Misplaced Pages

Fixed-pattern noise: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 02:04, 8 March 2012 edit71.212.112.34 (talk)No edit summary← Previous edit Latest revision as of 16:16, 9 January 2024 edit undoKku (talk | contribs)Extended confirmed users115,682 editsm link sensor array 
(37 intermediate revisions by 33 users not shown)
Line 1: Line 1:
{{Short description|Noise pattern on digital imaging sensors}}
::''For fixed pattern noise in video projectors see ].'' {{For|fixed pattern noise in video projectors|Screen-door effect}}
'''Fixed pattern noise''' is the term given to a particular noise pattern on ] sensors often noticeable during longer exposure shots where particular pixels are susceptible to giving brighter intensities above the general background noise. '''Fixed-pattern noise (FPN)''' is the term given to a particular noise pattern on ] sensors often noticeable during longer exposure shots where particular pixels are susceptible to giving brighter intensities above the average intensity.


==Overview==
Fixed pattern noise (FPN) is a general term that identifies a temporally constant lateral non-uniformity (forming a constant pattern) in an imaging system with multiple detector or picture elements (]). It is characterised by the same pattern of 'hot' (brighter) and cold (darker) pixels occurring with images taken under the same illumination conditions in an imaging array. This problem arises from small differences in the individual responsitivity of the sensor array (including any local postamplification stages) that might be caused by variations in the pixel size, material or interference with the local circuitry. It might be affected by changes in the environment like different temperatures, exposure times, etc. FPN is a general term that identifies a temporally constant lateral non-uniformity (forming a constant pattern) in an imaging system with multiple detector or picture elements (]). It is characterised by the same pattern of variation in pixel-brightness occurring in images taken under the same illumination conditions in an imaging array. This problem arises from small differences in the individual responsitivity of the ] (including any local postamplification stages) that might be caused by variations in the pixel size, material or interference with the local circuitry. It might be affected by changes in the environment like different temperatures, exposure times, etc.


The term "fixed pattern noise" usually refers to two parameters.<ref>Electronic Shuttering for High Speed CMOS Machine Vision Applications http://www.automaatioseura.fi/jaostot/mvn/mvn2007/parameter.html</ref> One is the '''DSNU''' (], which is the '''offset''' from the average across the imaging array at a particular setting (temperature, integration time) but no external illumination and the '''PRNU''' (]), which describes the '''gain''' or ratio between optical power on a pixel versus the electrical signal output. The latter can be described as the local, pixel dependent ''']''' (PRNL) and is often simplified as a single value measured at almost saturation level to permit a linear approximation of the non-linear pixel response. The term "fixed pattern noise" usually refers to two parameters.<ref>Electronic Shuttering for High Speed CMOS Machine Vision Applications http://www.automaatioseura.fi/jaostot/mvn/mvn2007/parameter.html {{Webarchive|url=https://web.archive.org/web/20091015053924/http://www.automaatioseura.fi/jaostot/mvn/mvn2007/parameter.html |date=2009-10-15 }}</ref> One is the dark signal non-uniformity (DSNU), which is the offset from the average across the imaging array at a particular setting (temperature, integration time) but no external illumination and the ] (PRNU), which describes the gain or ratio between optical power on a pixel versus the electrical signal output. The latter is often simplified as a single value measured at e.g. 50% saturation level, implying a linear approximation of the not perfectly linear photo response non-linearity (PRNL).<ref>{{cite web|title=Standard for Measurement and Presentation of Specifications for Machine Vision Sensors and Cameras|url=http://www.emva.org/wp-content/uploads/EMVA1288-3.0.pdf|website=emva.org|publisher=European machine vision association}}</ref> Often PRNU as defined above is subdivided in pure "(offset) FPN" which is the part not dependent on temperature and integration time, and the integration time and temperature dependent "DSNU".

Sometimes pixel noise<ref>Commercial Sensor Survey Radiation Testing Progress Report http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40825/1/08-22.pdf</ref> as the average deviation from the array average under different illumination and temperature conditions is specified. Pixel noise therefore gives a number (commonly expressed in ]) that identifies FPN in all permitted imaging conditions, which might strongly deteriorate if additional electrical gain (and noise) is included. Sometimes pixel noise<ref>Commercial Sensor Survey Radiation Testing Progress Report http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40825/1/08-22.pdf {{Webarchive|url=https://web.archive.org/web/20090414034557/http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40825/1/08-22.pdf |date=2009-04-14 }}</ref> as the average deviation from the array average under different illumination and temperature conditions is specified. Pixel noise therefore gives a number (commonly expressed in ]) that identifies FPN in all permitted imaging conditions, which might strongly deteriorate if additional electrical gain (and noise) is included. Recent uses for PRNU include measures to fighting motion picture piracy.


In practice, a long exposure (integration time) emphasizes the inherent differences in pixel response so they may become a visible defect, degrading the image. Although FPN does not change appreciably across a series of captures, it may vary with integration time, imager temperature, imager gain and incident illumination, it is not expressed in a random (uncorrelated or changing) spatial distribution, occurring only at certain, fixed pixel locations. In practice, a long exposure (integration time) emphasizes the inherent differences in pixel response so they may become a visible defect, degrading the image. Although FPN does not change appreciably across a series of captures, it may vary with integration time, imager temperature, imager gain and incident illumination, it is not expressed in a random (uncorrelated or changing) spatial distribution, occurring only at certain, fixed pixel locations.


== Suppression of FPN == == Suppression of FPN ==
FPN is commonly suppressed by ] (FFC) that uses DSNU and PRNU to linearly interpolate and reduce the local photo response (non-uniform PRNL) to the array average. Hence, two exposures with an equal illumination across the array are necessary (one without light and one close to saturation) to obtain the values. Note that this correction usually is very sensitive to modifications of the system parameters (i.e., exposure time, temperature). The main challenge is to generate a flat field illumination for short time exposures and wavelengths, to avoid ] (in monochromatic light conditions) and statistical fluctuations of the light stream that become most obvious at short integration times. FPN is commonly suppressed by ] (FFC) that uses DSNU and PRNU to linearly interpolate and reduce the local photo response (non-uniform PRNL) to the array average. Hence, two exposures with an equal illumination across the array are necessary (one without light and one close to saturation) to obtain the values. Note that this correction usually is very sensitive to modifications of the system parameters (i.e., exposure time, temperature). The main challenge is to generate a flat field illumination for short time exposures and wavelengths, to avoid ] (in monochromatic light conditions) and statistical fluctuations of the light stream that become most obvious at short integration times.


Many patents and proposals exist to reduce or eliminate fixed pattern noise in digital imagers. But it is still tough to reduce FPN. Many patents and methods exist to reduce or eliminate fixed pattern noise in digital imagers {{citation needed|date=July 2013}} . Specific for the suppression of "offset FPN" as defined above, on-chip techniques for suppression exist, such as ].

One of the few engineering definitions for PRNU or "photoresponse nonuniformity" is in the . And it is for CCD only.


== See also == == See also ==
Line 22: Line 23:
{{Reflist}} {{Reflist}}


'''Notes'''
== External links ==
*{{cite journal |author=V. Van Nieuwenhove |author2=J. De Beenhouwer |author3=F. De Carlo |author4=L. Mancini |author5=F. Marone |author6=J. Sijbers | doi = 10.1364/OE.23.027975 | pmid = 26480456 | title = Dynamic intensity normalization using eigen flat fields in X-ray imaging | journal = Optics Express | volume = 23 | issue = 21 | date = 2015 | pages = 27975–27989| bibcode = 2015OExpr..2327975V | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A7681 | hdl = 10067/1302930151162165141 | hdl-access = free }}
*
*
*


== External links ==
*


] ]
] ]
]

Latest revision as of 16:16, 9 January 2024

Noise pattern on digital imaging sensors For fixed pattern noise in video projectors, see Screen-door effect.

Fixed-pattern noise (FPN) is the term given to a particular noise pattern on digital imaging sensors often noticeable during longer exposure shots where particular pixels are susceptible to giving brighter intensities above the average intensity.

Overview

FPN is a general term that identifies a temporally constant lateral non-uniformity (forming a constant pattern) in an imaging system with multiple detector or picture elements (pixels). It is characterised by the same pattern of variation in pixel-brightness occurring in images taken under the same illumination conditions in an imaging array. This problem arises from small differences in the individual responsitivity of the sensor array (including any local postamplification stages) that might be caused by variations in the pixel size, material or interference with the local circuitry. It might be affected by changes in the environment like different temperatures, exposure times, etc.

The term "fixed pattern noise" usually refers to two parameters. One is the dark signal non-uniformity (DSNU), which is the offset from the average across the imaging array at a particular setting (temperature, integration time) but no external illumination and the photo response non-uniformity (PRNU), which describes the gain or ratio between optical power on a pixel versus the electrical signal output. The latter is often simplified as a single value measured at e.g. 50% saturation level, implying a linear approximation of the not perfectly linear photo response non-linearity (PRNL). Often PRNU as defined above is subdivided in pure "(offset) FPN" which is the part not dependent on temperature and integration time, and the integration time and temperature dependent "DSNU".

Sometimes pixel noise as the average deviation from the array average under different illumination and temperature conditions is specified. Pixel noise therefore gives a number (commonly expressed in rms) that identifies FPN in all permitted imaging conditions, which might strongly deteriorate if additional electrical gain (and noise) is included. Recent uses for PRNU include measures to fighting motion picture piracy.

In practice, a long exposure (integration time) emphasizes the inherent differences in pixel response so they may become a visible defect, degrading the image. Although FPN does not change appreciably across a series of captures, it may vary with integration time, imager temperature, imager gain and incident illumination, it is not expressed in a random (uncorrelated or changing) spatial distribution, occurring only at certain, fixed pixel locations.

Suppression of FPN

FPN is commonly suppressed by flat-field correction (FFC) that uses DSNU and PRNU to linearly interpolate and reduce the local photo response (non-uniform PRNL) to the array average. Hence, two exposures with an equal illumination across the array are necessary (one without light and one close to saturation) to obtain the values. Note that this correction usually is very sensitive to modifications of the system parameters (i.e., exposure time, temperature). The main challenge is to generate a flat field illumination for short time exposures and wavelengths, to avoid speckle (in monochromatic light conditions) and statistical fluctuations of the light stream that become most obvious at short integration times.

Many patents and methods exist to reduce or eliminate fixed pattern noise in digital imagers . Specific for the suppression of "offset FPN" as defined above, on-chip techniques for suppression exist, such as correlated double sampling.

See also

References

  1. Electronic Shuttering for High Speed CMOS Machine Vision Applications http://www.automaatioseura.fi/jaostot/mvn/mvn2007/parameter.html Archived 2009-10-15 at the Wayback Machine
  2. "Standard for Measurement and Presentation of Specifications for Machine Vision Sensors and Cameras" (PDF). emva.org. European machine vision association.
  3. Commercial Sensor Survey Radiation Testing Progress Report http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40825/1/08-22.pdf Archived 2009-04-14 at the Wayback Machine

Notes

External links

Categories: