (Pd) electrode. The reported results received wide media attention and raised hopes of a cheap and abundant source of energy.

Many scientists tried to replicate the experiment with the few details available. Expectations diminished as a result of numerous failed replications, the retraction of several previously reported positive replications, the identification of methodological flaws and experimental errors in the original study, and, ultimately, the confirmation that Fleischmann and Pons had not observed the expected nuclear reaction byproducts. By late 1989, most scientists considered cold fusion claims dead, and cold fusion subsequently gained a reputation as pathological science. In 1989 the United States Department of Energy (DOE) concluded that the reported results of excess heat did not present convincing evidence of a useful source of energy and decided against allocating funding specifically for cold fusion. A second DOE review in 2004, which looked at new research, reached similar conclusions and did not result in DOE funding of cold fusion. Presently, since articles about cold fusion are rarely published in peer-reviewed mainstream scientific journals, they do not attract the level of scrutiny expected for mainstream scientific publications.

Nevertheless, some interest in cold fusion has continued through the decades—for example, a Google-funded failed replication attempt was published in a 2019 issue of Nature. A small community of researchers continues to investigate it, often under the alternative designations low-energy nuclear reactions (LENR) or condensed matter nuclear science (CMNS).

History

Nuclear fusion is normally understood to occur at temperatures in the tens of millions of degrees. This is called "thermonuclear fusion". Since the 1920s, there has been speculation that nuclear fusion might be possible at much lower temperatures by catalytically fusing hydrogen absorbed in a metal catalyst. In 1989, a claim by Stanley Pons and Martin Fleischmann (then one of the world's leading electrochemists) that such cold fusion had been observed caused a brief media sensation before the majority of scientists criticized their claim as incorrect after many found they could not replicate the excess heat. Since the initial announcement, cold fusion research has continued by a small community of researchers who believe that such reactions happen and hope to gain wider recognition for their experimental evidence.

Early research

The ability of palladium to absorb hydrogen was recognized as early as the nineteenth century by Thomas Graham. In the late 1920s, two Austrian-born scientists, Friedrich Paneth and Kurt Peters, originally reported the transformation of hydrogen into helium by nuclear catalysis when hydrogen was absorbed by finely divided palladium at room temperature. However, the authors later retracted that report, saying that the helium they measured was due to background from the air.

In 1927, Swedish scientist John Tandberg reported that he had fused hydrogen into helium in an electrolytic cell with palladium electrodes. On the basis of his work, he applied for a Swedish patent for "a method to produce helium and useful reaction energy". Due to Paneth and Peters's retraction and his inability to explain the physical process, his patent application was denied. After deuterium was discovered in 1932, Tandberg continued his experiments with heavy water. The final experiments made by Tandberg with heavy water were similar to the original experiment by Fleischmann and Pons. Fleischmann and Pons were not aware of Tandberg's work.

The term "cold fusion" was used as early as 1956 in an article in The New York Times about Luis Alvarez's work on muon-catalyzed fusion. Paul Palmer and then Steven Jones of Brigham Young University used the term "cold fusion" in 1986 in an investigation of "geo-fusion", the possible existence of fusion involving hydrogen isotopes in a planetary core. In his original paper on this subject with Clinton Van Siclen, submitted in 1985, Jones had coined the term "piezonuclear fusion".

Fleischmann–Pons experiment

The most famous cold fusion claims were made by Stanley Pons and Martin Fleischmann in 1989. After a brief period of interest by the wider scientific community, their reports were called into question by nuclear physicists. Pons and Fleischmann never retracted their claims, but moved their research program from the US to France after the controversy erupted.

Events preceding announcement

Electrolysis cell schematic

Martin Fleischmann of the University of Southampton and Stanley Pons of the University of Utah hypothesized that the high compression ratio and mobility of deuterium that could be achieved within palladium metal using electrolysis might result in nuclear fusion. To investigate, they conducted electrolysis experiments using a palladium cathode and heavy water within a calorimeter, an insulated vessel designed to measure process heat. Current was applied continuously for many weeks, with the heavy water being renewed at intervals. Some deuterium was thought to be accumulating within the cathode, but most was allowed to bubble out of the cell, joining oxygen produced at the anode. For most of the time, the power input to the cell was equal to the calculated power leaving the cell within measurement accuracy, and the cell temperature was stable at around 30 °C. But then, at some point (in some of the experiments), the temperature rose suddenly to about 50 °C without changes in the input power. These high temperature phases would last for two days or more and would repeat several times in any given experiment once they had occurred. The calculated power leaving the cell was significantly higher than the input power during these high temperature phases. Eventually the high temperature phases would no longer occur within a particular cell.

In 1988, Fleischmann and Pons applied to the United States Department of Energy for funding towards a larger series of experiments. Up to this point they had been funding their experiments using a small device built with $100,000 out-of-pocket. The grant proposal was turned over for peer review, and one of the reviewers was Steven Jones of Brigham Young University. Jones had worked for some time on muon-catalyzed fusion, a known method of inducing nuclear fusion without high temperatures, and had written an article on the topic entitled "Cold nuclear fusion" that had been published in Scientific American in July 1987. Fleischmann and Pons and co-workers met with Jones and co-workers on occasion in Utah to share research and techniques. During this time, Fleischmann and Pons described their experiments as generating considerable "excess energy", in the sense that it could not be explained by chemical reactions alone. They felt that such a discovery could bear significant commercial value and would be entitled to patent protection. Jones, however, was measuring neutron flux, which was not of commercial interest. To avoid future problems, the teams appeared to agree to publish their results simultaneously, though their accounts of their 6 March meeting differ.

Announcement

In mid-March 1989, both research teams were ready to publish their findings, and Fleischmann and Jones had agreed to meet at an airport on 24 March to send their papers to Nature via FedEx. Fleischmann and Pons, however, pressured by the University of Utah, which wanted to establish priority on the discovery, broke their apparent agreement, disclosing their work at a press conference on 23 March (they claimed in the press release that it would be published in Nature but instead submitted their paper to the Journal of Electroanalytical Chemistry). Jones, upset, faxed in his paper to Nature after the press conference.

Fleischmann and Pons' announcement drew wide media attention, as well as attention from the scientific community. The 1986 discovery of high-temperature superconductivity had made scientists more open to revelations of unexpected but potentially momentous scientific results that could be replicated reliably even if they could not be explained by established theories. Many scientists were also reminded of the Mössbauer effect, a process involving nuclear transitions in a solid. Its discovery 30 years earlier had also been unexpected, though it was quickly replicated and explained within the existing physics framework.

The announcement of a new purported clean source of energy came at a crucial time: adults still remembered the 1973 oil crisis and the problems caused by oil dependence, anthropogenic global warming was starting to become notorious, the anti-nuclear movement was labeling nuclear power plants as dangerous and getting them closed, people had in mind the consequences of strip mining, acid rain, the greenhouse effect and the Exxon Valdez oil spill, which happened the day after the announcement. In the press conference, Chase N. Peterson, Fleischmann and Pons, backed by the solidity of their scientific credentials, repeatedly assured the journalists that cold fusion would solve environmental problems, and would provide a limitless inexhaustible source of clean energy, using only seawater as fuel. They said the results had been confirmed dozens of times and they had no doubts about them. In the accompanying press release Fleischmann was quoted saying: "What we have done is to open the door of a new research area, our indications are that the discovery will be relatively easy to make into a usable technology for generating heat and power, but continued work is needed, first, to further understand the science and secondly, to determine its value to energy economics."

Response and fallout

Although the experimental protocol had not been published, physicists in several countries attempted, and failed, to replicate the excess heat phenomenon. The first paper submitted to Nature reproducing excess heat, although it passed peer review, was rejected because most similar experiments were negative and there were no theories that could explain a positive result; this paper was later accepted for publication by the journal Fusion Technology.

Nathan Lewis, professor of chemistry at the California Institute of Technology, led one of the most ambitious validation efforts, trying many variations on the experiment without success, while CERN physicist Douglas R. O. Morrison said that "essentially all" attempts in Western Europe had failed. Even those reporting success had difficulty reproducing Fleischmann and Pons' results. On 10 April 1989, a group at Texas A&M University published results of excess heat and later that day a group at the Georgia Institute of Technology announced neutron production—the strongest replication announced up to that point due to the detection of neutrons and the reputation of the lab. On 12 April Pons was acclaimed at an ACS meeting. But Georgia Tech retracted their announcement on 13 April, explaining that their neutron detectors gave false positives when exposed to heat.

Another attempt at independent replication, headed by Robert Huggins at Stanford University, which also reported early success with a light water control, became the only scientific support for cold fusion in 26 April US Congress hearings. But when he finally presented his results he reported an excess heat of only one degree Celsius, a result that could be explained by chemical differences between heavy and light water in the presence of lithium. He had not tried to measure any radiation and his research was derided by scientists who saw it later. For the next six weeks, competing claims, counterclaims, and suggested explanations kept what was referred to as "cold fusion" or "fusion confusion" in the news.

In April 1989, Fleischmann and Pons published a "preliminary note" in the Journal of Electroanalytical Chemistry. This paper notably showed a gamma peak without its corresponding Compton edge, which indicated they had made a mistake in claiming evidence of fusion byproducts. Fleischmann and Pons replied to this critique, but the only thing left clear was that no gamma ray had been registered and that Fleischmann refused to recognize any mistakes in the data. A much longer paper published a year later went into details of calorimetry but did not include any nuclear measurements.

Nevertheless, Fleischmann and Pons and a number of other researchers who found positive results remained convinced of their findings. The University of Utah asked Congress to provide $25 million to pursue the research, and Pons was scheduled to meet with representatives of President Bush in early May.

On 30 April 1989, cold fusion was declared dead by The New York Times. The Times called it a circus the same day, and the Boston Herald attacked cold fusion the following day.

On 1 May 1989, the American Physical Society held a session on cold fusion in Baltimore, including many reports of experiments that failed to produce evidence of cold fusion. At the end of the session, eight of the nine leading speakers stated that they considered the initial Fleischmann and Pons claim dead, with the ninth, Johann Rafelski, abstaining. Steven E. Koonin of Caltech called the Utah report a result of "the incompetence and delusion of Pons and Fleischmann," which was met with a standing ovation. Douglas R. O. Morrison, a physicist representing CERN, was the first to call the episode an example of pathological science. On 4 May, due to all this new criticism, the meetings with various representatives from Washington were cancelled.

From 8 May, only the A&M tritium results kept cold fusion afloat.

In July and November 1989, Nature published papers critical of cold fusion claims. Negative results were also published in several other scientific journals including Science, Physical Review Letters, and Physical Review C (nuclear physics). In August 1989, in spite of this trend, the state of Utah invested $4.5 million to create the National Cold Fusion Institute.

The United States Department of Energy organized a special panel to review cold fusion theory and research. The panel issued its report in November 1989, concluding that results as of that date did not present convincing evidence that useful sources of energy would result from the phenomena attributed to cold fusion. The panel noted the large number of failures to replicate excess heat and the greater inconsistency of reports of nuclear reaction byproducts expected by established conjecture. Nuclear fusion of the type postulated would be inconsistent with current understanding and, if verified, would require established conjecture, perhaps even theory itself, to be extended in an unexpected way. The panel was against special funding for cold fusion research, but supported modest funding of "focused experiments within the general funding system".

Cold fusion supporters continued to argue that the evidence for excess heat was strong, and in September 1990 the National Cold Fusion Institute listed 92 groups of researchers from 10 countries that had reported corroborating evidence of excess heat, but they refused to provide any evidence of their own arguing that it could endanger their patents. However, no further DOE nor NSF funding resulted from the panel's recommendation. By this point, however, academic consensus had moved decidedly toward labeling cold fusion as a kind of "pathological science".

In March 1990, Michael H. Salamon, a physicist from the University of Utah, and nine co-authors reported negative results. University faculty were then "stunned" when a lawyer representing Pons and Fleischmann demanded the Salamon paper be retracted under threat of a lawsuit. The lawyer later apologized; Fleischmann defended the threat as a legitimate reaction to alleged bias displayed by cold-fusion critics.

In early May 1990, one of the two A&M researchers, Kevin Wolf, acknowledged the possibility of spiking, but said that the most likely explanation was tritium contamination in the palladium electrodes or simply contamination due to sloppy work. In June 1990 an article in Science by science writer Gary Taubes destroyed the public credibility of the A&M tritium results when it accused its group leader John Bockris and one of his graduate students of spiking the cells with tritium. In October 1990 Wolf finally said that the results were explained by tritium contamination in the rods. An A&M cold fusion review panel found that the tritium evidence was not convincing and that, while they couldn't rule out spiking, contamination and measurements problems were more likely explanations, and Bockris never got support from his faculty to resume his research.

On 30 June 1991, the National Cold Fusion Institute closed after it ran out of funds; it found no excess heat, and its reports of tritium production were met with indifference.

On 1 January 1991, Pons left the University of Utah and went to Europe. In 1992, Pons and Fleischmann resumed research with Toyota Motor Corporation's IMRA lab in France. Fleischmann left for England in 1995, and the contract with Pons was not renewed in 1998 after spending $40 million with no tangible results. The IMRA laboratory stopped cold fusion research in 1998 after spending £12 million. Pons has made no public declarations since, and only Fleischmann continued giving talks and publishing papers.

Mostly in the 1990s, several books were published that were critical of cold fusion research methods and the conduct of cold fusion researchers. Over the years, several books have appeared that defended them. Around 1998, the University of Utah had already dropped its research after spending over $1 million, and in the summer of 1997, Japan cut off research and closed its own lab after spending $20 million.

Later research

A 1991 review by a cold fusion proponent had calculated "about 600 scientists" were still conducting research. After 1991, cold fusion research only continued in relative obscurity, conducted by groups that had increasing difficulty securing public funding and keeping programs open. These small but committed groups of cold fusion researchers have continued to conduct experiments using Fleischmann and Pons electrolysis setups in spite of the rejection by the mainstream community. The Boston Globe estimated in 2004 that there were only 100 to 200 researchers working in the field, most suffering damage to their reputation and career. Since the main controversy over Pons and Fleischmann had ended, cold fusion research has been funded by private and small governmental scientific investment funds in the United States, Italy, Japan, and India. For example, it was reported in Nature, in May, 2019, that Google had spent approximately $10 million on cold fusion research. A group of scientists at well-known research labs (e.g., MIT, Lawrence Berkeley National Lab, and others) worked for several years to establish experimental protocols and measurement techniques in an effort to re-evaluate cold fusion to a high standard of scientific rigor. Their reported conclusion: no cold fusion.

In 2021, following Nature's 2019 publication of anomalous findings that might only be explained by some localized fusion, scientists at the Naval Surface Warfare Center, Indian Head Division announced that they had assembled a group of scientists from the Navy, Army and National Institute of Standards and Technology to undertake a new, coordinated study. With few exceptions, researchers have had difficulty publishing in mainstream journals. The remaining researchers often term their field Low Energy Nuclear Reactions (LENR), Chemically Assisted Nuclear Reactions (CANR), Lattice Assisted Nuclear Reactions (LANR), Condensed Matter Nuclear Science (CMNS) or Lattice Enabled Nuclear Reactions; one of the reasons being to avoid the negative connotations associated with "cold fusion". The new names avoid making bold implications, like implying that fusion is actually occurring.

The researchers who continue their investigations acknowledge that the flaws in the original announcement are the main cause of the subject's marginalization, and they complain of a chronic lack of funding and no possibilities of getting their work published in the highest impact journals. University researchers are often unwilling to investigate cold fusion because they would be ridiculed by their colleagues and their professional careers would be at risk. In 1994, David Goodstein, a professor of physics at Caltech, advocated increased attention from mainstream researchers and described cold fusion as:

A pariah field, cast out by the scientific establishment. Between cold fusion and respectable science there is virtually no communication at all. Cold fusion papers are almost never published in refereed scientific journals, with the result that those works don't receive the normal critical scrutiny that science requires. On the other hand, because the Cold-Fusioners see themselves as a community under siege, there is little internal criticism. Experiments and theories tend to be accepted at face value, for fear of providing even more fuel for external critics, if anyone outside the group was bothering to listen. In these circumstances, crackpots flourish, making matters worse for those who believe that there is serious science going on here.

United States

Cold fusion apparatus at the Space and Naval Warfare Systems Center San Diego (2005)

United States Navy researchers at the Space and Naval Warfare Systems Center (SPAWAR) in San Diego have been studying cold fusion since 1989. In 2002 they released a two-volume report, "Thermal and nuclear aspects of the Pd/D2O system", with a plea for funding. This and other published papers prompted a 2004 Department of Energy (DOE) review.

2004 DOE panel

In August 2003, the U.S. Secretary of Energy, Spencer Abraham, ordered the DOE to organize a second review of the field. This was thanks to an April 2003 letter sent by MIT's Peter L. Hagelstein, and the publication of many new papers, including the Italian ENEA and other researchers in the 2003 International Cold Fusion Conference, and a two-volume book by U.S. SPAWAR in 2002. Cold fusion researchers were asked to present a review document of all the evidence since the 1989 review. The report was released in 2004. The reviewers were "split approximately evenly" on whether the experiments had produced energy in the form of heat, but "most reviewers, even those who accepted the evidence for excess power production, 'stated that the effects are not repeatable, the magnitude of the effect has not increased in over a decade of work, and that many of the reported experiments were not well documented'". In summary, reviewers found that cold fusion evidence was still not convincing 15 years later, and they did not recommend a federal research program. They only recommended that agencies consider funding individual well-thought studies in specific areas where research "could be helpful in resolving some of the controversies in the field". They summarized its conclusions thus:

While significant progress has been made in the sophistication of calorimeters since the review of this subject in 1989, the conclusions reached by the reviewers today are similar to those found in the 1989 review.

The current reviewers identified a number of basic science research areas that could be helpful in resolving some of the controversies in the field, two of which were: 1) material science aspects of deuterated metals using modern characterization techniques, and 2) the study of particles reportedly emitted from deuterated foils using state-of-the-art apparatus and methods. The reviewers believed that this field would benefit from the peer-review processes associated with proposal submission to agencies and paper submission to archival journals.

— Report of the Review of Low Energy Nuclear Reactions, US Department of Energy, December 2004

Cold fusion researchers placed a "rosier spin" on the report, noting that they were finally being treated like normal scientists, and that the report had increased interest in the field and caused "a huge upswing in interest in funding cold fusion research". However, in a 2009 BBC article on an American Chemical Society's meeting on cold fusion, particle physicist Frank Close was quoted stating that the problems that plagued the original cold fusion announcement were still happening: results from studies are still not being independently verified and inexplicable phenomena encountered are being labelled as "cold fusion" even if they are not, in order to attract the attention of journalists.

In February 2012, millionaire Sidney Kimmel, convinced that cold fusion was worth investing in by a 19 April 2009 interview with physicist Robert Duncan on the US news show 60 Minutes, made a grant of $5.5 million to the University of Missouri to establish the Sidney Kimmel Institute for Nuclear Renaissance (SKINR). The grant was intended to support research into the interactions of hydrogen with palladium, nickel or platinum under extreme conditions. In March 2013 Graham K. Hubler, a nuclear physicist who worked for the Naval Research Laboratory for 40 years, was named director. One of the SKINR projects is to replicate a 1991 experiment in which a professor associated with the project, Mark Prelas, says bursts of millions of neutrons a second were recorded, which was stopped because "his research account had been frozen". He claims that the new experiment has already seen "neutron emissions at similar levels to the 1991 observation".

In May 2016, the United States House Committee on Armed Services, in its report on the 2017 National Defense Authorization Act, directed the Secretary of Defense to "provide a briefing on the military utility of recent U.S. industrial base LENR advancements to the House Committee on Armed Services by September 22, 2016".

Italy

Since the Fleischmann and Pons announcement, the Italian national agency for new technologies, energy and sustainable economic development (ENEA) has funded Franco Scaramuzzi's research into whether excess heat can be measured from metals loaded with deuterium gas. Such research is distributed across ENEA departments, CNR laboratories, INFN, universities and industrial laboratories in Italy, where the group continues to try to achieve reliable reproducibility (i.e. getting the phenomenon to happen in every cell, and inside a certain frame of time). In 2006–2007, the ENEA started a research program which claimed to have found excess power of up to 500 percent, and in 2009, ENEA hosted the 15th cold fusion conference.

Japan

Between 1992 and 1997, Japan's Ministry of International Trade and Industry sponsored a "New Hydrogen Energy (NHE)" program of US$20 million to research cold fusion. Announcing the end of the program in 1997, the director and one-time proponent of cold fusion research Hideo Ikegami stated "We couldn't achieve what was first claimed in terms of cold fusion. (...) We can't find any reason to propose more money for the coming year or for the future." In 1999 the Japan C-F Research Society was established to promote the independent research into cold fusion that continued in Japan. The society holds annual meetings. Perhaps the most famous Japanese cold fusion researcher was Yoshiaki Arata, from Osaka University, who claimed in a demonstration to produce excess heat when deuterium gas was introduced into a cell containing a mixture of palladium and zirconium oxide, a claim supported by fellow Japanese researcher Akira Kitamura of Kobe University and Michael McKubre at SRI.

India

In the 1990s, India stopped its research in cold fusion at the Bhabha Atomic Research Centre because of the lack of consensus among mainstream scientists and the US denunciation of the research. Yet, in 2008, the National Institute of Advanced Studies recommended that the Indian government revive this research. Projects were commenced at Chennai's Indian Institute of Technology, the Bhabha Atomic Research Centre and the Indira Gandhi Centre for Atomic Research. However, there is still skepticism among scientists and, for all practical purposes, research has stalled since the 1990s. A special section in the Indian multidisciplinary journal Current Science published 33 cold fusion papers in 2015 by major cold fusion researchers including several Indian researchers.

Reported results

A cold fusion experiment usually includes:

Electrolysis cells can be either open cell or closed cell. In open cell systems, the electrolysis products, which are gaseous, are allowed to leave the cell. In closed cell experiments, the products are captured, for example by catalytically recombining the products in a separate part of the experimental system. These experiments generally strive for a steady state condition, with the electrolyte being replaced periodically. There are also "heat-after-death" experiments, where the evolution of heat is monitored after the electric current is turned off.

The most basic setup of a cold fusion cell consists of two electrodes submerged in a solution containing palladium and heavy water. The electrodes are then connected to a power source to transmit electricity from one electrode to the other through the solution. Even when anomalous heat is reported, it can take weeks for it to begin to appear—this is known as the "loading time," the time required to saturate the palladium electrode with hydrogen (see "Loading ratio" section).

The Fleischmann and Pons early findings regarding helium, neutron radiation and tritium were never replicated satisfactorily, and its levels were too low for the claimed heat production and inconsistent with each other. Neutron radiation has been reported in cold fusion experiments at very low levels using different kinds of detectors, but levels were too low, close to background, and found too infrequently to provide useful information about possible nuclear processes.

Excess heat and energy production

An excess heat observation is based on an energy balance. Various sources of energy input and output are continuously measured. Under normal conditions, the energy input can be matched to the energy output to within experimental error. In experiments such as those run by Fleischmann and Pons, an electrolysis cell operating steadily at one temperature transitions to operating at a higher temperature with no increase in applied current. If the higher temperatures were real, and not an experimental artifact, the energy balance would show an unaccounted term. In the Fleischmann and Pons experiments, the rate of inferred excess heat generation was in the range of 10–20% of total input, though this could not be reliably replicated by most researchers. Researcher Nathan Lewis discovered that the excess heat in Fleischmann and Pons's original paper was not measured, but estimated from measurements that didn't have any excess heat.

Unable to produce excess heat or neutrons, and with positive experiments being plagued by errors and giving disparate results, most researchers declared that heat production was not a real effect and ceased working on the experiments. In 1993, after their original report, Fleischmann reported "heat-after-death" experiments—where excess heat was measured after the electric current supplied to the electrolytic cell was turned off. This type of report has also become part of subsequent cold fusion claims.

Helium, heavy elements, and neutrons

"Triple tracks" in a CR-39 plastic radiation detector claimed as evidence for neutron emission from palladium deuteride

Known instances of nuclear reactions, aside from producing energy, also produce nucleons and particles on readily observable ballistic trajectories. In support of their claim that nuclear reactions took place in their electrolytic cells, Fleischmann and Pons reported a neutron flux of 4,000 neutrons per second, as well as detection of tritium. The classical branching ratio for previously known fusion reactions that produce tritium would predict, with 1 watt of power, the production of 10 neutrons per second, levels that would have been fatal to the researchers. In 2009, Mosier-Boss et al. reported what they called the first scientific report of highly energetic neutrons, using CR-39 plastic radiation detectors, but the claims cannot be validated without a quantitative analysis of neutrons.

Several medium and heavy elements like calcium, titanium, chromium, manganese, iron, cobalt, copper and zinc have been reported as detected by several researchers, like Tadahiko Mizuno or George Miley. The report presented to the United States Department of Energy (DOE) in 2004 indicated that deuterium-loaded foils could be used to detect fusion reaction products and, although the reviewers found the evidence presented to them as inconclusive, they indicated that those experiments did not use state-of-the-art techniques.

In response to doubts about the lack of nuclear products, cold fusion researchers have tried to capture and measure nuclear products correlated with excess heat. Considerable attention has been given to measuring He production. However, the reported levels are very near to background, so contamination by trace amounts of helium normally present in the air cannot be ruled out. In the report presented to the DOE in 2004, the reviewers' opinion was divided on the evidence for He, with the most negative reviews concluding that although the amounts detected were above background levels, they were very close to them and therefore could be caused by contamination from air.

One of the main criticisms of cold fusion was that deuteron-deuteron fusion into helium was expected to result in the production of gamma rays—which were not observed and were not observed in subsequent cold fusion experiments. Cold fusion researchers have since claimed to find X-rays, helium, neutrons and nuclear transmutations. Some researchers also claim to have found them using only light water and nickel cathodes. The 2004 DOE panel expressed concerns about the poor quality of the theoretical framework cold fusion proponents presented to account for the lack of gamma rays.

Proposed mechanisms

Researchers in the field do not agree on a theory for cold fusion. One proposal considers that hydrogen and its isotopes can be absorbed in certain solids, including palladium hydride, at high densities. This creates a high partial pressure, reducing the average separation of hydrogen isotopes. However, the reduction in separation is not enough to create the fusion rates claimed in the original experiment, by a factor of ten. It was also proposed that a higher density of hydrogen inside the palladium and a lower potential barrier could raise the possibility of fusion at lower temperatures than expected from a simple application of Coulomb's law. Electron screening of the positive hydrogen nuclei by the negative electrons in the palladium lattice was suggested to the 2004 DOE commission, but the panel found the theoretical explanations not convincing and inconsistent with current physics theories.

Criticism

Criticism of cold fusion claims generally take one of two forms: either pointing out the theoretical implausibility that fusion reactions have occurred in electrolysis setups or criticizing the excess heat measurements as being spurious, erroneous, or due to poor methodology or controls. There are several reasons why known fusion reactions are an unlikely explanation for the excess heat and associated cold fusion claims.

Repulsion forces

Because nuclei are all positively charged, they strongly repel one another. Normally, in the absence of a catalyst such as a muon, very high kinetic energies are required to overcome this charged repulsion. Extrapolating from known fusion rates, the rate for uncatalyzed fusion at room-temperature energy would be 50 orders of magnitude lower than needed to account for the reported excess heat. In muon-catalyzed fusion there are more fusions because the presence of the muon causes deuterium nuclei to be 207 times closer than in ordinary deuterium gas. But deuterium nuclei inside a palladium lattice are further apart than in deuterium gas, and there should be fewer fusion reactions, not more.

Paneth and Peters in the 1920s already knew that palladium can absorb up to 900 times its own volume of hydrogen gas, storing it at several thousands of times the atmospheric pressure. This led them to believe that they could increase the nuclear fusion rate by simply loading palladium rods with hydrogen gas. Tandberg then tried the same experiment but used electrolysis to make palladium absorb more deuterium and force the deuterium further together inside the rods, thus anticipating the main elements of Fleischmann and Pons' experiment. They all hoped that pairs of hydrogen nuclei would fuse together to form helium, which at the time was needed in Germany to fill zeppelins, but no evidence of helium or of increased fusion rate was ever found.

This was also the belief of geologist Palmer, who convinced Steven Jones that the helium-3 occurring naturally in Earth perhaps came from fusion involving hydrogen isotopes inside catalysts like nickel and palladium. This led their team in 1986 to independently make the same experimental setup as Fleischmann and Pons (a palladium cathode submerged in heavy water, absorbing deuterium via electrolysis). Fleischmann and Pons had much the same belief, but they calculated the pressure to be of 10 atmospheres, when cold fusion experiments achieve a loading ratio of only one to one, which has only between 10,000 and 20,000 atmospheres. John R. Huizenga says they had misinterpreted the Nernst equation, leading them to believe that there was enough pressure to bring deuterons so close to each other that there would be spontaneous fusions.

Lack of expected reaction products

Conventional deuteron fusion is a two-step process, in which an unstable high-energy intermediary is formed:

H + H → He + 24 MeV

Experiments have shown only three decay pathways for this excited-state nucleus, with the branching ratio showing the probability that any given intermediate follows a particular pathway. The products formed via these decay pathways are:

He → n + He + 3.3 MeV (ratio=50%)
He → p + H + 4.0 MeV (ratio=50%)
He → He + γ + 24 MeV (ratio=10)

Only about one in a million of the intermediaries take the third pathway, making its products very rare compared to the other paths. This result is consistent with the predictions of the Bohr model. If 1 watt (6.242 × 10 eV/s) were produced from ~2.2575 × 10 deuteron fusions per second, with the known branching ratios, the resulting neutrons and tritium (H) would be easily measured. Some researchers reported detecting He but without the expected neutron or tritium production; such a result would require branching ratios strongly favouring the third pathway, with the actual rates of the first two pathways lower by at least five orders of magnitude than observations from other experiments, directly contradicting both theoretically predicted and observed branching probabilities. Those reports of He production did not include detection of gamma rays, which would require the third pathway to have been changed somehow so that gamma rays are no longer emitted.

The known rate of the decay process together with the inter-atomic spacing in a metallic crystal makes heat transfer of the 24 MeV excess energy into the host metal lattice prior to the intermediary's decay inexplicable by conventional understandings of momentum and energy transfer, and even then there would be measurable levels of radiation. Also, experiments indicate that the ratios of deuterium fusion remain constant at different energies. In general, pressure and chemical environment cause only small changes to fusion ratios. An early explanation invoked the Oppenheimer–Phillips process at low energies, but its magnitude was too small to explain the altered ratios.

Setup of experiments

Cold fusion setups utilize an input power source (to ostensibly provide activation energy), a platinum group electrode, a deuterium or hydrogen source, a calorimeter, and, at times, detectors to look for byproducts such as helium or neutrons. Critics have variously taken issue with each of these aspects and have asserted that there has not yet been a consistent reproduction of claimed cold fusion results in either energy output or byproducts. Some cold fusion researchers who claim that they can consistently measure an excess heat effect have argued that the apparent lack of reproducibility might be attributable to a lack of quality control in the electrode metal or the amount of hydrogen or deuterium loaded in the system. Critics have further taken issue with what they describe as mistakes or errors of interpretation that cold fusion researchers have made in calorimetry analyses and energy budgets.

Reproducibility

In 1989, after Fleischmann and Pons had made their claims, many research groups tried to reproduce the Fleischmann-Pons experiment, without success. A few other research groups, however, reported successful reproductions of cold fusion during this time. In July 1989, an Indian group from the Bhabha Atomic Research Centre (P. K. Iyengar and M. Srinivasan) and in October 1989, John Bockris' group from Texas A&M University reported on the creation of tritium. In December 1990, professor Richard Oriani of the University of Minnesota reported excess heat.

Groups that did report successes found that some of their cells were producing the effect, while other cells that were built exactly the same and used the same materials were not producing the effect. Researchers that continued to work on the topic have claimed that over the years many successful replications have been made, but still have problems getting reliable replications. Reproducibility is one of the main principles of the scientific method, and its lack led most physicists to believe that the few positive reports could be attributed to experimental error. The DOE 2004 report said among its conclusions and recommendations:

Ordinarily, new scientific discoveries are claimed to be consistent and reproducible; as a result, if the experiments are not complicated, the discovery can usually be confirmed or disproved in a few months. The claims of cold fusion, however, are unusual in that even the strongest proponents of cold fusion assert that the experiments, for unknown reasons, are not consistent and reproducible at the present time. (...) Internal inconsistencies and lack of predictability and reproducibility remain serious concerns. (...) The Panel recommends that the cold fusion research efforts in the area of heat production focus primarily on confirming or disproving reports of excess heat.

Loading ratio
Michael McKubre working on deuterium gas-based cold fusion cell used by SRI International

Cold fusion researchers (McKubre since 1994, ENEA in 2011) have speculated that a cell that is loaded with a deuterium/palladium ratio lower than 100% (or 1:1) will not produce excess heat. Since most of the negative replications from 1989 to 1990 did not report their ratios, this has been proposed as an explanation for failed reproducibility. This loading ratio is hard to obtain, and some batches of palladium never reach it because the pressure causes cracks in the palladium, allowing the deuterium to escape. Fleischmann and Pons never disclosed the deuterium/palladium ratio achieved in their cells; there are no longer any batches of the palladium used by Fleischmann and Pons (because the supplier now uses a different manufacturing process), and researchers still have problems finding batches of palladium that achieve heat production reliably.

Misinterpretation of data

Some research groups initially reported that they had replicated the Fleischmann and Pons results but later retracted their reports and offered an alternative explanation for their original positive results. A group at Georgia Tech found problems with their neutron detector, and Texas A&M discovered bad wiring in their thermometers. These retractions, combined with negative results from some famous laboratories, led most scientists to conclude, as early as 1989, that no positive result should be attributed to cold fusion.

Calorimetry errors

The calculation of excess heat in electrochemical cells involves certain assumptions. Errors in these assumptions have been offered as non-nuclear explanations for excess heat.

One assumption made by Fleischmann and Pons is that the efficiency of electrolysis is nearly 100%, meaning nearly all the electricity applied to the cell resulted in electrolysis of water, with negligible resistive heating and substantially all the electrolysis product leaving the cell unchanged. This assumption gives the amount of energy expended converting liquid D2O into gaseous D2 and O2. The efficiency of electrolysis is less than one if hydrogen and oxygen recombine to a significant extent within the calorimeter. Several researchers have described potential mechanisms by which this process could occur and thereby account for excess heat in electrolysis experiments.

Another assumption is that heat loss from the calorimeter maintains the same relationship with measured temperature as found when calibrating the calorimeter. This assumption ceases to be accurate if the temperature distribution within the cell becomes significantly altered from the condition under which calibration measurements were made. This can happen, for example, if fluid circulation within the cell becomes significantly altered. Recombination of hydrogen and oxygen within the calorimeter would also alter the heat distribution and invalidate the calibration.

Publications

The ISI identified cold fusion as the scientific topic with the largest number of published papers in 1989, of all scientific disciplines. The Nobel Laureate Julian Schwinger declared himself a supporter of cold fusion in the fall of 1989, after much of the response to the initial reports had turned negative. He tried to publish his theoretical paper "Cold Fusion: A Hypothesis" in Physical Review Letters, but the peer reviewers rejected it so harshly that he felt deeply insulted, and he resigned from the American Physical Society (publisher of PRL) in protest.

The number of papers sharply declined after 1990 because of two simultaneous phenomena: first, scientists abandoned the field; second, journal editors declined to review new papers. Consequently, cold fusion fell off the ISI charts. Researchers who got negative results turned their backs on the field; those who continued to publish were simply ignored. A 1993 paper in Physics Letters A was the last paper published by Fleischmann, and "one of the last reports to be formally challenged on technical grounds by a cold fusion skeptic."

The Journal of Fusion Technology (FT) established a permanent feature in 1990 for cold fusion papers, publishing over a dozen papers per year and giving a mainstream outlet for cold fusion researchers. When editor-in-chief George H. Miley retired in 2001, the journal stopped accepting new cold fusion papers. This has been cited as an example of the importance of sympathetic influential individuals to the publication of cold fusion papers in certain journals.

The decline of publications in cold fusion has been described as a "failed information epidemic". The sudden surge of supporters until roughly 50% of scientists support the theory, followed by a decline until there is only a very small number of supporters, has been described as a characteristic of pathological science. The lack of a shared set of unifying concepts and techniques has prevented the creation of a dense network of collaboration in the field; researchers perform efforts in their own and in disparate directions, making the transition to "normal" science more difficult.

Cold fusion reports continued to be published in a few journals like Journal of Electroanalytical Chemistry and Il Nuovo Cimento. Some papers also appeared in Journal of Physical Chemistry, Physics Letters A, International Journal of Hydrogen Energy, and a number of Japanese and Russian journals of physics, chemistry, and engineering. Since 2005, Naturwissenschaften has published cold fusion papers; in 2009, the journal named a cold fusion researcher to its editorial board. In 2015 the Indian multidisciplinary journal Current Science published a special section devoted entirely to cold fusion related papers.

In the 1990s, the groups that continued to research cold fusion and their supporters established (non-peer-reviewed) periodicals such as Fusion Facts, Cold Fusion Magazine, Infinite Energy Magazine and New Energy Times to cover developments in cold fusion and other fringe claims in energy production that were ignored in other venues. The internet has also become a major means of communication and self-publication for CF researchers.

Conferences

Cold fusion researchers were for many years unable to get papers accepted at scientific meetings, prompting the creation of their own conferences. The International Conference on Cold Fusion (ICCF) was first held in 1990 and has met every 12 to 18 months since. Attendees at some of the early conferences were described as offering no criticism to papers and presentations for fear of giving ammunition to external critics, thus allowing the proliferation of crackpots and hampering the conduct of serious science. Critics and skeptics stopped attending these conferences, with the notable exception of Douglas Morrison, who died in 2001. With the founding in 2004 of the International Society for Condensed Matter Nuclear Science (ISCMNS), the conference was renamed the International Conference on Condensed Matter Nuclear Science—for reasons that are detailed in the subsequent research section above—but reverted to the old name in 2008. Cold fusion research is often referenced by proponents as "low-energy nuclear reactions", or LENR, but according to sociologist Bart Simon the "cold fusion" label continues to serve a social function in creating a collective identity for the field.

Since 2006, the American Physical Society (APS) has included cold fusion sessions at their semiannual meetings, clarifying that this does not imply a softening of skepticism. Since 2007, the American Chemical Society (ACS) meetings also include "invited symposium(s)" on cold fusion. An ACS program chair, Gopal Coimbatore, said that without a proper forum the matter would never be discussed and, "with the world facing an energy crisis, it is worth exploring all possibilities."

On 22–25 March 2009, the American Chemical Society meeting included a four-day symposium in conjunction with the 20th anniversary of the announcement of cold fusion. Researchers working at the U.S. Navy's Space and Naval Warfare Systems Center (SPAWAR) reported detection of energetic neutrons using a heavy water electrolysis setup and a CR-39 detector, a result previously published in Naturwissenschaften. The authors claim that these neutrons are indicative of nuclear reactions. Without quantitative analysis of the number, energy, and timing of the neutrons and exclusion of other potential sources, this interpretation is unlikely to find acceptance by the wider scientific community.

Patents

Although details have not surfaced, it appears that the University of Utah forced the 23 March 1989 Fleischmann and Pons announcement to establish priority over the discovery and its patents before the joint publication with Jones. The Massachusetts Institute of Technology (MIT) announced on 12 April 1989 that it had applied for its own patents based on theoretical work of one of its researchers, Peter L. Hagelstein, who had been sending papers to journals from 5 to 12 April. An MIT graduate student applied for a patent but was reportedly rejected by the USPTO in part by the citation of the "negative" MIT Plasma Fusion Center's cold fusion experiment of 1989. On 2 December 1993 the University of Utah licensed all its cold fusion patents to ENECO, a new company created to profit from cold fusion discoveries, and in March 1998 it said that it would no longer defend its patents.

The U.S. Patent and Trademark Office (USPTO) now rejects patents claiming cold fusion. Esther Kepplinger, the deputy commissioner of patents in 2004, said that this was done using the same argument as with perpetual motion machines: that they do not work. Patent applications are required to show that the invention is "useful", and this utility is dependent on the invention's ability to function. In general USPTO rejections on the sole grounds of the invention's being "inoperative" are rare, since such rejections need to demonstrate "proof of total incapacity", and cases where those rejections are upheld in a Federal Court are even rarer: nevertheless, in 2000, a rejection of a cold fusion patent was appealed in a Federal Court and it was upheld, in part on the grounds that the inventor was unable to establish the utility of the invention.

A U.S. patent might still be granted when given a different name to disassociate it from cold fusion, though this strategy has had little success in the US: the same claims that need to be patented can identify it with cold fusion, and most of these patents cannot avoid mentioning Fleischmann and Pons' research due to legal constraints, thus alerting the patent reviewer that it is a cold-fusion-related patent. David Voss said in 1999 that some patents that closely resemble cold fusion processes, and that use materials used in cold fusion, have been granted by the USPTO. The inventor of three such patents had his applications initially rejected when they were reviewed by experts in nuclear science; but then he rewrote the patents to focus more on the electrochemical parts so they would be reviewed instead by experts in electrochemistry, who approved them. When asked about the resemblance to cold fusion, the patent holder said that it used nuclear processes involving "new nuclear physics" unrelated to cold fusion. Melvin Miles was granted in 2004 a patent for a cold fusion device, and in 2007 he described his efforts to remove all instances of "cold fusion" from the patent description to avoid having it rejected outright.

At least one patent related to cold fusion has been granted by the European Patent Office.

A patent only legally prevents others from using or benefiting from one's invention. However, the general public perceives a patent as a stamp of approval, and a holder of three cold fusion patents said the patents were very valuable and had helped in getting investments.

Cultural references

A 1990 Michael Winner film Bullseye!, starring Michael Caine and Roger Moore, referenced the Fleischmann and Pons experiment. The film – a comedy – concerned conmen trying to steal scientists' purported findings. However, the film had a poor reception, described as "appallingly unfunny".

In Undead Science, sociologist Bart Simon gives some examples of cold fusion in popular culture, saying that some scientists use cold fusion as a synonym for outrageous claims made with no supporting proof, and courses of ethics in science give it as an example of pathological science. It has appeared as a joke in Murphy Brown and The Simpsons. It was adopted as a software product name Adobe ColdFusion and a brand of protein bars (Cold Fusion Foods). It has also appeared in advertising as a synonym for impossible science, for example a 1995 advertisement for Pepsi Max.

The plot of The Saint, a 1997 action-adventure film, parallels the story of Fleischmann and Pons, although with a different ending. In Undead Science, Simon posits that film might have affected the public perception of cold fusion, pushing it further into the science fiction realm.

Similarly, the tenth episode of 2000 science fiction TV drama Life Force ("Paradise Island") is also based around cold fusion, specifically the efforts of eccentric scientist Hepzibah McKinley (Amanda Walker), who is convinced she has perfected it based on her father's incomplete research into the subject. The episode explores its potential benefits and viability within the ongoing post-apocalyptic global warming scenario of the series.

In the 2023 video game Atomic Heart, cold fusion is responsible for nearly all of the technological advances.

See also

Notes

  1. For example, in 1989, the Economist editorialized that the cold fusion "affair" was "exactly what science should be about."
  2. On 26 January 1990, journal Nature rejected Oriani's paper, citing the lack of nuclear ash and the general difficulty that others had in replication.Beaudette 2002, p. 183 It was later published in Fusion Technology.Oriani et al. 1990, pp. 652–662
  3. Taubes 1993, pp. 228–229, 255 "(...) there are indeed chemical differences between heavy and light water, especially once lithium is added, as it was in the Pons-Fleischmann electrolyte. This had been in the scientific literature since 1958. It seems that the electrical conductivity of heavy water with lithium is considerably less than that of light water with lithium. And this difference is more than enough to account for the heavy water cell running hotter (...) (quoting a member of the A&M group) 'they're making the same mistake we did'"
  4. E.g.:
  5. 1 W = 1 J/s ; 1 J = 6.242 × 10 eV since 1 eV = 1.602 × 10 joule
  6. Sixth criterion of Langmuir: "During the course of the controversy the ratio of supporters to critics rises to near 50% and then falls gradually to oblivion. Langmuir & Hall 1989, pp. 43–44", quoted in Simon 2002, p. 104, paraphrased in Ball 2001, p. 308. It has also been applied to the number of published results, in Huizenga 1993, pp. xi, 207–209 "The ratio of the worldwide positive results on cold fusion to negative results peaked at approximately 50% (...) qualitatively in agreement with Langmuir's sixth criteria."
  7. The first three conferences are commented in detail in Huizenga 1993, pp. 237–247, 274–285, specially 240, 275–277
  8. Swartz, 232 F.3d 862, 56 USPQ2d 1703, (Fed. Cir. 2000). decision Archived 12 March 2008 at the Wayback Machine. Sources:

References

Citations

  1. "60 Minutes: Once Considered Junk Science, Cold Fusion Gets A Second Look By Researchers", CBS, 17 April 2009, archived from the original on 12 February 2012
  2. Fleischmann & Pons 1989, p. 301 ("It is inconceivable that this could be due to anything but nuclear processes... We realise that the results reported here raise more questions than they provide answers...")
  3. ^ Voss 1999a
  4. Browne 1989, para. 1
  5. Browne 1989, Close 1992, Huizenga 1993, Taubes 1993
  6. ^ Browne 1989
  7. ^ Taubes 1993, pp. 262, 265–266, 269–270, 273, 285, 289, 293, 313, 326, 340–344, 364, 366, 404–406, Goodstein 1994, Van Noorden 2007, Kean 2010
  8. ^ Chang, Kenneth (25 March 2004), "US will give cold fusion a second look", The New York Times, retrieved 8 February 2009
  9. Ouellette, Jennifer (23 December 2011), "Could Starships Use Cold Fusion Propulsion?", Discovery News, archived from the original on 7 January 2012
  10. US DOE 2004, Choi 2005, Feder 2005
  11. Goodstein 1994, Labinger & Weininger 2005, p. 1919
  12. ^ Koziol, Michael (22 March 2021). "Whether Cold Fusion or Low-Energy Nuclear Reactions, U.S. Navy Researchers Reopen Case". IEEE Spectrum: Technology, Engineering, and Science News. Retrieved 23 March 2021.
  13. Berlinguette, C.P.; Chiang, YM.; Munday, J.N.; et al. (2019). "Revisiting the cold case of cold fusion". Nature. 570 (7759): 45–51. Bibcode:2019Natur.570...45B. doi:10.1038/s41586-019-1256-6. PMID 31133686. S2CID 167208748.
  14. ^ Broad, William J. (31 October 1989), "Despite Scorn, Team in Utah Still Seeks Cold-Fusion Clues", The New York Times, p. C1
  15. ^ Goodstein 1994, Platt 1998, Voss 1999a, Beaudette 2002, Feder 2005, Adam 2005 "Advocates insist that there is just too much evidence of unusual effects in the thousands of experiments since Pons and Fleischmann to be ignored", Kruglinski 2006, Van Noorden 2007, Alfred 2009. Daley 2004 calculates between 100 and 200 researchers, with damage to their careers.
  16. ^ "'Cold fusion' rebirth? New evidence for existence of controversial energy source", American Chemical Society, archived from the original on 21 December 2014
  17. ^ Hagelstein et al. 2004
  18. "ICMNS FAQ". International Society of Condensed Matter Nuclear Science. Archived from the original on 3 November 2015.
  19. Biberian 2007
  20. ^ US DOE 1989, p. 7
  21. Graham, Thomas (1 January 1866). "On the Absorption and Dialytic Separation of Gases by Colloid Septa". Philosophical Transactions of the Royal Society of London. 156: 399–439. doi:10.1098/rstl.1866.0018. ISSN 0261-0523.
  22. Paneth & Peters 1926
  23. Kall fusion redan på 1920-talet Archived 3 March 2016 at the Wayback Machine, Ny Teknik, Kaianders Sempler, 9 February 2011
  24. ^ Pool 1989, Wilner 1989, Close 1992, pp. 19–21 Huizenga 1993, pp. 13–14, 271, Taubes 1993, p. 214
  25. Huizenga 1993, pp. 13–14
  26. Laurence 1956
  27. ^ Kowalski 2004, II.A2
  28. C. DeW. Van Siclen and S. E. Jones, "Piezonuclear fusion in isotopic hydrogen molecules," J. Phys. G: Nucl. Phys. 12: 213–221 (March 1986).
  29. ^ Fleischmann & Pons 1989, p. 301
  30. ^ Fleischmann et al. 1990
  31. ^ Crease & Samios 1989, p. V1
  32. ^ Lewenstein 1994, pp. 8–9
  33. ^ Shamoo & Resnik 2003, p. 86, Simon 2002, pp. 28–36
  34. ^ Ball, Philip (27 May 2019). "Lessons from cold fusion, 30 years on". Nature. 569 (7758): 601. Bibcode:2019Natur.569..601B. doi:10.1038/d41586-019-01673-x. PMID 31133704.
  35. Footlick, J. K. (1997), Truth and Consequences: how colleges and universities meet public crises, Phoenix: Oryx Press, p. 51, ISBN 978-0-89774-970-1 as cited in Brooks, M (2008), 13 Things That Don't Make Sense, New York: Doubleday, p. 67, ISBN 978-1-60751-666-8
  36. Simon 2002, pp. 57–60, Goodstein 1994
  37. ^ Goodstein 1994
  38. Petit 2009, Park 2000, p. 16
  39. Taubes 1993, pp. xviii–xx, Park 2000, p. 16
  40. Taubes 1993, pp. xx–xxi
  41. Scanlon & Hill 1999, p. 212
  42. Beaudette 2002, pp. 183, 313
  43. Aspaturian, Heidi (14 December 2012). "Interview with Charles A. Barnes on 13 and 26 June 1989". The Caltech Institute Archives. Retrieved 22 August 2014.
  44. ^ Schaffer 1999, p. 2
  45. ^ Broad, William J. (14 April 1989), "Georgia Tech Team Reports Flaw In Critical Experiment on Fusion", The New York Times, retrieved 25 May 2008
  46. Wilford 1989
  47. Broad, William J. 19 April 1989. Stanford Reports Success, The New York Times.
  48. Close 1992, pp. 184, Huizenga 1993, p. 56
  49. Browne 1989, Taubes 1993, pp. 253–255, 339–340, 250
  50. Bowen 1989, Crease & Samios 1989
  51. Tate 1989, p. 1, Platt 1998, Close 1992, pp. 277–288, 362–363, Taubes 1993, pp. 141, 147, 167–171, 243–248, 271–272, 288, Huizenga 1993, pp. 63, 138–139
  52. Fleischmann, Martin; Pons, Stanley; Hawkins, Marvin; Hoffman, R. J (29 June 1989), "Measurement of gamma-rays from cold fusion (letter by Fleischmann et al. and reply by Petrasso et al.)", Nature, 339 (6227): 667, Bibcode:1989Natur.339..667F, doi:10.1038/339667a0, S2CID 4274005
  53. Taubes 1993, pp. 310–314, Close 1992, pp. 286–287, Huizenga 1993, pp. 63, 138–139
  54. Taubes 1993, p. 242 (Boston Herald's is Tate 1989).
  55. Taubes 1993, p. 266
  56. "APS Special Session on Cold Fusion, May 1–2, 1989". ibiblio.org. Archived from the original on 26 July 2008.
  57. Taubes 1993, pp. 267–268
  58. Taubes 1993, pp. 275, 326
  59. Gai et al. 1989, pp. 29–34
  60. Williams et al. 1989, pp. 375–384
  61. Joyce 1990
  62. US DOE 1989, p. 39
  63. US DOE 1989, p. 36
  64. US DOE 1989, p. 37
  65. Huizenga 1993, p. 165
  66. Mallove 1991, pp. 246–248
  67. Rousseau 1992.
  68. Salamon, M. H.; Wrenn, M. E.; Bergeson, H. E.; Crawford, H. C.; et al. (29 March 1990). "Limits on the emission of neutrons, γ-rays, electrons and protons from Pons/Fleischmann electrolytic cells". Nature. 344 (6265): 401–405. Bibcode:1990Natur.344..401S. doi:10.1038/344401a0. S2CID 4369849.
  69. Broad, William J. (30 October 1990). "Cold Fusion Still Escapes Usual Checks Of Science". The New York Times. Archived from the original on 19 December 2013. Retrieved 27 November 2013.
  70. Taubes 1993, pp. 410–411, Close 1992, pp. 270, 322, Huizenga 1993, pp. 118–119, 121–122
  71. Taubes 1993, pp. 410–411, 412, 420, the Science article was Taubes 1990, Huizenga 1993, pp. 122, 127–128.
  72. Huizenga 1993, pp. 122–123
  73. "National Cold Fusion Institute Records, 1988–1991", archived from the original on 17 July 2012
  74. ^ Taubes 1993, p. 424
  75. Huizenga 1993, p. 184
  76. ^ Taubes 1993, pp. 136–138
  77. Close 1992, Taubes 1993, Huizenga 1993, and Park 2000
  78. Mallove 1991, Beaudette 2002, Simon 2002, Kozima 2006
  79. ^ Wired News Staff Email (24 March 1998), "Cold Fusion Patents Run Out of Steam", Wired, archived from the original on 4 January 2014 {{cite magazine}}: |author= has generic name (help)
  80. Huizenga 1993, pp. 210–211 citing Srinivisan, M., "Nuclear Fusion in an Atomic Lattice: An Update on the International Status of Cold Fusion Research", Current Science, 60: 471
  81. ^ Simon 2002, pp. 131–133, 218
  82. Daley 2004
  83. Ball, David (September 2019). "Google funds cold fusion research: Results still negative". Skeptical Inquirer. Amherst, NY: Center for Inquiry.
  84. ^ Mullins 2004
  85. ^ Seife 2008, pp. 154–155
  86. Simon 2002, pp. 131, citing Collins & Pinch 1993, p. 77 in first edition
  87. ^ "Cold fusion debate heats up again", BBC, 23 March 2009, archived from the original on 11 January 2016
  88. Feder 2004, p. 27
  89. Taubes 1993, pp. 292, 352, 358, Goodstein 1994, Adam 2005 (comment attributed to George Miley of the University of Illinois)
  90. ^ Mosier-Boss et al. 2009, Sampson 2009
  91. Szpak, Masier-Boss: Thermal and nuclear aspects of the Pd/D2O system Archived 16 February 2013 at the Wayback Machine, Feb 2002. Reported by Mullins 2004
  92. ^ Brumfiel 2004
  93. ^ Weinberger, Sharon (21 November 2004), "Warming Up to Cold Fusion", The Washington Post, p. W22, archived from the original on 19 November 2016 (page 2 in online version)
  94. ^ "Effetto Fleischmann e Pons: il punto della situazione", Energia Ambiente e Innovazione (in Italian) (3), May–June 2011, archived from the original on 8 August 2012
  95. ^ Feder 2005
  96. ^ US DOE 2004
  97. ^ Janese Silvey, "Billionaire helps fund MU energy research" Archived 15 December 2012 at the Wayback Machine, Columbia Daily Tribune, 10 February 2012
  98. University of Missouri-Columbia "$5.5 million gift aids search for alternative energy. Gift given by Sidney Kimmel Foundation, created by founder of the Jones Group" Archived 5 March 2016 at the Wayback Machine, 10 February 2012, (press release), alternative link
  99. "Sidney Kimmel Foundation awards $5.5 million to MU scientists" Archived 5 March 2012 at the Wayback Machine Allison Pohle, Missourian, 10 February 2012
  100. Christian Basi, Hubler Named Director of Nuclear Renaissance Institute at MU Archived 4 March 2016 at the Wayback Machine, (press release) Missouri University News Bureau, 8 March 2013
  101. Professor revisits fusion work from two decades ago Archived 2 November 2012 at the Wayback Machine Columbia Daily Tribune, 28 October 2012
  102. Mark A. Prelas, Eric Lukosi. Neutron Emission from Cryogenically Cooled Metals Under Thermal Shock Archived 16 January 2013 at the Wayback Machine (self published)
  103. Hambling, David (13 May 2016). "Congress Is Suddenly Interested in Cold Fusion". Popular Mechanics. Archived from the original on 18 May 2016. Retrieved 18 May 2016.
  104. "Committee on Armed Services, House of Representatives Report 114-537" (PDF). p. 87. Archived (PDF) from the original on 16 May 2016.
  105. Goodstein 2010, pp. 87–94
  106. Martellucci et al. 2009
  107. ^ Pollack 1992, Pollack 1997, p. C4
  108. "Japan CF-research Society". jcfrs.org. Archived from the original on 21 January 2016.
  109. Japan CF research society meeting Dec 2011 Archived 12 March 2016 at the Wayback Machine
  110. Kitamura et al. 2009
  111. ^ Jayaraman 2008
  112. "Our dream is a small fusion power generator in each house", The Times of India, 4 February 2011, archived from the original on 26 August 2011
  113. ^ "Category: Special Section: Low Energy Nuclear Reactions". Current Science. 25 February 2015. Archived from the original on 5 August 2017.
  114. ^ Mark Anderson (March 2009), "New Cold Fusion Evidence Reignites Hot Debate", IEEE Spectrum, archived from the original on 10 July 2009, retrieved 13 June 2009
  115. US DOE 1989, p. 29, Taubes 1993
  116. Hoffman 1995, pp. 111–112
  117. US DOE 2004, p. 3
  118. Taubes 1993, pp. 256–259
  119. Huizenga 1993, pp. x, 22–40, 70–72, 75–78, 97, 222–223, Close 1992, pp. 211–214, 230–232, 254–271, Taubes 1993, pp. 264–266, 270–271 Choi 2005
  120. Fleischmann & Pons 1993
  121. Mengoli et al. 1998, Szpak et al. 2004
  122. Simon 2002, p. 49, Park 2000, pp. 17–18, Huizenga 1993, pp. 7, Close 1992, pp. 306–307
  123. ^ Barras 2009
  124. ^ Berger 2009
  125. US DOE 2004, pp. 3, 4, 5
  126. Hagelstein 2010
  127. ^ US DOE 2004, pp. 3, 4
  128. Rogers & Sandquist 1990
  129. ^ Simon 2002, p. 215
  130. Simon 2002, pp. 150–153, 162
  131. Simon 2002, pp. 153, 214–216
  132. ^ US DOE 1989, pp. 7–8, 33, 53–58 (appendix 4.A), Close 1992, pp. 257–258, Huizenga 1993, p. 112, Taubes 1993, pp. 253–254 quoting Howard Kent Birnbaum in the special cold fusion session of the 1989 spring meeting of the Materials Research Society, Park 2000, pp. 17–18, 122, Simon 2002, p. 50 citing Koonin S.E.; M Nauenberg (1989), "Calculated Fusion Rates in Isotopic Hydrogen Molecules", Nature, 339 (6227): 690–692, Bibcode:1989Natur.339..690K, doi:10.1038/339690a0, S2CID 4335882
  133. Hagelstein et al. 2004, pp. 14–15
  134. Schaffer 1999, p. 1
  135. Morrison 1999, pp. 3–5
  136. Huizenga 1993, p. viii "Enhancing the probability of a nuclear reaction by 50 orders of magnitude (...) via the chemical environment of a metallic lattice, contradicted the very foundation of nuclear science.", Goodstein 1994, Scaramuzzi 2000, p. 4
  137. Close 1992, pp. 32, 54, Huizenga 1993, p. 112
  138. ^ Close 1992, pp. 19–20
  139. Close 1992, pp. 63–64
  140. Close 1992, pp. 64–66
  141. Close 1992, pp. 32–33
  142. Huizenga 1993, pp. 33, 47
  143. Huizenga 1993, pp. 7
  144. Scaramuzzi 2000, p. 4, Goodstein 1994, Huizenga 1993, pp. 207–208, 218
  145. Close 1992, pp. 308–309 "Some radiation would emerge, either electrons ejected from atoms or X-rays as the atoms are disturbed, but none were seen."
  146. ^ Close 1992, pp. 268, Huizenga 1993, pp. 112–113
  147. Huizenga 1993, pp. 75–76, 113
  148. Taubes 1993, pp. 364–365
  149. ^ Platt 1998
  150. ^ Simon 2002, pp. 145–148
  151. Huizenga 1993, p. 82
  152. ^ Bird 1998, pp. 261–262
  153. Saeta 1999, (pages 5–6; "Response"; Heeter, Robert F.)
  154. Biberian 2007 "Input power is calculated by multiplying current and voltage, and output power is deduced from the measurement of the temperature of the cell and that of the bath"
  155. Fleischmann et al. 1990, Appendix
  156. Shkedi et al. 1995
  157. Jones et al. 1995, p. 1
  158. ^ Shanahan 2002
  159. Biberian 2007 "Almost all the heat is dissipated by radiation and follows the temperature fourth power law. The cell is calibrated ..."
  160. Browne 1989, para. 16
  161. Wilson et al. 1992
  162. Shanahan 2005
  163. Shanahan 2006
  164. ^ Simon 2002, pp. 180–183, 209
  165. Mehra, Milton & Schwinger 2000, p. 550
  166. Close 1992, pp. 197–198
  167. ^ Simon 2002, pp. 180–183
  168. Huizenga 1993, pp. 208
  169. Bettencourt, Kaiser & Kaur 2009
  170. Simon 2002, pp. 183–187
  171. Park 2000, pp. 12–13
  172. Huizenga 1993, pp. 276, Park 2000, pp. 12–13, Simon 2002, p. 108
  173. "ISCMNS FAQ". iscmns.org. Archived from the original on 23 December 2011.
  174. Taubes 1993, pp. 378, 427 anomalous effects in deuterated metals, which was the new, preferred, politically palatable nom de science for cold fusion ."
  175. Nagel, David J.; Melich, Michael E., eds. (2008). Proceedings of the 14th International Conference on Condensed Matter Nuclear Science and the 14th International Conference on Cold Fusion (ICCF-14) – 10–15 August 2008 Washington DC (PDF). Vol. 2. New Energy Foundation. ISBN 978-0-578-06694-3. Archived from the original (PDF) on 31 July 2012. Retrieved 31 October 2012.
  176. Chubb et al. 2006, Adam 2005 (". Anyone can deliver a paper. We defend the openness of science" – Bob Park of APS, when asked if hosting the meeting showed a softening of scepticism)
  177. ^ Van Noorden 2007
  178. Van Noorden 2007, para. 2
  179. "Scientists in possible cold fusion breakthrough", AFP, archived from the original on 27 March 2009, retrieved 24 March 2009
  180. Broad, William J. (13 April 1989), "'Cold Fusion' Patents Sought", The New York Times, archived from the original on 29 January 2017
  181. Lewenstein 1994, p. 43
  182. ^ "2107.01 General Principles Governing Utility Rejections (R-5) – 2100 Patentability. II. Wholly inoperative inventions; "incredible" utility", U.S. Patent and Trademark Office, archived from the original on 27 August 2012 Manual of Patent Examining Procedure
  183. ^ Simon 2002, pp. 193, 233
  184. ^ Voss 1999b, in reference to US patents US 5,616,219 , US 5,628,886  and US 5,672,259 
  185. Daniel C. Rislove (2006), "A Case Study of Inoperable Inventions: Why Is the USPTO Patenting Pseudoscience?" (PDF), Wisconsin Law Review, 2006 (4): 1302–1304, footnote 269 in page 1307, archived from the original (PDF) on 25 September 2015
  186. Sanderson 2007, in reference to US patent US 6,764,561 
  187. Fox 1994 in reference to Canon's EP 568118 
  188. Radio Times Film Unit 2013, pp. 181–182
  189. ^ Simon 2002, pp. 91–95, 116–118
  190. ^ McGown, Alistair (2003). The Hill and Beyond: Children's Television Drama – An Encyclopedia. BFI. p. 266. ISBN 0851708781.
  191. "Atomic Heart – Everything You Need to Know". Nexus Hub.

Citations of quotations

  1. Taubes 1993, p. 214 says the similarity was discovered on 13 April 1991, by a computer scientist and disseminated via the Internet. Another computer scientist translated an old article in the Swedish technical journal Ny Teknika. Taubes says: "Ny Teknika seemed to believe that Tandberg had missed on the discovery of the century, done in by an ignorant patent bureau. When Pons heard the story, he agreed."
  2. Brigham Young University discovered Tandberg's 1927 patent application, and showed it as proof that Utah University didn't have priority for the discovery of cold fusion, cited in Wilford 1989
  3. Taubes 1993, pp. 225–226, 229–231 " Like those of MIT or Harvard or Caltech, and official Stanford University announcement is not something to be taken lightly. (...) With the news out of Stanford, the situation, as one Department of Energy official put it, 'had come to a head'. The department had had its laboratory administrators send emissaries to Washington immediately. (...) the secretary of energy, had made the pursuit of cold fusion the department's highest priority (...) The government laboratories had free reign [sic] to pursue their cold fusion research, Ianniello said, to use whatever resources they needed, and DOE would cover the expenses. (...) While Huggins may have appeared to be the savior of cold fusion, his results also made him, and Stanford, a prime competitor for patents and rights.", Close 1992, pp. 184, 250 " The only support for Fleischmann and Pons came from Robert Huggins (...) The British Embassy in Washington rushed news of the proceedings to the Cabinet Office and Department of Energy in London. (...) noting that Huggin's heat measurements lent some support but that he had not checked for radiation, and also emphasizing that none of the US government laboratories had yet managed to replicate the effect.", Huizenga 1993, p. 56 "Of the above speakers (in the US Congress hearings) only Huggins supported the Fleischmann-Pons claim of excess heat."
  4. Taubes 1993, pp. 418–420 "While it is not possible for us to categorically exclude spiking as a possibility, it is our opinion, that possibility is much less probable than that of inadvertent contamination or other explained factors in the measurements.", Huizenga 1993, pp. 128–129
  5. "Physicist Claims First Real Demonstration of Cold Fusion", Physorg.com, 27 May 2008, archived from the original on 15 March 2012. The peer reviewed papers referenced at the end of the article are "The Establishment of Solid Nuclear Fusion Reactor" – Journal of High Temperature Society, Vol. 34 (2008), No. 2, pp.85–93 and "Atomic Structure Analysis of Pd Nano-Cluster in Nano-Composite Pd⁄ZrO2 Absorbing Deuterium" – Journal of High Temperature Society, Vol. 33 (2007), No. 3, pp.142–156
  6. ^ US DOE 1989, p. 29, Schaffer 1999, pp. 1, 2, Scaramuzzi 2000, p. 4, Close 1992, pp. 265–268 "(...) the equality of the two channels is known to be preserved from high energy through 20 keV and down to about 5 keV. A reason that it is not as well known below this energy because the individual rates are so low. However, the rate is known at room temperature from muon catalysed fusion experiments. (...) theory can even accommodate the subtle variations in the ratio at these low temperatures ", Huizenga 1993, pp. 6–7, 35–36, 75, 108–109, 112–114, 118–125, 130, 139, 173, 183, 217–218, 243–245 " have been studied over a range of deuteron kinetic energies down to a few kiloelectron volts (keV). (...) appear to be essentially constant at low energies. There is no reason to think that these branching ratios would be measurably altered for cold fusion. The near equality of has been verified also for muon-catalyzed fusion. ", Goodstein 1994 (explaining Pons and Fleischmann would both be dead if they had produced neutrons in proportion to their measurements of excess heat) ("It has been said . . . three 'miracles' are necessary ")
  7. Close 1992, pp. 257–258, Huizenga 1993, pp. 33, 47–48, 79, 99–100, 207, 216 "By comparing cathode charging of deuterium into palladium with gas charging for a D7Pd ratio of unity, one obtains an equivalent pressure of 1.5x10 atmospheres, a value more than 20 orders of magnitude (10) less than the Fleischmann-Pons claimed pressure.", Huizenga also cites US DOE 2004, pp. 33–34 in chapter IV. Materials Characterization: D. 'Relevant' Materials Parameters: 2. Confinement Pressure, which has a similar explanation.
  8. Huizenga 1993, pp. 6–7, 35–36 " This well established experimental result is consistent with the Bohr model, which predicts that the compound nucleus decays predominantly by particle emission , as opposed to radioactive capture , whenever it is energetically possible."
  9. Reger, Goode & Ball 2009, pp. 814–815 "After several years and multiple experiments by numerous investigators, most of the scientific community now considers the original claims unsupported by the evidence. Virtually every experiment that tried to replicate their claims failed. Electrochemical cold fusion is widely considered to be discredited."
  10. Labinger & Weininger 2005, p. 1919 Fleischmann's paper was challenged in Morrison, R.O. Douglas (28 February 1994). "Comments on claims of excess enthalpy by Fleischmann and Pons using simple cells made to boil". Phys. Lett. A. 185 (5–6): 498–502. Bibcode:1994PhLA..185..498M. CiteSeerX 10.1.1.380.7178. doi:10.1016/0375-9601(94)91133-9.
  11. Ackermann 2006 "(p. 11) Both the Polywater and Cold Nuclear Fusion journal literatures exhibit episodes of epidemic growth and decline."
  12. Close 1992, pp. 254–255, 329 " The usual cycle in such cases, he notes, is that interest suddenly erupts (...) The phenomenon then separates the scientists in two camps, believers and skeptics. Interest dies as only a small band of believers is able to 'produce the phenomenon' (...) even in the face of overwhelming evidence to the contrary, the original practitioners may continue to believe in it for the rest of the careers.", Ball 2001, p. 308, Simon 2002, pp. 104, Bettencourt, Kaiser & Kaur 2009

Bibliography

External links

Categories: