Revision as of 16:05, 11 June 2006 editK (talk | contribs)Extended confirmed users, Pending changes reviewers22,767 edits →Pragmatism: Consistency of voice in presenting the bulleted points← Previous edit | Latest revision as of 00:46, 10 January 2025 edit undoTule-hog (talk | contribs)Extended confirmed users4,678 editsm {efn} notes | ||
Line 1: | Line 1: | ||
{{Short description|American thinker who founded pragmatism (1839–1914)}} | |||
{{for|a capsule summary|Charles Peirce (Infobox)}} | |||
{{Pp-move-indef}} | |||
{{Use mdy dates|date=January 2023|cs1-dates=y}} | |||
{{infobox philosopher | |||
| name = Charles Sanders Peirce | |||
| image = Charles Sanders Peirce.jpg | |||
| caption=Peirce in 1891 | |||
| birth_date = {{birth date|1839|09|10}} | |||
| birth_place = ], Massachusetts, U.S. | |||
| death_date = {{death date and age|1914|04|19|1839|09|10}} | |||
| death_place = ], Pennsylvania, U.S. | |||
| relatives = ] (father) | |||
| institutions = ] | |||
| alma_mater = ] | |||
| known_for = <!--See {{C. S. Peirce articles}}--> | |||
| region = ] | |||
| era = ] | |||
| school_tradition = ]<br>] | |||
| main_interests = {{hlist | ] | mathematics | statistics<ref name="Hacking">{{cite book |author-link=Ian Hacking |author-last=Hacking |author-first=Ian |date=1990 |series=A Universe of Chance |title=The Taming of Chance |url=https://archive.org/details/isbn_9780521388849 |url-access=registration |pages= |publisher=] |isbn=978-0-52138884-9}}</ref><ref name="Stigler78">{{cite journal |author-last=Stigler |author-first=Stephen M. |author-link=Stephen Stigler |date=1978 |title=Mathematical statistics in the early States |journal=Annals of Statistics |volume=6 |issue=2 |pages=239–265 |doi=10.1214/aos/1176344123 |jstor=2958876 |mr=483118 |doi-access=free}}</ref> | philosophy | ]<ref name="metr">{{cite journal |author-last=Crease |author-first=Robert P. |date=2009 |title=Charles Sanders Peirce and the first absolute measurement standard |quote=In his brilliant but troubled life, Peirce was a pioneer in both ] and philosophy. |url=http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_62/iss_12/39_1.shtml?bypassSSO |journal=Physics Today |volume=62 |issue=12 |pages=39–44 |doi=10.1063/1.3273015 |bibcode=2009PhT....62l..39C |s2cid=121338356 |url-status=dead |archive-url=https://archive.today/20130112162124/http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_62/iss_12/39_1.shtml?bypassSSO |archive-date=January 12, 2013}}</ref> | ] | ]<ref name="psych">{{cite journal |doi=10.1002/1520-6696(197407)10:3<291::AID-JHBS2300100304>3.0.CO;2-N |pmid=11609224 |title=Charles S. Peirce (1839–1914): The first American experimental psychologist |date=1974 |author-last=Cadwallader |author-first=Thomas C. |journal=Journal of the History of the Behavioral Sciences |volume=10 |issue=3 |pages=291–298}}</ref> | economics<ref name="econom">{{cite magazine |author-last=Wible |author-first=James R. |date=December 2008 |url=http://www.ingentaconnect.com/content/rodopi/cpm/2008/00000005/00000002/art00003 |title=The economic mind of Charles Sanders Peirce |magazine=Contemporary Pragmatism |volume=5 |issue=2 |pages=39–67}}</ref> | ]<ref name="ling">{{cite web |author-link=Nöth, Winfried |author-last=Nöth |author-first=Winfried |date=2000 |url=http://www.digitalpeirce.fee.unicamp.br/ling.htm |title=Charles Sanders Peirce, Pathfinder in Linguistics}}<br/>{{cite web |url=http://www.digitalpeirce.fee.unicamp.br/ |title=Digital Encyclopedia of Charles S. Peirce |author-link=Nöth, Winfried |author-last=Nöth |author-first=Winfried |date=2000}}</ref> | ] | ] | ] | ]}} | |||
| notable_students = {{collapsible list| | |||
{{hlist | ] | ]<ref name="grads"/> | ] | ] | ] | ] | ] | ]<ref name="grads"/>}} | |||
}} | |||
| notable_ideas = <!--Please do not populate; see {{C. S. Peirce articles}}--> | |||
| signature = Signature of Charles Sanders Peirce (1839–1914).png | |||
}} | |||
{{C. S. Peirce articles}} | |||
'''Charles Sanders Peirce''' ({{IPAc-en|p|ɜr|s}}{{efn|"Peirce", in the case of C. S. Peirce, always rhymes with the English-language word "terse" and so, in most dialects, is pronounced exactly like the English-language word "{{audio|en-us-purse.ogg|purse}}."}}<ref>{{cite news |url=http://www.iupui.edu/~peirce/news/1_3/13_4x.htm |title=Note on the Pronunciation of 'Peirce' |website=Peirce Project Newsletter |volume=1 |issue=3–4 |date=December 1994 |access-date=2009-04-06 |archive-date=2016-03-03 |archive-url=https://web.archive.org/web/20160303204222/http://www.iupui.edu/~peirce/news/1_3/13_4x.htm |url-status=dead }}</ref> {{respell|PURSS}}; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, ]ian, and philosopher who is sometimes known as "the father of ]".<ref>{{cite encyclopedia |date=1934 |title=Dictionary of American Biography |publisher=Arisbe |url=http://www.cspeirce.com/menu/library/aboutcsp/weissbio.htm |author-last=Weiss |author-first=Paul |author-link=Paul Weiss (philosopher) |article=Peirce, Charles Sanders |access-date=2007-12-12 |archive-date=2013-11-03 |archive-url=https://web.archive.org/web/20131103161340/http://www.cspeirce.com/menu/library/aboutcsp/weissbio.htm |url-status=dead }}</ref><ref>{{cite dictionary |date=1960 |title=Webster's Biographical Dictionary |dictionary=Merriam-Webster |place=Springfield, Massachusetts |orig-date=1943 |article=Peirce, Benjamin: Charles Sanders}}</ref> According to philosopher ], Peirce was "the most original and versatile of America's philosophers and America's greatest logician".<ref>{{cite encyclopedia |title=Dictionary of American Biography |publisher=Internet Archive |url=https://archive.org/details/dictionaryofamer019328mbp/page/403/mode/1up?q=peirce&view=theater |date=1934 |author-link=Paul Weiss (philosopher) |author-last=Weiss |author-first=Paul |article=Peirce, Charles Sanders}}</ref> ] wrote "he was one of the most original minds of the later nineteenth century and certainly the greatest American thinker ever". | |||
] | |||
Educated as a chemist and employed as a scientist for thirty years, Peirce meanwhile made major contributions to logic, such as theories of ] and ]. ] wrote, "The contributions of C. S. Peirce to symbolic logic are more numerous and varied than those of any other writer—at least in the nineteenth century." For Peirce, logic also encompassed much of what is now called ] and the ]. He saw logic as the formal branch of ] or study of ], of which he is a founder, which foreshadowed the debate among ] and proponents of ] that dominated 20th-century Western philosophy. Peirce's study of signs also included a ]. | |||
'''Charles Sanders Peirce''' | |||
(pronounced ''purse''), (], ] – ], ]) was an ] ], born in ]. Although educated as a ] and employed as a ] for 30 years, he is now mostly seen as a ]. The philosopher ], writing in the '']'' for ], called Peirce "the most original and versatile of American philosophers and America's greatest logician" (Brent, 1). He is a great American builder of an ] system, and his admirers deem him the most important systematizer since ] and ], who were major influences. | |||
Additionally, he defined the concept of ], as well as rigorously formulating ] and ]. He was one of the ]. As early as 1886, he saw that ]. The same idea was used decades later to produce digital computers.<ref name="P2M">{{cite book |author-last=Peirce |author-first=Charles Sanders |url=https://archive.org/details/writingsofcharle0002peir/page/5 |title=Writings of Charles S. Peirce |date=1886 |isbn=978-0-25337201-7 |pages=5:541–543 |chapter=Letter, Peirce to A. Marquand |publisher=Indiana University Press |chapter-url=https://books.google.com/books?id=DnvLHp919_wC&q=Marquand |url-access=registration}} See {{cite journal |author-last=Burks |author-first=Arthur W. |author-link=Arthur W. Burks |date=1978 |title=Charles S. Peirce, ''The new elements of mathematics'' |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-84/issue-5/Review-Charles-S-Peirce-The-new-elements-of-mathematics/bams/1183541145.full |format=PDF |department=Book Review |journal=Bulletin of the American Mathematical Society |series=Eprint |volume=84 |issue=5 |pages=913–918 |doi=10.1090/S0002-9904-1978-14533-9 |doi-access=free}} Also {{cite book |author-last=Houser |author-first=Nathan |title=Writings of Charles S. Peirce |volume=5 |page=xliv |chapter=Introduction}}</ref> | |||
Peirce was largely ignored during his lifetime, and the secondary literature was scant until after ]. Much of his huge output is still unpublished. An innovator in fields such as ], ] methodology, the ], ], and ], he considered himself a ] first and foremost. While he made major contributions to formal logic, "logic" for him encompassed much of what is now called the philosophy of science and epistemology. He, in turn, saw logic as a branch of ], of which he is a founder. In 1886, he saw that logical operations could be carried out by electrical switching circuits, an idea used decades later to produce digital computers. | |||
In ], Peirce was an "]" in the tradition of German philosopher ] as well as a ] about universals. He also held a commitment to the ideas of continuity and chance as real features of the universe, views he labeled ] and ] respectively. Peirce believed an epistemic ] and anti-] went along with these views. | |||
==Life== | |||
<blockquote> | |||
Right from the beginning, the relations of America as New England with Europe were, from the philosophical point of view, ambiguous, when they were not simply difficult and, in the end, impossible. Peirce is in himself the ‘’resumé’’ of this story… from the rejection of European philosophical paradigms to the creation of new paradigms which are not only Peirce’s but America’s, and slowly but inevitably of the global world of tomorrow. (Deledalle 2000: 3). | |||
</blockquote> | |||
==Biography== | |||
Brent (1998) is the only Peirce biography in English. Charles Sanders Peirce was the son of Sarah Hunt Mills and ], a professor of ] and ] at ], perhaps the first serious research mathematician in America. At 12 years of age, Charles devoured an older brother's copy of ]'s ''Elements of Logic'', then the leading English language text of its kind. Thus began his lifelong fascination with logic and reasoning. He went on to obtain the BA and MA from Harvard, and in 1863 was awarded the ]'s first B.Sc. in chemistry. This last degree was awarded ''summa cum laude''; his academic record was otherwise undistinguished. At Harvard, he began lifelong friendships with ], ], and ]. One of his Harvard instructors, ], formed an unfavorable opinion of him; they clashed on later occasions. This was unfortunate, because Eliot was President of Harvard 1869-1909, a period encompassing nearly all of Peirce's working life, during which he repeatedly vetoed having Harvard employ Peirce in any capacity. | |||
=== |
=== Early life === | ||
]'s Graduate School of Arts and Social Sciences.]] | |||
Charles was employed as a scientist by the ] (]–]), where he enjoyed the protection of his highly influential father until the latter's death in 1880. This employment exempted Charles from having to take part in the ], sparing him a very awkward situation, as his Boston Brahmin family sympathized with the ]. At the Survey, he worked mainly in ] and in ], refining the use of ]s to determine small local variations in the strength of the earth's ]. The Survey sent him to Europe five times, the first in 1871, as part of a group dispatched to observe a ]. While in Europe, he sought out ], ], and ], British mathematicians and logicians whose turn of mind resembled his own. During 1869-72, he was employed as an Assistant in Harvard's astronomical observatory, doing important work on determining the brightness of ] and the shape of the ]. (On Peirce the astronomer, see Lenzen's chapter in Moore and Robin, 1964.) In 1878, he was the first to define the ] as so many ]s of ] of a certain ], the definition employed today. | |||
Peirce was born at 3 Phillips Place in ]. He was the son of Sarah Hunt Mills and ], himself a professor of mathematics and ] at ].{{efn|Benjamin was one of the founders of ].}} At age 12, Charles read his older brother's copy of ]'s ''Elements of Logic'', then the leading English-language text on the subject. So began his lifelong fascination with logic and reasoning.<ref>Fisch, Max, " {{Webarchive|url=https://web.archive.org/web/20181022143324/http://www.iupui.edu/~peirce/writings/v1/v1intro.htm |date=2018-10-22 }}", ''Writings of Charles S. Peirce'', 1:xvii, find phrase "One episode".</ref> | |||
He suffered from his late teens onward from a nervous condition then known as "facial neuralgia", which would today be diagnosed as ]. His biographer, Joseph Brent, says that when in the throes of its pain "he was, at first, almost stupefied, and then aloof, cold, depressed, extremely suspicious, impatient of the slightest crossing, and subject to violent outbursts of temper".<ref>{{Harvnb|Brent|1998|p=40}}</ref> Its consequences may have led to the social isolation of his later life. | |||
Over the 1880s, Peirce's indifference to bureaucratic detail waxed while the quality and timeliness of his Survey work waned. Peirce took years to write reports that he should have required mere months. Meanwhile, he wrote hundreds of logic, philosophy, and science entries for the ''Century Dictionary''. In 1885, an investigation by the ] exonerated Peirce, but led to the dismissal of Superintendent ] and several other Coast Survey employees for misuse of public funds. In 1891, he resigned from the Coast Survey, at the request of Superintendent ]. He never again held regular employment. | |||
=== |
=== Education === | ||
Peirce went on to earn a Bachelor of Arts degree and a Master of Arts degree (1862) from Harvard. In 1863 the ] awarded him a Bachelor of Science degree, Harvard's first ''summa cum laude'' ] degree.<ref>"Peirce, Charles Sanders" (1898), ''The National Cyclopedia of American Biography'', v. 8, .</ref> His academic record was otherwise undistinguished.<ref>{{Harvnb|Brent|1998|pp=54–56}}</ref> At Harvard, he began lifelong friendships with ], ], and ].<ref>{{cite book |author-last=Brent |author-first=Josep |date=1998 |title=Charles Sanders Peirce: A Life |edition=2nd |location=Bloomington |publisher=Indiana University Press |pages=363–364 |isbn=978-0-25321161-3}}<!-- |access-date=24 September 2012 --></ref> One of his Harvard instructors, ], formed an unfavorable opinion of Peirce. This proved fateful, because Eliot, while President of Harvard (1869–1909—a period encompassing nearly all of Peirce's working life), repeatedly vetoed Peirce's employment at the university.<ref>{{Harvnb|Brent|1998|pp=19–20, 53, 75, 245}}</ref> | |||
In 1879, Peirce was appointed Lecturer in logic at the new ]. That university was strong in a number of areas that interested Peirce, such as philosophy (] and ] were students), psychology (taught by ] and studied by ], who coauthored a landmark empirical study with Peirce), and mathematics, taught by ], who came to admire Peirce's work on mathematics and logic. This untenured position proved to be the only academic appointment Peirce ever held. It is a fact that Clark, Wisconsin, Michigan, Cornell, Stanford, and Chicago all declined to hire him, although the precise reasons for their so doing can no longer be determined. Brent documents something Peirce never suspected, namely that his efforts to obtain academic employment, grants, and scientific respectability, were repeatedly frustrated by the covert opposition of a major American scientist of the day, ] (1835-1909). Peirce's ability to find academic employment may also have been frustrated by a difficult personality. Brent conjectures that Peirce may have been ], further claiming that Peirce experienced 8 nervous breakdowns between 1876 and 1911. Brent also believes that Peirce tried to alleviate his symptoms with ether, morphine, and cocaine. | |||
=== United States Coast Survey === | |||
Peirce's personal life also proved a grave handicap. His first wife, ], left him in 1875. He soon took up with a woman whose maiden name and nationality remain uncertain to this day (the best guess is that her name was Juliette Froissy and that she was French), marrying her immediately upon divorcing Harriet in 1883. That year, Newcomb pointed out to a Johns Hopkins trustee that Peirce, while a Hopkins employee, had lived and traveled with a woman to whom he was not married. The ensuing scandal led to his dismissal, and to his being deemed morally unfit for academic employment anywhere in the USA. Peirce had no children by either marriage. | |||
] | |||
Between 1859 and 1891, Peirce was intermittently employed in various scientific capacities by the United States Coast Survey, which in 1878 was renamed the ],<ref name="Burch">Burch, Robert (2001, 2010), "", ''Stanford Encyclopedia of Philosophy''</ref> where he enjoyed his highly influential father's protection until the latter's death in 1880.<ref>{{Harvnb|Brent|1998|p=139}}</ref> At the Survey, he worked mainly in ] and ], refining the use of ]s to determine small local variations in the Earth's ].<ref name="Burch" /> | |||
=== |
==== American Civil War ==== | ||
This employment exempted Peirce from having to take part in the ]; it would have been very awkward for him to do so, as the ] Peirces sympathized with the ].<ref>{{Harvnb|Brent|1998|pp=61–62}}</ref> No members of the Peirce family volunteered or enlisted. Peirce grew up in a home where white supremacy was taken for granted, and slavery was considered natural.<ref>{{Harvnb|Brent|1998|p=34}}</ref> Peirce's father had described himself as a ] until the outbreak of the war, after which he became a ] partisan, providing donations to the ], the leading Northern war charity. | |||
In ], Peirce used an inheritance from his parents to purchase 2,000 rural acres near ], land which never yielded an economic return. On that land he built a large house which he named "Arisbe" and where he spent the rest of his life, writing prolifically, much of it unpublished to this day. He insisted on living well beyond his means, which led to grave financial and legal difficulties. Peirce spent much of the last two decades of his life so destitute that he could not afford heat in winter. His only food was bread donated by the local baker, and he wrote on the verso side of old manuscripts because he could not afford new stationery. For a while an outstanding warrant for assault and debt led to his becoming a fugitive in New York. A variety of people including his brother ] and his neighbors, relatives of ], paid his property taxes and mortgage, and settled other debts. | |||
Peirce liked to use the following ] to illustrate the unreliability of ] forms of logic (for the first premise arguably ]):<ref name="Menand1">{{cite book |author-last=Menand |author-first=Louis |title=The Metaphysical Club |date=2001 |publisher=Flamingo |isbn=978-0-00712690-3 |location=London|pages=161–162}}</ref><poem> | |||
During this long final twilight phase of Peirce’s life, he did some scientific and engineering consulting, and wrote a good deal for meager pay, primarily dictionary and encyclopedia entries, and reviews for '']'' (with whose editor, ] he became friendly). He did translations for the ], at the instigation of its director, ]. Peirce also did substantial mathematical calculations for Langley’s research on powered flight. Peirce tried his hand at inventing, and began but did not complete a number of books, all in the hope of making money. In 1888, President ] appointed him to the ]. From 1890 onwards, he had a friend and admirer in Judge ] of Chicago, who introduced Peirce to ] and ], the editor and owner, respectively, of the pioneering American philosophy journal '']'', which eventually published a number of his articles. He applied to the newly formed ] for a grant to write a book summarizing his life’s work. The application was doomed; his nemesis Newcomb served on the Institution’s executive committee, and its President had been the President of Johns Hopkins at the time of Peirce’s dismissal. | |||
All Men are equal in their political rights. | |||
Negroes are Men. | |||
Therefore, negroes are equal in political rights to whites.</poem> | |||
==== Travels to Europe ==== | |||
The one who did the most to help Peirce in this his hour of desperate need was his old friend ], who helped arrange four series of lectures at or near Harvard, and dedicated his ''Will to Believe'' to Peirce. Most important, each year from 1898 until his death in 1910, James would write to his friends in the Boston intelligentsia, asking that they make a financial contribution to help support Peirce. Peirce showed his gratitude for these remarkable gestures of friendship by designating James’s eldest son as his heir should Juliette predecease him, and by adding "Santiago," "Saint James" in Spanish, to his full name (Brent 1998: 315-16, 374). | |||
He was elected a resident fellow of the ] in January 1867.<ref>{{Harvnb|Brent|1998|p=69}}</ref> The Survey sent him to Europe five times,<ref>{{Harvnb|Brent|1998|p=368}}</ref> first in 1871 as part of a group sent to observe a ]. There, he sought out ], ], and ],<ref>{{Harvnb|Brent|1998|pp=79–81}}</ref> British mathematicians and logicians whose turn of mind resembled his own. | |||
==== Harvard observatory ==== | |||
Peirce died destitute in ], twenty years before his widow. | |||
From 1869 to 1872, he was employed as an assistant in Harvard's astronomical observatory, doing important work on determining the brightness of ]s and the shape of the ].<ref name="SP2">Moore, Edward C., and Robin, Richard S., eds., (1964), ''Studies in the Philosophy of Charles Sanders Peirce, Second Series'', Amherst: U. of Massachusetts Press. On Peirce the astronomer, see Lenzen's chapter.</ref> In 1872 he founded the ], a conversational philosophical club that Peirce, the future ] ], the philosopher and psychologist ], amongst others, formed in January 1872 in ], and dissolved in December 1872. Other members of the club included ], ], ], ], and ].<ref>Menand (2001), p. 201.</ref> The discussions eventually birthed Peirce's notion of pragmatism. | |||
==== National Academy of Sciences ==== | |||
==Reception== | |||
]", 1879.<ref>{{cite journal |author-last=Peirce |author-first=Charles Sanders |date=1879 |title=A Quincuncial Projection of the Sphere |journal=American Journal of Mathematics |volume=2 |issue=4 |pages=394–397 |doi=10.2307/2369491 |jstor=2369491 |url=https://archive.org/details/sim_american-journal-of-mathematics_1879_2/page/n403/mode/2up}}</ref> Peirce's projection of a sphere onto a square ] except at four isolated points on the equator, and has less scale variation than the ]. It can be ]; that is, multiple copies can be joined continuously edge-to-edge.]] | |||
On April 20, 1877, he was elected a member of the ].<ref>{{Harvnb|Brent|1998|p=367}}</ref> Also in 1877, he proposed measuring the meter as so many ]s of light of a certain ],<ref>Fisch, Max (1983), "Peirce as Scientist, mathematician, historian, Logician, and Philosopher", '']'' (new edition), see p. x.</ref> the kind of definition employed ]. | |||
In 1879 Peirce developed ], having been inspired by ]'s 1869 ] (known as the Schwarz–Christoffel mapping). | |||
] opined, "Beyond doubt … he was one of the most original minds of the later ], and certainly the greatest American thinker ever." (Yet his '']'' fails to mention Peirce.) While reading some of Peirce's unpublished manuscripts soon after arriving at Harvard in 1924, ] was struck by the extent to which Peirce had anticipated his own "process" thinking. (On Peirce and ], see the chapter by Lowe in Moore and Robin, 1964.) ] viewed Peirce as "one of the greatest philosophers of all times". Nevertheless, Peirce's accomplishments were not immediately recognized. His imposing contemporaries ] and ] admired him, and ] at Columbia and ] wrote about Peirce with respect, but to no immediate effect. | |||
==== 1880 to 1891 ==== | |||
The first scholar to give Peirce his considered professional attention was Royce's student ], the editor of a 1923 anthology of Peirce's writings titled ''Chance, Love, and Logic'' and the author of the first Peirce bibliography. From 1916 until his death, ]'s writings repeatedly mention Peirce with deference, and his 1938 ''Logic: The Theory of Inquiry'' is Peircean through and through. The publication of the first six volumes of the ''Collected Papers'' (1931-35), the most important event to date in Peirce studies and one Cohen made possible by raising the needed funds, did not lead to an immediate outpouring of secondary studies. The editors of those volumes, ] and Paul Weiss, did not become Peirce specialists. Early landmarks of the secondary literature include the monographs Buchler (1939), Feibleman (1946), and Goudge (1950), the 1941 Ph.D. thesis by Arthur Burks (who went on to edit volumes 7 and 8 of the ''Collected Papers''), and the edited volume Wiener and Young (1952). The Charles S. Peirce Society was founded in 1946. Its ''Transactions'', an academic journal specializing in the history of American philosophy, including pragmatism, has appeared since 1965. | |||
During the 1880s, Peirce's indifference to bureaucratic detail waxed while his Survey work's quality and timeliness waned. Peirce took years to write reports that he should have completed in months.{{according to whom|date=March 2013}} Meanwhile, he wrote entries, ultimately thousands, during 1883–1909 on philosophy, logic, science, and other subjects for the encyclopedic '']''.<ref>See " {{webarchive|url=https://web.archive.org/web/20110706211228/http://www.pep.uqam.ca/short.pep|date=6 July 2011}}" from ].</ref> In 1885, an investigation by the ] Commission exonerated Peirce, but led to the dismissal of Superintendent ] and several other Coast Survey employees for misuse of public funds.<ref>Houser, Nathan, " {{Webarchive|url=https://web.archive.org/web/20110607101202/http://www.iupui.edu/~peirce/writings/v5/v5intro.htm |date=2011-06-07 }}", ''Writings of Charles S. Peirce'', 5:xxviii–xxix, find "Allison".</ref> In 1891, Peirce resigned from the Coast Survey at Superintendent ]'s request.<ref>{{Harvnb|Brent|1998|p=202}}</ref> | |||
=== Johns Hopkins University === | |||
In 1949, while doing unrelated archival work, the historian of mathematics Carolyn Eisele (1902-2000) chanced on an autograph letter by Peirce. Thus began her 40 years of research on Peirce the mathematician and scientist, culminating in Eisele (1976, 1979, 1985). Beginning around 1960, the philosopher and ] Max Fisch (1900-1995) emerged as an authority on Peirce; Fisch (1986) reprints many of the relevant articles, including (pp. 422-48) a wide-ranging survey of the impact of Peirce's thought through 1983. | |||
In 1879, Peirce was appointed lecturer in logic at ], which had strong departments in areas that interested him, such as philosophy (] and ] completed their PhDs at Hopkins), psychology (taught by ] and studied by ], who coauthored a landmark empirical study with Peirce), and mathematics (taught by ], who came to admire Peirce's work on mathematics and logic). His '']'' (1883) contained works by himself and ], ], ], and Oscar Howard Mitchell,<ref name="dipert">Randall R. Dipert </ref> several of whom were his graduate students.<ref name="grads">Houser, Nathan (1989), " {{Webarchive|url=https://web.archive.org/web/20100530064901/http://www.iupui.edu/~peirce/writings/v4/v4intro.htm |date=2010-05-30 }}", ''Writings of Charles S. Peirce'', 4:xxxviii, find "Eighty-nine".</ref> Peirce's nontenured position at Hopkins was the only academic appointment he ever held. | |||
Brent documents something Peirce never suspected, namely that his efforts to obtain academic employment, grants, and scientific respectability were repeatedly frustrated by the covert opposition of a major Canadian-American scientist of the day, ].<ref>{{Harvnb|Brent|1998|pp=150–154, 195, 279–280, 289}}</ref> Newcomb had been a favourite student of Peirce's father; although "no doubt quite bright", "like ] in ] he also had just enough talent to recognize he was not a genius and just enough pettiness to resent someone who was". Additionally "an intensely devout and literal-minded Christian of rigid moral standards", he was appalled by what he considered Peirce's personal shortcomings.<ref>{{cite web | url=https://www.firstthings.com/article/1993/12/003-discovering-the-american-aristotle | title=Discovering the American Aristotle | Edward T. Oakes | date=December 1993 }}</ref> Peirce's efforts may also have been hampered by what Brent characterizes as "his difficult personality".<ref>{{Harvnb|Brent|1998|p=xv}}</ref> In contrast, ] believes that Peirce's work was too far ahead of his time to be appreciated by the academic establishment of the day and that this played a large role in his inability to obtain a tenured position.<ref name="devlin_2000">{{cite book |author-link=Keith Devlin |author-first=Keith |author-last=Devlin |date=2000 |title=The Math Gene |url=https://archive.org/details/mathgene00keit |url-access=registration |publisher=Basic Books |isbn=978-0-46501619-8}}</ref> | |||
Peirce has come to enjoy an international following. University research centers devoted to Peirce Studies and ] can be found in Brazil, Finland, Germany, and Spain. There have been French and Italian Peirceans of note since 1950. For many years, the ] housed the North American philosophy department most devoted to Peirce. In recent years, Peirce scholars have clustered at ], the home of the Peirce Edition Project, and the ]. | |||
=== Personal life === | |||
==Works== | |||
] | |||
Peirce's personal life undoubtedly worked against his professional success. After his first wife, ] ("Zina"), left him in 1875,<ref>{{Harvnb|Brent|1998|pp=98–101}}</ref> Peirce, while still legally married, became involved with ], whose last name, given variously as Froissy and Pourtalai,<ref>{{Harvnb|Brent|1998|p=141}}</ref> and nationality (she spoke French)<ref>{{Harvnb|Brent|1998|p=148}}</ref> remains uncertain.<ref>Houser, Nathan, " {{Webarchive|url=https://web.archive.org/web/20110607100406/http://www.iupui.edu/~peirce/writings/v6/v6intro.htm |date=2011-06-07 }}", ''Writings of Charles S. Peirce'', 6, first paragraph.</ref> When his divorce from Zina became final in 1883, he married Juliette.<ref>{{Harvnb|Brent|1998|pp=123, 368}}</ref> That year, Newcomb pointed out to a Johns Hopkins trustee that Peirce, while a Hopkins employee, had lived and traveled with a woman to whom he was not married; the ensuing scandal led to his dismissal in January 1884.<ref>{{Harvnb|Brent|1998|pp=150–151, 368}}</ref> Over the years Peirce sought academic employment at various universities without success.<ref>In 1885 ({{Harvnb|Brent|1998|p=369}}); in 1890 and 1900 (p. 273); in 1891 (pp. 215–216); and in 1892 (pp. 151–152, 222).</ref> He had no children by either marriage.<ref>{{Harvnb|Brent|1998|p=77}}</ref> | |||
=== Later life and poverty === | |||
Peirce's reputation is based in large part on a number of academic papers published in American scholarly and scientific journals. These papers, along with a selection of Peirce's previously unpublished work and a smattering of his corresondence, fill the eight volumes of the ''Collected Papers of Charles Sanders Peirce'', published between ] and ]. A first taste of Peirce's philosophical writings can be found in the two volumes of ''The Essential Peirce'' (Houser and Kloesel (eds.) 1992, Peirce Edition Project (eds.) 1998). | |||
] | |||
] | |||
In 1887, Peirce spent part of his inheritance from his parents to buy {{convert|2000|acre|km2|0}} of rural land near ], which never yielded an economic return.<ref>{{Harvnb|Brent|1998|pp=191–192, 217, 270, 318, 321, 337.}}</ref> There he had an 1854 farmhouse remodeled to his design.<ref>{{Harvnb|Brent|1998|p=13}}</ref> The Peirces named the property "]". There they lived with few interruptions for the rest of their lives,<ref>{{Harvnb|Brent|1998|pp=369–374}}</ref> Charles writing prolifically, with much of his work remaining unpublished to this day (see ]). Living beyond their means soon led to grave financial and legal difficulties.<ref>{{Harvnb|Brent|1998|p=191}}</ref> Charles spent much of his last two decades unable to afford heat in winter and subsisting on old bread donated by the local baker. Unable to afford new stationery, he wrote on the ] side of old manuscripts. An outstanding warrant for assault and unpaid debts led to his being a fugitive in New York City for a while.<ref>{{Harvnb|Brent|1998|p=246}}</ref> Several people, including his brother ]<ref>{{Harvnb|Brent|1998|p=242}}</ref> and his neighbors, relatives of ], settled his debts and paid his property taxes and mortgage.<ref>{{Harvnb|Brent|1998|p=271}}</ref> | |||
The only book-length account of his own investigations that Peirce published in his lifetime was ''Photometric Researches'' (1878), a monograph on the applications of spectrographic methods to astronomy. While at Johns Hopkins, he edited ''Studies in Logic'' (1883), containing chapters by himself and his graduate students. He was a frequent book-reviewer and contributor to '']'', the sum of which writing is reprinted in ''Contributions to 'The Nation' '' (Ketner and Cook, 1975-1987). | |||
Peirce did some scientific and engineering consulting and wrote much for meager pay, mainly encyclopedic dictionary entries, and reviews for '']'' (with whose editor, ], he became friendly). He did translations for the ], at its director ]'s instigation. Peirce also did substantial mathematical calculations for Langley's research on powered flight. Hoping to make money, Peirce tried inventing.<ref>{{Harvnb|Brent|1998|pp=249–255}}</ref> He began but did not complete several books.<ref>{{Harvnb|Brent|1998|p=371}}</ref> In 1888, President ] appointed him to the ].<ref>{{Harvnb|Brent|1998|p=189}}</ref> | |||
Hardwick (2001) published Peirce's entire correspondence with ]. Peirce's other published correspondence is largely limited to the 14 letters included in volume 8 of the ''Collected Papers'', and the 20-odd pre-1890 items included in the ''Writings''. | |||
From 1890 on, he had a friend and admirer in Judge Francis C. Russell of Chicago,<ref>{{Harvnb|Brent|1998|p=370}}</ref> who introduced Peirce to editor ] and owner ] of the pioneering American philosophy journal '']'', which eventually published at least 14 articles by Peirce.<ref>{{Harvnb|Brent|1998|pp=205–206}}</ref> He wrote many texts in ]'s '']'' (1901–1905); half of those credited to him appear to have been written actually by ] under his supervision.<ref>{{Harvnb|Brent|1998|pp=374–376}}</ref> He applied in 1902 to the newly formed ] for a grant to write a systematic book describing his life's work. The application was doomed; his nemesis, Newcomb, served on the Carnegie Institution executive committee, and its president had been president of Johns Hopkins at the time of Peirce's dismissal.<ref>{{Harvnb|Brent|1998|pp=279–289}}</ref> | |||
] acquired the papers found in Peirce's study soon after his death, but did not microfilm them until 1964. Only after Richard Robin (1967) published his catalog of this legacy, did it become clear that Peirce had left approximately 1650 unpublished manuscripts, totalling 80,000 pages. A number of these works were published in Eisele (1976, 1985), but most of them remain as yet unpublished. For more on the vicissitudes of Peirce's papers, see (Houser 1989). | |||
The one who did the most to help Peirce in these desperate times was his old friend ], dedicating his ''Will to Believe'' (1897) to Peirce, and arranging for Peirce to be paid to give two series of lectures at or near Harvard (1898 and 1903).<ref>{{Harvnb|Brent|1998|pp=261–264, 290–292, 324}}</ref> Most important, each year from 1907 until James's death in 1910, James wrote to his friends in the Boston intelligentsia to request financial aid for Peirce; the fund continued even after James died. Peirce reciprocated by designating James's eldest son as his heir should Juliette predecease him.<ref>{{Harvnb|Brent|1998|pp=306–307, 315–316}}</ref> It has been believed that this was also why Peirce used "Santiago" ("St. James" in English) as a middle name, but he appeared in print as early as 1890 as Charles Santiago Peirce. (See ] for discussion and references). | |||
The increasingly apparent limitations of the ''Collected Papers'', with respect to coverage and organization both, led Max Fisch and others in the 1970's to establish the Peirce Edition Project, whose mission is to prepare a more complete critical edition, known as the ''Writings'', organized chronologically. A mere half dozen of the anticipated 30-plus volumes have appeared to date, but they cover a period from 1859 to 1890 when Peirce carried out some of his most important work. | |||
==Death and legacy== | |||
===On a New List of Categories (1867)=== | |||
Peirce died destitute in ], twenty years before his widow. Juliette Peirce kept the urn with Peirce's ashes at Arisbe. In 1934, Pennsylvania Governor ] arranged for Juliette's burial in Milford Cemetery. The urn with Peirce's ashes was interred with Juliette.{{efn|In 2018, plans have been made to erect a memorial monument for Peirce at the site of burial – see: Justin Weinberg, , website '']'', March 14, 2018.}} | |||
{{main|On a New List of Categories}} | |||
] (1959) wrote "Beyond doubt he was one of the most original minds of the later nineteenth century and certainly the greatest American thinker ever".<ref>Russell, Bertrand (1959), ''Wisdom of the West'', p. 276</ref> Russell and ]'s '']'', published from 1910 to 1913, does not mention Peirce (Peirce's work was not widely known until later).<ref name="Anellis">Anellis, Irving H. (1995), "Peirce Rustled, Russell Pierced: How Charles Peirce and Bertrand Russell Viewed Each Other's Work in Logic, and an Assessment of Russell's Accuracy and Role in the Historiography of Logic", ''Modern Logic'' 5, 270–328. ''Arisbe'' {{Webarchive|url=https://web.archive.org/web/20130924110921/http://www.cspeirce.com/menu/library/aboutcsp/anellis/csp%26br.htm |date=2013-09-24 }}</ref> ], while reading some of Peirce's unpublished manuscripts soon after arriving at Harvard in 1924, was struck by how Peirce had anticipated his own "process" thinking. (On Peirce and ], see Lowe 1964.<ref name="SP2" />) ] viewed Peirce as "one of the greatest philosophers of all times".<ref>Popper, Karl (1972), ''Objective Knowledge: An Evolutionary Approach'', p. 212</ref> Yet Peirce's achievements were not immediately recognized. His imposing contemporaries ] and ]<ref>See Royce, Josiah, and Kernan, W. Fergus (1916), "Charles Sanders Peirce", ''The Journal of Philosophy, Psychology, and Scientific Method'' v. 13, pp. 701–709. ''Arisbe'' </ref> admired him and ], at Columbia and ], wrote about Peirce with respect but to no immediate effect. | |||
===Logic of Relatives (1870)=== | |||
{{main|Logic of Relatives (1870)}} | |||
The first scholar to give Peirce his considered professional attention was Royce's student ], the editor of an anthology of Peirce's writings entitled '']'' (1923), and the author of the first bibliography of Peirce's scattered writings.<ref>Ketner ''et al.'' (1986), '']'', p. iii</ref> ] studied under Peirce at Johns Hopkins.<ref name="grads"/> From 1916 onward, Dewey's writings repeatedly mention Peirce with deference. His 1938 ''Logic: The Theory of Inquiry'' is much influenced by Peirce.<ref>] (2008), "", ''Stanford Encyclopedia of Philosophy''.</ref> The publication of the first six volumes of ''Collected Papers'' (1931–1935) was the most important event to date in Peirce studies and one that Cohen made possible by raising the needed funds;<ref>{{Harvnb|Brent|1998|p=8}}</ref> however it did not prompt an outpouring of secondary studies. The editors of those volumes, ] and ], did not become Peirce specialists. Early landmarks of the secondary literature include the monographs by Buchler (1939), ] (1946), and ] (1950), the 1941 PhD thesis by ] (who went on to edit volumes 7 and 8), and the studies edited by Wiener and Young (1952). The ] was founded in 1946. Its ''Transactions'', an academic quarterly specializing in Peirce's pragmatism and American philosophy has appeared since 1965.<ref>{{cite web |url=http://www.iupress.indiana.edu/pages.php?pID=94&CDpath=4 |title=Transactions of the Charles S. Peirce Society |language=en |website=Indiana University Press Journals |access-date=June 17, 2017 |archive-url=https://web.archive.org/web/20151204172633/http://www.iupress.indiana.edu/pages.php?pID=94&CDpath=4 |archive-date=December 4, 2015 |url-status=dead}}</ref> (See Phillips 2014, 62 for discussion of Peirce and Dewey relative to ].) | |||
By 1870, the drive that Peirce exhibited to understand the character of knowledge, starting with our partly innate and partly inured models of the world and working up to the conduct of our scientific inquiries into it, having led him to inquire into the three-roled relationship of objects, signs, and impressions of the mind, now brought him to the pass of needing more power in a theory of relations than the available logical formalisms were up to providing. His first concerted effort to supply the gap was rolled out in his paper "Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic". But the nameplate "LOR of 1870" will do for ease of identification. | |||
By 1943 such was Peirce's reputation, in the US at least, that ''Webster's Biographical Dictionary'' said that Peirce was "now regarded as the most original thinker and greatest logician of his time".<ref>{{cite dictionary |title=Peirce, Benjamin: Charles Sanders |dictionary=Webster's Biographical Dictionary |orig-date=1943 |date=1960 |place=Springfield, Massachusetts}}</ref> | |||
===Logic of Relatives (1883)=== | |||
{{main|Logic of Relatives (1883)}} | |||
In 1949, while doing unrelated archival work, the historian of mathematics ] (1902–2000) chanced on an autograph letter by Peirce. So began her forty years of research on Peirce, “the mathematician and scientist,” culminating in Eisele (1976, 1979, 1985). Beginning around 1960, the philosopher and ] ] (1900–1995) emerged as an authority on Peirce (Fisch, 1986).<ref name="Fisch">Fisch, Max (1986), ''Peirce, Semeiotic, and Pragmatism'', Kenneth Laine Ketner and Christian J. W. Kloesel, eds., Bloomington, Indiana: Indiana U. Press.</ref> He includes many of his relevant articles in a survey (Fisch 1986: 422–448) of the impact of Peirce's thought through 1983. | |||
===Logic of Relatives (1897)=== | |||
Peirce has gained an international following, marked by university research centers devoted to Peirce studies and ] in Brazil (] and ]), Finland (] and ]), Germany (], ], and Deuser's and Härle's group<ref>Theological Research Group in C.S. Peirce's Philosophy (Hermann Deuser, Justus-Liebig-Universität Gießen; Wilfred Härle, Philipps-Universität Marburg, Germany).</ref>), France (]), Spain (]), and Italy (]). His writings have been translated into several languages, including German, French, Finnish, Spanish, and Swedish. Since 1950, there have been French, Italian, Spanish, British, and Brazilian Peirce scholars of note. For many years, the North American philosophy department most devoted to Peirce was the ], thanks in part to the leadership of ] and David Savan. In recent years, U.S. Peirce scholars have clustered at ], home of the ] (PEP) –, and ]. | |||
===The Simplest Mathematics (1902)=== | |||
{{main|The Simplest Mathematics}} | |||
{{Blockquote|Currently, considerable interest is being taken in Peirce's ideas by researchers wholly outside the arena of academic philosophy. The interest comes from industry, business, technology, intelligence organizations, and the military; and it has resulted in the existence of a substantial number of agencies, institutes, businesses, and laboratories in which ongoing research into and development of Peircean concepts are being vigorously undertaken.|Robert Burch, 2001, updated 2010<ref name="Burch"/>}} | |||
===Kaina Stoicheia (1904)=== | |||
{{main|Kaina Stoicheia}} | |||
In recent years, Peirce's ] of signs is exploited by a growing number of practitioners for marketing and design tasks. | |||
==Peirce's philosophy== | |||
] writes that Peirce was the last of the "moderns" and "first of the postmoderns". He lauds Peirce's doctrine of signs as a contribution to the dawn of the ] epoch. Deely additionally comments that "Peirce stands...in a position analogous to the position occupied by ] as last of the Western ] and first of the medievals".<ref>''Postmodernism and Christian Philosophy''. , p. 93, </ref> | |||
Peirce was a working scientist for 30 years, and arguably was a professional philosopher only during the five years he lectured at Johns Hopkins. He learned philosophy mainly by reading a few pages of ]'s '']'' in the original German, every day while a Harvard undergraduate. His writings bear on a wide array of disciplines, including ], ], geodesy, ], ], ], the ], ], ], and ]. This work has become the subject of renewed interest and approval, resulting in a revival inspired not only by his anticipations of recent scientific developments but also by his demonstration of how philosophy can be applied effectively to human problems. | |||
==Works== | |||
Peirce's writings repeatedly refer to a system of three ], named Firstness, Secondness, and Thirdness, devised early in his career in reaction to his reading of ], ], and ]. He later initiated the philosophical tendency known as ], a variant of which his life-long friend ] made popular. Peirce believed that any truth is provisional, and that the truth of any proposition cannot be certain but only probable. The name he gave to this state of affairs was "]". This fallibilism and pragmatism may be seen as playing roles in his work similar to those of ] and ], respectively, in the work of others. | |||
{{see also|Charles Sanders Peirce bibliography}} | |||
Peirce's reputation rests largely on academic papers published in American scientific and scholarly journals such as ''Proceedings of the ]'', the ''Journal of Speculative Philosophy'', '']'', ''] Monthly'', the '']'', ''Memoirs of the ]'', '']'', and others. See ] for an extensive list with links to them online. The only full-length book (neither extract nor pamphlet) that Peirce authored and saw published in his lifetime<ref>], Introduction, ''Collected Papers of Charles Sanders Peirce'', 7, p. xi.</ref> was '']'' (1878), a 181-page monograph on the applications of spectrographic methods to astronomy. While at Johns Hopkins, he edited '']'' (1883), containing chapters by himself and his ]. Besides lectures during his years (1879–1884) as lecturer in Logic at Johns Hopkins, he gave at least nine series of lectures, many now published; see ]. | |||
After Peirce's death, ] obtained from Peirce's widow the papers found in his study, but did not microfilm them until 1964. Only after Richard Robin (1967)<ref>Robin, Richard S. (1967), '' {{Webarchive|url=https://web.archive.org/web/20191027010841/http://www.iupui.edu/~peirce/robin/robin.htm |date=2019-10-27 }}''. Amherst MA: ].</ref> catalogued this '']'' did it become clear that Peirce had left approximately 1,650 unpublished manuscripts, totaling over 100,000 pages,<ref>"The manuscript material now (1997) comes to more than a hundred thousand pages. These contain many pages of no philosophical interest, but the number of pages on philosophy certainly number much more than half of that. Also, a significant but unknown number of manuscripts have been lost." – Joseph Ransdell (1997), "Some Leading Ideas of Peirce's Semiotic", {{Webarchive|url=https://web.archive.org/web/20080114022817/http://www.cspeirce.com/menu/library/aboutcsp/ransdell/leading.htm#note2 |date=2008-01-14 }}, 1997 light revision of 1977 version in ''Semiotica'' 19:157–178.</ref> mostly still unpublished except ]. On the vicissitudes of Peirce's papers, see Houser (1989).<ref>Houser, Nathan, "The Fortunes and Misfortunes of the Peirce Papers", Fourth Congress of the ], Perpignan, France, 1989. ''Signs of Humanity'', v. 3, 1992, pp. 1259–1268. </ref> Reportedly the papers remain in unsatisfactory condition.<ref>Memorandum to the President of Charles S. Peirce Society by Ahti-Veikko Pietarinen, U. of Helsinki, March 29, 2012. .</ref> | |||
==Pragmatism== | |||
The first published anthology of Peirce's articles was the one-volume '']'', edited by ], 1923, still in print. ] were published in 1940, 1957, 1958, 1972, 1994, and 2009, most still in print. The main posthumous editions<ref>See for example "" at ''Commens'', U. of Helsinki.</ref> of Peirce's works in their long trek to light, often multi-volume, and some still in print, have included: | |||
Peirce's pragmatism may be understood as a method of sorting out conceptual confusions by linking the meaning of concepts to their practical consequences. This pragmatism bears no resemblance to "vulgar" pragmatism, which misleadingly connotes a ruthless and ]an search for mercenary or political advantage. | |||
1931–1958: '']'' (CP), 8 volumes, includes many published works, along with a selection of previously unpublished work and a smattering of his correspondence. This long-time standard edition drawn from Peirce's work from the 1860s to 1913 remains the most comprehensive survey of his prolific output from 1893 to 1913. It is organized thematically, but texts (including lecture series) are often split up across volumes, while texts from various stages in Peirce's development are often combined, requiring frequent visits to editors' notes.<ref>See 1987 review by B. Kuklick (of ''Peirce'' by ]), in ''British Journal for the Philosophy of Science''v. 38, n. 1, pp. 117–119. .</ref> Edited (1–6) by ] and ] and (7–8) by ], in print and online. | |||
], among others, regarded two of Peirce's papers, "The Fixation of Belief" (1877) and "How to Make Our Ideas Clear" (1878) as being the origin of ]. Peirce conceived pragmatism to be a method for clarifying the meaning of difficult ]s. He differed from James and ] in being decidedly more rationalistic and realistic. | |||
1975–1987: ], 4 volumes, includes Peirce's more than 300 reviews and articles published 1869–1908 in '']''. Edited by Kenneth Laine Ketner and James Edward Cook, online. | |||
Peirce also proposed a method of objective justification of propositions that was distinct from the two kinds of reasoning then recognized: | |||
1976: '']'', 4 volumes in 5, included many previously unpublished Peirce manuscripts on mathematical subjects, along with Peirce's important published mathematical articles. Edited by Carolyn Eisele, back in print. | |||
:* ] from self-evident truths. | |||
1977: '']'' (2nd edition 2001), included Peirce's entire correspondence (1903–1912) with ]. Peirce's other published correspondence is largely limited to the 14 letters included in volume 8 of the ''Collected Papers'', and the 20-odd pre-1890 items included so far in the ''Writings''. Edited by Charles S. Hardwick with James Cook, out of print. | |||
:* ] from experiential phenomena. | |||
1982–now: '']'' (W), Volumes 1–6 & 8, of a projected 30. The limited coverage, and defective editing and organization, of the ''Collected Papers'' led Max Fisch and others in the 1970s to found the (PEP), whose mission is to prepare a more complete critical chronological edition. Only seven volumes have appeared to date, but they cover the period from 1859 to 1892, when Peirce carried out much of his best-known work. ''Writings of Charles S. Peirce'', 8 was published in November 2010; and work continues on ''Writings of Charles S. Peirce'', 7, 9, and 11. In print and online. | |||
He called his method ] and it is distinct from induction by virtue of the following three dimensions: | |||
1985: '']'', 2 volumes. Auspitz has said,<ref>Auspitz, Josiah Lee (1994), "The Wasp Leaves the Bottle: Charles Sanders Peirce", ''The American Scholar'', v. 63, n. 4, Autumn 1994, 602–618. ''Arisbe'' {{Webarchive|url=https://web.archive.org/web/20131103161015/http://www.cspeirce.com/menu/library/aboutcsp/auspitz/escape.htm |date=2013-11-03 }}.</ref> "The extent of Peirce's immersion in the science of his day is evident in his reviews in the ''Nation'' and in his papers, grant applications, and publishers' prospectuses in the history and practice of science", referring latterly to ''Historical Perspectives''. Edited by Carolyn Eisele, back in print. | |||
:* Active process of theory generation, with no prior assurance of truth. | |||
1992: '']'' collects in one place Peirce's 1898 series of lectures invited by William James. Edited by Kenneth Laine Ketner, with commentary by ], in print. | |||
:* Development of the logical and practical consequences of the theory. | |||
1992–1998: '']'' (EP), 2 volumes, is an important recent sampler of Peirce's philosophical writings. Edited (1) by Nathan Hauser and Christian Kloesel and (2) by ''Peirce Edition Project'' editors, in print. | |||
:* Testing the theory's capacity to predict the involved variables. | |||
1997: '']'' collects Peirce's 1903 Harvard "Lectures on Pragmatism" in a study edition, including drafts, of Peirce's lecture manuscripts, which had been previously published in abridged form; the lectures now also appear in ''The Essential Peirce'', 2. Edited by Patricia Ann Turisi, in print. | |||
A theory that proves itself more successful in predicting and controlling our world than its rivals is said to be nearer the truth. This is an operational notion of truth employed by scientists. Unlike the other pragmatists, Peirce never explicitly advanced a theory of truth. But his scattered comments about truth have proved influential to several truth theorists, especially James. | |||
Pragmatism is regarded as a distinctively ] philosophy. As advocated by James, Dewey, ], ], and others, it has proved durable and popular. But Peirce did not seize on this fact to enhance his reputation. Instead, what James and others called "pragmatism" so dismayed Peirce that he renamed his own variant ], joking that it was "ugly enough to be safe from kidnappers" (CP 5.414). | |||
2010: '']'' collects important writings by Peirce on the subject, many not previously in print. Edited by Matthew E. Moore, in print. | |||
==Formal perspective== | |||
==Mathematics== | |||
<blockquote> | |||
Peirce's most important work in pure mathematics was in logical and foundational areas. He also worked on ], ], various geometries, ] and ]s, ]s, ]s, the ], and the nature of continuity. | |||
In proceeding to these inquiries, it will not be necessary to enter into the discussion of that famous question of the schools, whether Language is to be regarded as an ''essential'' instrument of reasoning, or whether, on the other hand, it is possible for us to reason without its aid. I suppose this question to be beside the design of the present treatise, for the following reason, viz., that it is the business of Science to investigate laws; and that, whether we regard signs as the representatives of things and of their relations, or as the representatives of the conceptions and operations of the human intellect, in studying the laws of signs, we are in effect studying the manifested laws of reasoning. (Boole, ''Laws of Thought'', p. 24) | |||
</blockquote> | |||
<blockquote> | |||
How often do we think of the thing in algebra? When we use the symbol of multiplication we do not even think out the conception of multiplication, we think merely of the laws of that symbol, which coincide with the laws of the conception, and what is more to the purpose, coincide with the laws of multiplication in the object. Now, I ask, how is it that anything can be done with a symbol, without reflecting upon the conception, much less imagining the object that belongs to it? It is simply because the symbol has acquired a nature, which may be described thus, that when it is brought before the mind certain principles of its use — whether reflected on or not — by association immediately regulate the action of the mind; and these may be regarded as laws of the symbol itself which it cannot ''as a symbol'' transgress. ("On the Logic of Science" (1865), CE 1, 173). | |||
</blockquote> | |||
He worked on applied mathematics in economics, engineering, and map projections, and was especially active in ] and statistics.<ref name="Burks">], "Review: Charles S. Peirce, ''The new elements of mathematics''", ''Bulletin of the American Mathematical Society'' v. 84, n. 5 (1978), .</ref> | |||
;Discoveries | |||
There are a number of issues that typically arise with the continuing development of a symbolist perspective, in any field of endeavor, over the years of its natural life-cycle. We can see these issues illustrated clearly enough in our story problem paradigm, with its parsing of the problem-solving process into the three phases of abstraction, transformation, and application. | |||
<div style="float:right;width:8.5em;text-align:center;margin-right:20px;border:solid 1px #bbb"><div style="margin:2px;background-color:#dddddd;font-size:40pt;height:50pt;line-height:100%">↓</div> <div style="font-size:8pt;line-height:150%">The ], <br>symbol for "(neither) ... '''nor''' ...", also called the ''Quine dagger''</div></div> | |||
Peirce made a number of striking discoveries in formal logic and foundational mathematics, nearly all of which came to be appreciated only long after he died: | |||
In 1860<ref>Peirce (1860 MS), "Orders of Infinity", {{Webarchive|url=https://web.archive.org/web/20130329072747/http://www.iupui.edu/~peirce/PEP_news_Sept2010.pdf |date=2013-03-29 }} (PDF), p. 6, with the manuscript's text. Also see logic historian Irving Anellis's {{Webarchive|url=https://web.archive.org/web/20170423131106/http://thread.gmane.org/gmane.science.philosophy.peirce/6621/focus=6626 |date=April 23, 2017 }} at peirce-l.</ref> he suggested a cardinal arithmetic for infinite numbers, years before any work by ] (who completed ]) and without access to ]'s 1851 (posthumous) ''Paradoxien des Unendlichen''. | |||
:* Once the division of labor among the three phases of the process has been in place for a sufficiently long time, each of the three phases will tend to take on a certain degree of independence, sometimes actual and sometimes merely apparent, from the other two phases. | |||
In 1880–1881<ref>Peirce (MS, winter of 1880–1881), "A Booli<!-- sic! -->an Algebra with One Constant", ''Collected Papers of Charles Sanders Peirce'', 4.12–20, ''Writings of Charles S. Peirce'', 4:218–221. Google . See Roberts, Don D. (1973), ''The Existential Graphs of Charles S. Peirce'', p. 131.</ref> he showed how ] could be done via a ] (]), anticipating ] by 33 years. (See also ].) | |||
:* As a side-effect of the increasing independence among the various phases of inquiry, there tend to develop specialized disciplines, each devoted to a single aspect of the initially interactive and integral process. A symptom of this stage of development is that references to the 'independence' of the several phases of inquiry may become confused with or even replaced by assertions of their 'autonomy' from one another. | |||
In 1881<ref>Peirce (1881), "On the Logic of Number", ''American Journal of Mathematics'' v. 4, pp. . Reprinted (CP 3.252–288), (''Writings of Charles S. Peirce'', 4:299–309). See Shields, Paul (1997), "Peirce's Axiomatization of Arithmetic", in Houser ''et al.'', eds., ''Studies in the Logic of Charles S. Peirce''.</ref> he set out the ], a few years before ] and ]. In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "]", and implied by the same stroke an important formal definition of an ] (Dedekind-infinite), as a ] that can be put into a ] with one of its proper ]. | |||
Returning to the formal sciences of logic and mathematics and focusing on the rise of symbolic logic in particular, all of the above issues were clearly recognized and widely discussed among the movers and shakers of the symbolist movement, with especial mention of ], ], ], and Charles Peirce. | |||
In 1885<ref name="CSP1885">Peirce (1885), "On the Algebra of Logic: A Contribution to the Philosophy of Notation", ''American Journal of Mathematics'' 7, two parts, first part published 1885, pp. (see Houser in {{Webarchive|url=https://web.archive.org/web/20160212172608/http://www.iupui.edu/~peirce/writings/v4/v4introx.htm#21note |date=2016-02-12 }} in "Introduction" in ''Writings of Charles S. Peirce'', 4). Presented, National Academy of Sciences, Newport, RI, October 14–17, 1884 (see ''The Essential Peirce'', 1, {{Webarchive|url=https://web.archive.org/web/20141019135652/http://www.iupui.edu/~peirce/ep/ep1/heads/ep1heads.htm#16 |date=2014-10-19 }}). 1885 is the year usually given for this work. Reprinted ''Collected Papers of Charles Sanders Peirce'', 3.359–403, ''Writings of Charles S. Peirce'', 5:162–190, ''The Essential Peirce'', 1:225–228, in part.</ref> he distinguished between first-order and second-order quantification.<ref name="Putnam">Putnam, Hilary (1982), "Peirce the Logician", ''Historia Mathematica'' 9, 290–301. Reprinted, pp. 252–260 in Putnam (1990), ''Realism with a Human Face'', Harvard. .</ref>{{efn|It was in Peirce's 1885 "On the Algebra of Logic". See Byrnes, John (1998), "Peirce's First-Order Logic of 1885", ''Transactions of the Charles S. Peirce Society'' v. 34, n. 4, pp. 949–976.}} In the same paper he set out what can be read as the first (primitive) ], anticipating ] by about two decades (Brady 2000,<ref name="Brady">Brady, Geraldine (2000), ''From Peirce to Skolem: A Neglected Chapter in the History of Logic'', North-Holland/Elsevier Science BV, Amsterdam, Netherlands.</ref> pp. 132–133). | |||
The first symptoms of a crisis typically arise in connection with questions about the status of the abstract symbols that are 'manipulated' in the transformation phase, to express it in sign-relational terms, the sign-to-sign aspect of semiosis. | |||
]s: Alpha graphs]] | |||
In the beginning, while it is still evident to everyone concerned that these symbols are mined from the matrix of their usual interpretations, which are generally more diverse than unique, these abstracted symbols are commonly referred to as ']s', the sense being that they are transiently detached from their interpretations simply for the sake of extra facility in processing the more general thrust of their meanings, after which intermediary process they will have their concrete meanings restored. | |||
In 1886, he saw that Boolean calculations could be carried out via electrical switches,<ref name="P2M"/> anticipating ] by more than 50 years. | |||
By the later 1890s<ref>See Peirce (1898), Lecture 3, "The Logic of Relatives" (not the 1897 ''Monist'' article), '']'', pp. 146–164 </ref> he was devising ]s, a diagrammatic notation for the ]. Based on them are ]'s ]s and Sun-Joo Shin's ]. | |||
;''The New Elements of Mathematics'' | |||
When we start to hear these abstract, general, uninterpreted symbols being described as 'meaningless' symbols, then we can be sure that a certain line in our sand-reckoning has been crossed, and that the crossers thereof have hefted or sublimated ']' to the status of a full-blown ] rather than a simple ] device. | |||
Peirce wrote drafts for an introductory textbook, with the working title ''The New Elements of Mathematics'', that presented mathematics from an original standpoint. Those drafts and many other of his previously unpublished mathematical manuscripts finally appeared<ref name="Burks"/> in ''The New Elements of Mathematics by Charles S. Peirce'' (1976), edited by mathematician ]. | |||
What we observe here is a familiar form of cyclic process, with the crest of excess followed by the slough of despond. The inflationary boom that raises 'formalism' beyond its formative sphere as one among a host of equally useful heuristic tricks to the status of a totalizing worldview leads perforce to the deflationary bust that makes of 'formalist' a pejorative term. | |||
;Nature of mathematics | |||
The point of the foregoing discussion is this, that one of the main difficulties that we have in understanding what the whole complex of words rooted in 'form' meant to Peirce is that we find ourselves, historically speaking, on opposite sides of this cycle of ideas from him. | |||
Peirce agreed with ] in regarding mathematics as more basic than philosophy and the special sciences (of nature and mind). Peirce ] mathematics into three subareas: (1) mathematics of logic, (2) discrete series, and (3) pseudo-continua (as he called them, including the ]) and continua. Influenced by his father ], Peirce argued that mathematics studies purely hypothetical objects and is not just the science of quantity but is more broadly the science which draws necessary conclusions; that mathematics aids logic, not vice versa; and that logic itself is part of philosophy and is the science ''about'' drawing conclusions necessary and otherwise.<ref>Peirce (1898), "The Logic of Mathematics in Relation to Education" in ''Educational Review'' v. 15, pp. (via ''Internet Archive''). Reprinted ''Collected Papers of Charles Sanders Peirce'', 3.553–562. See also his "The Simplest Mathematics" (1902 MS), ''Collected Papers of Charles Sanders Peirce'', 4.227–323.</ref> | |||
===Logic as formal semiotic=== | |||
===Mathematics of logic=== | |||
<blockquote> | |||
<div class=infobox style="padding:5px;width:40%">Mathematical logic and foundations, some noted articles | |||
''On the Definition of Logic''. Logic is ''formal semiotic''. A sign is something, ''A'', which brings something, ''B'', its ''interpretant'' sign, determined or created by it, into the same sort of correspondence (or a lower implied sort) with something, ''C'', its ''object'', as that in which itself stands to ''C''. This definition no more involves any reference to human thought than does the definition of a line as the place within which a particle lies during a lapse of time. It is from this definition that I deduce the principles of logic by mathematical reasoning, and by mathematical reasoning that, I aver, will support criticism of ]ian severity, and that is perfectly evident. The word "formal" in the definition is also defined. (Peirce, "Carnegie Application", NEM 4, 54). | |||
* "On an Improvement in Boole's Calculus of Logic" (1867) | |||
</blockquote> | |||
* "Description of a Notation for the Logic of Relatives" (1870) | |||
* "On the Algebra of Logic" (1880) | |||
* "A Boolian{{sic}} Algebra with One Constant" (1880 MS) | |||
* "On the Logic of Number" (1881) | |||
* "Note B: The Logic of Relatives" (1883) | |||
* "On the Algebra of Logic: A Contribution to the Philosophy of Notation" (1884/1885) | |||
* "The Logic of Relatives" (1897) | |||
* "The Simplest Mathematics" (1902 MS) | |||
* "Prolegomena to an Apology for Pragmaticism" (1906, on existential graphs) | |||
</div> | |||
===Probability and statistics=== | |||
Peirce held that science achieves statistical probabilities, not certainties, and that spontaneity ("absolute chance") is real (see ] on his view). Most of his statistical writings promote the ] of probability (objective ratios of cases), and many of his writings express skepticism about (and criticize the use of) ] when such models are not based on objective ].{{efn|Peirce condemned the use of "certain ]" (''The Essential Peirce'', 2:108–109) even more strongly than he criticized ]. Peirce used ] in criticizing parapsychology (''Writings of Charles S. Peirce'', 6:76).}} Though Peirce was largely a frequentist, his ] introduced the ] before ].<ref>Miller, Richard W. (1975), "Propensity: Popper or Peirce?", '']'', v. 26, n. 2, pp. 123–132. {{doi|10.1093/bjps/26.2.123}}. .</ref><ref>] and Kolenda, Konstantin (1977), "Two Fallibilists in Search of the Truth", ''Proceedings of the Aristotelian Society'', Supplementary Volumes, v. 51, pp. 63–104. {{JSTOR|4106816}}</ref> Peirce (sometimes with ]) investigated the ] of experimental subjects, "perhaps the very first" elicitation and estimation of ] in ] and (what came to be called) ].<ref name="Stigler78" /> | |||
Peirce was one of the ]. He formulated modern statistics in "]" (1877–1878) and "]" (1883). With a ], Charles Sanders Peirce and Joseph Jastrow introduced ], ] in 1884<ref>Peirce CS, Jastrow J. . Memoirs of the National Academy of Sciences 1885; 3:73–83.</ref> (Hacking 1990:205)<ref name="Hacking" /> (before ]).<ref name="Stigler78" /> He invented ] for experiments on gravity, in which he "]". He used ] and ]. Peirce extended the work on ] by ], his father.<ref name="Stigler78" /> He introduced the terms "]" and "]" (before ] and ]). (See ]'s historical books and ] 1990.<ref name="Hacking" />) | |||
In 1902 Peirce applied to the newly established ] for aid "in accomplishing certain scientific work", presenting an "explanation of ''what work'' is proposed" plus an "appendix containing a fuller statement". These parts of the letter, along with excerpts from earlier drafts, can be found in NEM 4 (Eisele 1976). The appendix is organized as a "List of Proposed Memoirs on Logic", and No. 12 among the 36 proposals is titled "On the Definition of Logic", the earlier draft of which is quoted in full above. | |||
== As a philosopher == | |||
On Peirce and his contemporaries ] and ], ] (1982) wrote: | |||
Peirce was a working scientist for 30 years, and arguably was a professional philosopher only during the five years he lectured at Johns Hopkins. He learned philosophy mainly by reading, each day, a few pages of ]'s '']'', in the original German, while a Harvard undergraduate. His writings bear on a wide array of disciplines, including mathematics, ], philosophy, statistics, ],<ref name="SP2" /> ],<ref name="metr" /> ], ],<ref name="psych" /> economics,<ref name="econom" /> ],<ref name="ling" /> and the ]. This work has enjoyed renewed interest and approval, a revival inspired not only by his anticipations of recent scientific developments but also by his demonstration of how philosophy can be applied effectively to human problems. | |||
Peirce's philosophy includes a pervasive three-category system: belief that truth is immutable and is both independent from actual opinion (]) and discoverable (no radical skepticism), logic as formal semiotic on signs, on arguments, and on inquiry's ways—including philosophical ] (which he founded), ], and ]—and, in metaphysics: ], e.g. ], belief in God, freedom, and at least an attenuated immortality, ], and belief in the reality of continuity and of absolute chance, mechanical necessity, and creative love.<ref name=evolove/> In his work, fallibilism and pragmatism may seem to work somewhat like ] and ], respectively, in others' work. However, for Peirce, fallibilism is balanced by an ] and is a basis for belief in the reality of absolute chance and of continuity,<ref name="FCE">Peirce (1897) "Fallibilism, Continuity, and Evolution", ''Collected Papers of Charles Sanders Peirce'', 1.141–175 (), placed by the ''Collected Papers of Charles Sanders Peirce'', editors directly after "F.R.L." (1899, ''Collected Papers of Charles Sanders Peirce'', 1.135–140).</ref> and pragmatism commits one to anti-] belief in the reality of the general (CP 5.453–457). | |||
<blockquote> | |||
When I started to trace the later development of logic, the first thing I did was to look at Schröder's ''Vorlesungen über die Algebra der Logik''. This book … has a third volume on the logic of relations (''Algebra und Logik der Relative'', 1895). three volumes were the best-known logic text in the world among advanced students, and they can safely be taken to represent what any mathematician interested in the study of logic would have had to know, or at least become acquainted with in the 1890s. | |||
</blockquote> | |||
For Peirce, First Philosophy, which he also called cenoscopy, is less basic than mathematics and more basic than the special sciences (of nature and mind). It studies positive phenomena in general, phenomena available to any person at any waking moment, and does not settle questions by resorting to special experiences.<ref name="phil">Peirce (1903), ''Collected Papers of Charles Sanders Peirce'', 1.180–202 and (1906) "The Basis of Pragmaticism", ''The Essential Peirce'', 2:372–373, see "" at ''Commens Digital Companion to C.S. Peirce''.</ref> He ] such philosophy into (1) phenomenology (which he also called phaneroscopy or categorics), (2) normative sciences (esthetics, ethics, and logic), and (3) metaphysics; his views on them are discussed in order below. | |||
<blockquote> | |||
While, to my knowledge, no one except ] ever published a single paper in Frege's notation, many famous logicians adopted Peirce-Schröder notation, and famous results and systems were published in it. ] stated and proved the ] … in Peirce's notation. In fact, there is no reference in Löwenheim's paper to any logic other than Peirce's. To cite another example, ] presented his ]s for ] in Peirce–Schröder notation, and not, as one might have expected, in ]–] notation. | |||
</blockquote> | |||
Peirce did not write extensively in aesthetics and ethics,<ref>" {{webarchive|url=https://web.archive.org/web/20030406170524/http://agora.phi.gvsu.edu/kap/CSP_Bibliography/CSP_norm_bib.pdf|date=6 April 2003}}" (PDF) by Kelly A. Parker in 1999.</ref> but came by 1902 to hold that aesthetics, ethics, and logic, in that order, comprise the normative sciences.<ref>Peirce (1902 MS), Carnegie Application, edited by Joseph Ransdell, {{Webarchive|url=https://web.archive.org/web/20131103160621/http://www.cspeirce.com/menu/library/bycsp/l75/ver1/l75v1-02.htm |date=2013-11-03 }}, see table.</ref> He characterized aesthetics as the study of the good (grasped as the admirable), and thus of the ends governing all conduct and thought.<ref>See at ''Commens Digital Companion to C.S. Peirce''.</ref> | |||
<blockquote> | |||
One can sum up these simple facts (which anyone can quickly verify) as follows: Frege certainly discovered the ] first (four years before O. H. Mitchell did so, going by publication dates, which are all we have as far as I know). But ] probably discovered ] 'first' (forgive me for not counting the ], who of course really discovered it 'first'). If the effective discoverer, from a European point of view, is ], that is because he discovered it so that it stayed discovered (by Europeans, that is), so that the discovery became known (by Europeans). Frege did 'discover' the quantifier in the sense of having the rightful claim to priority; but Peirce and his students discovered it in the effective sense. The fact is that until Russell appreciated what he had done, Frege was relatively obscure, and it was Peirce who seems to have been known to the entire world logical community. How many of the people who think that 'Frege invented logic' are aware of these facts? | |||
</blockquote> | |||
===Influence and legacy=== | |||
The main evidence for Putnam's claims is Peirce (1885), published in the premier American mathematical journal of the day. ], ], among others, cited this article. Peirce was apparently ignorant of Frege's work, despite their rival achievements in logic, ], and the ]. | |||
] described Peirce as "undoubtedly the greatest unpublished writer of our generation"<ref>{{cite journal |last1=Eco |first1=Umberto |title=Peirce's Notion of Interpretant |journal=] |date=December 1976 |volume=91 |issue=6}}</ref> and by ] as "one of the greatest philosophers of all time".<ref>{{cite book |last1=George Frederick Simkin |first1=Colin |title=Popper's Views on Natural and Social Science |date=1993 |publisher=E.J. Brill |page=41}}</ref> The ] says of Peirce that although "long considered an eccentric figure whose contribution to pragmatism was to provide its name and whose importance was as an influence upon James and Dewey, Peirce's significance in his own right is now largely accepted."<ref>{{cite web |last1=Atkin |first1=Albert |title=Charles Sanders Peirce (1839–1914) |url=https://iep.utm.edu/peirce-charles-sanders/ |publisher=]}}</ref> | |||
==Pragmatism== | |||
Peirce's other major discoveries in formal logic include: | |||
{{Main|Pragmaticism|Pragmatic maxim|Pragmatic theory of truth#Peirce}} | |||
<div class="infobox" style="padding:5px;font-size:94%;width:auto">Some noted articles and lectures | |||
* ] (1877–1878): <br>inquiry, pragmatism, statistics, inference | |||
# The Fixation of Belief (1877) | |||
# How to Make Our Ideas Clear (1878) | |||
# The Doctrine of Chances (1878) | |||
# The Probability of Induction (1878) | |||
# The Order of Nature (1878) | |||
# Deduction, Induction, and Hypothesis (1878) | |||
* The Harvard lectures on pragmatism (1903) | |||
* What Pragmatism Is (1905) | |||
* Issues of Pragmaticism (1905) | |||
* Pragmatism (1907 MS in ''The Essential Peirce'', 2)</div> Peirce's recipe for pragmatic thinking, which he called '']'' and, later, '']'', is recapitulated in several versions of the so-called '']''. Here is one of his more ] of it: | |||
{{quote|Consider what effects that might ''conceivably'' have practical bearings you ''conceive'' the objects of your ''conception'' to have. Then, your ''conception'' of those effects is the whole of your ''conception'' of the object.}} | |||
:* Distinguishing (Peirce, 1885) between first-order and second-order quantification. | |||
As a movement, pragmatism began in the early 1870s in discussions among Peirce, ], and others in ]. James among others regarded some articles by Peirce such as "]" (1877) and especially "]" (1878) as foundational to ].<ref>James, William (1897), ''The Will to Believe'', see p. 124.</ref> Peirce (CP 5.11–12), like James ('']'', 1907), saw pragmatism as embodying familiar attitudes, in philosophy and elsewhere, elaborated into a new deliberate method for fruitful thinking about problems. Peirce differed from James and the early ], in some of their tangential enthusiasms, in being decidedly more rationalistic and realistic, in several senses of those terms, throughout the preponderance of his own philosophical moods. | |||
:* Seeing that Boolean calculations could be carried out by means of electrical switches (W5:421-24), anticipating ] by more than 50 years. | |||
In 1905 Peirce coined the new name ] "for the precise purpose of expressing the original definition", saying that "all went happily" with James's and ]'s variant uses of the old name "pragmatism" and that he coined the new name because of the old name's growing use in "literary journals, where it gets abused". Yet he cited as causes, in a 1906 manuscript, his differences with James and Schiller and, in a 1908 publication, his differences with James as well as literary author ]'s declaration of pragmatism's indefinability. Peirce in any case regarded his views that truth is immutable and infinity is real, as being opposed by the other pragmatists, but he remained allied with them on other issues.<ref>See ] for discussion and references.</ref>{{circular reference|date=March 2024}} | |||
:* Devising the ]s, a diagrammatic notation for the ]. These graphs form the basis of the ]s of ], and of Sun-Joo Shin's diagrammatic reasoning. | |||
Pragmatism begins with the idea that belief is that on which one is prepared to act. Peirce's pragmatism is a method of clarification of conceptions of objects. It equates any conception of an object to a conception of that object's effects to a general extent of the effects' conceivable implications for informed practice. It is a method of sorting out conceptual confusions occasioned, for example, by distinctions that make (sometimes needed) formal yet not practical differences. He formulated both pragmatism and statistical principles as aspects of scientific logic, in his "Illustrations of the Logic of Science" series of articles. In the second one, "]", Peirce discussed three grades of clearness of conception: | |||
A philosophy of logic, grounded in his categories and semeiotic, can be extracted from Peirce's writings. This philosophy, as well as Peirce's logical work more generally, is exposited and defended in , and in , the ''Introduction'' to Houser et al (1997), and Dipert's chapter in Misak (2004). ] (1967), ] in his chapter in Brunning and Forster (1997), and Brady (2000) divide those who study formal (and natural) languages into two camps: the ] / ], and the ] / universalists. Hintikka and Brady view Peirce as a pioneer model theorist. On how the young ], especially his ''Principles of Mathematics'' and ], did not do Peirce justice, see Anellis (1995). | |||
# Clearness of a conception familiar and readily used, even if unanalyzed and undeveloped. | |||
Peirce's work on formal logic had admirers other than ]: | |||
# Clearness of a conception in virtue of clearness of its parts, in virtue of which logicians called an idea "distinct", that is, clarified by analysis of just what makes it applicable. Elsewhere, echoing Kant, Peirce called a likewise distinct definition "nominal" (CP 5.553). | |||
# Clearness in virtue of clearness of conceivable practical implications of the object's conceived effects, such that fosters fruitful reasoning, especially on difficult problems. Here he introduced that which he later called the ]. | |||
By way of example of how to clarify conceptions, he addressed conceptions about truth and the real as questions of the ] in general. In clearness's second grade (the "nominal" grade), he defined truth as a sign's correspondence to its object, and the real as the object of such correspondence, such that truth and the real are independent of that which you or I or any actual, definite ] think. After that needful but confined step, next in clearness's third grade (the pragmatic, practice-oriented grade) he defined truth as that opinion which ''would'' be reached, sooner or later but still inevitably, by research taken far enough, such that the real does depend on that ideal final opinion—a dependence to which he appeals in theoretical arguments elsewhere, for instance for the long-run validity of the rule of induction.<ref name="Induction">"That the rule of induction will hold good in the long run may be deduced from the principle that reality is only the object of the final opinion to which sufficient investigation would lead", in Peirce (1878 April), "The Probability of Induction", p. (via ''Internet Archive'' ) in ''Popular Science Monthly'', v. 12, pp. 705–718. Reprinted in ''Collected Papers of Charles Sanders Peirce'', 2.669–693, ''Writings of Charles S. Peirce'', 3:290–305, ''The Essential Peirce'', 1:155–169, elsewhere.</ref> Peirce argued that even to argue against the independence and discoverability of truth and the real is to presuppose that there is, about that very question under argument, a truth with just such independence and discoverability. | |||
:* The philosophical algebraist ] and the logician ], both British; | |||
Peirce said that a conception's meaning consists in "]" implied by "acceptance" of the conception—that is, if one were to accept, first of all, the conception as true, then what could one conceive to be consequent general modes of rational conduct by all who accept the conception as true?—the whole of such consequent general modes is the whole meaning. His pragmatism does not equate a conception's meaning, its intellectual purport, with the conceived benefit or cost of the conception itself, like a meme (or, say, propaganda), outside the perspective of its being true, nor, since a conception is general, is its meaning equated with any definite set of actual consequences or upshots corroborating or undermining the conception or its worth. His pragmatism also bears no resemblance to "vulgar" pragmatism, which misleadingly connotes a ruthless and ]an search for mercenary or political advantage. Instead the pragmatic maxim is the heart of his pragmatism as a method of experimentational mental ]<ref>Peirce (1902), ''Collected Papers of Charles Sanders Peirce'', 5.13 note 1.</ref> arriving at conceptions in terms of conceivable confirmatory and disconfirmatory circumstances—a method hospitable to the formation of explanatory hypotheses, and conducive to the use and improvement of verification.<ref>See ''Collected Papers of Charles Sanders Peirce'', 1.34 (in "The Spirit of Scholasticism"), where Peirce ascribed the success of modern science less to a novel interest in verification than to the improvement of verification.</ref> | |||
:* The Polish school of logic and foundational mathematics, including ]; | |||
Peirce's pragmatism, as method and theory of definitions and conceptual clearness, is part of his theory of inquiry,<ref>See ]'s comments and his tabular list of titles of Peirce's proposed list of memoirs in 1902 for his Carnegie application, </ref> which he variously called speculative, general, formal or ] or simply methodeutic.<ref name="rhetoric">See at ''Commens Digital Companion to C.S. Peirce''.</ref> He applied his pragmatism as a method throughout his work. | |||
:* ], whose ''Formal Logic'' and chapter in Moore and Robin (1964) praised and studied Peirce's logical work. | |||
===Theory of inquiry=== | |||
===Relationships, relations, relatives=== | |||
{{See also|Inquiry}} | |||
In "]" (1877), Peirce gives his take on the psychological origin and aim of inquiry. On his view, individuals are motivated to inquiry by desire to escape the feelings of anxiety and unease which Peirce takes to be characteristic of the state of doubt. Doubt is described by Peirce as an "uneasy and dissatisfied state from which we struggle to free ourselves and pass into the state of belief." Peirce uses words like "irritation" to describe the experience of being in doubt and to explain why he thinks we find such experiences to be motivating. The irritating feeling of doubt is appeased, Peirce says, through our efforts to achieve a settled state of satisfaction with what we land on as our answer to the question which led to that doubt in the first place. This settled state, namely, belief, is described by Peirce as "a calm and satisfactory state which we do not wish to avoid." Our efforts to achieve the satisfaction of belief, by whichever methods we may pursue, are what Peirce calls "inquiry". Four methods which Peirce describes as having been actually pursued throughout the history of thought are summarized below in the section after next. | |||
The reader of Peirce needs to be aware of the distinction between ''relations'' and ''relatives''. Succinctly put, relations are objects and relatives are signs. The term "relative" is short for "relative term", and a relative term is a type of sign that forms the main study of the ''logic of relatives''. A relation, on the other hand, is a type of formal object that is treated in the mathematical ''theory of relations''. There is of course an intimate relationship between the two studies, but like most intimate relationships it has its fair share of intricacies. | |||
====Critical common-sensism==== | |||
The following collection of definitions is practically indispensable. | |||
Critical common-sensism,<ref>Peirce (1905), "Issues of Pragmaticism", ''The Monist'', v. XV, n. 4, pp. ]. Reprinted ''Collected Papers of Charles Sanders Peirce'', 5.438–463. Also important: ''Collected Papers of Charles Sanders Peirce'', 5.497–525.</ref> treated by Peirce as a consequence of his pragmatism, is his combination of ] with a ] that recognizes that propositions of our more or less vague common sense now indubitable may later come into question, for example because of transformations of our world through science. It includes efforts to raise genuine doubts in tests for a core group of common indubitables that change slowly, if at all. | |||
====Rival methods of inquiry==== | |||
:* A ''relative'', then, may be defined as the equivalent of a word or phrase which, either as it is (when I term it a ''complete'' relative), or else when the verb "is" is attached to it (and if it wants such attachment, I term it a ''nominal'' relative), becomes a sentence with some number of proper names left blank. | |||
In "]" (1877), Peirce described inquiry in general not as the pursuit of truth ''per se'' but as the struggle to move from irritating, inhibitory doubt born of surprise, disagreement, and the like, and to reach a secure belief, belief being that on which one is prepared to act. That let Peirce frame scientific inquiry as part of a broader spectrum and as spurred, like inquiry generally, by actual doubt, not mere verbal, quarrelsome, or ], which he held to be fruitless. Peirce sketched four methods of settling opinion, ordered from least to most successful: | |||
# The method of {{em|tenacity}} (policy of sticking to initial belief) – which brings comforts and decisiveness but leads to trying to ignore contrary information and others' views as if truth were intrinsically private, not public. The method goes against the social impulse and easily falters since one may well notice when another's opinion seems as good as one's own initial opinion. Its successes can be brilliant but tend to be transitory. | |||
:* A ''relationship'', or ''fundamentum relationis'', is a fact relative to a number of objects, considered apart from those objects, as if, after the statement of the fact, the designations of those objects had been erased. | |||
# The method of {{em|authority}} – which overcomes disagreements but sometimes brutally. Its successes can be majestic and long-lasting, but it cannot regulate people thoroughly enough to withstand doubts indefinitely, especially when people learn about other societies present and past. | |||
# The method of the {{em|a priori}} – which promotes conformity less brutally but fosters opinions as something like tastes, arising in conversation and comparisons of perspectives in terms of "what is agreeable to reason". Thereby it depends on fashion in ]s and goes in circles over time. It is more intellectual and respectable but, like the first two methods, sustains accidental and capricious beliefs, destining some minds to doubt it. | |||
# The method of {{em|science}} – wherein inquiry supposes that the real is discoverable but independent of particular opinion, such that, unlike in the other methods, inquiry can, by its own account, go wrong (]), not only right, and thus purposely tests itself and criticizes, corrects, and improves itself. | |||
Peirce held that, in practical affairs, slow and stumbling ratiocination is often dangerously inferior to instinct and traditional sentiment, and that the scientific method is best suited to theoretical research,<ref>Peirce, "Philosophy and the Conduct of Life", Lecture 1 of the 1898 Cambridge (MA) Conferences Lectures, ''Collected Papers of Charles Sanders Peirce'', 1.616–648 in part and '']'', 105–122, reprinted in ''The Essential Peirce'', 2:27–41.</ref> which in turn should not be trammeled by the other methods and practical ends; reason's "first rule"<ref name="FRL" /> is that, in order to learn, one must desire to learn and, as a corollary, must not block the way of inquiry. ] excels over the others finally by being deliberately designed to arrive—eventually—at the most secure beliefs, upon which the most successful practices can be based. Starting from the idea that people seek not truth ''per se'' but instead to subdue irritating, inhibitory doubt, Peirce showed how, through the struggle, some can come to submit to truth for the sake of belief's integrity, seek as truth the guidance of potential conduct correctly to its given goal, and wed themselves to the scientific method. | |||
:* A ''relation'' is a relationship considered as something that may be said to be true of one of the objects, the others being separated from the relationship yet kept in view. Thus, for each relationship there are as many relations as there are blanks. For example, corresponding to the relationship which consists in one thing loving another there are two relations, that of loving and that of being loved by. There is a nominal relative for each of these relations, as "lover of ——" and "loved by ——". | |||
====Scientific method==== | |||
:* These nominal relatives belonging to one relationship, are in their relation to one another termed ''correlatives''. In the case of a dyad, the two correlatives, and the corresponding relations are said, each to be the ''converse'' of the other. | |||
Insofar as clarification by pragmatic reflection suits explanatory hypotheses and fosters predictions and testing, pragmatism points beyond the usual duo of foundational alternatives: ] from self-evident truths, or '']''; and ] from experiential phenomena, or '']''. | |||
Based on his critique of three ] and different from either ] or ], Peirce's approach seeks to justify claims by a three-phase dynamic of inquiry: | |||
:* The objects whose designations fill the blanks of a complete relative are called the ''correlates''. | |||
# Active, ] genesis of theory, with no prior assurance of truth; | |||
:* The correlate to which a nominal relative is attributed is called the ''relate''. | |||
# Deductive application of the contingent theory so as to clarify its practical implications; | |||
# Inductive testing and evaluation of the utility of the provisional theory in anticipation of future experience, in both senses: '']'' and ''control''. | |||
Thereby, Peirce devised an approach to inquiry far more solid than the flatter image of inductive generalization ''simpliciter'', which is a mere re-labeling of phenomenological patterns. Peirce's pragmatism was the first time the ] was proposed as an ] for philosophical questions. | |||
:* In the statement of a relationship, the designations of the correlates ought to be considered as so many ''logical subjects'' and the relative itself as the '']''. The entire set of logical subjects may also be considered as a ''collective subject'', of which the statement of the relationship is ''predicate''. | |||
A theory that succeeds better than its rivals in predicting and controlling our world is said to be nearer the truth. This is an operational notion of truth used by scientists. | |||
: (Peirce, CP 3.466-467, "The Logic of Relatives", ''Monist'', 7, 161-217 (1897), CP 3.456-552). | |||
Peirce extracted the pragmatic ] or ] of inquiry from its raw materials in classical logic and refined it in parallel with the early development of symbolic logic to address problems about the nature of scientific reasoning. | |||
To understand these definitions, as everywhere in Peirce's work, one needs to keep a close watch on the things that are meant as objects of discussion and thought and the things that are meant as signs and thoughts in which discussion and thought take place. Doing this is trickier than it seems at first, since many standard approaches to defining abstract, formal, or '']'' objects approach their objects by way of formal operations on the corresponding signs. | |||
Abduction, deduction, and induction make incomplete sense in isolation from one another but comprise a cycle understandable as a whole insofar as they collaborate toward the common end of inquiry. In the pragmatic way of thinking about conceivable practical implications, every thing has a purpose, and, as possible, its purpose should first be denoted. Abduction hypothesizes an explanation for deduction to clarify into implications to be tested so that induction can evaluate the hypothesis, in the struggle to move from troublesome uncertainty to more secure belief. No matter how traditional and needful it is to study the modes of inference in abstraction from one another, the integrity of inquiry strongly limits the effective ] of its principal components. | |||
====Relatives==== | |||
{{main|Logic of relatives}} | |||
Peirce's outline of the scientific method in §III–IV of "A Neglected Argument"<ref name="NA">Peirce (1908), "]", published in large part, ''Hibbert Journal'' v. 7, 90–112. Reprinted with an unpublished part, ''Collected Papers of Charles Sanders Peirce'', 6.452–485, ''Selected Writings'' pp. 358–379, ''The Essential Peirce'', 2:434–450, ''Peirce on Signs'' 260–278.</ref> is summarized below (except as otherwise noted). There he also reviewed plausibility and inductive precision (issues of ]). | |||
====Relations==== | |||
{{main|Theory of relations}} | |||
# ''Abductive'' (or retroductive) phase. Guessing, inference to explanatory hypotheses for selection of those best worth trying. From abduction, Peirce distinguishes induction as inferring, on the basis of tests, the proportion of truth in the hypothesis. Every inquiry, whether into ideas, brute facts, or norms and laws, arises from surprising observations in one or more of those realms (and for example at any stage of an inquiry already underway). All explanatory content of theories comes from abduction, which guesses a new or outside idea so as to account in a simple, economical way for a surprising or complicated phenomenon. The modicum of success in our guesses far exceeds that of random luck, and seems born of attunement to nature by developed or inherent instincts, especially insofar as best guesses are optimally plausible and simple in the sense of the "facile and natural", as by ]'s natural light of reason and as distinct from "logical simplicity".<ref>See also Nubiola, Jaime (2004), "", ''Semiotiche'' I/2, 91–102.</ref> Abduction is the most fertile but least secure mode of inference. Its general rationale is inductive: it succeeds often enough and it has no substitute in expediting us toward new truths.<ref>Peirce (c. 1906), "PAP (Prolegomena to an Apology for Pragmatism)" (MS 293), '']'' v. 4, pp. 319–320, first quote under "" at ''Commens Digital Companion to C. S. Peirce''.</ref> In 1903, Peirce called pragmatism "the logic of abduction".<ref>Peirce (1903), "Pragmatism – The Logic of Abduction", ''Collected Papers of Charles Sanders Peirce'', 5.195–205, especially 196. .</ref> Coordinative method leads from abducting a plausible hypothesis to judging it for its testability<ref>Peirce, Carnegie application, MS L75.279–280: {{Webarchive|url=https://web.archive.org/web/20110524021101/http://www.cspeirce.com/menu/library/bycsp/l75/ver1/l75v1-08.htm#m27 |date=2011-05-24 }}, Draft B.</ref> and for how its trial would economize inquiry itself.<ref name="econ">See MS L75.329–330, from Draft D of {{Webarchive|url=https://web.archive.org/web/20110524021101/http://www.cspeirce.com/menu/library/bycsp/l75/ver1/l75v1-08.htm#m27 |date=2011-05-24 }} of Peirce's application to the Carnegie Institution: {{quote|Consequently, to discover is simply to expedite an event that would occur sooner or later, if we had not troubled ourselves to make the discovery. Consequently, the art of discovery is purely a question of economics. The economics of research is, so far as logic is concerned, the leading doctrine with reference to the art of discovery. Consequently, the conduct of abduction, which is chiefly a question of heuretic and is the first question of heuretic, is to be governed by economical considerations.}}</ref> The hypothesis, being insecure, needs to have practical implications leading at least to mental tests and, in science, lending themselves to scientific tests. A simple but unlikely guess, if not costly to test for falsity, may belong first in line for testing. A guess is intrinsically worth testing if it has plausibility or reasoned objective probability, while ], though reasoned, can be misleadingly seductive. Guesses can be selected for trial strategically, for their caution (for which Peirce gave as example the game of ]), breadth, or incomplexity.<ref>Peirce, C. S., "On the Logic of Drawing Ancient History from Documents", ''The Essential Peirce'', 2, see pp. 107–109. On Twenty Questions, see 109: {{quote|Thus, twenty skillful hypotheses will ascertain what 200,000 stupid ones might fail to do.}}</ref> One can discover only that which would be revealed through their sufficient experience anyway, and so the point is to expedite it; economy of research demands the leap, so to speak, of abduction and governs its art.<ref name="econ" /> | |||
A concept of relation that suffices to begin the study of Peirce's logic, mathematics, and semiotics, making use of analogous concepts of relation that have served well enough in other areas of experience to make further experience possible, can be set out as follows. | |||
# ''Deductive'' phase. Two stages: | |||
* Defined in extension, a ''k-adic relation'' L is a set of k-tuples. | |||
:i. Explication. Not clearly premised, but a deductive analysis of the hypothesis so as to render its parts as clear as possible. | |||
:ii. Demonstration: Deductive Argumentation, ]ean in procedure. Explicit deduction of consequences of the hypothesis as predictions about evidence to be found. ] or, if needed, Theorematic. | |||
# ''Inductive'' phase. Evaluation of the hypothesis, inferring from observational or experimental tests of its deduced consequences. The long-run validity of the rule of induction is deducible from the principle (presuppositional to reasoning in general) that the real "is only the object of the final opinion to which sufficient investigation would lead";<ref name="Induction" /> in other words, anything excluding such a process would never be real. Induction involving the ongoing accumulation of evidence follows "a method which, sufficiently persisted in", will "diminish the error below any predesignate degree". Three stages: | |||
* A ''k-tuple'' '''x''' is a sequence of k elements, x<sub>1</sub>, …, x<sub>k</sub>, called the ''components'' of the k-tuple. The components of the k-tuple '''x''' can be indicated by writing either one of the following two forms, the latter form of syntax being the one that Peirce most often used: | |||
:i. Classification. Not clearly premised, but an inductive classing of objects of experience under general ideas. | |||
:ii. Probation: direct Inductive Argumentation. Crude or Gradual in procedure. Crude Induction, founded on experience in one mass (CP 2.759), presumes that future experience on a question will not differ utterly from all past experience (CP 2.756). Gradual Induction makes a new estimate of the proportion of truth in the hypothesis after each test, and is Qualitative or Quantitative. Qualitative Gradual Induction depends on estimating the relative evident weights of the various qualities of the subject class under investigation (CP 2.759; see also ''Collected Papers of Charles Sanders Peirce'', 7.114–120). Quantitative Gradual Induction depends on how often, in a fair sample of instances of ''S'', ''S'' is found actually accompanied by ''P'' that was predicted for ''S'' (CP 2.758). It depends on measurements, or statistics, or counting. | |||
:iii. Sentential Induction. "...which, by Inductive reasonings, appraises the different Probations singly, then their combinations, then makes self-appraisal of these very appraisals themselves, and passes final judgment on the whole result". | |||
====Against Cartesianism==== | |||
: '''x''' = (x<sub>1</sub>, …, x<sub>k</sub>) | |||
Peirce drew on the methodological implications of the ]—no genuine introspection, no intuition in the sense of non-inferential cognition, no thought but in signs, and no conception of the absolutely incognizable—to attack philosophical ], of which he said that:<ref name="SCFI" /> | |||
: '''x''' = x<sub>1</sub> ''':''' … ''':''' x<sub>k</sub> | |||
# "It teaches that philosophy must begin in universal doubt" – when, instead, we start with preconceptions, "prejudices which it does not occur to us ''can'' be questioned", though we may find reason to question them later. "Let us not pretend to doubt in philosophy what we do not doubt in our hearts." | |||
It is critically important to understand that a relation in extension is a '']'', in other words, an aggregate entity or a collection of things. More to the point, a k-tuple is not a relation, it is only an '']'' of a relation, what Peirce quite naturally called an ''elementary relation'' or sometimes an ''individual relation''. | |||
# "It teaches that the ultimate test of certainty is...in the individual consciousness" – when, instead, in science a theory stays on probation till agreement is reached, then it has no actual doubters left. No lone individual can reasonably hope to fulfill philosophy's multi-generational dream. When "candid and disciplined minds" continue to disagree on a theoretical issue, even the theory's author should feel doubts about it. | |||
# It trusts to "a single thread of inference depending often upon inconspicuous premisses" – when, instead, philosophy should, "like the successful sciences", proceed only from tangible, scrutinizable premisses and trust not to any one argument but instead to "the multitude and variety of its arguments" as forming, not a chain at least as weak as its weakest link, but "a cable whose fibers", soever "slender, are sufficiently numerous and intimately connected". | |||
# It renders many facts "absolutely inexplicable, unless to say that 'God makes them so' is to be regarded as an explanation"{{efn|Peirce believed in God. See section ].}} – when, instead, philosophy should avoid being "unidealistic",{{efn|However, Peirce disagreed with Hegelian ]. See for example ''Collected Papers of Charles Sanders Peirce'', 8.131.}} misbelieving that something real can defy or evade all possible ideas, and supposing, inevitably, "some absolutely inexplicable, unanalyzable ultimate", which explanatory surmise explains nothing and so is inadmissible. | |||
==Theory of categories== | |||
In his time, Peirce found himself forced by the task of understanding the intertwined natures of science and signs to develop the logic of relations from the fairly primitive state in which he found it to a condition of readiness more qualified for the job. There was nothing very cut and dried about trying to do this from scratch, as will be evident in the appropriate Sections below when we sample the fits and starts forward, the culs-de-sac, and the many paths that had to be backtracked in order to arrive at an adequate theory of relations. For the purpose at hand, however, we can rely on the fact that few readers these days will have escaped some encounter with ]s, and so we can draw on these resources of experience to speed the exposition of relations in general. | |||
{{Main|Categories (Peirce)}} | |||
On May 14, 1867, the 27-year-old Peirce presented a paper entitled "On a New List of Categories" to the ], which published it the following year. The paper outlined a theory of predication, involving three universal categories that Peirce developed in response to reading ], ], and ], categories that Peirce applied throughout his work for the rest of his life.<ref name="Burch" /> Peirce scholars generally regard the "New List" as foundational or breaking the ground for Peirce's "architectonic", his blueprint for a pragmatic philosophy. In the categories one will discern, concentrated, the pattern that one finds formed by the three grades of clearness in "]" (1878 paper foundational to pragmatism), and in numerous other trichotomies in his work. | |||
Table 1 shows how the k-tuples of a k-adic relation might be conceived in tabular form, with the k-uple '''x'''<sub>i</sub> = <x<sub>i1</sub>, …, x<sub>ik</sub>> = x<sub>i1</sub> ''':''' … ''':''' x<sub>ik</sub> supplying the entries for the i<sup>th</sup> row of the Table. | |||
] is cast as a Kantian deduction; it is short but dense and difficult to summarize. The following table is compiled from that and later works.<ref>See in "Firstness", "Secondness", and "Thirdness" in .</ref> In 1893, Peirce restated most of it for a less advanced audience.<ref>Peirce (1893), "The Categories" MS 403. ''Arisbe'' {{Webarchive|url=https://web.archive.org/web/20140731071800/http://cspeirce.com/menu/library/bycsp/bycsp.htm#NLOC-R |date=2014-07-31 }}, edited by ], with information on the re-write, and interleaved with the 1867 "New List" for comparison.</ref> {{C. S. Peirce categorial table}} | |||
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f9f9f9; font-weight:bold; text-align:center; width:90%" | |||
|+ '''Table 1. Relational Database''' | |||
|- style="background:#efefef" | |||
! style="width:15%" | Domain 1 | |||
! style="width:15%" | Domain 2 | |||
! style="width:15%" | ... | |||
! style="width:15%" | Domain j | |||
! style="width:15%" | ... | |||
! style="width:15%" | Domain k | |||
|- | |||
| x<sub>11</sub> | |||
| x<sub>12</sub> | |||
| ... | |||
| x<sub>1j</sub> | |||
| ... | |||
| x<sub>1k</sub> | |||
|- | |||
| x<sub>21</sub> | |||
| x<sub>22</sub> | |||
| ... | |||
| x<sub>2j</sub> | |||
| ... | |||
| x<sub>2k</sub> | |||
|- | |||
| ... || ... || ... || ... || ... || ... | |||
|- | |||
| x<sub>i1</sub> | |||
| x<sub>i2</sub> | |||
| ... | |||
| x<sub>ij</sub> | |||
| ... | |||
| x<sub>ik</sub> | |||
|- | |||
| ... || ... || ... || ... || ... || ... | |||
|- | |||
| x<sub>m1</sub> | |||
| x<sub>m2</sub> | |||
| ... | |||
| x<sub>mj</sub> | |||
| ... | |||
| x<sub>mk</sub> | |||
|} | |||
== Logic, or semiotic == | |||
For ease of exposition, Table 1 shows the generic form of a '']'' k-adic relation, one that contains a '']'' number of k-tuples, indeed, it shows a '']'' k-adic relation, one that contains a finite number of k-tuples. Generalizations to relations with an ] or even a ] ] in respect of their numbers of elementary relations are possible. Indeed, it is possible to conceive of relations with infinite, continuous, or even no fixed numbers of components in their elementary relations, but finite k-adic relations are illustration enough for our immediate aims. | |||
In 1918 the logician ] wrote, "The contributions of C.S. Peirce to symbolic logic are more numerous and varied than those of any other writer—at least in the nineteenth century."<ref>Lewis, Clarence Irving (1918), ''A Survey of Symbolic Logic'', see ch. 1, §7 "Peirce", pp. 79–106, see (''Internet Archive''). Note that Lewis's bibliography lists works by Frege, tagged with asterisks as important.</ref> | |||
=== |
=== Relational logic === | ||
Beginning with his first paper on the ], Peirce extended the ] pioneered by ].{{efn|Much of the mathematics of relations now taken for granted was "borrowed" from Peirce, not always with all due credit; on that and on how the young ], especially his ''Principles of Mathematics'' and '']'', did not do Peirce justice, see Anellis (1995).<ref name="Anellis"/>}} Beginning in 1940, ] and his students rediscovered aspects of Peirce's larger vision of relational logic, developing the perspective of ]. | |||
{{main|Binary relation}} | |||
Relational logic gained applications. In mathematics, it influenced the abstract analysis of ] and the ] of ]. In computer science, the ] for ]s was developed with Peircean ideas in work of ], who was a doctoral student<ref>Avery, John (2003) ''Information theory and evolution'', p. 167; also Mitchell, Melanie, " {{Webarchive|url=https://web.archive.org/web/20141008181914/http://web.cecs.pdx.edu/~mm/MMScientificAncestry.html|date=October 8, 2014}}".</ref> of ], a Peirce scholar. In economics, relational logic was used by ], ], and ] to study preferences and utility and by ] in '']'', following Arrow's association with Tarski at ]. | |||
====Triadic relations==== | |||
{{main|Triadic relation}} | |||
=== Quantifiers === | |||
: This completes the classification of dual relatives founded on the difference of the fundamental forms A ''':''' A and A ''':''' B. Similar considerations applied to triple relatives would give rise to a highly complicated development, inasmuch as here we have no less than five fundamental forms of individuals, namely: <br> | |||
On Peirce and his contemporaries ] and ], ] (1982)<ref name="Putnam" /> documented that Frege's work on the logic of quantifiers had little influence on his contemporaries, although it was published four years before the work of Peirce and his student Oscar Howard Mitchell. Putnam found that mathematicians and logicians learned about the logic of quantifiers through the independent work of Peirce and Mitchell, particularly through Peirce's "On the Algebra of Logic: A Contribution to the Philosophy of Notation"<ref name="CSP1885" /> (1885), published in the premier American mathematical journal of the day, and cited by ] and Schröder, among others, who ignored Frege. They also adopted and modified Peirce's notations, typographical variants of those now used. Peirce apparently was ignorant of Frege's work, despite their overlapping achievements in logic, ], and the ]. | |||
{| align="center" style="width:80%" | |||
| (A ''':''' A) ''':''' A | |||
| (A ''':''' A) ''':''' B | |||
| (A ''':''' B) ''':''' A | |||
| (B ''':''' A) ''':''' A | |||
| (A ''':''' B) ''':''' C. | |||
|} | |||
: (Peirce, CP 3.229, "On the Algebra of Logic", ''American Journal of Mathematics'', 3, 15-57 (1880), CP 3.154-251). | |||
Peirce's work on formal logic had admirers besides ]: | |||
===Theory of categories=== | |||
* Philosophical algebraist ]<ref>Beil, Ralph G. and Ketner, Kenneth (2003), "Peirce, Clifford, and Quantum Theory", ''International Journal of Theoretical Physics'' v. 42, n. 9, pp. 1957–1972.</ref> and logician ], both British; | |||
* The Polish school of logic and foundational mathematics, including ]; | |||
* ], who praised and studied Peirce's logical work in a 1964 paper<ref name="SP2" /> and in ''Formal Logic'' (saying on page 4 that Peirce "perhaps had a keener eye for essentials than any other logician before or since"). | |||
=== Philosophy of logic === | |||
<blockquote> | |||
A philosophy of logic, grounded in his categories and semiotic, can be extracted from Peirce's writings and, along with Peirce's logical work more generally, is exposited and defended in Hilary Putnam (1982);<ref name="Putnam" /> the Introduction in Nathan Houser ''et al.'' (1997);<ref>Houser, Roberts, and Van Evra, eds. (1997), ''Studies in the Logic of Charles Sanders Peirce'', Indiana U., Bloomington, IN.</ref> and ]'s chapter in ] (2004).<ref>Misak, ed. (2004), ''The Cambridge Companion to Peirce'', Cambridge U., UK.</ref>{{Semiotics}} | |||
Now the discovery of ideas as general as these is chiefly the willingness to make a brash or speculative abstraction, in this case supported by the pleasure of purloining words from the philosophers: "Category" from Aristotle and Kant, "Functor" from Carnap (''Logische Syntax der Sprache''), and "natural transformation" from then current informal parlance. (Saunders Mac Lane, ''Categories for the Working Mathematician'', 29-30). | |||
</blockquote> | |||
==== Logic as philosophical ==== | |||
Mac Lane did not mention Peirce among the objects of his sincerest flattery, but he might as well have, for his mention of Aristotle and Kant well enough credits his deep indebtedness to the pursers of them all. As ] was fond of observing, 'the same questions have the same answers', and the problem that a system of categories is aimed to 'beautify' is the same sort of beast whether it's Aristotle, Kant, Peirce, Carnap, or ] and Mac Lane that bends the bow. What is that problem? To answer that, let's begin again at the source: | |||
Peirce regarded logic ''per se'' as a division of philosophy, as a normative science based on esthetics and ethics, as more basic than metaphysics,<ref name="FRL">Peirce (1899 MS), "F.R.L." , ''Collected Papers of Charles Sanders Peirce'', 1.135–140, </ref> and as "the art of devising methods of research".<ref name="ars">Peirce (1882), "Introductory Lecture on the Study of Logic" delivered September 1882, ''Johns Hopkins University Circulars'', v. 2, n. 19, pp. (via Google), November 1882. Reprinted (''The Essential Peirce'', 1:210–214; ''Writings of Charles S. Peirce'', 4:378–382; ''Collected Papers of Charles Sanders Peirce'', 7.59–76). The definition of logic quoted by Peirce is by ].</ref> More generally, as inference, "logic is rooted in the social principle", since inference depends on a standpoint that, in a sense, is unlimited.<ref>Peirce (1878), "The Doctrine of Chances", ''Popular Science Monthly'', v. 12, pp. 604–615 (CP 2.645–668, ''Writings of Charles S. Peirce'', 3:276–290, ''The Essential Peirce'', 1:142–154). {{quote|... death makes the number of our risks, the number of our inferences, finite, and so makes their mean result uncertain. The very idea of probability and of reasoning rests on the assumption that this number is indefinitely great. ... logicality inexorably requires that our interests shall ''not'' be limited. ... Logic is rooted in the social principle.}}</ref> Peirce called (with no sense of deprecation) "mathematics of logic" much of the kind of thing which, in current research and applications, is called simply "logic". He was productive in both (philosophical) logic and logic's mathematics, which were connected deeply in his work and thought. | |||
Peirce argued that logic is formal semiotic: the formal study of signs in the broadest sense, not only signs that are artificial, linguistic, or symbolic, but also signs that are semblances or are indexical such as reactions. Peirce held that "all this universe is perfused with signs, if it is not composed exclusively of signs",<ref>Peirce, ''Collected Papers of Charles Sanders Peirce'', 5.448 footnote, from "The Basis of Pragmaticism" in 1906.</ref> along with their representational and inferential relations. He argued that, since all thought takes time, all thought is in signs<ref name="QFM">Peirce, (1868), "Questions concerning certain Faculties claimed for Man", ''Journal of Speculative Philosophy'' v. 2, n. 2, . On thought in signs, see p. 112. Reprinted ''Collected Papers of Charles Sanders Peirce'', 5.213–263 (on thought in signs, see 253), ''Writings of Charles S. Peirce'', 2:193–211, ''The Essential Peirce'', 2:11–27. ''Arisbe'' {{Webarchive|url=https://web.archive.org/web/20071014064210/http://cspeirce.com/menu/library/bycsp/question/qu-frame.htm |date=2007-10-14 }}.</ref> and sign processes ("semiosis") such as the inquiry process. He ] logic into: (1) speculative grammar, or stechiology, on how signs can be meaningful and, in relation to that, what kinds of signs there are, how they combine, and how some embody or incorporate others; (2) logical critic, or logic proper, on the modes of inference; and (3) speculative or ], or methodeutic,<ref name="rhetoric"/> the philosophical theory of inquiry, including pragmatism. | |||
<blockquote> | |||
Things are equivocally named, when they have the name only in common, the definition (or statement of essence) corresponding with the name being different. For instance, while a man and a portrait can properly both be called 'animals' (ζωον), these are equivocally named. For they have the name only in common, the definitions (or statements of essence) corresponding with the name being different. For if you are asked to define what the being an animal means in the case of the man and the portrait, you give in either case a definition appropriate to that case alone. <p> | |||
Things are univocally named, when not only they bear the same name but the name means the same in each case -- has the same definition corresponding. Thus a man and an ox are called 'animals'. The name is the same in both cases; so also the statement of essence. For if you are asked what is meant by their both of them being called 'animals', you give that particular name in both cases the same definition. (Aristotle, ''Categories'', 1.1<sup>a</sup>1-12). | |||
</blockquote> | |||
==== Presuppositions of logic ==== | |||
In the logic of Aristotle categories are adjuncts to reasoning that are designed to resolve equivocations and thus to prepare ambiguous signs, that are otherwise recalcitrant to being ruled by logic, for the application of logical laws. An equivocation is a variation in meaning, or a manifold of sign senses, and so Peirce's claim that three categories are sufficient amounts to an assertion that all manifolds of meaning can be unified in just three steps. | |||
In his "F.R.L." (1899), Peirce states that the first, and "in one sense, the sole", rule of reason is that, ''to learn, one needs to desire to learn'' and desire it without resting satisfied with that which one is inclined to think.<ref name="FRL"/> So, the first rule is, ''to wonder''. Peirce proceeds to a critical theme in research practices and the shaping of theories: | |||
<blockquote><poem>...there follows one ] which itself deserves to be inscribed upon every wall of the city of philosophy: | |||
The following passage is critical to the understanding of Peirce's Categories: | |||
::Do not block the way of inquiry.</poem></blockquote> | |||
Peirce adds, that method and economy are best in research but no outright sin inheres in trying any theory in the sense that the investigation via its trial adoption can proceed unimpeded and undiscouraged, and that "the one unpardonable offence" is a philosophical barricade against truth's advance, an offense to which "metaphysicians in all ages have shown themselves the most addicted". Peirce in many writings holds that ] (ontological, religious, and physical). | |||
<blockquote> | |||
I will now say a few words about what you have called Categories, but for which I prefer the designation Predicaments, and which you have explained as predicates of predicates. That wonderful operation of ] by which we seem to create ''entia rationis'' that are, nevertheless, sometimes real, furnishes us the means of turning predicates from being signs that we think or think ''through'', into being subjects thought of. We thus think of the thought-sign itself, making it the object of another thought-sign. Thereupon, we can repeat the operation of hypostatic abstraction, and from these second intentions derive third intentions. Does this series proceed endlessly? I think not. What then are the characters of its different members? My thoughts on this subject are not yet harvested. I will only say that the subject concerns Logic, but that the divisions so obtained must not be confounded with the different Modes of Being: Actuality, Possibility, Destiny (or Freedom from Destiny). On the contrary, the succession of Predicates of Predicates is different in the different Modes of Being. Meantime, it will be proper that in our system of diagrammatization we should provide for the division, whenever needed, of each of our three Universes of modes of reality into ''Realms'' for the different Predicaments. (Peirce, CP 4.549, "Prolegomena to an Apology for Pragmaticism", ''Monist'', 16, 492-546 (1906), CP 4.530-572). | |||
</blockquote> | |||
Peirce goes on to list four common barriers to inquiry: (1) Assertion of absolute certainty; (2) maintaining that something is absolutely unknowable; (3) maintaining that something is absolutely inexplicable because absolutely basic or ultimate; (4) holding that perfect exactitude is possible, especially such as to quite preclude unusual and anomalous phenomena. To refuse absolute theoretical certainty is the heart of ''fallibilism'', which Peirce unfolds into refusals to set up any of the listed barriers. Peirce elsewhere argues (1897) that logic's presupposition of fallibilism leads at length to the view that chance and continuity are very real (] and ]).<ref name="FCE"/> | |||
The first thing that we need to extract from this text is the fact that Categories are predicates of predicates, in effect, types of relations. | |||
The First Rule of Logic pertains to the mind's presuppositions in undertaking reason and logic; presuppositions, for instance, that truth and the real do not depend on yours or my opinion of them but do depend on representational relation and consist in the destined end in investigation taken far enough (]). He describes such ideas as, collectively, hopes which, in particular cases, one is unable seriously to doubt.<ref>Peirce (1902), The Carnegie Institute Application, Memoir 10, MS L75.361–362, ''Arisbe'' {{Webarchive|url=https://web.archive.org/web/20110524021037/http://www.cspeirce.com/menu/library/bycsp/l75/ver1/l75v1-04.htm#m10 |date=2011-05-24 }}.</ref> | |||
===Logical graphs=== | |||
{{main|Logical graph}} | |||
=== |
==== Four incapacities ==== | ||
<div class=infobox style="padding:5px;font-size:94%;width:auto">The ''Journal of Speculative Philosophy'' series (1868–1869), including | |||
<blockquote> | |||
* Questions concerning certain Faculties claimed for Man (1868) | |||
It may be added that algebra was formerly called ''Cossic'', in English, or the ''Rule of Cos''; and the first algebra published in England was called "The Whetstone of Wit", because the author supposed that the word ''cos'' was the Latin word so spelled, which means a whetstone. But in fact, ''cos'' was derived from the Italian, ''cosa'', thing, the thing you want to find, the unknown quantity whose value is sought. It is the Latin ''caussa'', a thing aimed at, a cause. ("Elements of Mathematics", MS 165 (c. 1895), NEM 2, 50). | |||
* Some Consequences of Four Incapacities (1868) | |||
</blockquote> | |||
* Grounds of Validity of the Laws of Logic:<br>Further Consequences of Four Incapacities (1869)</div> In three articles in 1868–1869,<ref name="QFM"/><ref name="SCFI">Peirce (1868), "Some Consequences of Four Incapacities", ''Journal of Speculative Philosophy'' v. 2, n. 3, . Reprinted ''Collected Papers of Charles Sanders Peirce'', 5.264–317, ''Writings of Charles S. Peirce'', 2:211–242, ''The Essential Peirce'', 1:28–55. ''Arisbe'' .</ref><ref name="GVLL">Peirce, "Grounds of Validity of the Laws of Logic: Further Consequences of Four Incapacities", ''Journal of Speculative Philosophy'' v. II, n. 4, . Reprinted ''Collected Papers of Charles Sanders Peirce'', 5.318–357, ''Writings of Charles S. Peirce'', 2:242–272 (''Peirce Edition Project'', {{Webarchive|url=https://web.archive.org/web/20100528064903/http://www.iupui.edu/~peirce/writings/v2/w2/w2_23/v2_23.htm |date=2010-05-28 }}), ''The Essential Peirce'', 1:56–82.</ref> Peirce rejected mere verbal or ] and first or ultimate principles, and argued that we have (as he numbered them<ref name="SCFI"/>): | |||
# No power of Introspection. All knowledge of the internal world comes by hypothetical reasoning from known external facts. | |||
# No power of Intuition (cognition without logical determination by previous cognitions). No cognitive stage is absolutely first in a process. All mental action has the form of inference. | |||
# No power of thinking without signs. A cognition must be interpreted in a subsequent cognition in order to be a cognition at all. | |||
# No conception of the absolutely incognizable. | |||
(The above sense of the term "intuition" is almost Kant's, said Peirce. It differs from the current looser sense that encompasses instinctive or anyway half-conscious inference.) | |||
Peirce argued that those incapacities imply the reality of the general and of the continuous, the validity of the modes of reasoning,<ref name="GVLL"/> and the falsity of philosophical ] (]). | |||
Peirce made a number of striking discoveries in foundational mathematics, nearly all of which came to be appreciated only long after his death. He: | |||
Peirce rejected the conception (usually ascribed to Kant) of the unknowable thing-in-itself<ref name="SCFI"/> and later said that to "dismiss make-believes" is a prerequisite for pragmatism.<ref>Peirce (1905), "What Pragmatism Is", ''The Monist'', v. XV, n. 2, pp. 161–181, . Reprinted ''Collected Papers of Charles Sanders Peirce'', 5.411–437, see 416. ''Arisbe'' .</ref> | |||
:* Showed how what is now called ] could be expressed by means of a single binary operation, either ] or its dual, ]. (See also ]). This discovery anticipated ] by 33 years. | |||
==== Logic as formal semiotic ==== | |||
:* In Peirce (1885), set out what can be read as the first (primitive) ], anticipating ] by about two decades. | |||
Peirce sought, through his wide-ranging studies through the decades, formal philosophical ways to articulate thought's processes, and also to explain the workings of science. These inextricably entangled questions of a dynamics of inquiry rooted in nature and nurture led him to develop his semiotic with very broadened conceptions of signs and inference, and, as its culmination, a theory of inquiry for the task of saying 'how science works' and devising research methods. This would be logic by the medieval definition taught for centuries: art of arts, science of sciences, having the way to the principles of all methods.<ref name="ars"/> Influences radiate from points on parallel lines of inquiry in ]'s work, in such ''loci'' as: the basic terminology of ] in '']''; the founding description of ]s in '']''; and the differentiation of ] into three modes that are commonly translated into English as '']'', '']'', and '']'', in the '']'', as well as inference by ] (called ''paradeigma'' by Aristotle), which Peirce regarded as involving the other three modes. | |||
Peirce began writing on semiotic in the 1860s, around the time when he devised his system of three categories. He called it both '']'' and ''semeiotic''. Both are current in singular and plural. He based it on the conception of a triadic ], and defined '']'' as "action, or influence, which is, or involves, a cooperation of ''three'' subjects, such as a sign, its object, and its interpretant, this tri-relative influence not being in any way resolvable into actions between pairs".<ref>Peirce 1907, ''Collected Papers of Charles Sanders Peirce'', 5.484. Reprinted, ''The Essential Peirce'', 2:411 in "Pragmatism" (398–433).</ref> As to signs in thought, Peirce emphasized the reverse: "To say, therefore, that thought cannot happen in an instant, but requires a time, is but another way of saying that every thought must be interpreted in another, or that all thought is in signs."<ref name="QFM"/> | |||
:* Discovered the now-classic ], a few years before ] and ] did so. | |||
Peirce held that all thought is in signs, issuing in and from interpretation, where ''sign'' is the word for the broadest variety of conceivable semblances, diagrams, metaphors, symptoms, signals, designations, symbols, texts, even mental concepts and ideas, all as determinations of a mind or ''quasi-mind'', that which at least functions like a mind, as in the work of crystals or bees<ref>See "" in ''Commens Digital Companion to C.S. Peirce''.</ref>—the focus is on sign action in general rather than on psychology, linguistics, or social studies (fields which he also pursued). | |||
:* Discovered, independently of Dedekind, an important formal definition of an ], namely, as a ] that can be put into a ] with one of its proper ]. | |||
Inquiry is a kind of inference process, a manner of thinking and semiosis. Global divisions of ways for phenomena to stand as signs, and the subsumption of inquiry and thinking within inference as a sign process, enable the study of inquiry on semiotics' three levels: | |||
Beginning with his first paper on the ], Peirce extended the ] that ] had just recently woken from its Cinderella slumbers. Much of the actual mathematics of relations that is taken for granted today was "borrowed" from Peirce, not always with all due credit (Anellis 1995). Beginning in 1940, ] and his students rediscovered aspects of Peirce's larger vision of relational logic, developing the perspective of ]. These theoretical resources gradually worked their way into applications, in large part instigated by the work of ], who happened to be a doctoral student of the Peirce editor and scholar ], on the ] or the relational paradigm for implementing and using ]s. | |||
# Conditions for meaningfulness. Study of significatory elements and combinations, their grammar. | |||
In the four volume work, ''The New Elements of Mathematics by Charles S. Peirce'' (1976), mathematician and Peirce scholar Carolyn Eisele published a large number of Peirce's previously unpublished manuscripts on mathematical subjects, including the drafts for an introductory textbook, allusively titled ''The New Elements of Mathematics'', that presented mathematics from a decidedly novel, if not revolutionary standpoint. | |||
# Validity, conditions for true representation. Critique of arguments in their various separate modes. | |||
# Conditions for determining interpretations. Methodology of inquiry in its mutually interacting modes. | |||
Peirce uses examples often from common experience, but defines and discusses such things as assertion and interpretation in terms of philosophical logic. In a formal vein, Peirce said: | |||
==Dynamics of representation== | |||
{{quote|''On the Definition of Logic''. Logic is ''formal semiotic''. A sign is something, ''A'', which brings something, ''B'', its ''interpretant'' sign, determined or created by it, into the same sort of correspondence (or a lower implied sort) with something, ''C'', its ''object'', as that in which itself stands to ''C''. This definition no more involves any reference to human thought than does the definition of a line as the place within which a particle lies during a lapse of time. It is from this definition that I deduce the principles of logic by mathematical reasoning, and by mathematical reasoning that, I aver, will support criticism of ]ian severity, and that is perfectly evident. The word "formal" in the definition is also defined.<ref>Peirce, "Carnegie Application", '']'' v. 4, p. 54.</ref>}} | |||
<blockquote> | |||
Every mind which passes from doubt to belief must have ideas which follow after one another in time. Every mind which reasons must have ideas which not only follow after others but are caused by them. Every mind which is capable of logical criticism of its inferences, must be aware of this determination of its ideas by previous ideas. (Peirce, "On Time and Thought", CE 3, 68-69). | |||
</blockquote> | |||
== Signs == | |||
All through the 1860's, the young but rapidly maturing Charles Peirce — our focus now being his coming of age in the sphere of intellect — was busy establishing a conceptual basecamp and a technical supply line for the intellectual adventures of a lifetime. Taking the longview of this activity and trying to choose the best titles for the story, it all seems to have something to do with the ] of ], divided into the portion that we are given by ] and the portion that we are given to ]. In this quest we may discern a question of ] and a question of ]: | |||
{{Main|Semiotic theory of Charles Sanders Peirce}} | |||
{{See also|Representation (arts)#Peirce and representation|Sign (semiotics)#Triadic signs}} | |||
{{Hatnote|A list of noted writings by Peirce on signs and sign relations is at ].}} | |||
=== Sign relation === | |||
:* How best to articulate the workings of that wary form of ] that we know as 'conscious experience'? | |||
Peirce's theory of signs is known to be one of the most complex semiotic theories due to its generalistic claim. Anything is a sign—not absolutely as itself, but instead in some relation or other. The '']'' is the key. It defines three roles encompassing (1) the sign, (2) the sign's subject matter, called its ''object'', and (3) the sign's meaning or ramification as formed into a kind of effect called its ''interpretant'' (a further sign, for example a translation). It is an irreducible '']'', according to Peirce. The roles are distinct even when the things that fill those roles are not. The roles are but three; a sign of an object leads to one or more interpretants, and, as signs, they lead to further interpretants. | |||
''Extension × intension = information.'' Two traditional approaches to sign relation, necessary though insufficient, are the way of '']'' (a sign's objects, also called breadth, denotation, or application) and the way of '']'' (the objects' characteristics, qualities, attributes referenced by the sign, also called depth, ], significance, or connotation). Peirce adds a third, the way of '']'', including change of information, to integrate the other two approaches into a unified whole.<ref>Peirce (1867), "Upon Logical Comprehension and Extension" (CP 2.391–426), ( {{Webarchive|url=https://web.archive.org/web/20191209161818/http://www.iupui.edu/~peirce/writings/v2/w2/w2_06/v2_06.htm |date=2019-12-09 }}).</ref> For example, because of the equation above, if a term's total amount of information stays the same, then the more that the term 'intends' or signifies about objects, the fewer are the objects to which the term 'extends' or applies. | |||
:* How best to account for the workings of that discipline of ] that we mark out for recognition as 'science'? | |||
''Determination.'' A sign depends on its object in such a way as to represent its object—the object enables and, in a sense, determines the sign. A physically causal sense of this stands out when a sign consists in an indicative reaction. The interpretant depends likewise on both the sign and the object—an object determines a sign to determine an interpretant. But this determination is not a succession of dyadic events, like a row of toppling dominoes; sign determination is triadic. For example, an interpretant does not merely represent something which represented an object; instead an interpretant represents something ''as'' a sign representing the object. The object (be it a quality or fact or law or even fictional) determines the sign to an interpretant through one's collateral experience<ref name="collateral">See pp. 404–409 in "Pragmatism" in ''The Essential Peirce'', 2. Ten quotes on collateral experience from Peirce provided by Joseph Ransdell can be viewed at peirce-l's Lyris archive. Note: Ransdell's quotes from ''Collected Papers of Charles Sanders Peirce'', 8.178–179 are also in ''The Essential Peirce'', 2:493–494, which gives their date as 1909; and his quote from ''Collected Papers of Charles Sanders Peirce'', 8.183 is also in ''The Essential Peirce'', 2:495–496, which gives its date as 1909.</ref> with the object, in which the object is found or from which it is recalled, as when a sign consists in a chance semblance of an absent object. Peirce used the word "determine" not in a strictly deterministic sense, but in a sense of "specializes", ''bestimmt'',<ref name="determined">Peirce, letter to William James, dated 1909, see ''The Essential Peirce'', 2:492.</ref> involving variable amount, like an influence.<ref name="Marty">See "", collected by Robert Marty (U. of Perpignan, France).</ref> Peirce came to define representation and interpretation in terms of (triadic) determination.<ref>Peirce, A Letter to Lady Welby (1908), '']'', pp. 80–81: {{quote|I define a Sign as anything which is so determined by something else, called its Object, and so determines an effect upon a person, which effect I call its Interpretant, that the latter is thereby mediately determined by the former. My insertion of "upon a person" is a sop to Cerberus, because I despair of making my own broader conception understood.}}</ref> The object determines the sign to determine another sign—the interpretant—to be related to the object ''as the sign is related to the object'', hence the interpretant, fulfilling its function as sign of the object, determines a further interpretant sign. The process is logically structured to perpetuate itself, and is definitive of sign, object, and interpretant in general.<ref name="Marty"/> | |||
The pursuit of answers to these questions finds them to be so entangled with each other that it's ultimately impossible to comprehend them apart from each other, but for the sake of exposition it's convenient to organize our study of Peirce's assault on the ''summa'' by following first the trails of thought that led him to develop a '']'', one that has come to be known as ']', and tracking next the ways of thinking that led him to develop a '']'', one that would be up to the task of saying 'how science works'. | |||
=== Semiotic elements === | |||
Opportune points of departure for exploring the ] of ], such as led to Peirce's theories of ] and ], ] and ]s, are those that he took for his own springboards. Perhaps the most significant influences radiate from points on parallel lines of inquiry in ]'s work, points where the intellectual forerunner focused on many of the same issues and even came to strikingly similar conclusions, at least about the best ways to begin. Staying within the bounds of what will give us a more solid basis for understanding Peirce, it serves to consider the following ''loci'' in ]: | |||
Peirce held there are exactly three basic elements in semiosis (sign action): | |||
# A ''sign'' (or ''representamen''){{efn|''Representamen'' ({{IPAc-en|ˌ|r|ɛ|p|r|ɪ|z|ɛ|n|ˈ|t|eɪ|m|ə|n}} {{respell|REP|ri|zen|TAY|mən}}) was adopted (]) by Peirce as his technical term for the ''sign'' as covered in his theory, in case a divergence should come to light between his theoretical version and the popular senses of the word "sign". He eventually stopped using "representamen". See ''The Essential Peirce'', 2:272–273 and '']'' p. 193, quotes in "" at ''Commens Digital Companion to C.S. Peirce''.}} represents, in the broadest possible sense of "represents". It is something interpretable as saying something about something. It is not necessarily symbolic, linguistic, or artificial—a cloud might be a sign of rain for instance, or ruins the sign of ancient civilization.<ref>{{cite book |author-last=Eco |author-first=Umberto |title=Semiotics and the Philosophy of Language |date=1984 |publisher=Indiana University Press |location=Bloomington & Indianapolis |isbn=978-0-25320398-4 |page= |url=https://archive.org/details/semioticsphiloso00ecou/page/15}}</ref> As Peirce sometimes put it (he defined ''sign'' at least 76 times<ref name="Marty"/>), the sign stands ''for'' the object ''to'' the interpretant. A sign represents its object in some respect, which respect is the sign's ''ground''.<ref name="ground"/> | |||
:* The basic terminology of ], in '']''. | |||
# An ''object'' (or ''semiotic object'') is a subject matter of a sign and an interpretant. It can be anything thinkable, a quality, an occurrence, a rule, etc., even fictional, such as ].<ref name="fictive">Peirce (1909), A Letter to William James, ''The Essential Peirce'', 2:492–502. Fictional object, 498. Object as universe of discourse, 492. See "" at ''Commens Digital Companion to C.S. Peirce''.</ref> All of those are special or partial objects. The object most accurately is the ] to which the partial or special object belongs.<ref name="fictive"/> For instance, a perturbation of Pluto's orbit is a sign about Pluto but ultimately not only about Pluto. An object either (i) is ''immediate'' to a sign and is the object as represented in the sign or (ii) is a ''dynamic'' object, the object as it really is, on which the immediate object is founded "as on bedrock".<ref>See "Immediate Object", etc., at .</ref> | |||
# An '']'' (or ''interpretant sign'') is a sign's meaning or ramification as formed into a kind of idea or effect, an interpretation, human or otherwise. An interpretant is a sign (a) of the object and (b) of the interpretant's "predecessor" (the interpreted sign) as a sign of the same object. An interpretant either (i) is ''immediate'' to a sign and is a kind of quality or possibility such as a word's usual meaning, or (ii) is a ''dynamic'' interpretant, such as a state of agitation, or (iii) is a ''final'' or ''normal'' interpretant, a sum of the lessons which a sufficiently considered sign ''would'' have as effects on practice, and with which an actual interpretant may at most coincide. | |||
Some of the understanding needed by the mind depends on familiarity with the object. To know what a given sign denotes, the mind needs some experience of that sign's object, experience outside of, and collateral to, that sign or sign system. In that context Peirce speaks of collateral experience, collateral observation, collateral acquaintance, all in much the same terms.<ref name="collateral"/> | |||
=== Classes of signs === | |||
:* The founding description of ]s, in '']''; | |||
{{C. S. Peirce ninefold sign table}} | |||
Among Peirce's many sign typologies, three stand out, interlocked. The first typology depends on the sign itself, the second on how the sign stands for its denoted object, and the third on how the sign stands for its object to its interpretant. Also, each of the three typologies is a three-way division, a ], via Peirce's three phenomenological ]: (1) quality of feeling, (2) reaction, resistance, and (3) representation, mediation.<ref name="9signs"/> | |||
:* The differentiation of the genus of reasoning into three species of ] that are commonly translated into English as '']'', '']'', and '']'', in the '']''. | |||
I. ''Qualisign, sinsign, legisign'' (also called'' tone, token, type,'' and also called ''potisign, actisign, famisign''):<ref name="terms">On the varying terminology, look up in .</ref> This typology classifies every sign according to the sign's own phenomenological category—the qualisign is a quality, a possibility, a "First"; the sinsign is a reaction or resistance, a singular object, an actual event or fact, a "Second"; and the legisign is a habit, a rule, a representational relation, a "Third". | |||
In addition to the three elements of ], that Peirce would assay to be ], ] analyzed several types of ], most importantly the type known as 'reasoning by ]' or 'reasoning from ]', employing for the latter description the Greek word 'paradeigma', from which we get our word ']'. | |||
II. ''Icon, index, symbol'': This typology, the best known one, classifies every sign according to the category of the sign's way of denoting its object—the icon (also called semblance or likeness) by a quality of its own, the index by factual connection to its object, and the symbol by a habit or rule for its interpretant. | |||
Inquiry is a form of reasoning process, in effect, a particular way of conducting thought, and thus it can be said to institute a specialized manner, style, or turn of thinking. Philosophers of the school that is commonly called 'pragmatic' hold that all | |||
thought takes place in signs, where 'sign' is the word they use for the broadest conceivable variety of characters, expressions, formulas, messages, signals, texts, and so on up the line, that might be imagined. Even intellectual concepts and mental ideas are held to be a special class of signs, corresponding to internal states of the thinking agent that both issue in and result from the interpretation of external signs. | |||
III. ''Rheme, dicisign, argument'' (also called ''sumisign, dicisign, suadisign,'' also ''seme, pheme, delome,''<ref name="terms"/> and regarded as very broadened versions of the traditional ''term, proposition, argument''): This typology classifies every sign according to the category which the interpretant attributes to the sign's way of denoting its object—the rheme, for example a term, is a sign interpreted to represent its object in respect of quality; the dicisign, for example a proposition, is a sign interpreted to represent its object in respect of fact; and the argument is a sign interpreted to represent its object in respect of habit or law. This is the culminating typology of the three, where the sign is understood as a structural element of inference. | |||
The subsumption of inquiry within reasoning in general and the inclusion of thinking within the class of sign processes allows us to approach the subject of inquiry from two different perspectives: | |||
Every sign belongs to one class or another within (I) ''and'' within (II) ''and'' within (III). Thus each of the three typologies is a three-valued parameter for every sign. The three parameters are not independent of each other; many co-classifications are absent, for reasons pertaining to the lack of either habit-taking or singular reaction in a quality, and the lack of habit-taking in a singular reaction. The result is not 27 but instead ten classes of signs fully specified at this level of analysis. | |||
:* The '']'' approach treats inquiry as a species of logical process, and is limited to those of its aspects that can be related to the most basic laws of inference. | |||
== Modes of inference == | |||
:* The '']'' approach views inquiry as a genus of '']'', an activity taking place within the more general setting of ]s and ]es. | |||
{{Main|Inquiry}} | |||
Borrowing a brace of concepts from ], Peirce examined three basic modes of ]—'']'', '']'', and '']''—in his "critique of arguments" or "logic proper". Peirce also called abduction "retroduction", "presumption", and, earliest of all, "hypothesis". He characterized it as guessing and as inference to an explanatory hypothesis. He sometimes expounded the modes of inference by transformations of the categorical ], for example in "Deduction, Induction, and Hypothesis" (1878).<ref>''Popular Science Monthly'', v. 13, pp. 470–482, see or ]. ''Collected Papers of Charles Sanders Peirce'', 2.619–644 </ref> He does this by rearranging the ''rule'' (Barbara's major premise), the ''case'' (Barbara's minor premise), and the ''result'' (Barbara's conclusion): | |||
The distinction between signs denoting and objects denoted is critical to the discussion of Peirce's theory of signs. Wherever needed in the rest of this article, therefore, in order to mark this distinction a little more emphatically than usual, double quotation marks placed around a given sign, for example, a string of zero or more characters, will be used to create a new sign that denotes the given sign as its object. | |||
{{col-begin}} | |||
===Theory of signs, or semiotic=== | |||
{{col-break}} | |||
Deduction. | |||
''Rule:'' All the beans from this bag are white. <br> | |||
Peirce is one of the two founders of the general study of signs, the other being ]. Peirce referred to his approach, based on ] ]s, as '']'' or '']'', either of which terms are currently used in either singular of plural form. In contrast, Saussure referred to his approach, based on dyadic sign relations, as '']''. Peirce began writing on semeiotic in the 1860s, around the time he devised his system of three categories. He eventually defined '']'' as an "action, or influence, which is, or involves, a cooperation of ''three'' subjects, such as a sign, its object, and its interpretant, this tri-relative influence not being in any way resolvable into actions between pairs". (Houser 1998: 411, written 1907). This triadic relation grounds the semeiotic. | |||
''Case:'' These beans are beans from this bag. <br> | |||
<math>\therefore</math> ''Result:'' These beans are white. | |||
{{col-break|gap=1%}} | |||
Induction. | |||
''Case:'' These beans are [randomly selected] from this bag.<br> | |||
In order to understand what a '']'' is we need to understand what a '']'' is, for signhood is a way of being in relation, not a way of being in itself. In order to understand what a sign relation is we need to understand what a '']'' is, for the role of a sign is constituted as one among three, where roles in general are distinct even when the things that fill them are not. In order to understand what a triadic relation is we need to understand what a '']'' is, and here there are traditionally two ways of understanding what a relation is, both of which are necessary if not sufficient to complete understanding, namely, the way of '']'' and the way of '']''. To these traditional approximations, Peirce adds a third way, the way of '']'', that integrates the other two approaches in a unified whole. | |||
''Result:'' These beans are white.<br> | |||
<math>\therefore</math> ''Rule:'' All the beans from this bag are white. | |||
{{col-break|gap=1%}} | |||
Hypothesis (Abduction). | |||
''Rule:'' All the beans from this bag are white.<br> | |||
====Sign relations==== | |||
''Result:'' These beans are white.<br> | |||
{{main|Sign relation}} | |||
<math>\therefore</math> ''Case:'' These beans are from this bag. | |||
{{col-end}} | |||
Peirce 1883 in "A Theory of Probable Inference" ('']'') equated hypothetical inference with the induction of characters of objects (as he had done in effect before<ref name="SCFI"/>). Eventually dissatisfied, by 1900 he distinguished them once and for all and also wrote that he now took the syllogistic forms and the doctrine of logical extension and comprehension as being less basic than he had thought. In 1903 he presented the following logical form for abductive inference:<ref>See, under "" at ''Commens Digital Companion to C.S. Peirce'', the following quotes: | |||
With that hasty map of relations and relatives sketched above (§ 4.3.2), we may now trek into the terrain of '']s'', the main subject matter of Peirce's '']'', or theory of signs. | |||
* On correction of "A Theory of Probable Inference", see quotes from "Minute Logic", ''Collected Papers of Charles Sanders Peirce'', 2.102, c. 1902, and from the Carnegie Application (L75), 1902, ''Historical Perspectives on Peirce's Logic of Science'' v. 2, pp. 1031–1032. | |||
* On new logical form for abduction, see quote from Harvard Lectures on Pragmatism, 1903, ''Collected Papers of Charles Sanders Peirce'', 5.188–189. | |||
See also Santaella, Lucia (1997) "The Development of Peirce's Three Types of Reasoning: Abduction, Deduction, and Induction", 6th Congress of the ]. .</ref> | |||
{{quote|The surprising fact, C, is observed; | |||
====Types of signs==== | |||
: But if A were true, C would be a matter of course, | |||
: Hence, there is reason to suspect that A is true.}} | |||
The logical form does not also cover induction, since induction neither depends on surprise nor proposes a new idea for its conclusion. Induction seeks facts to test a hypothesis; abduction seeks a hypothesis to account for facts. "Deduction proves that something ''must'' be; Induction shows that something ''actually is'' operative; Abduction merely suggests that something ''may be''."<ref>"Lectures on Pragmatism", 1903, ''Collected Papers of Charles Sanders Peirce'', 5.171.</ref> Peirce did not remain quite convinced that one logical form covers all abduction.<ref>A Letter to J. H. Kehler (dated 1911), '']'' v. 3, pp. 203–204, see in "" at ''Commens Digital Companion to C.S. Peirce''.</ref> In his ] or theory of inquiry (see below), he portrayed abduction as an economic initiative to further inference and study, and portrayed all three modes as clarified by their coordination in essential roles in inquiry: hypothetical explanation, deductive prediction, inductive testing | |||
===Theory of inquiry=== | |||
{{main|Inquiry}} | |||
== Metaphysics == | |||
: Upon this first, and in one sense this sole, rule of reason, that in order to learn you must desire to learn, and in so desiring not be satisfied with what you already incline to think, there follows one corollary which itself deserves to be inscribed upon every wall of the city of philosophy: | |||
<div class=infobox style="padding:5px;font-size:94%;width:auto">Some noted articles | |||
<center> Do not block the way of inquiry.</center> | |||
* The ''Monist'' Metaphysical Series (1891–1893) | |||
: Although it is better to be methodical in our investigations, and to consider the economics of research, yet there is no positive sin against logic in ''trying'' any theory which may come into our heads, so long as it is adopted in such a sense as to permit the investigation to go on unimpeded and undiscouraged. On the other hand, to set up a philosophy which barricades the road of further advance toward the truth is the one unpardonable offence in reasoning, as it is also the one to which metaphysicians have in all ages shown themselves the most addicted. (Peirce, "F.R.L." (c. 1899), CP 1.135-136). | |||
** The Architecture of Theories (1891) | |||
** The Doctrine of Necessity Examined (1892) | |||
** The Law of Mind (1892) | |||
** Man's Glassy Essence (1892) | |||
** Evolutionary Love (1893) | |||
* Immortality in the Light of Synechism (1893 MS)</div> | |||
Peirce ] metaphysics into (1) ontology or general metaphysics, (2) ] or religious metaphysics, and (3) physical metaphysics. | |||
Peirce extracted the pragmatic ] or ] of ] from its raw materials in classical logic and refined it in parallel with the early development of symbolic logic to address problems about the nature of scientific reasoning. Borrowing a brace of concepts from ], Peirce examined three fundamental modes of reasoning that play a role in inquiry, processes that are currently known as '']'', '']'', and '']'' ]. | |||
=== Ontology === | |||
In the roughest terms, ] is what we use to generate a likely ] or an initial ] in response to a ] of interest or a ] of concern, while ] is used to clarify, to derive, and to explicate the relevant consequences of the selected ], and ] is used to test the sum of the predictions against the sum of the data. | |||
On the issue of universals, Peirce was a ], declaring the reality of ] as early as 1868.<ref>Peirce (1868), "Nominalism versus Realism", ''Journal of Speculative Philosophy'' v. 2, n. 1, pp. . Reprinted (CP 6.619–624), ( {{Webarchive|url=https://web.archive.org/web/20080531074944/http://www.iupui.edu/~peirce/writings/v2/w2/w2_14/v2_14.htm |date=2008-05-31 }}).</ref> According to Peirce, his category he called "thirdness", the more general facts about the world, are extra-mental realities. Regarding ] (possibility, necessity, etc.), he came in later years to regard himself as having wavered earlier as to just how positively real the modalities are. In his 1897 "The Logic of Relatives" he wrote: | |||
{{Quote|I formerly defined the possible as that which in a given state of information (real or feigned) we do not know not to be true. But this definition today seems to me only a twisted phrase which, by means of two negatives, conceals an anacoluthon. We know in advance of experience that certain things are not true, because we see they are impossible.}} | |||
These three processes typically operate in a cyclic fashion, systematically operating to reduce the uncertainties and the difficulties that initiated the inquiry in question, and in this way, to the extent that inquiry is successful, leading to an increase in the ] or ], in other words, an ] in the ] or ], of the agent or community engaged in the inquiry. | |||
Peirce retained, as useful for some purposes, the definitions in terms of information states, but insisted that the pragmaticist is committed to a strong ] by conceiving of objects in terms of predictive general conditional propositions about how they ''would'' behave under certain circumstances.<ref>On developments in Peirce's realism, see: | |||
In the pragmatic way of thinking every thing has a ], and the purpose of any thing is the first thing that we should try to note about it. The purpose of ] is to reduce ] and lead to a state of ], which a person in that state will usually call ']' or ']'. It needs to be appreciated that the three kinds of ], insofar as they contribute to the ], describe a cycle that can be understood only as a whole, and none of the three makes complete sense in isolation from the others. | |||
* Peirce (1897), "The Logic of Relatives", ''The Monist'' v. VII, n. 2 pp. 161–217, see (via Google). Reprinted ''Collected Papers of Charles Sanders Peirce'', 3.456–552. | |||
* Peirce (1905), "Issues of Pragmaticism", ''The Monist'' v. XV, n. 4, pp. 481–499, see (via Google). Reprinted (CP 5.438–463, see 453–457). | |||
* Peirce (c. 1905), Letter to Signor Calderoni, ''Collected Papers of Charles Sanders Peirce'', 8.205–213, see 208. | |||
* Lane, Robert (2007), "Peirce's Modal Shift: From Set Theory to Pragmaticism", ''Journal of the History of Philosophy'', v. 45, n. 4.</ref> | |||
==== Continua ==== | |||
For instance, the purpose of ] is to generate guesses of a kind that ] can explicate and that ] can evaluate. This places a mild but meaningful ] on the production of hypotheses, since it is not just any wild guess at ] that submits itself to reason and bows out when defeated in a match with ]. In a similar fashion, each of the other types of ] realizes its purpose only in accord with its proper role in the whole ]. No matter how much it may be necessary to study these processes in abstraction from each other, the ] of inquiry places strong limitations on the effective ] of its principal components. | |||
Continuity and ] are central in Peirce's philosophy: "I did not at first suppose that it was, as I gradually came to find it, the master-Key of philosophy".<ref>Peirce (1893–1894, MS 949, p. 1)</ref> | |||
From a mathematical point of view, he embraced ] and worked long on the mathematics of continua. He long held that the real numbers constitute a pseudo-continuum;<ref>Peirce (1903 MS), ''Collected Papers of Charles Sanders Peirce'', 6.176: "But I now define a ''pseudo-continuum'' as that which modern writers on the theory of functions call a ''continuum''. But this is fully represented by the totality of real values, rational and irrational ."</ref> that a true continuum is the real subject matter of ''analysis situs'' (]); and that a true continuum of instants exceeds—and within any lapse of time has room for—any ] (any infinite ''multitude'' as he called it) of instants.<ref>Peirce (1902 MS) and ], ed. (1998), "Analysis of the Methods of Mathematical Demonstration", {{Webarchive|url=https://web.archive.org/web/20131103160621/http://www.cspeirce.com/menu/library/bycsp/l75/ver1/l75v1-02.htm#m4 |date=2013-11-03 }}, Draft C, MS L75.90–102, see 99–100. (Once there, scroll down).</ref> | |||
If we then think to inquire, 'What sort of ], exactly, does pragmatic thinking place on our guesses?', we have asked the question that is generally recognized as the problem of ']'. Peirce's way of answering it is given in terms of the so-called ']', and this in turn gives us a clue as to the central role of abductive reasoning in Peirce's pragmatic philosophy. | |||
In 1908 Peirce wrote that he found that a true continuum might have or lack such room. Jérôme Havenel (2008): "It is on 26 May 1908, that Peirce finally gave up his idea that in every continuum there is room for whatever collection of any multitude. From now on, there are different kinds of continua, which have different properties."<ref>See: | |||
===Logic of information=== | |||
{{main|Logic of information}} | |||
* Peirce (1908), "Some Amazing Mazes (Conclusion), Explanation of Curiosity the First", ''The Monist'', v. 18, n. 3, pp. 416–444, see ]. Reprinted ''Collected Papers of Charles Sanders Peirce'', 4.594–642, see 642. | |||
<blockquote> | |||
* Havenel, Jérôme (2008), "Peirce's Clarifications on Continuity", ''Transactions'' Winter 2008 pp. 68–133, see 119. .</ref> | |||
Let us now return to the information. The information of a term is the measure of its superfluous comprehension. That is to say that the proper office of the comprehension is to determine the extension of the term. For instance, you and I are men because we possess those attributes — having two legs, being rational, &tc. — which make up the comprehension of ''man''. Every addition to the comprehension of a term lessens its extension up to a certain point, after that further additions increase the information instead. (C.S. Peirce, "The Logic of Science, or, Induction and Hypothesis" (1866), CE 1, 467). | |||
</blockquote> | |||
=== Psychical or religious metaphysics === | |||
==Parallels with Leibniz== | |||
Peirce believed in God, and characterized such belief as founded in an instinct explorable in musing over the worlds of ideas, brute facts, and evolving habits—and it is a belief in God not as an ''actual'' or ''existent'' being (in Peirce's sense of those words), but all the same as a ''real'' being.<ref name="Godasreal">Peirce in his 1906 "Answers to Questions concerning my Belief in God", ''Collected Papers of Charles Sanders Peirce'', 6.495, {{webarchive |url=https://web.archive.org/web/20080223094243/http://users.xplornet.com/~gnox/CSPgod.htm |date=February 23, 2008}}, reprinted in part as "The Concept of God" in ''Philosophical Writings of Peirce'', J. Buchler, ed., 1940, pp. 375–378: {{quote|I will also take the liberty of substituting "reality" for "existence." This is perhaps overscrupulosity; but I myself always use ''exist'' in its strict philosophical sense of "react with the other like things in the environment." Of course, in that sense, it would be fetichism to say that God "exists." The word "reality," on the contrary, is used in ordinary parlance in its correct philosophical sense. I define the ''real'' as that which holds its characters on such a tenure that it makes not the slightest difference what any man or men may have ''thought'' them to be, or ever will have ''thought'' them to be, here using thought to include, imagining, opining, and willing (as long as forcible ''means'' are not used); but the real thing's characters will remain absolutely untouched.}}</ref> In "]" (1908),<ref name="NA"/> Peirce sketches, for God's reality, an argument to a hypothesis of God as the Necessary Being, a hypothesis which he describes in terms of how it would tend to develop and become compelling in musement and inquiry by a normal person who is led, by the hypothesis, to consider as being purposed the features of the worlds of ideas, brute facts, and evolving habits (for example scientific progress), such that the thought of such purposefulness will "stand or fall with the hypothesis"; meanwhile, according to Peirce, the hypothesis, in supposing an "infinitely incomprehensible" being, starts off at odds with its own nature as a purportively true conception, and so, no matter how much the hypothesis grows, it both (A) inevitably regards itself as partly true, partly vague, and as continuing to define itself without limit, and (B) inevitably has God appearing likewise vague but growing, though God as the Necessary Being is not vague or growing; but the hypothesis will hold it to be ''more'' false to say the opposite, that God is purposeless. Peirce also argued that the will is free<ref>See his ], to both of which editor ] responded.</ref> and (see ]) that there is at least an attenuated kind of immortality. | |||
=== Physical metaphysics === | |||
Peirce was aware that the breadth and depth of his ideas resembled those of the ] German ] ]; (see Fisch 1986: 249-60). But the parallels between Peirce and Leibniz were even more striking than he knew. One should keep in mind that the scope of Leibniz's achievement was not as well appreciated in Peirce's day as in ours. Both men were mathematicians, logicians, historians, philosophers of language and mind, and metaphysicians. Neither was by any means primarily educated in philosophy (Leibniz's degree was in ]). Both were passionate about natural science and contributed thereto, dabbled in inventions, and worked on engineering projects. Both were fascinated by ] and ], and the interplay between philosophy and mathematics. Both were surprisingly friendly to some parts of ] metaphysics as well as logic; e.g., Peirce frequently invoked the ] notion of ]. Both published few books, many articles, and died leaving a vast amount in manuscript. The ideas of both men underwent oversimplification in the hands of others, and were little appreciated for some time after their deaths. The critical editions of the works of both men are far from complete. The secondary literature on both men mostly dates from the end of ]. Leibniz differs from Peirce in his greater range, vast correspondence, freedom from financial difficulties, and his passionate ]. | |||
Peirce held the view, which he called ], that "matter is effete mind, inveterate habits becoming physical laws".<ref>Peirce (1891), "The Architecture of Theories",'' ]'' v. 1, pp. , see , via ''Internet Archive''. Reprinted (CP 6.7–34) and (''The Essential Peirce'', 1:285–297, see p. 293).</ref> Peirce observed that "]'s metaphysical theories have at first sight an air of paradox and levity very unbecoming to a bishop".<ref>Peirce, C.S. (1871), Review: Fraser's Edition of the ''Works of George Berkeley'' in ''North American Review'' 113(October):449–472, reprinted in '']'' v. 8, paragraphs 7–38 and in '']'' v. 2, pp. 462–486. ''Peirce Edition Project'' {{Webarchive|url=https://web.archive.org/web/20180706131637/http://www.iupui.edu/~peirce/writings/v2/w2/w2_48/v2_48.htm |date=2018-07-06 }}.</ref> | |||
Peirce asserted the reality of (1) "absolute chance" or randomness (his ] view), (2) "mechanical necessity" or physical laws (] view), and (3) what he called the "law of love" (] view), echoing his ] Firstness, Secondness, and Thirdness, respectively.<ref name=evolove/> He held that fortuitous variation (which he also called "sporting"), mechanical necessity, and creative love are the three modes of evolution (modes called "tychasm", "anancasm", and "agapasm")<ref>See "tychism", "tychasm", "tychasticism", and the rest, at http://www.helsinki.fi/science/commens/dictionary.html {{Webarchive |url=https://web.archive.org/web/20100822160927/http://www.helsinki.fi/science/commens/dictionary.html |date=August 22, 2010}} ''Commens Digital Companion to C.S. Peirce''. https://web.archive.org/web/20111024011940/http://www.helsinki.fi/science/commens/dictionary.html</ref> of the cosmos and its parts. He found his conception of agapasm embodied in ]; the overall idea in any case is that of evolution tending toward an end or goal, and it could also be the evolution of a mind or a society; it is the kind of evolution which manifests workings of mind in some general sense. He said that overall he was a synechist, holding with reality of continuity,<ref name=evolove>Peirce (1893), "Evolutionary Love", ''The Monist'' v. 3, pp. 176–200. Reprinted ''Collected Papers of Charles Sanders Peirce'', 6.278–317, ''The Essential Peirce'', 1:352–372. ''Arisbe'' {{webarchive |url=https://web.archive.org/web/20070520131053/http://www.cspeirce.com/menu/library/bycsp/evolove/evolove.htm |date=May 20, 2007}}</ref> especially of space, time, and law.<ref>See p. 115 in '']'' (Peirce's 1898 lectures).</ref> | |||
==References== | |||
== Philosophy of science == | |||
* Anellis, I.H. (1995), "Peirce Rustled, Russell Pierced: How Charles Peirce and Bertrand Russell Viewed Each Other's Work in Logic, and an Assessment of Russell's Accuracy and Role in the Historiography of Logic", ''Modern Logic'', 5, 270-328. | |||
{{Main|Classification of the sciences (Peirce)}} | |||
Peirce outlined two fields, "Cenoscopy" and "Science of Review", both of which he called philosophy. Both included philosophy about science. In 1903 he arranged them, from more to less theoretically basic, thus:<ref name="phil"/> | |||
* ], "The Categories", ] (trans.), pp. 1-109 in ''Aristotle, Volume 1'', ], ], London, UK, 1938. | |||
# Science of Discovery. | |||
* ], "On Interpretation", ] (trans.), pp. 111-179 in ''Aristotle, Volume 1'', ], ], London, UK, 1938. | |||
## Mathematics. | |||
## Cenoscopy (philosophy as discussed earlier in this article – categorial, normative, metaphysical), as First Philosophy, concerns positive phenomena in general, does not rely on findings from special sciences, and includes the ''general'' study of inquiry and scientific method. | |||
## Idioscopy, or the Special Sciences (of nature and mind). | |||
# Science of Review, as Ultimate Philosophy, arranges "... the results of discovery, beginning with digests, and going on to endeavor to form a philosophy of science". His examples included ]'s '']'', ]'s '']'', and ]'s ''Synthetic Philosophy''. | |||
# Practical Science, or the Arts. | |||
Peirce placed, within Science of Review, the work and theory of ] (including mathematics and philosophy). His classifications, on which he worked for many years, draw on argument and wide knowledge, and are of interest both as a map for navigating his philosophy and as an accomplished polymath's survey of research in his time. | |||
* ], "]", ] (trans.), pp. 181-531 in ''Aristotle, Volume 1'', ], William Heinemann, London, UK, 1938. | |||
* ] (1854), ''An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities'', ], 1854. Reprinted with corrections, ], New York, NY, 1958. | |||
* ] (1910), ''How We Think'', ], Lexington, MA, 1910. Reprinted, Prometheus Books, Buffalo, NY, 1991. | |||
* ] (1967), "Logic as Language and Logic as Calculus", ''Synthese'', 17, 324-30. | |||
* ] (1989), "The Fortunes and Misfortunes of the Peirce Papers", ''Fourth Congress of the International Association for Semiotic Studies'', Perpignan, France, 1989. Published, pp. 1259-1268 in ''Signs of Humanity'', vol. 3, Michel Balat and Janice Deledalle-Rhodes (eds.), Gérard Deledalle (gen. ed.), Mouton de Gruyter, Berlin, Germany, 1992. | |||
* ], and ] (1889), ''An Intermediate Greek-English Lexicon'', ], Oxford, UK, 1889. Impression of 1991. | |||
* ] (1971), ''Categories for the Working Mathematician'', ], New York, NY, 1971. Second edition, 1998. | |||
* Peirce, C.S. (1877), "The Fixation of Belief", ''Popular Science Monthly'', 12, 1-15, 1877. Reprinted, CP 5.358-387. | |||
* Peirce, C.S. (1878), "How to Make Our Ideas Clear", ''Popular Science Monthly'', 12, 286-302, 1878. Reprinted, CP 5.388-410. | |||
* Peirce, C.S. (1899), "F.R.L." , unpaginated manuscript, c. 1899. Reprinted, CP 1.135-140. | |||
* Peirce, C.S., "Application of C.S. Peirce to the Executive Committee of the Carnegie Institution" (1902 ]). Published, "Parts of Carnegie Application" (L75), pp. 13–73 in ''The New Elements of Mathematics by Charles S. Peirce, Volume 4, Mathematical Philosophy'', Carolyn Eisele (ed.), Mouton Publishers, The Hague, Netherlands, 1976. | |||
* Peirce, C.S., ''The Essential Peirce, Selected Philosophical Writings, Volume 1 (1867–1893)'', Nathan Houser and Christian Kloesel (eds.), Indiana University Press, Bloomington and Indianapolis, IN, 1992. | |||
* Peirce, C.S., ''The Essential Peirce, Selected Philosophical Writings, Volume 2 (1893–1913)'', Peirce Edition Project (eds.), Indiana University Press, Bloomington and Indianapolis, IN, 1998. | |||
* Robin, Richard S. (1967), ''Annotated Catalogue of the Papers of Charles S. Peirce'', University of Massachusetts Press, Amherst, MA, 1967. | |||
==Bibliography== | |||
{{main|Charles Peirce (Bibliography)}} | |||
A bibliography of Peirce's works may be found at the above location. | |||
==See also== | ==See also== | ||
{{div col|colwidth=20em}} | |||
===Abstraction=== | |||
* ] | |||
* ] | |||
* ] | * ] | ||
* {{slink|Idea|Charles Sanders Peirce}} | |||
* ] | |||
* ] | * '']'' | ||
* ] | |||
* ] | |||
===Contemporaries=== | |||
* ] | |||
* ] | |||
* ] | |||
===Information, inquiry, logic, semiotics=== | |||
{{col-begin}} | |||
{{col-break}} | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
{{col-break}} | |||
* ] | |||
* ] | * ] | ||
* ] | * ] | ||
* {{slink|Normal distribution|Naming}} | |||
* ] | |||
* ] | * ] | ||
* ] | |||
* ] | * ] | ||
* {{slink|Problem of universals|Peirce}} | |||
* ] | |||
* {{slink|Quantification (science)|History}} | |||
{{col-break}} | |||
* ] | * ] | ||
* ] | * ] | ||
* ] | * ] | ||
{{div col end}} | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
* ] | |||
{{col-end}} | |||
===Contemporaries associated with Peirce=== | |||
===Mathematics=== | |||
{{col |
{{div col|colwidth=20em}} | ||
* ] | |||
{{col-break}} | |||
* ] | * ] | ||
{{div col end}} | |||
* ] | |||
* ] | |||
{{col-break}} | |||
* ] | |||
* ] | |||
* ] | |||
{{col-break}} | |||
* ] | |||
* ] | |||
* ] | |||
{{col-end}} | |||
== |
==Notes== | ||
{{notelist}} | |||
* ] | |||
== References == | |||
* ] | |||
{{Reflist}} | |||
* ] | |||
* ] | |||
==External links== | ==External links== | ||
{{Sister project links|v=no|b=no|n=no|wikt=no|species=no|m=no|mw=no|c=Category:Charles Sanders Peirce}} | |||
* , Joseph Ransdell, ed. {{Webarchive|url=https://web.archive.org/web/20221130013710/https://arisbe.sitehost.iu.edu/ |date=2022-11-30}}. Includes over 100 annotated writings by Peirce, hundreds of papers on Peirce, and archives of a Peirce email forum. | |||
* (1998–2003), Donald Cunningham & Jean Umiker-Sebeok, Indiana U. | |||
* {{anchor|CIEP}}{{lang|pt| (CIEP)}} and previously {{lang|pt| (CeneP), Lucia Santaella}} et al., Pontifical Catholic U. of {{lang|pt|São Paulo}} (PUC-SP), Brazil. In Portuguese, some English. | |||
* {{anchor|CEP}} (CEP), Ivo Assad Ibri, Pontifical Catholic U. of São Paulo (PUC-SP), Brazil. In Portuguese. | |||
*"". ''Journal on Pragmatism'' organized by the Centre for Pragmatism Studies (PPG-Fil, PUC-SP) {{ISSN|2316-5278}} | |||
* {{anchor|CDPT}}, Mats Bergman, Sami Paavola, & {{lang|pt|João Queiroz}}, formerly . Includes Commens Dictionary of Peirce's Terms with Peirce's definitions, often many per term across the decades, and the Digital Encyclopedia of Charles S. Peirce (]). | |||
* {{anchor|CSPI}} {{Webarchive |url=https://web.archive.org/web/20130908144039/http://www.filosofia.unimi.it/peirce/ |date=September 8, 2013}}, Carlo Sini, Rossella Fabbrichesi, et al., U. of Milan, Italy. In Italian and English. Part of . | |||
* . Co-sponsoring the 2014 Peirce International Centennial Congress (100th anniversary of Peirce's death). | |||
* {{anchor|CSPS}}<br>''''. Quarterly journal of Peirce studies since spring 1965. of all issues. | |||
* , Brian Kariger, ed. | |||
* {{MathGenealogy |id=24099}} | |||
* : The Peirce Archive. Humboldt U, Berlin, Germany. Cataloguing Peirce's innumerable drawings & graphic materials. (Prof. Aud Sissel Hoel). | |||
* {{anchor|DECSP}}, {{lang|pt|João Queiroz}} () & Ricardo Gudwin (), eds., ] (Portuguese), Brazil, in English. 84 authors listed, 51 papers online & more listed, as of January 31, 2009. Newer edition now at ]. | |||
* , Jay Zeman, ed., U. of Florida. Has 4 Peirce texts. | |||
* {{anchor|GEP}}{{lang|es|, Jaime Nubiola}}, ed., U. of Navarra, Spain. Big study site, Peirce & others in Spanish & English, bibliography, more. | |||
* {{anchor|HPRC}} (HPRC), Ahti-Veikko Pietarinen et al., U. of Helsinki. | |||
* . Autobiographical Peirce. Kenneth Laine Ketner. | |||
* , Kenneth Laine Ketner, Clyde Hendrick, et al., Texas Tech U. Peirce's life and works. | |||
* {{anchor|IRGAI}}, {{lang|de|Uwe Wirth}} et al., eds., {{lang|de|Goethe}} U., Frankfurt, Germany. Uses frames. Click on link at bottom of its home page for English. Moved to ], Germany, not in English but see Artikel section there. | |||
* {{anchor|HIPHILANGSCI}} (2024) – Dan Everett talks to James McElvenny about Peirce in the History and Philosophy of the Language Sciences podcast series. | |||
* {{anchor|LIRSCE}} (1974–2003) – {{lang|fr|Institut de Recherche en Sémiotique, Communication et Éducation, Gérard Deledalle, Joëlle Réthoré}}, U. of {{lang|fr|Perpignan}}, France. | |||
* , {{lang|pt|Vinicius Romanini}}, U. of {{lang|pt|São Paulo}}, Brazil. English, Portuguese. | |||
* at ''Signo: Theoretical Semiotics on the Web'', Louis Hébert, director, supported by U. of Québec. Theory, application, exercises of Peirce's and . English, French. | |||
* {{anchor|PEP}} {{Webarchive|url=https://web.archive.org/web/20191020080934/http://www.iupui.edu/~peirce/ |date=2019-10-20 }}, Indiana U.–Purdue U. Indianapolis (IUPUI). André De Tienne, Nathan Houser, et al. Editors of the ''Writings of Charles S. Peirce'' (W) and ''The Essential Peirce'' (EP) v. 2. Many study aids such as the Robin Catalog of Peirce's manuscripts & letters and:<br>Biographical introductions to and & <br> readable online.<br>. Working on ''Writings of Charles S. Peirce'', 7: Peirce's work on the ''Century Dictionary''. . | |||
* , Frithjof Dau, Germany | |||
* , Department of Philosophy "Piero Martinetti" – University of Milan, Italy. | |||
* , David Hildebrand & John Shook. | |||
* {{anchor|RGSEME}} (late 1990s), {{lang|de|Institut für Didaktik der Mathematik (Michael Hoffman, Michael Otte, Universität Bielefeld,}} Germany). See ''Peirce Project Newsletter'' v. 3, n. 1, . | |||
* , with . | |||
* {{Librivox author |id=16492}} | |||
{{Philosophy of science}} | |||
{{wikiquote}} | |||
{{Metaphysics}} | |||
{{wikisource author|Charles Sanders Peirce}} | |||
{{ |
{{Classical logic}} | ||
{{Pragmatism}} | |||
{{Authority control}} | |||
* Credits: | |||
** ia = initial author | |||
** ed = architect, coordinator, director, editor, manager, webmaster, webmistress, etc. | |||
* , Joseph Ransdell (ed.) | |||
* | |||
:* | |||
* | |||
* , MacTutor History of Mathematics, O'Connor & Robertson | |||
* , University of Helsinki, Bergman & Paavola (eds.) | |||
:* | |||
:* | |||
* | |||
* , Jaime Nubiola (ed.) | |||
* Autobiography of Charles S. Peirce, Kenneth Laine Ketner | |||
* , Fieser & Dowden (eds.) | |||
:* , Albert Atkin | |||
:* , Albert Atkin | |||
:* , Albert Atkin | |||
* , Ralph Lichtensteiger | |||
* | |||
:* , Nathan Houser | |||
:* , Nathan Houser | |||
* , John R. Shook (ed.) | |||
:* | |||
* , Edward N. Zalta (ed.) | |||
:* , Robert Burch | |||
:* , Eric Hammer | |||
* | |||
:* , Raymond Robert Tremblay (ia.) | |||
''An of this article, by Jaime Nubiola, was posted at Nupedia.'' | |||
<!-- merged with Charles Saunders Peirce--> | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
{{DEFAULTSORT:Peirce, Charles Sanders}} | |||
] | ] | ||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] | |||
] |
Latest revision as of 00:46, 10 January 2025
American thinker who founded pragmatism (1839–1914)
Charles Sanders Peirce | |
---|---|
Peirce in 1891 | |
Born | (1839-09-10)September 10, 1839 Cambridge, Massachusetts, U.S. |
Died | April 19, 1914(1914-04-19) (aged 74) Milford, Pennsylvania, U.S. |
Alma mater | Harvard University |
Relatives | Benjamin Peirce (father) |
Era | Late modern philosophy |
Region | Western philosophy |
School | Pragmatism Pragmaticism |
Institutions | Johns Hopkins University |
Notable students | List |
Main interests |
|
Signature | |
Part of a series on |
Charles Sanders Peirce |
---|
Pragmatism in epistemology |
Logic |
Semiotic theory |
Miscellaneous contributions |
Biographical |
Charles Sanders Peirce (/pɜːrs/ PURSS; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss, Peirce was "the most original and versatile of America's philosophers and America's greatest logician". Bertrand Russell wrote "he was one of the most original minds of the later nineteenth century and certainly the greatest American thinker ever".
Educated as a chemist and employed as a scientist for thirty years, Peirce meanwhile made major contributions to logic, such as theories of relations and quantification. C. I. Lewis wrote, "The contributions of C. S. Peirce to symbolic logic are more numerous and varied than those of any other writer—at least in the nineteenth century." For Peirce, logic also encompassed much of what is now called epistemology and the philosophy of science. He saw logic as the formal branch of semiotics or study of signs, of which he is a founder, which foreshadowed the debate among logical positivists and proponents of philosophy of language that dominated 20th-century Western philosophy. Peirce's study of signs also included a tripartite theory of predication.
Additionally, he defined the concept of abductive reasoning, as well as rigorously formulating mathematical induction and deductive reasoning. He was one of the founders of statistics. As early as 1886, he saw that logical operations could be carried out by electrical switching circuits. The same idea was used decades later to produce digital computers.
In metaphysics, Peirce was an "objective idealist" in the tradition of German philosopher Immanuel Kant as well as a scholastic realist about universals. He also held a commitment to the ideas of continuity and chance as real features of the universe, views he labeled synechism and tychism respectively. Peirce believed an epistemic fallibilism and anti-skepticism went along with these views.
Biography
Early life
Peirce was born at 3 Phillips Place in Cambridge, Massachusetts. He was the son of Sarah Hunt Mills and Benjamin Peirce, himself a professor of mathematics and astronomy at Harvard University. At age 12, Charles read his older brother's copy of Richard Whately's Elements of Logic, then the leading English-language text on the subject. So began his lifelong fascination with logic and reasoning.
He suffered from his late teens onward from a nervous condition then known as "facial neuralgia", which would today be diagnosed as trigeminal neuralgia. His biographer, Joseph Brent, says that when in the throes of its pain "he was, at first, almost stupefied, and then aloof, cold, depressed, extremely suspicious, impatient of the slightest crossing, and subject to violent outbursts of temper". Its consequences may have led to the social isolation of his later life.
Education
Peirce went on to earn a Bachelor of Arts degree and a Master of Arts degree (1862) from Harvard. In 1863 the Lawrence Scientific School awarded him a Bachelor of Science degree, Harvard's first summa cum laude chemistry degree. His academic record was otherwise undistinguished. At Harvard, he began lifelong friendships with Francis Ellingwood Abbot, Chauncey Wright, and William James. One of his Harvard instructors, Charles William Eliot, formed an unfavorable opinion of Peirce. This proved fateful, because Eliot, while President of Harvard (1869–1909—a period encompassing nearly all of Peirce's working life), repeatedly vetoed Peirce's employment at the university.
United States Coast Survey
Between 1859 and 1891, Peirce was intermittently employed in various scientific capacities by the United States Coast Survey, which in 1878 was renamed the United States Coast and Geodetic Survey, where he enjoyed his highly influential father's protection until the latter's death in 1880. At the Survey, he worked mainly in geodesy and gravimetry, refining the use of pendulums to determine small local variations in the Earth's gravity.
American Civil War
This employment exempted Peirce from having to take part in the American Civil War; it would have been very awkward for him to do so, as the Boston Brahmin Peirces sympathized with the Confederacy. No members of the Peirce family volunteered or enlisted. Peirce grew up in a home where white supremacy was taken for granted, and slavery was considered natural. Peirce's father had described himself as a secessionist until the outbreak of the war, after which he became a Union partisan, providing donations to the Sanitary Commission, the leading Northern war charity.
Peirce liked to use the following syllogism to illustrate the unreliability of traditional forms of logic (for the first premise arguably assumes the conclusion):
All Men are equal in their political rights.
Negroes are Men.
Therefore, negroes are equal in political rights to whites.
Travels to Europe
He was elected a resident fellow of the American Academy of Arts and Sciences in January 1867. The Survey sent him to Europe five times, first in 1871 as part of a group sent to observe a solar eclipse. There, he sought out Augustus De Morgan, William Stanley Jevons, and William Kingdon Clifford, British mathematicians and logicians whose turn of mind resembled his own.
Harvard observatory
From 1869 to 1872, he was employed as an assistant in Harvard's astronomical observatory, doing important work on determining the brightness of stars and the shape of the Milky Way. In 1872 he founded the Metaphysical Club, a conversational philosophical club that Peirce, the future Supreme Court Justice Oliver Wendell Holmes Jr., the philosopher and psychologist William James, amongst others, formed in January 1872 in Cambridge, Massachusetts, and dissolved in December 1872. Other members of the club included Chauncey Wright, John Fiske, Francis Ellingwood Abbot, Nicholas St. John Green, and Joseph Bangs Warner. The discussions eventually birthed Peirce's notion of pragmatism.
National Academy of Sciences
On April 20, 1877, he was elected a member of the National Academy of Sciences. Also in 1877, he proposed measuring the meter as so many wavelengths of light of a certain frequency, the kind of definition employed from 1960 to 1983.
In 1879 Peirce developed Peirce quincuncial projection, having been inspired by H. A. Schwarz's 1869 conformal transformation of a circle onto a polygon of n sides (known as the Schwarz–Christoffel mapping).
1880 to 1891
During the 1880s, Peirce's indifference to bureaucratic detail waxed while his Survey work's quality and timeliness waned. Peirce took years to write reports that he should have completed in months. Meanwhile, he wrote entries, ultimately thousands, during 1883–1909 on philosophy, logic, science, and other subjects for the encyclopedic Century Dictionary. In 1885, an investigation by the Allison Commission exonerated Peirce, but led to the dismissal of Superintendent Julius Hilgard and several other Coast Survey employees for misuse of public funds. In 1891, Peirce resigned from the Coast Survey at Superintendent Thomas Corwin Mendenhall's request.
Johns Hopkins University
In 1879, Peirce was appointed lecturer in logic at Johns Hopkins University, which had strong departments in areas that interested him, such as philosophy (Royce and Dewey completed their PhDs at Hopkins), psychology (taught by G. Stanley Hall and studied by Joseph Jastrow, who coauthored a landmark empirical study with Peirce), and mathematics (taught by J. J. Sylvester, who came to admire Peirce's work on mathematics and logic). His Studies in Logic by Members of the Johns Hopkins University (1883) contained works by himself and Allan Marquand, Christine Ladd, Benjamin Ives Gilman, and Oscar Howard Mitchell, several of whom were his graduate students. Peirce's nontenured position at Hopkins was the only academic appointment he ever held.
Brent documents something Peirce never suspected, namely that his efforts to obtain academic employment, grants, and scientific respectability were repeatedly frustrated by the covert opposition of a major Canadian-American scientist of the day, Simon Newcomb. Newcomb had been a favourite student of Peirce's father; although "no doubt quite bright", "like Salieri in Peter Shaffer's Amadeus he also had just enough talent to recognize he was not a genius and just enough pettiness to resent someone who was". Additionally "an intensely devout and literal-minded Christian of rigid moral standards", he was appalled by what he considered Peirce's personal shortcomings. Peirce's efforts may also have been hampered by what Brent characterizes as "his difficult personality". In contrast, Keith Devlin believes that Peirce's work was too far ahead of his time to be appreciated by the academic establishment of the day and that this played a large role in his inability to obtain a tenured position.
Personal life
Peirce's personal life undoubtedly worked against his professional success. After his first wife, Harriet Melusina Fay ("Zina"), left him in 1875, Peirce, while still legally married, became involved with Juliette, whose last name, given variously as Froissy and Pourtalai, and nationality (she spoke French) remains uncertain. When his divorce from Zina became final in 1883, he married Juliette. That year, Newcomb pointed out to a Johns Hopkins trustee that Peirce, while a Hopkins employee, had lived and traveled with a woman to whom he was not married; the ensuing scandal led to his dismissal in January 1884. Over the years Peirce sought academic employment at various universities without success. He had no children by either marriage.
Later life and poverty
In 1887, Peirce spent part of his inheritance from his parents to buy 2,000 acres (8 km) of rural land near Milford, Pennsylvania, which never yielded an economic return. There he had an 1854 farmhouse remodeled to his design. The Peirces named the property "Arisbe". There they lived with few interruptions for the rest of their lives, Charles writing prolifically, with much of his work remaining unpublished to this day (see Works). Living beyond their means soon led to grave financial and legal difficulties. Charles spent much of his last two decades unable to afford heat in winter and subsisting on old bread donated by the local baker. Unable to afford new stationery, he wrote on the verso side of old manuscripts. An outstanding warrant for assault and unpaid debts led to his being a fugitive in New York City for a while. Several people, including his brother James Mills Peirce and his neighbors, relatives of Gifford Pinchot, settled his debts and paid his property taxes and mortgage.
Peirce did some scientific and engineering consulting and wrote much for meager pay, mainly encyclopedic dictionary entries, and reviews for The Nation (with whose editor, Wendell Phillips Garrison, he became friendly). He did translations for the Smithsonian Institution, at its director Samuel Langley's instigation. Peirce also did substantial mathematical calculations for Langley's research on powered flight. Hoping to make money, Peirce tried inventing. He began but did not complete several books. In 1888, President Grover Cleveland appointed him to the Assay Commission.
From 1890 on, he had a friend and admirer in Judge Francis C. Russell of Chicago, who introduced Peirce to editor Paul Carus and owner Edward C. Hegeler of the pioneering American philosophy journal The Monist, which eventually published at least 14 articles by Peirce. He wrote many texts in James Mark Baldwin's Dictionary of Philosophy and Psychology (1901–1905); half of those credited to him appear to have been written actually by Christine Ladd-Franklin under his supervision. He applied in 1902 to the newly formed Carnegie Institution for a grant to write a systematic book describing his life's work. The application was doomed; his nemesis, Newcomb, served on the Carnegie Institution executive committee, and its president had been president of Johns Hopkins at the time of Peirce's dismissal.
The one who did the most to help Peirce in these desperate times was his old friend William James, dedicating his Will to Believe (1897) to Peirce, and arranging for Peirce to be paid to give two series of lectures at or near Harvard (1898 and 1903). Most important, each year from 1907 until James's death in 1910, James wrote to his friends in the Boston intelligentsia to request financial aid for Peirce; the fund continued even after James died. Peirce reciprocated by designating James's eldest son as his heir should Juliette predecease him. It has been believed that this was also why Peirce used "Santiago" ("St. James" in English) as a middle name, but he appeared in print as early as 1890 as Charles Santiago Peirce. (See Charles Santiago Sanders Peirce for discussion and references).
Death and legacy
Peirce died destitute in Milford, Pennsylvania, twenty years before his widow. Juliette Peirce kept the urn with Peirce's ashes at Arisbe. In 1934, Pennsylvania Governor Gifford Pinchot arranged for Juliette's burial in Milford Cemetery. The urn with Peirce's ashes was interred with Juliette.
Bertrand Russell (1959) wrote "Beyond doubt he was one of the most original minds of the later nineteenth century and certainly the greatest American thinker ever". Russell and Whitehead's Principia Mathematica, published from 1910 to 1913, does not mention Peirce (Peirce's work was not widely known until later). A. N. Whitehead, while reading some of Peirce's unpublished manuscripts soon after arriving at Harvard in 1924, was struck by how Peirce had anticipated his own "process" thinking. (On Peirce and process metaphysics, see Lowe 1964.) Karl Popper viewed Peirce as "one of the greatest philosophers of all times". Yet Peirce's achievements were not immediately recognized. His imposing contemporaries William James and Josiah Royce admired him and Cassius Jackson Keyser, at Columbia and C. K. Ogden, wrote about Peirce with respect but to no immediate effect.
The first scholar to give Peirce his considered professional attention was Royce's student Morris Raphael Cohen, the editor of an anthology of Peirce's writings entitled Chance, Love, and Logic (1923), and the author of the first bibliography of Peirce's scattered writings. John Dewey studied under Peirce at Johns Hopkins. From 1916 onward, Dewey's writings repeatedly mention Peirce with deference. His 1938 Logic: The Theory of Inquiry is much influenced by Peirce. The publication of the first six volumes of Collected Papers (1931–1935) was the most important event to date in Peirce studies and one that Cohen made possible by raising the needed funds; however it did not prompt an outpouring of secondary studies. The editors of those volumes, Charles Hartshorne and Paul Weiss, did not become Peirce specialists. Early landmarks of the secondary literature include the monographs by Buchler (1939), Feibleman (1946), and Goudge (1950), the 1941 PhD thesis by Arthur W. Burks (who went on to edit volumes 7 and 8), and the studies edited by Wiener and Young (1952). The Charles S. Peirce Society was founded in 1946. Its Transactions, an academic quarterly specializing in Peirce's pragmatism and American philosophy has appeared since 1965. (See Phillips 2014, 62 for discussion of Peirce and Dewey relative to transactionalism.)
By 1943 such was Peirce's reputation, in the US at least, that Webster's Biographical Dictionary said that Peirce was "now regarded as the most original thinker and greatest logician of his time".
In 1949, while doing unrelated archival work, the historian of mathematics Carolyn Eisele (1902–2000) chanced on an autograph letter by Peirce. So began her forty years of research on Peirce, “the mathematician and scientist,” culminating in Eisele (1976, 1979, 1985). Beginning around 1960, the philosopher and historian of ideas Max Fisch (1900–1995) emerged as an authority on Peirce (Fisch, 1986). He includes many of his relevant articles in a survey (Fisch 1986: 422–448) of the impact of Peirce's thought through 1983.
Peirce has gained an international following, marked by university research centers devoted to Peirce studies and pragmatism in Brazil (CeneP/CIEP and Centro de Estudos de Pragmatismo), Finland (HPRC and Commens), Germany (Wirth's group, Hoffman's and Otte's group, and Deuser's and Härle's group), France (L'I.R.S.C.E.), Spain (GEP), and Italy (CSP). His writings have been translated into several languages, including German, French, Finnish, Spanish, and Swedish. Since 1950, there have been French, Italian, Spanish, British, and Brazilian Peirce scholars of note. For many years, the North American philosophy department most devoted to Peirce was the University of Toronto, thanks in part to the leadership of Thomas Goudge and David Savan. In recent years, U.S. Peirce scholars have clustered at Indiana University – Purdue University Indianapolis, home of the Peirce Edition Project (PEP) –, and Pennsylvania State University.
Currently, considerable interest is being taken in Peirce's ideas by researchers wholly outside the arena of academic philosophy. The interest comes from industry, business, technology, intelligence organizations, and the military; and it has resulted in the existence of a substantial number of agencies, institutes, businesses, and laboratories in which ongoing research into and development of Peircean concepts are being vigorously undertaken.
— Robert Burch, 2001, updated 2010
In recent years, Peirce's trichotomy of signs is exploited by a growing number of practitioners for marketing and design tasks.
John Deely writes that Peirce was the last of the "moderns" and "first of the postmoderns". He lauds Peirce's doctrine of signs as a contribution to the dawn of the Postmodern epoch. Deely additionally comments that "Peirce stands...in a position analogous to the position occupied by Augustine as last of the Western Fathers and first of the medievals".
Works
See also: Charles Sanders Peirce bibliographyPeirce's reputation rests largely on academic papers published in American scientific and scholarly journals such as Proceedings of the American Academy of Arts and Sciences, the Journal of Speculative Philosophy, The Monist, Popular Science Monthly, the American Journal of Mathematics, Memoirs of the National Academy of Sciences, The Nation, and others. See Articles by Peirce, published in his lifetime for an extensive list with links to them online. The only full-length book (neither extract nor pamphlet) that Peirce authored and saw published in his lifetime was Photometric Researches (1878), a 181-page monograph on the applications of spectrographic methods to astronomy. While at Johns Hopkins, he edited Studies in Logic (1883), containing chapters by himself and his graduate students. Besides lectures during his years (1879–1884) as lecturer in Logic at Johns Hopkins, he gave at least nine series of lectures, many now published; see Lectures by Peirce.
After Peirce's death, Harvard University obtained from Peirce's widow the papers found in his study, but did not microfilm them until 1964. Only after Richard Robin (1967) catalogued this Nachlass did it become clear that Peirce had left approximately 1,650 unpublished manuscripts, totaling over 100,000 pages, mostly still unpublished except on microfilm. On the vicissitudes of Peirce's papers, see Houser (1989). Reportedly the papers remain in unsatisfactory condition.
The first published anthology of Peirce's articles was the one-volume Chance, Love and Logic: Philosophical Essays, edited by Morris Raphael Cohen, 1923, still in print. Other one-volume anthologies were published in 1940, 1957, 1958, 1972, 1994, and 2009, most still in print. The main posthumous editions of Peirce's works in their long trek to light, often multi-volume, and some still in print, have included:
1931–1958: Collected Papers of Charles Sanders Peirce (CP), 8 volumes, includes many published works, along with a selection of previously unpublished work and a smattering of his correspondence. This long-time standard edition drawn from Peirce's work from the 1860s to 1913 remains the most comprehensive survey of his prolific output from 1893 to 1913. It is organized thematically, but texts (including lecture series) are often split up across volumes, while texts from various stages in Peirce's development are often combined, requiring frequent visits to editors' notes. Edited (1–6) by Charles Hartshorne and Paul Weiss and (7–8) by Arthur Burks, in print and online.
1975–1987: Charles Sanders Peirce: Contributions to The Nation, 4 volumes, includes Peirce's more than 300 reviews and articles published 1869–1908 in The Nation. Edited by Kenneth Laine Ketner and James Edward Cook, online.
1976: The New Elements of Mathematics by Charles S. Peirce, 4 volumes in 5, included many previously unpublished Peirce manuscripts on mathematical subjects, along with Peirce's important published mathematical articles. Edited by Carolyn Eisele, back in print.
1977: Semiotic and Significs: The Correspondence between C. S. Peirce and Victoria Lady Welby (2nd edition 2001), included Peirce's entire correspondence (1903–1912) with Victoria, Lady Welby. Peirce's other published correspondence is largely limited to the 14 letters included in volume 8 of the Collected Papers, and the 20-odd pre-1890 items included so far in the Writings. Edited by Charles S. Hardwick with James Cook, out of print.
1982–now: Writings of Charles S. Peirce, A Chronological Edition (W), Volumes 1–6 & 8, of a projected 30. The limited coverage, and defective editing and organization, of the Collected Papers led Max Fisch and others in the 1970s to found the Peirce Edition Project (PEP), whose mission is to prepare a more complete critical chronological edition. Only seven volumes have appeared to date, but they cover the period from 1859 to 1892, when Peirce carried out much of his best-known work. Writings of Charles S. Peirce, 8 was published in November 2010; and work continues on Writings of Charles S. Peirce, 7, 9, and 11. In print and online.
1985: Historical Perspectives on Peirce's Logic of Science: A History of Science, 2 volumes. Auspitz has said, "The extent of Peirce's immersion in the science of his day is evident in his reviews in the Nation and in his papers, grant applications, and publishers' prospectuses in the history and practice of science", referring latterly to Historical Perspectives. Edited by Carolyn Eisele, back in print.
1992: Reasoning and the Logic of Things collects in one place Peirce's 1898 series of lectures invited by William James. Edited by Kenneth Laine Ketner, with commentary by Hilary Putnam, in print.
1992–1998: The Essential Peirce (EP), 2 volumes, is an important recent sampler of Peirce's philosophical writings. Edited (1) by Nathan Hauser and Christian Kloesel and (2) by Peirce Edition Project editors, in print.
1997: Pragmatism as a Principle and Method of Right Thinking collects Peirce's 1903 Harvard "Lectures on Pragmatism" in a study edition, including drafts, of Peirce's lecture manuscripts, which had been previously published in abridged form; the lectures now also appear in The Essential Peirce, 2. Edited by Patricia Ann Turisi, in print.
2010: Philosophy of Mathematics: Selected Writings collects important writings by Peirce on the subject, many not previously in print. Edited by Matthew E. Moore, in print.
Mathematics
Peirce's most important work in pure mathematics was in logical and foundational areas. He also worked on linear algebra, matrices, various geometries, topology and Listing numbers, Bell numbers, graphs, the four-color problem, and the nature of continuity.
He worked on applied mathematics in economics, engineering, and map projections, and was especially active in probability and statistics.
- Discoveries
symbol for "(neither) ... nor ...", also called the Quine dagger
Peirce made a number of striking discoveries in formal logic and foundational mathematics, nearly all of which came to be appreciated only long after he died:
In 1860 he suggested a cardinal arithmetic for infinite numbers, years before any work by Georg Cantor (who completed his dissertation in 1867) and without access to Bernard Bolzano's 1851 (posthumous) Paradoxien des Unendlichen.
In 1880–1881 he showed how Boolean algebra could be done via a repeated sufficient single binary operation (logical NOR), anticipating Henry M. Sheffer by 33 years. (See also De Morgan's Laws.)
In 1881 he set out the axiomatization of natural number arithmetic, a few years before Richard Dedekind and Giuseppe Peano. In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "Dedekind-finite", and implied by the same stroke an important formal definition of an infinite set (Dedekind-infinite), as a set that can be put into a one-to-one correspondence with one of its proper subsets.
In 1885 he distinguished between first-order and second-order quantification. In the same paper he set out what can be read as the first (primitive) axiomatic set theory, anticipating Zermelo by about two decades (Brady 2000, pp. 132–133).
In 1886, he saw that Boolean calculations could be carried out via electrical switches, anticipating Claude Shannon by more than 50 years. By the later 1890s he was devising existential graphs, a diagrammatic notation for the predicate calculus. Based on them are John F. Sowa's conceptual graphs and Sun-Joo Shin's diagrammatic reasoning.
- The New Elements of Mathematics
Peirce wrote drafts for an introductory textbook, with the working title The New Elements of Mathematics, that presented mathematics from an original standpoint. Those drafts and many other of his previously unpublished mathematical manuscripts finally appeared in The New Elements of Mathematics by Charles S. Peirce (1976), edited by mathematician Carolyn Eisele.
- Nature of mathematics
Peirce agreed with Auguste Comte in regarding mathematics as more basic than philosophy and the special sciences (of nature and mind). Peirce classified mathematics into three subareas: (1) mathematics of logic, (2) discrete series, and (3) pseudo-continua (as he called them, including the real numbers) and continua. Influenced by his father Benjamin, Peirce argued that mathematics studies purely hypothetical objects and is not just the science of quantity but is more broadly the science which draws necessary conclusions; that mathematics aids logic, not vice versa; and that logic itself is part of philosophy and is the science about drawing conclusions necessary and otherwise.
Mathematics of logic
Mathematical logic and foundations, some noted articles- "On an Improvement in Boole's Calculus of Logic" (1867)
- "Description of a Notation for the Logic of Relatives" (1870)
- "On the Algebra of Logic" (1880)
- "A Boolian [sic] Algebra with One Constant" (1880 MS)
- "On the Logic of Number" (1881)
- "Note B: The Logic of Relatives" (1883)
- "On the Algebra of Logic: A Contribution to the Philosophy of Notation" (1884/1885)
- "The Logic of Relatives" (1897)
- "The Simplest Mathematics" (1902 MS)
- "Prolegomena to an Apology for Pragmaticism" (1906, on existential graphs)
Probability and statistics
Peirce held that science achieves statistical probabilities, not certainties, and that spontaneity ("absolute chance") is real (see Tychism on his view). Most of his statistical writings promote the frequency interpretation of probability (objective ratios of cases), and many of his writings express skepticism about (and criticize the use of) probability when such models are not based on objective randomization. Though Peirce was largely a frequentist, his possible world semantics introduced the "propensity" theory of probability before Karl Popper. Peirce (sometimes with Joseph Jastrow) investigated the probability judgments of experimental subjects, "perhaps the very first" elicitation and estimation of subjective probabilities in experimental psychology and (what came to be called) Bayesian statistics.
Peirce was one of the founders of statistics. He formulated modern statistics in "Illustrations of the Logic of Science" (1877–1878) and "A Theory of Probable Inference" (1883). With a repeated measures design, Charles Sanders Peirce and Joseph Jastrow introduced blinded, controlled randomized experiments in 1884 (Hacking 1990:205) (before Ronald A. Fisher). He invented optimal design for experiments on gravity, in which he "corrected the means". He used correlation and smoothing. Peirce extended the work on outliers by Benjamin Peirce, his father. He introduced the terms "confidence" and "likelihood" (before Jerzy Neyman and Fisher). (See Stephen Stigler's historical books and Ian Hacking 1990.)
As a philosopher
Peirce was a working scientist for 30 years, and arguably was a professional philosopher only during the five years he lectured at Johns Hopkins. He learned philosophy mainly by reading, each day, a few pages of Immanuel Kant's Critique of Pure Reason, in the original German, while a Harvard undergraduate. His writings bear on a wide array of disciplines, including mathematics, logic, philosophy, statistics, astronomy, metrology, geodesy, experimental psychology, economics, linguistics, and the history and philosophy of science. This work has enjoyed renewed interest and approval, a revival inspired not only by his anticipations of recent scientific developments but also by his demonstration of how philosophy can be applied effectively to human problems.
Peirce's philosophy includes a pervasive three-category system: belief that truth is immutable and is both independent from actual opinion (fallibilism) and discoverable (no radical skepticism), logic as formal semiotic on signs, on arguments, and on inquiry's ways—including philosophical pragmatism (which he founded), critical common-sensism, and scientific method—and, in metaphysics: Scholastic realism, e.g. John Duns Scotus, belief in God, freedom, and at least an attenuated immortality, objective idealism, and belief in the reality of continuity and of absolute chance, mechanical necessity, and creative love. In his work, fallibilism and pragmatism may seem to work somewhat like skepticism and positivism, respectively, in others' work. However, for Peirce, fallibilism is balanced by an anti-skepticism and is a basis for belief in the reality of absolute chance and of continuity, and pragmatism commits one to anti-nominalist belief in the reality of the general (CP 5.453–457).
For Peirce, First Philosophy, which he also called cenoscopy, is less basic than mathematics and more basic than the special sciences (of nature and mind). It studies positive phenomena in general, phenomena available to any person at any waking moment, and does not settle questions by resorting to special experiences. He divided such philosophy into (1) phenomenology (which he also called phaneroscopy or categorics), (2) normative sciences (esthetics, ethics, and logic), and (3) metaphysics; his views on them are discussed in order below.
Peirce did not write extensively in aesthetics and ethics, but came by 1902 to hold that aesthetics, ethics, and logic, in that order, comprise the normative sciences. He characterized aesthetics as the study of the good (grasped as the admirable), and thus of the ends governing all conduct and thought.
Influence and legacy
Umberto Eco described Peirce as "undoubtedly the greatest unpublished writer of our generation" and by Karl Popper as "one of the greatest philosophers of all time". The Internet Encyclopedia of Philosophy says of Peirce that although "long considered an eccentric figure whose contribution to pragmatism was to provide its name and whose importance was as an influence upon James and Dewey, Peirce's significance in his own right is now largely accepted."
Pragmatism
Main articles: Pragmaticism, Pragmatic maxim, and Pragmatic theory of truth § Peirce Some noted articles and lectures- Illustrations of the Logic of Science (1877–1878):
inquiry, pragmatism, statistics, inference
- The Fixation of Belief (1877)
- How to Make Our Ideas Clear (1878)
- The Doctrine of Chances (1878)
- The Probability of Induction (1878)
- The Order of Nature (1878)
- Deduction, Induction, and Hypothesis (1878)
- The Harvard lectures on pragmatism (1903)
- What Pragmatism Is (1905)
- Issues of Pragmaticism (1905)
- Pragmatism (1907 MS in The Essential Peirce, 2)
Peirce's recipe for pragmatic thinking, which he called pragmatism and, later, pragmaticism, is recapitulated in several versions of the so-called pragmatic maxim. Here is one of his more emphatic reiterations of it:
Consider what effects that might conceivably have practical bearings you conceive the objects of your conception to have. Then, your conception of those effects is the whole of your conception of the object.
As a movement, pragmatism began in the early 1870s in discussions among Peirce, William James, and others in the Metaphysical Club. James among others regarded some articles by Peirce such as "The Fixation of Belief" (1877) and especially "How to Make Our Ideas Clear" (1878) as foundational to pragmatism. Peirce (CP 5.11–12), like James (Pragmatism: A New Name for Some Old Ways of Thinking, 1907), saw pragmatism as embodying familiar attitudes, in philosophy and elsewhere, elaborated into a new deliberate method for fruitful thinking about problems. Peirce differed from James and the early John Dewey, in some of their tangential enthusiasms, in being decidedly more rationalistic and realistic, in several senses of those terms, throughout the preponderance of his own philosophical moods.
In 1905 Peirce coined the new name pragmaticism "for the precise purpose of expressing the original definition", saying that "all went happily" with James's and F.C.S. Schiller's variant uses of the old name "pragmatism" and that he coined the new name because of the old name's growing use in "literary journals, where it gets abused". Yet he cited as causes, in a 1906 manuscript, his differences with James and Schiller and, in a 1908 publication, his differences with James as well as literary author Giovanni Papini's declaration of pragmatism's indefinability. Peirce in any case regarded his views that truth is immutable and infinity is real, as being opposed by the other pragmatists, but he remained allied with them on other issues.
Pragmatism begins with the idea that belief is that on which one is prepared to act. Peirce's pragmatism is a method of clarification of conceptions of objects. It equates any conception of an object to a conception of that object's effects to a general extent of the effects' conceivable implications for informed practice. It is a method of sorting out conceptual confusions occasioned, for example, by distinctions that make (sometimes needed) formal yet not practical differences. He formulated both pragmatism and statistical principles as aspects of scientific logic, in his "Illustrations of the Logic of Science" series of articles. In the second one, "How to Make Our Ideas Clear", Peirce discussed three grades of clearness of conception:
- Clearness of a conception familiar and readily used, even if unanalyzed and undeveloped.
- Clearness of a conception in virtue of clearness of its parts, in virtue of which logicians called an idea "distinct", that is, clarified by analysis of just what makes it applicable. Elsewhere, echoing Kant, Peirce called a likewise distinct definition "nominal" (CP 5.553).
- Clearness in virtue of clearness of conceivable practical implications of the object's conceived effects, such that fosters fruitful reasoning, especially on difficult problems. Here he introduced that which he later called the pragmatic maxim.
By way of example of how to clarify conceptions, he addressed conceptions about truth and the real as questions of the presuppositions of reasoning in general. In clearness's second grade (the "nominal" grade), he defined truth as a sign's correspondence to its object, and the real as the object of such correspondence, such that truth and the real are independent of that which you or I or any actual, definite community of inquirers think. After that needful but confined step, next in clearness's third grade (the pragmatic, practice-oriented grade) he defined truth as that opinion which would be reached, sooner or later but still inevitably, by research taken far enough, such that the real does depend on that ideal final opinion—a dependence to which he appeals in theoretical arguments elsewhere, for instance for the long-run validity of the rule of induction. Peirce argued that even to argue against the independence and discoverability of truth and the real is to presuppose that there is, about that very question under argument, a truth with just such independence and discoverability.
Peirce said that a conception's meaning consists in "all general modes of rational conduct" implied by "acceptance" of the conception—that is, if one were to accept, first of all, the conception as true, then what could one conceive to be consequent general modes of rational conduct by all who accept the conception as true?—the whole of such consequent general modes is the whole meaning. His pragmatism does not equate a conception's meaning, its intellectual purport, with the conceived benefit or cost of the conception itself, like a meme (or, say, propaganda), outside the perspective of its being true, nor, since a conception is general, is its meaning equated with any definite set of actual consequences or upshots corroborating or undermining the conception or its worth. His pragmatism also bears no resemblance to "vulgar" pragmatism, which misleadingly connotes a ruthless and Machiavellian search for mercenary or political advantage. Instead the pragmatic maxim is the heart of his pragmatism as a method of experimentational mental reflection arriving at conceptions in terms of conceivable confirmatory and disconfirmatory circumstances—a method hospitable to the formation of explanatory hypotheses, and conducive to the use and improvement of verification.
Peirce's pragmatism, as method and theory of definitions and conceptual clearness, is part of his theory of inquiry, which he variously called speculative, general, formal or universal rhetoric or simply methodeutic. He applied his pragmatism as a method throughout his work.
Theory of inquiry
See also: InquiryIn "The Fixation of Belief" (1877), Peirce gives his take on the psychological origin and aim of inquiry. On his view, individuals are motivated to inquiry by desire to escape the feelings of anxiety and unease which Peirce takes to be characteristic of the state of doubt. Doubt is described by Peirce as an "uneasy and dissatisfied state from which we struggle to free ourselves and pass into the state of belief." Peirce uses words like "irritation" to describe the experience of being in doubt and to explain why he thinks we find such experiences to be motivating. The irritating feeling of doubt is appeased, Peirce says, through our efforts to achieve a settled state of satisfaction with what we land on as our answer to the question which led to that doubt in the first place. This settled state, namely, belief, is described by Peirce as "a calm and satisfactory state which we do not wish to avoid." Our efforts to achieve the satisfaction of belief, by whichever methods we may pursue, are what Peirce calls "inquiry". Four methods which Peirce describes as having been actually pursued throughout the history of thought are summarized below in the section after next.
Critical common-sensism
Critical common-sensism, treated by Peirce as a consequence of his pragmatism, is his combination of Thomas Reid's common-sense philosophy with a fallibilism that recognizes that propositions of our more or less vague common sense now indubitable may later come into question, for example because of transformations of our world through science. It includes efforts to raise genuine doubts in tests for a core group of common indubitables that change slowly, if at all.
Rival methods of inquiry
In "The Fixation of Belief" (1877), Peirce described inquiry in general not as the pursuit of truth per se but as the struggle to move from irritating, inhibitory doubt born of surprise, disagreement, and the like, and to reach a secure belief, belief being that on which one is prepared to act. That let Peirce frame scientific inquiry as part of a broader spectrum and as spurred, like inquiry generally, by actual doubt, not mere verbal, quarrelsome, or hyperbolic doubt, which he held to be fruitless. Peirce sketched four methods of settling opinion, ordered from least to most successful:
- The method of tenacity (policy of sticking to initial belief) – which brings comforts and decisiveness but leads to trying to ignore contrary information and others' views as if truth were intrinsically private, not public. The method goes against the social impulse and easily falters since one may well notice when another's opinion seems as good as one's own initial opinion. Its successes can be brilliant but tend to be transitory.
- The method of authority – which overcomes disagreements but sometimes brutally. Its successes can be majestic and long-lasting, but it cannot regulate people thoroughly enough to withstand doubts indefinitely, especially when people learn about other societies present and past.
- The method of the a priori – which promotes conformity less brutally but fosters opinions as something like tastes, arising in conversation and comparisons of perspectives in terms of "what is agreeable to reason". Thereby it depends on fashion in paradigms and goes in circles over time. It is more intellectual and respectable but, like the first two methods, sustains accidental and capricious beliefs, destining some minds to doubt it.
- The method of science – wherein inquiry supposes that the real is discoverable but independent of particular opinion, such that, unlike in the other methods, inquiry can, by its own account, go wrong (fallibilism), not only right, and thus purposely tests itself and criticizes, corrects, and improves itself.
Peirce held that, in practical affairs, slow and stumbling ratiocination is often dangerously inferior to instinct and traditional sentiment, and that the scientific method is best suited to theoretical research, which in turn should not be trammeled by the other methods and practical ends; reason's "first rule" is that, in order to learn, one must desire to learn and, as a corollary, must not block the way of inquiry. Scientific method excels over the others finally by being deliberately designed to arrive—eventually—at the most secure beliefs, upon which the most successful practices can be based. Starting from the idea that people seek not truth per se but instead to subdue irritating, inhibitory doubt, Peirce showed how, through the struggle, some can come to submit to truth for the sake of belief's integrity, seek as truth the guidance of potential conduct correctly to its given goal, and wed themselves to the scientific method.
Scientific method
Insofar as clarification by pragmatic reflection suits explanatory hypotheses and fosters predictions and testing, pragmatism points beyond the usual duo of foundational alternatives: deduction from self-evident truths, or rationalism; and induction from experiential phenomena, or empiricism.
Based on his critique of three modes of argument and different from either foundationalism or coherentism, Peirce's approach seeks to justify claims by a three-phase dynamic of inquiry:
- Active, abductive genesis of theory, with no prior assurance of truth;
- Deductive application of the contingent theory so as to clarify its practical implications;
- Inductive testing and evaluation of the utility of the provisional theory in anticipation of future experience, in both senses: prediction and control.
Thereby, Peirce devised an approach to inquiry far more solid than the flatter image of inductive generalization simpliciter, which is a mere re-labeling of phenomenological patterns. Peirce's pragmatism was the first time the scientific method was proposed as an epistemology for philosophical questions.
A theory that succeeds better than its rivals in predicting and controlling our world is said to be nearer the truth. This is an operational notion of truth used by scientists.
Peirce extracted the pragmatic model or theory of inquiry from its raw materials in classical logic and refined it in parallel with the early development of symbolic logic to address problems about the nature of scientific reasoning.
Abduction, deduction, and induction make incomplete sense in isolation from one another but comprise a cycle understandable as a whole insofar as they collaborate toward the common end of inquiry. In the pragmatic way of thinking about conceivable practical implications, every thing has a purpose, and, as possible, its purpose should first be denoted. Abduction hypothesizes an explanation for deduction to clarify into implications to be tested so that induction can evaluate the hypothesis, in the struggle to move from troublesome uncertainty to more secure belief. No matter how traditional and needful it is to study the modes of inference in abstraction from one another, the integrity of inquiry strongly limits the effective modularity of its principal components.
Peirce's outline of the scientific method in §III–IV of "A Neglected Argument" is summarized below (except as otherwise noted). There he also reviewed plausibility and inductive precision (issues of critique of arguments).
- Abductive (or retroductive) phase. Guessing, inference to explanatory hypotheses for selection of those best worth trying. From abduction, Peirce distinguishes induction as inferring, on the basis of tests, the proportion of truth in the hypothesis. Every inquiry, whether into ideas, brute facts, or norms and laws, arises from surprising observations in one or more of those realms (and for example at any stage of an inquiry already underway). All explanatory content of theories comes from abduction, which guesses a new or outside idea so as to account in a simple, economical way for a surprising or complicated phenomenon. The modicum of success in our guesses far exceeds that of random luck, and seems born of attunement to nature by developed or inherent instincts, especially insofar as best guesses are optimally plausible and simple in the sense of the "facile and natural", as by Galileo's natural light of reason and as distinct from "logical simplicity". Abduction is the most fertile but least secure mode of inference. Its general rationale is inductive: it succeeds often enough and it has no substitute in expediting us toward new truths. In 1903, Peirce called pragmatism "the logic of abduction". Coordinative method leads from abducting a plausible hypothesis to judging it for its testability and for how its trial would economize inquiry itself. The hypothesis, being insecure, needs to have practical implications leading at least to mental tests and, in science, lending themselves to scientific tests. A simple but unlikely guess, if not costly to test for falsity, may belong first in line for testing. A guess is intrinsically worth testing if it has plausibility or reasoned objective probability, while subjective likelihood, though reasoned, can be misleadingly seductive. Guesses can be selected for trial strategically, for their caution (for which Peirce gave as example the game of Twenty Questions), breadth, or incomplexity. One can discover only that which would be revealed through their sufficient experience anyway, and so the point is to expedite it; economy of research demands the leap, so to speak, of abduction and governs its art.
- Deductive phase. Two stages:
- i. Explication. Not clearly premised, but a deductive analysis of the hypothesis so as to render its parts as clear as possible.
- ii. Demonstration: Deductive Argumentation, Euclidean in procedure. Explicit deduction of consequences of the hypothesis as predictions about evidence to be found. Corollarial or, if needed, Theorematic.
- Inductive phase. Evaluation of the hypothesis, inferring from observational or experimental tests of its deduced consequences. The long-run validity of the rule of induction is deducible from the principle (presuppositional to reasoning in general) that the real "is only the object of the final opinion to which sufficient investigation would lead"; in other words, anything excluding such a process would never be real. Induction involving the ongoing accumulation of evidence follows "a method which, sufficiently persisted in", will "diminish the error below any predesignate degree". Three stages:
- i. Classification. Not clearly premised, but an inductive classing of objects of experience under general ideas.
- ii. Probation: direct Inductive Argumentation. Crude or Gradual in procedure. Crude Induction, founded on experience in one mass (CP 2.759), presumes that future experience on a question will not differ utterly from all past experience (CP 2.756). Gradual Induction makes a new estimate of the proportion of truth in the hypothesis after each test, and is Qualitative or Quantitative. Qualitative Gradual Induction depends on estimating the relative evident weights of the various qualities of the subject class under investigation (CP 2.759; see also Collected Papers of Charles Sanders Peirce, 7.114–120). Quantitative Gradual Induction depends on how often, in a fair sample of instances of S, S is found actually accompanied by P that was predicted for S (CP 2.758). It depends on measurements, or statistics, or counting.
- iii. Sentential Induction. "...which, by Inductive reasonings, appraises the different Probations singly, then their combinations, then makes self-appraisal of these very appraisals themselves, and passes final judgment on the whole result".
Against Cartesianism
Peirce drew on the methodological implications of the four incapacities—no genuine introspection, no intuition in the sense of non-inferential cognition, no thought but in signs, and no conception of the absolutely incognizable—to attack philosophical Cartesianism, of which he said that:
- "It teaches that philosophy must begin in universal doubt" – when, instead, we start with preconceptions, "prejudices which it does not occur to us can be questioned", though we may find reason to question them later. "Let us not pretend to doubt in philosophy what we do not doubt in our hearts."
- "It teaches that the ultimate test of certainty is...in the individual consciousness" – when, instead, in science a theory stays on probation till agreement is reached, then it has no actual doubters left. No lone individual can reasonably hope to fulfill philosophy's multi-generational dream. When "candid and disciplined minds" continue to disagree on a theoretical issue, even the theory's author should feel doubts about it.
- It trusts to "a single thread of inference depending often upon inconspicuous premisses" – when, instead, philosophy should, "like the successful sciences", proceed only from tangible, scrutinizable premisses and trust not to any one argument but instead to "the multitude and variety of its arguments" as forming, not a chain at least as weak as its weakest link, but "a cable whose fibers", soever "slender, are sufficiently numerous and intimately connected".
- It renders many facts "absolutely inexplicable, unless to say that 'God makes them so' is to be regarded as an explanation" – when, instead, philosophy should avoid being "unidealistic", misbelieving that something real can defy or evade all possible ideas, and supposing, inevitably, "some absolutely inexplicable, unanalyzable ultimate", which explanatory surmise explains nothing and so is inadmissible.
Theory of categories
Main article: Categories (Peirce)On May 14, 1867, the 27-year-old Peirce presented a paper entitled "On a New List of Categories" to the American Academy of Arts and Sciences, which published it the following year. The paper outlined a theory of predication, involving three universal categories that Peirce developed in response to reading Aristotle, Immanuel Kant, and G. W. F. Hegel, categories that Peirce applied throughout his work for the rest of his life. Peirce scholars generally regard the "New List" as foundational or breaking the ground for Peirce's "architectonic", his blueprint for a pragmatic philosophy. In the categories one will discern, concentrated, the pattern that one finds formed by the three grades of clearness in "How To Make Our Ideas Clear" (1878 paper foundational to pragmatism), and in numerous other trichotomies in his work.
"On a New List of Categories" is cast as a Kantian deduction; it is short but dense and difficult to summarize. The following table is compiled from that and later works. In 1893, Peirce restated most of it for a less advanced audience.
Name | Typical characterizaton | As universe of experience | As quantity | Technical definition | Valence, "adicity" |
---|---|---|---|---|---|
Firstness | Quality of feeling | Ideas, chance, possibility | Vagueness, "some" | Reference to a ground (a ground is a pure abstraction of a quality) | Essentially monadic (the quale, in the sense of the such, which has the quality) |
Secondness | Reaction, resistance, (dyadic) relation | Brute facts, actuality | Singularity, discreteness, "this" | Reference to a correlate (by its relate) | Essentially dyadic (the relate and the correlate) |
Thirdness | Representation, mediation | Habits, laws, necessity | Generality, continuity, "all" | Reference to an interpretant* | Essentially triadic (sign, object, interpretant*) |
*Note: An interpretant is an interpretation (human or otherwise) in the sense of the product of an interpretive process.
Logic, or semiotic
In 1918 the logician C. I. Lewis wrote, "The contributions of C.S. Peirce to symbolic logic are more numerous and varied than those of any other writer—at least in the nineteenth century."
Relational logic
Beginning with his first paper on the "Logic of Relatives" (1870), Peirce extended the theory of relations pioneered by Augustus De Morgan. Beginning in 1940, Alfred Tarski and his students rediscovered aspects of Peirce's larger vision of relational logic, developing the perspective of relation algebra.
Relational logic gained applications. In mathematics, it influenced the abstract analysis of E. H. Moore and the lattice theory of Garrett Birkhoff. In computer science, the relational model for databases was developed with Peircean ideas in work of Edgar F. Codd, who was a doctoral student of Arthur W. Burks, a Peirce scholar. In economics, relational logic was used by Frank P. Ramsey, John von Neumann, and Paul Samuelson to study preferences and utility and by Kenneth J. Arrow in Social Choice and Individual Values, following Arrow's association with Tarski at City College of New York.
Quantifiers
On Peirce and his contemporaries Ernst Schröder and Gottlob Frege, Hilary Putnam (1982) documented that Frege's work on the logic of quantifiers had little influence on his contemporaries, although it was published four years before the work of Peirce and his student Oscar Howard Mitchell. Putnam found that mathematicians and logicians learned about the logic of quantifiers through the independent work of Peirce and Mitchell, particularly through Peirce's "On the Algebra of Logic: A Contribution to the Philosophy of Notation" (1885), published in the premier American mathematical journal of the day, and cited by Peano and Schröder, among others, who ignored Frege. They also adopted and modified Peirce's notations, typographical variants of those now used. Peirce apparently was ignorant of Frege's work, despite their overlapping achievements in logic, philosophy of language, and the foundations of mathematics.
Peirce's work on formal logic had admirers besides Ernst Schröder:
- Philosophical algebraist William Kingdon Clifford and logician William Ernest Johnson, both British;
- The Polish school of logic and foundational mathematics, including Alfred Tarski;
- Arthur Prior, who praised and studied Peirce's logical work in a 1964 paper and in Formal Logic (saying on page 4 that Peirce "perhaps had a keener eye for essentials than any other logician before or since").
Philosophy of logic
A philosophy of logic, grounded in his categories and semiotic, can be extracted from Peirce's writings and, along with Peirce's logical work more generally, is exposited and defended in Hilary Putnam (1982); the Introduction in Nathan Houser et al. (1997); and Randall Dipert's chapter in Cheryl Misak (2004).
Logic as philosophical
Peirce regarded logic per se as a division of philosophy, as a normative science based on esthetics and ethics, as more basic than metaphysics, and as "the art of devising methods of research". More generally, as inference, "logic is rooted in the social principle", since inference depends on a standpoint that, in a sense, is unlimited. Peirce called (with no sense of deprecation) "mathematics of logic" much of the kind of thing which, in current research and applications, is called simply "logic". He was productive in both (philosophical) logic and logic's mathematics, which were connected deeply in his work and thought.
Peirce argued that logic is formal semiotic: the formal study of signs in the broadest sense, not only signs that are artificial, linguistic, or symbolic, but also signs that are semblances or are indexical such as reactions. Peirce held that "all this universe is perfused with signs, if it is not composed exclusively of signs", along with their representational and inferential relations. He argued that, since all thought takes time, all thought is in signs and sign processes ("semiosis") such as the inquiry process. He divided logic into: (1) speculative grammar, or stechiology, on how signs can be meaningful and, in relation to that, what kinds of signs there are, how they combine, and how some embody or incorporate others; (2) logical critic, or logic proper, on the modes of inference; and (3) speculative or universal rhetoric, or methodeutic, the philosophical theory of inquiry, including pragmatism.
Presuppositions of logic
In his "F.R.L." (1899), Peirce states that the first, and "in one sense, the sole", rule of reason is that, to learn, one needs to desire to learn and desire it without resting satisfied with that which one is inclined to think. So, the first rule is, to wonder. Peirce proceeds to a critical theme in research practices and the shaping of theories:
...there follows one corollary which itself deserves to be inscribed upon every wall of the city of philosophy:
Do not block the way of inquiry.
Peirce adds, that method and economy are best in research but no outright sin inheres in trying any theory in the sense that the investigation via its trial adoption can proceed unimpeded and undiscouraged, and that "the one unpardonable offence" is a philosophical barricade against truth's advance, an offense to which "metaphysicians in all ages have shown themselves the most addicted". Peirce in many writings holds that logic precedes metaphysics (ontological, religious, and physical).
Peirce goes on to list four common barriers to inquiry: (1) Assertion of absolute certainty; (2) maintaining that something is absolutely unknowable; (3) maintaining that something is absolutely inexplicable because absolutely basic or ultimate; (4) holding that perfect exactitude is possible, especially such as to quite preclude unusual and anomalous phenomena. To refuse absolute theoretical certainty is the heart of fallibilism, which Peirce unfolds into refusals to set up any of the listed barriers. Peirce elsewhere argues (1897) that logic's presupposition of fallibilism leads at length to the view that chance and continuity are very real (tychism and synechism).
The First Rule of Logic pertains to the mind's presuppositions in undertaking reason and logic; presuppositions, for instance, that truth and the real do not depend on yours or my opinion of them but do depend on representational relation and consist in the destined end in investigation taken far enough (see below). He describes such ideas as, collectively, hopes which, in particular cases, one is unable seriously to doubt.
Four incapacities
The Journal of Speculative Philosophy series (1868–1869), including- Questions concerning certain Faculties claimed for Man (1868)
- Some Consequences of Four Incapacities (1868)
- Grounds of Validity of the Laws of Logic:
Further Consequences of Four Incapacities (1869)
In three articles in 1868–1869, Peirce rejected mere verbal or hyperbolic doubt and first or ultimate principles, and argued that we have (as he numbered them):
- No power of Introspection. All knowledge of the internal world comes by hypothetical reasoning from known external facts.
- No power of Intuition (cognition without logical determination by previous cognitions). No cognitive stage is absolutely first in a process. All mental action has the form of inference.
- No power of thinking without signs. A cognition must be interpreted in a subsequent cognition in order to be a cognition at all.
- No conception of the absolutely incognizable.
(The above sense of the term "intuition" is almost Kant's, said Peirce. It differs from the current looser sense that encompasses instinctive or anyway half-conscious inference.)
Peirce argued that those incapacities imply the reality of the general and of the continuous, the validity of the modes of reasoning, and the falsity of philosophical Cartesianism (see below).
Peirce rejected the conception (usually ascribed to Kant) of the unknowable thing-in-itself and later said that to "dismiss make-believes" is a prerequisite for pragmatism.
Logic as formal semiotic
Peirce sought, through his wide-ranging studies through the decades, formal philosophical ways to articulate thought's processes, and also to explain the workings of science. These inextricably entangled questions of a dynamics of inquiry rooted in nature and nurture led him to develop his semiotic with very broadened conceptions of signs and inference, and, as its culmination, a theory of inquiry for the task of saying 'how science works' and devising research methods. This would be logic by the medieval definition taught for centuries: art of arts, science of sciences, having the way to the principles of all methods. Influences radiate from points on parallel lines of inquiry in Aristotle's work, in such loci as: the basic terminology of psychology in On the Soul; the founding description of sign relations in On Interpretation; and the differentiation of inference into three modes that are commonly translated into English as abduction, deduction, and induction, in the Prior Analytics, as well as inference by analogy (called paradeigma by Aristotle), which Peirce regarded as involving the other three modes.
Peirce began writing on semiotic in the 1860s, around the time when he devised his system of three categories. He called it both semiotic and semeiotic. Both are current in singular and plural. He based it on the conception of a triadic sign relation, and defined semiosis as "action, or influence, which is, or involves, a cooperation of three subjects, such as a sign, its object, and its interpretant, this tri-relative influence not being in any way resolvable into actions between pairs". As to signs in thought, Peirce emphasized the reverse: "To say, therefore, that thought cannot happen in an instant, but requires a time, is but another way of saying that every thought must be interpreted in another, or that all thought is in signs."
Peirce held that all thought is in signs, issuing in and from interpretation, where sign is the word for the broadest variety of conceivable semblances, diagrams, metaphors, symptoms, signals, designations, symbols, texts, even mental concepts and ideas, all as determinations of a mind or quasi-mind, that which at least functions like a mind, as in the work of crystals or bees—the focus is on sign action in general rather than on psychology, linguistics, or social studies (fields which he also pursued).
Inquiry is a kind of inference process, a manner of thinking and semiosis. Global divisions of ways for phenomena to stand as signs, and the subsumption of inquiry and thinking within inference as a sign process, enable the study of inquiry on semiotics' three levels:
- Conditions for meaningfulness. Study of significatory elements and combinations, their grammar.
- Validity, conditions for true representation. Critique of arguments in their various separate modes.
- Conditions for determining interpretations. Methodology of inquiry in its mutually interacting modes.
Peirce uses examples often from common experience, but defines and discusses such things as assertion and interpretation in terms of philosophical logic. In a formal vein, Peirce said:
On the Definition of Logic. Logic is formal semiotic. A sign is something, A, which brings something, B, its interpretant sign, determined or created by it, into the same sort of correspondence (or a lower implied sort) with something, C, its object, as that in which itself stands to C. This definition no more involves any reference to human thought than does the definition of a line as the place within which a particle lies during a lapse of time. It is from this definition that I deduce the principles of logic by mathematical reasoning, and by mathematical reasoning that, I aver, will support criticism of Weierstrassian severity, and that is perfectly evident. The word "formal" in the definition is also defined.
Signs
Main article: Semiotic theory of Charles Sanders Peirce See also: Representation (arts) § Peirce and representation, and Sign (semiotics) § Triadic signs A list of noted writings by Peirce on signs and sign relations is at Semiotic theory of Charles Sanders Peirce § References and further reading.Sign relation
Peirce's theory of signs is known to be one of the most complex semiotic theories due to its generalistic claim. Anything is a sign—not absolutely as itself, but instead in some relation or other. The sign relation is the key. It defines three roles encompassing (1) the sign, (2) the sign's subject matter, called its object, and (3) the sign's meaning or ramification as formed into a kind of effect called its interpretant (a further sign, for example a translation). It is an irreducible triadic relation, according to Peirce. The roles are distinct even when the things that fill those roles are not. The roles are but three; a sign of an object leads to one or more interpretants, and, as signs, they lead to further interpretants.
Extension × intension = information. Two traditional approaches to sign relation, necessary though insufficient, are the way of extension (a sign's objects, also called breadth, denotation, or application) and the way of intension (the objects' characteristics, qualities, attributes referenced by the sign, also called depth, comprehension, significance, or connotation). Peirce adds a third, the way of information, including change of information, to integrate the other two approaches into a unified whole. For example, because of the equation above, if a term's total amount of information stays the same, then the more that the term 'intends' or signifies about objects, the fewer are the objects to which the term 'extends' or applies.
Determination. A sign depends on its object in such a way as to represent its object—the object enables and, in a sense, determines the sign. A physically causal sense of this stands out when a sign consists in an indicative reaction. The interpretant depends likewise on both the sign and the object—an object determines a sign to determine an interpretant. But this determination is not a succession of dyadic events, like a row of toppling dominoes; sign determination is triadic. For example, an interpretant does not merely represent something which represented an object; instead an interpretant represents something as a sign representing the object. The object (be it a quality or fact or law or even fictional) determines the sign to an interpretant through one's collateral experience with the object, in which the object is found or from which it is recalled, as when a sign consists in a chance semblance of an absent object. Peirce used the word "determine" not in a strictly deterministic sense, but in a sense of "specializes", bestimmt, involving variable amount, like an influence. Peirce came to define representation and interpretation in terms of (triadic) determination. The object determines the sign to determine another sign—the interpretant—to be related to the object as the sign is related to the object, hence the interpretant, fulfilling its function as sign of the object, determines a further interpretant sign. The process is logically structured to perpetuate itself, and is definitive of sign, object, and interpretant in general.
Semiotic elements
Peirce held there are exactly three basic elements in semiosis (sign action):
- A sign (or representamen) represents, in the broadest possible sense of "represents". It is something interpretable as saying something about something. It is not necessarily symbolic, linguistic, or artificial—a cloud might be a sign of rain for instance, or ruins the sign of ancient civilization. As Peirce sometimes put it (he defined sign at least 76 times), the sign stands for the object to the interpretant. A sign represents its object in some respect, which respect is the sign's ground.
- An object (or semiotic object) is a subject matter of a sign and an interpretant. It can be anything thinkable, a quality, an occurrence, a rule, etc., even fictional, such as Prince Hamlet. All of those are special or partial objects. The object most accurately is the universe of discourse to which the partial or special object belongs. For instance, a perturbation of Pluto's orbit is a sign about Pluto but ultimately not only about Pluto. An object either (i) is immediate to a sign and is the object as represented in the sign or (ii) is a dynamic object, the object as it really is, on which the immediate object is founded "as on bedrock".
- An interpretant (or interpretant sign) is a sign's meaning or ramification as formed into a kind of idea or effect, an interpretation, human or otherwise. An interpretant is a sign (a) of the object and (b) of the interpretant's "predecessor" (the interpreted sign) as a sign of the same object. An interpretant either (i) is immediate to a sign and is a kind of quality or possibility such as a word's usual meaning, or (ii) is a dynamic interpretant, such as a state of agitation, or (iii) is a final or normal interpretant, a sum of the lessons which a sufficiently considered sign would have as effects on practice, and with which an actual interpretant may at most coincide.
Some of the understanding needed by the mind depends on familiarity with the object. To know what a given sign denotes, the mind needs some experience of that sign's object, experience outside of, and collateral to, that sign or sign system. In that context Peirce speaks of collateral experience, collateral observation, collateral acquaintance, all in much the same terms.
Classes of signs
1. | 2. | 3. | |||
I. | Qualisign | or | Sinsign | or | Legisign |
and | |||||
II. | Icon | or | Index | or | Symbol |
and | |||||
III. | Rheme | or | Dicisign | or | Argument |
Among Peirce's many sign typologies, three stand out, interlocked. The first typology depends on the sign itself, the second on how the sign stands for its denoted object, and the third on how the sign stands for its object to its interpretant. Also, each of the three typologies is a three-way division, a trichotomy, via Peirce's three phenomenological categories: (1) quality of feeling, (2) reaction, resistance, and (3) representation, mediation.
I. Qualisign, sinsign, legisign (also called tone, token, type, and also called potisign, actisign, famisign): This typology classifies every sign according to the sign's own phenomenological category—the qualisign is a quality, a possibility, a "First"; the sinsign is a reaction or resistance, a singular object, an actual event or fact, a "Second"; and the legisign is a habit, a rule, a representational relation, a "Third".
II. Icon, index, symbol: This typology, the best known one, classifies every sign according to the category of the sign's way of denoting its object—the icon (also called semblance or likeness) by a quality of its own, the index by factual connection to its object, and the symbol by a habit or rule for its interpretant.
III. Rheme, dicisign, argument (also called sumisign, dicisign, suadisign, also seme, pheme, delome, and regarded as very broadened versions of the traditional term, proposition, argument): This typology classifies every sign according to the category which the interpretant attributes to the sign's way of denoting its object—the rheme, for example a term, is a sign interpreted to represent its object in respect of quality; the dicisign, for example a proposition, is a sign interpreted to represent its object in respect of fact; and the argument is a sign interpreted to represent its object in respect of habit or law. This is the culminating typology of the three, where the sign is understood as a structural element of inference.
Every sign belongs to one class or another within (I) and within (II) and within (III). Thus each of the three typologies is a three-valued parameter for every sign. The three parameters are not independent of each other; many co-classifications are absent, for reasons pertaining to the lack of either habit-taking or singular reaction in a quality, and the lack of habit-taking in a singular reaction. The result is not 27 but instead ten classes of signs fully specified at this level of analysis.
Modes of inference
Main article: InquiryBorrowing a brace of concepts from Aristotle, Peirce examined three basic modes of inference—abduction, deduction, and induction—in his "critique of arguments" or "logic proper". Peirce also called abduction "retroduction", "presumption", and, earliest of all, "hypothesis". He characterized it as guessing and as inference to an explanatory hypothesis. He sometimes expounded the modes of inference by transformations of the categorical syllogism Barbara (AAA), for example in "Deduction, Induction, and Hypothesis" (1878). He does this by rearranging the rule (Barbara's major premise), the case (Barbara's minor premise), and the result (Barbara's conclusion):
Deduction. Rule: All the beans from this bag are white. |
Induction. Case: These beans are [randomly selected] from this bag. |
Hypothesis (Abduction). Rule: All the beans from this bag are white. |
Peirce 1883 in "A Theory of Probable Inference" (Studies in Logic) equated hypothetical inference with the induction of characters of objects (as he had done in effect before). Eventually dissatisfied, by 1900 he distinguished them once and for all and also wrote that he now took the syllogistic forms and the doctrine of logical extension and comprehension as being less basic than he had thought. In 1903 he presented the following logical form for abductive inference:
The surprising fact, C, is observed;
- But if A were true, C would be a matter of course,
- Hence, there is reason to suspect that A is true.
The logical form does not also cover induction, since induction neither depends on surprise nor proposes a new idea for its conclusion. Induction seeks facts to test a hypothesis; abduction seeks a hypothesis to account for facts. "Deduction proves that something must be; Induction shows that something actually is operative; Abduction merely suggests that something may be." Peirce did not remain quite convinced that one logical form covers all abduction. In his methodeutic or theory of inquiry (see below), he portrayed abduction as an economic initiative to further inference and study, and portrayed all three modes as clarified by their coordination in essential roles in inquiry: hypothetical explanation, deductive prediction, inductive testing
Metaphysics
Some noted articles- The Monist Metaphysical Series (1891–1893)
- The Architecture of Theories (1891)
- The Doctrine of Necessity Examined (1892)
- The Law of Mind (1892)
- Man's Glassy Essence (1892)
- Evolutionary Love (1893)
- Immortality in the Light of Synechism (1893 MS)
Peirce divided metaphysics into (1) ontology or general metaphysics, (2) psychical or religious metaphysics, and (3) physical metaphysics.
Ontology
On the issue of universals, Peirce was a scholastic realist, declaring the reality of generals as early as 1868. According to Peirce, his category he called "thirdness", the more general facts about the world, are extra-mental realities. Regarding modalities (possibility, necessity, etc.), he came in later years to regard himself as having wavered earlier as to just how positively real the modalities are. In his 1897 "The Logic of Relatives" he wrote:
I formerly defined the possible as that which in a given state of information (real or feigned) we do not know not to be true. But this definition today seems to me only a twisted phrase which, by means of two negatives, conceals an anacoluthon. We know in advance of experience that certain things are not true, because we see they are impossible.
Peirce retained, as useful for some purposes, the definitions in terms of information states, but insisted that the pragmaticist is committed to a strong modal realism by conceiving of objects in terms of predictive general conditional propositions about how they would behave under certain circumstances.
Continua
Continuity and synechism are central in Peirce's philosophy: "I did not at first suppose that it was, as I gradually came to find it, the master-Key of philosophy".
From a mathematical point of view, he embraced infinitesimals and worked long on the mathematics of continua. He long held that the real numbers constitute a pseudo-continuum; that a true continuum is the real subject matter of analysis situs (topology); and that a true continuum of instants exceeds—and within any lapse of time has room for—any Aleph number (any infinite multitude as he called it) of instants.
In 1908 Peirce wrote that he found that a true continuum might have or lack such room. Jérôme Havenel (2008): "It is on 26 May 1908, that Peirce finally gave up his idea that in every continuum there is room for whatever collection of any multitude. From now on, there are different kinds of continua, which have different properties."
Psychical or religious metaphysics
Peirce believed in God, and characterized such belief as founded in an instinct explorable in musing over the worlds of ideas, brute facts, and evolving habits—and it is a belief in God not as an actual or existent being (in Peirce's sense of those words), but all the same as a real being. In "A Neglected Argument for the Reality of God" (1908), Peirce sketches, for God's reality, an argument to a hypothesis of God as the Necessary Being, a hypothesis which he describes in terms of how it would tend to develop and become compelling in musement and inquiry by a normal person who is led, by the hypothesis, to consider as being purposed the features of the worlds of ideas, brute facts, and evolving habits (for example scientific progress), such that the thought of such purposefulness will "stand or fall with the hypothesis"; meanwhile, according to Peirce, the hypothesis, in supposing an "infinitely incomprehensible" being, starts off at odds with its own nature as a purportively true conception, and so, no matter how much the hypothesis grows, it both (A) inevitably regards itself as partly true, partly vague, and as continuing to define itself without limit, and (B) inevitably has God appearing likewise vague but growing, though God as the Necessary Being is not vague or growing; but the hypothesis will hold it to be more false to say the opposite, that God is purposeless. Peirce also argued that the will is free and (see Synechism) that there is at least an attenuated kind of immortality.
Physical metaphysics
Peirce held the view, which he called objective idealism, that "matter is effete mind, inveterate habits becoming physical laws". Peirce observed that "Berkeley's metaphysical theories have at first sight an air of paradox and levity very unbecoming to a bishop".
Peirce asserted the reality of (1) "absolute chance" or randomness (his tychist view), (2) "mechanical necessity" or physical laws (anancist view), and (3) what he called the "law of love" (agapist view), echoing his categories Firstness, Secondness, and Thirdness, respectively. He held that fortuitous variation (which he also called "sporting"), mechanical necessity, and creative love are the three modes of evolution (modes called "tychasm", "anancasm", and "agapasm") of the cosmos and its parts. He found his conception of agapasm embodied in Lamarckian evolution; the overall idea in any case is that of evolution tending toward an end or goal, and it could also be the evolution of a mind or a society; it is the kind of evolution which manifests workings of mind in some general sense. He said that overall he was a synechist, holding with reality of continuity, especially of space, time, and law.
Philosophy of science
Main article: Classification of the sciences (Peirce)Peirce outlined two fields, "Cenoscopy" and "Science of Review", both of which he called philosophy. Both included philosophy about science. In 1903 he arranged them, from more to less theoretically basic, thus:
- Science of Discovery.
- Mathematics.
- Cenoscopy (philosophy as discussed earlier in this article – categorial, normative, metaphysical), as First Philosophy, concerns positive phenomena in general, does not rely on findings from special sciences, and includes the general study of inquiry and scientific method.
- Idioscopy, or the Special Sciences (of nature and mind).
- Science of Review, as Ultimate Philosophy, arranges "... the results of discovery, beginning with digests, and going on to endeavor to form a philosophy of science". His examples included Humboldt's Cosmos, Comte's Philosophie positive, and Spencer's Synthetic Philosophy.
- Practical Science, or the Arts.
Peirce placed, within Science of Review, the work and theory of classifying the sciences (including mathematics and philosophy). His classifications, on which he worked for many years, draw on argument and wide knowledge, and are of interest both as a map for navigating his philosophy and as an accomplished polymath's survey of research in his time.
See also
- Howland will forgery trial
- Hypostatic abstraction
- Idea § Charles Sanders Peirce
- Laws of Form
- List of American philosophers
- Logical machine
- Logical matrix
- Mathematical psychology
- Normal distribution § Naming
- Peircean realism
- Pragmatics
- Problem of universals § Peirce
- Quantification (science) § History
- Relation algebra
- Truth table
- Philosophy of science
Contemporaries associated with Peirce
Notes
- "Peirce", in the case of C. S. Peirce, always rhymes with the English-language word "terse" and so, in most dialects, is pronounced exactly like the English-language word "purse."
- Benjamin was one of the founders of linear algebra.
- In 2018, plans have been made to erect a memorial monument for Peirce at the site of burial – see: Justin Weinberg, 'A Proper Memorial Monument for Peirce', website Daily Nous, March 14, 2018.
- It was in Peirce's 1885 "On the Algebra of Logic". See Byrnes, John (1998), "Peirce's First-Order Logic of 1885", Transactions of the Charles S. Peirce Society v. 34, n. 4, pp. 949–976.
- Peirce condemned the use of "certain likelihoods" (The Essential Peirce, 2:108–109) even more strongly than he criticized Bayesian methods. Peirce used Bayesian inference in criticizing parapsychology (Writings of Charles S. Peirce, 6:76).
- Peirce believed in God. See section #Philosophy: metaphysics.
- However, Peirce disagreed with Hegelian absolute idealism. See for example Collected Papers of Charles Sanders Peirce, 8.131.
- Much of the mathematics of relations now taken for granted was "borrowed" from Peirce, not always with all due credit; on that and on how the young Bertrand Russell, especially his Principles of Mathematics and Principia Mathematica, did not do Peirce justice, see Anellis (1995).
- Representamen (/ˌrɛprɪzɛnˈteɪmən/ REP-ri-zen-TAY-mən) was adopted (not coined) by Peirce as his technical term for the sign as covered in his theory, in case a divergence should come to light between his theoretical version and the popular senses of the word "sign". He eventually stopped using "representamen". See The Essential Peirce, 2:272–273 and Semiotic and Significs p. 193, quotes in "Representamen" at Commens Digital Companion to C.S. Peirce.
References
- ^ Hacking, Ian (1990). The Taming of Chance. A Universe of Chance. Cambridge University Press. pp. 200–215. ISBN 978-0-52138884-9.
- ^ Stigler, Stephen M. (1978). "Mathematical statistics in the early States". Annals of Statistics. 6 (2): 239–265 . doi:10.1214/aos/1176344123. JSTOR 2958876. MR 0483118.
- ^ Crease, Robert P. (2009). "Charles Sanders Peirce and the first absolute measurement standard". Physics Today. 62 (12): 39–44. Bibcode:2009PhT....62l..39C. doi:10.1063/1.3273015. S2CID 121338356. Archived from the original on 2013-01-12.
In his brilliant but troubled life, Peirce was a pioneer in both metrology and philosophy.
- ^ Cadwallader, Thomas C. (1974). "Charles S. Peirce (1839–1914): The first American experimental psychologist". Journal of the History of the Behavioral Sciences. 10 (3): 291–298. doi:10.1002/1520-6696(197407)10:3<291::AID-JHBS2300100304>3.0.CO;2-N. PMID 11609224.
- ^ Wible, James R. (December 2008). "The economic mind of Charles Sanders Peirce". Contemporary Pragmatism. Vol. 5, no. 2. pp. 39–67.
- ^ Nöth, Winfried (2000). "Charles Sanders Peirce, Pathfinder in Linguistics".
Nöth, Winfried (2000). "Digital Encyclopedia of Charles S. Peirce". - ^ Houser, Nathan (1989), "Introduction Archived 2010-05-30 at the Wayback Machine", Writings of Charles S. Peirce, 4:xxxviii, find "Eighty-nine".
- "Note on the Pronunciation of 'Peirce'". Peirce Project Newsletter. Vol. 1, no. 3–4. December 1994. Archived from the original on 2016-03-03. Retrieved 2009-04-06.
- Weiss, Paul (1934). "Peirce, Charles Sanders". Dictionary of American Biography. Arisbe. Archived from the original on 2013-11-03. Retrieved 2007-12-12.
- "Peirce, Benjamin: Charles Sanders". Webster's Biographical Dictionary. Merriam-Webster. Springfield, Massachusetts. 1960 .
{{cite encyclopedia}}
: CS1 maint: location missing publisher (link) - Weiss, Paul (1934). "Peirce, Charles Sanders". Dictionary of American Biography. Internet Archive.
- ^ Peirce, Charles Sanders (1886). "Letter, Peirce to A. Marquand". Writings of Charles S. Peirce. Indiana University Press. pp. 5:541–543. ISBN 978-0-25337201-7. See Burks, Arthur W. (1978). "Charles S. Peirce, The new elements of mathematics" (PDF). Book Review. Bulletin of the American Mathematical Society. Eprint. 84 (5): 913–918. doi:10.1090/S0002-9904-1978-14533-9. Also Houser, Nathan. "Introduction". Writings of Charles S. Peirce. Vol. 5. p. xliv.
- Fisch, Max, "Introduction Archived 2018-10-22 at the Wayback Machine", Writings of Charles S. Peirce, 1:xvii, find phrase "One episode".
- Brent 1998, p. 40
- "Peirce, Charles Sanders" (1898), The National Cyclopedia of American Biography, v. 8, p. 409.
- Brent 1998, pp. 54–56
- Brent, Josep (1998). Charles Sanders Peirce: A Life (2nd ed.). Bloomington: Indiana University Press. pp. 363–364. ISBN 978-0-25321161-3.
- Brent 1998, pp. 19–20, 53, 75, 245
- ^ Burch, Robert (2001, 2010), "Charles Sanders Peirce", Stanford Encyclopedia of Philosophy
- Brent 1998, p. 139
- Brent 1998, pp. 61–62
- Brent 1998, p. 34
- Menand, Louis (2001). The Metaphysical Club. London: Flamingo. pp. 161–162. ISBN 978-0-00712690-3.
- Brent 1998, p. 69
- Brent 1998, p. 368
- Brent 1998, pp. 79–81
- ^ Moore, Edward C., and Robin, Richard S., eds., (1964), Studies in the Philosophy of Charles Sanders Peirce, Second Series, Amherst: U. of Massachusetts Press. On Peirce the astronomer, see Lenzen's chapter.
- Menand (2001), p. 201.
- Peirce, Charles Sanders (1879). "A Quincuncial Projection of the Sphere". American Journal of Mathematics. 2 (4): 394–397. doi:10.2307/2369491. JSTOR 2369491.
- Brent 1998, p. 367
- Fisch, Max (1983), "Peirce as Scientist, mathematician, historian, Logician, and Philosopher", Studies in Logic (new edition), see p. x.
- See "Peirce Edition Project (UQÀM) – in short Archived 6 July 2011 at the Wayback Machine" from PEP-UQÀM.
- Houser, Nathan, "Introduction Archived 2011-06-07 at the Wayback Machine", Writings of Charles S. Peirce, 5:xxviii–xxix, find "Allison".
- Brent 1998, p. 202
- Randall R. Dipert (1994) The Life and Logical Contributions of O. H. Mitchell, Peirce's Gifted Student
- Brent 1998, pp. 150–154, 195, 279–280, 289
- "Discovering the American Aristotle | Edward T. Oakes". December 1993.
- Brent 1998, p. xv
- Devlin, Keith (2000). The Math Gene. Basic Books. ISBN 978-0-46501619-8.
- Brent 1998, pp. 98–101
- Brent 1998, p. 141
- Brent 1998, p. 148
- Houser, Nathan, "Introduction Archived 2011-06-07 at the Wayback Machine", Writings of Charles S. Peirce, 6, first paragraph.
- Brent 1998, pp. 123, 368
- Brent 1998, pp. 150–151, 368
- In 1885 (Brent 1998, p. 369); in 1890 and 1900 (p. 273); in 1891 (pp. 215–216); and in 1892 (pp. 151–152, 222).
- Brent 1998, p. 77
- Brent 1998, pp. 191–192, 217, 270, 318, 321, 337.
- Brent 1998, p. 13
- Brent 1998, pp. 369–374
- Brent 1998, p. 191
- Brent 1998, p. 246
- Brent 1998, p. 242
- Brent 1998, p. 271
- Brent 1998, pp. 249–255
- Brent 1998, p. 371
- Brent 1998, p. 189
- Brent 1998, p. 370
- Brent 1998, pp. 205–206
- Brent 1998, pp. 374–376
- Brent 1998, pp. 279–289
- Brent 1998, pp. 261–264, 290–292, 324
- Brent 1998, pp. 306–307, 315–316
- Russell, Bertrand (1959), Wisdom of the West, p. 276
- ^ Anellis, Irving H. (1995), "Peirce Rustled, Russell Pierced: How Charles Peirce and Bertrand Russell Viewed Each Other's Work in Logic, and an Assessment of Russell's Accuracy and Role in the Historiography of Logic", Modern Logic 5, 270–328. Arisbe Eprint Archived 2013-09-24 at the Wayback Machine
- Popper, Karl (1972), Objective Knowledge: An Evolutionary Approach, p. 212
- See Royce, Josiah, and Kernan, W. Fergus (1916), "Charles Sanders Peirce", The Journal of Philosophy, Psychology, and Scientific Method v. 13, pp. 701–709. Arisbe Eprint
- Ketner et al. (1986), Comprehensive Bibliography, p. iii
- Hookway, Christopher (2008), "Pragmatism", Stanford Encyclopedia of Philosophy.
- Brent 1998, p. 8
- "Transactions of the Charles S. Peirce Society". Indiana University Press Journals. Archived from the original on 2015-12-04. Retrieved 2017-06-17.
- "Peirce, Benjamin: Charles Sanders". Webster's Biographical Dictionary. Springfield, Massachusetts. 1960 .
{{cite encyclopedia}}
: CS1 maint: location missing publisher (link) - Fisch, Max (1986), Peirce, Semeiotic, and Pragmatism, Kenneth Laine Ketner and Christian J. W. Kloesel, eds., Bloomington, Indiana: Indiana U. Press.
- Theological Research Group in C.S. Peirce's Philosophy (Hermann Deuser, Justus-Liebig-Universität Gießen; Wilfred Härle, Philipps-Universität Marburg, Germany).
- Postmodernism and Christian Philosophy. Quid Sit Postmodernismus?, p. 93, archived.
- Burks, Arthur, Introduction, Collected Papers of Charles Sanders Peirce, 7, p. xi.
- Robin, Richard S. (1967), Annotated Catalogue of the Papers of Charles S. Peirce Archived 2019-10-27 at the Wayback Machine. Amherst MA: University of Massachusetts Press.
- "The manuscript material now (1997) comes to more than a hundred thousand pages. These contain many pages of no philosophical interest, but the number of pages on philosophy certainly number much more than half of that. Also, a significant but unknown number of manuscripts have been lost." – Joseph Ransdell (1997), "Some Leading Ideas of Peirce's Semiotic", end note 2 Archived 2008-01-14 at the Wayback Machine, 1997 light revision of 1977 version in Semiotica 19:157–178.
- Houser, Nathan, "The Fortunes and Misfortunes of the Peirce Papers", Fourth Congress of the IASS, Perpignan, France, 1989. Signs of Humanity, v. 3, 1992, pp. 1259–1268. Eprint
- Memorandum to the President of Charles S. Peirce Society by Ahti-Veikko Pietarinen, U. of Helsinki, March 29, 2012. Eprint.
- See for example "Collections of Peirce's Writings" at Commens, U. of Helsinki.
- See 1987 review by B. Kuklick (of Peirce by Christopher Hookway), in British Journal for the Philosophy of Sciencev. 38, n. 1, pp. 117–119. First page.
- Auspitz, Josiah Lee (1994), "The Wasp Leaves the Bottle: Charles Sanders Peirce", The American Scholar, v. 63, n. 4, Autumn 1994, 602–618. Arisbe Eprint Archived 2013-11-03 at the Wayback Machine.
- ^ Burks, Arthur W., "Review: Charles S. Peirce, The new elements of mathematics", Bulletin of the American Mathematical Society v. 84, n. 5 (1978), pp. 913–918 (PDF).
- Peirce (1860 MS), "Orders of Infinity", News from the Peirce Edition Project, September 2010 Archived 2013-03-29 at the Wayback Machine (PDF), p. 6, with the manuscript's text. Also see logic historian Irving Anellis's November 11, 2010 comment Archived April 23, 2017, at the Wayback Machine at peirce-l.
- Peirce (MS, winter of 1880–1881), "A Boolian Algebra with One Constant", Collected Papers of Charles Sanders Peirce, 4.12–20, Writings of Charles S. Peirce, 4:218–221. Google Preview. See Roberts, Don D. (1973), The Existential Graphs of Charles S. Peirce, p. 131.
- Peirce (1881), "On the Logic of Number", American Journal of Mathematics v. 4, pp. 85–95. Reprinted (CP 3.252–288), (Writings of Charles S. Peirce, 4:299–309). See Shields, Paul (1997), "Peirce's Axiomatization of Arithmetic", in Houser et al., eds., Studies in the Logic of Charles S. Peirce.
- ^ Peirce (1885), "On the Algebra of Logic: A Contribution to the Philosophy of Notation", American Journal of Mathematics 7, two parts, first part published 1885, pp. 180–202 (see Houser in linked paragraph Archived 2016-02-12 at the Wayback Machine in "Introduction" in Writings of Charles S. Peirce, 4). Presented, National Academy of Sciences, Newport, RI, October 14–17, 1884 (see The Essential Peirce, 1, Headnote 16 Archived 2014-10-19 at the Wayback Machine). 1885 is the year usually given for this work. Reprinted Collected Papers of Charles Sanders Peirce, 3.359–403, Writings of Charles S. Peirce, 5:162–190, The Essential Peirce, 1:225–228, in part.
- ^ Putnam, Hilary (1982), "Peirce the Logician", Historia Mathematica 9, 290–301. Reprinted, pp. 252–260 in Putnam (1990), Realism with a Human Face, Harvard. Excerpt with article's last five pages.
- Brady, Geraldine (2000), From Peirce to Skolem: A Neglected Chapter in the History of Logic, North-Holland/Elsevier Science BV, Amsterdam, Netherlands.
- See Peirce (1898), Lecture 3, "The Logic of Relatives" (not the 1897 Monist article), Reasoning and the Logic of Things, pp. 146–164
- Peirce (1898), "The Logic of Mathematics in Relation to Education" in Educational Review v. 15, pp. 209–216 (via Internet Archive). Reprinted Collected Papers of Charles Sanders Peirce, 3.553–562. See also his "The Simplest Mathematics" (1902 MS), Collected Papers of Charles Sanders Peirce, 4.227–323.
- Miller, Richard W. (1975), "Propensity: Popper or Peirce?", British Journal for the Philosophy of Science, v. 26, n. 2, pp. 123–132. doi:10.1093/bjps/26.2.123. Eprint.
- Haack, Susan and Kolenda, Konstantin (1977), "Two Fallibilists in Search of the Truth", Proceedings of the Aristotelian Society, Supplementary Volumes, v. 51, pp. 63–104. JSTOR 4106816
- Peirce CS, Jastrow J. On Small Differences in Sensation. Memoirs of the National Academy of Sciences 1885; 3:73–83.
- ^ Peirce (1893), "Evolutionary Love", The Monist v. 3, pp. 176–200. Reprinted Collected Papers of Charles Sanders Peirce, 6.278–317, The Essential Peirce, 1:352–372. Arisbe Eprint Archived May 20, 2007, at the Wayback Machine
- ^ Peirce (1897) "Fallibilism, Continuity, and Evolution", Collected Papers of Charles Sanders Peirce, 1.141–175 (Eprint), placed by the Collected Papers of Charles Sanders Peirce, editors directly after "F.R.L." (1899, Collected Papers of Charles Sanders Peirce, 1.135–140).
- ^ Peirce (1903), Collected Papers of Charles Sanders Peirce, 1.180–202 and (1906) "The Basis of Pragmaticism", The Essential Peirce, 2:372–373, see "Philosophy" at Commens Digital Companion to C.S. Peirce.
- "Charles S. Peirce on Esthetics and Ethics: A Bibliography Archived 6 April 2003 at the Wayback Machine" (PDF) by Kelly A. Parker in 1999.
- Peirce (1902 MS), Carnegie Application, edited by Joseph Ransdell, Memoir 2 Archived 2013-11-03 at the Wayback Machine, see table.
- See Esthetics at Commens Digital Companion to C.S. Peirce.
- Eco, Umberto (December 1976). "Peirce's Notion of Interpretant". Modern Language Notes. 91 (6).
- George Frederick Simkin, Colin (1993). Popper's Views on Natural and Social Science. E.J. Brill. p. 41.
- Atkin, Albert. "Charles Sanders Peirce (1839–1914)". Internet Encyclopedia of Philosophy.
- James, William (1897), The Will to Believe, see p. 124.
- See Pragmaticism#Pragmaticism's name for discussion and references.
- ^ "That the rule of induction will hold good in the long run may be deduced from the principle that reality is only the object of the final opinion to which sufficient investigation would lead", in Peirce (1878 April), "The Probability of Induction", p. 718 (via Internet Archive ) in Popular Science Monthly, v. 12, pp. 705–718. Reprinted in Collected Papers of Charles Sanders Peirce, 2.669–693, Writings of Charles S. Peirce, 3:290–305, The Essential Peirce, 1:155–169, elsewhere.
- Peirce (1902), Collected Papers of Charles Sanders Peirce, 5.13 note 1.
- See Collected Papers of Charles Sanders Peirce, 1.34 Eprint (in "The Spirit of Scholasticism"), where Peirce ascribed the success of modern science less to a novel interest in verification than to the improvement of verification.
- See Joseph Ransdell's comments and his tabular list of titles of Peirce's proposed list of memoirs in 1902 for his Carnegie application, Eprint
- ^ See rhetoric definitions at Commens Digital Companion to C.S. Peirce.
- Peirce (1905), "Issues of Pragmaticism", The Monist, v. XV, n. 4, pp. 481–499. Reprinted Collected Papers of Charles Sanders Peirce, 5.438–463. Also important: Collected Papers of Charles Sanders Peirce, 5.497–525.
- Peirce, "Philosophy and the Conduct of Life", Lecture 1 of the 1898 Cambridge (MA) Conferences Lectures, Collected Papers of Charles Sanders Peirce, 1.616–648 in part and Reasoning and the Logic of Things, 105–122, reprinted in The Essential Peirce, 2:27–41.
- ^ Peirce (1899 MS), "F.R.L." , Collected Papers of Charles Sanders Peirce, 1.135–140, Eprint
- ^ Peirce (1908), "A Neglected Argument for the Reality of God", published in large part, Hibbert Journal v. 7, 90–112. Reprinted with an unpublished part, Collected Papers of Charles Sanders Peirce, 6.452–485, Selected Writings pp. 358–379, The Essential Peirce, 2:434–450, Peirce on Signs 260–278.
- See also Nubiola, Jaime (2004), "Il Lume Naturale: Abduction and God", Semiotiche I/2, 91–102.
- Peirce (c. 1906), "PAP (Prolegomena to an Apology for Pragmatism)" (MS 293), The New Elements of Mathematics v. 4, pp. 319–320, first quote under "Abduction" at Commens Digital Companion to C. S. Peirce.
- Peirce (1903), "Pragmatism – The Logic of Abduction", Collected Papers of Charles Sanders Peirce, 5.195–205, especially 196. Eprint.
- Peirce, Carnegie application, MS L75.279–280: Memoir 27 Archived 2011-05-24 at the Wayback Machine, Draft B.
- ^ See MS L75.329–330, from Draft D of Memoir 27 Archived 2011-05-24 at the Wayback Machine of Peirce's application to the Carnegie Institution:
Consequently, to discover is simply to expedite an event that would occur sooner or later, if we had not troubled ourselves to make the discovery. Consequently, the art of discovery is purely a question of economics. The economics of research is, so far as logic is concerned, the leading doctrine with reference to the art of discovery. Consequently, the conduct of abduction, which is chiefly a question of heuretic and is the first question of heuretic, is to be governed by economical considerations.
- Peirce, C. S., "On the Logic of Drawing Ancient History from Documents", The Essential Peirce, 2, see pp. 107–109. On Twenty Questions, see 109:
Thus, twenty skillful hypotheses will ascertain what 200,000 stupid ones might fail to do.
- ^ Peirce (1868), "Some Consequences of Four Incapacities", Journal of Speculative Philosophy v. 2, n. 3, pp. 140–157. Reprinted Collected Papers of Charles Sanders Peirce, 5.264–317, Writings of Charles S. Peirce, 2:211–242, The Essential Peirce, 1:28–55. Arisbe Eprint.
- See in "Firstness", "Secondness", and "Thirdness" in Commens Digital Companion to C.S. Peirce.
- Peirce (1893), "The Categories" MS 403. Arisbe Eprint Archived 2014-07-31 at the Wayback Machine, edited by Joseph Ransdell, with information on the re-write, and interleaved with the 1867 "New List" for comparison.
- "Minute Logic", CP 2.87, c. 1902 and A Letter to Lady Welby, CP 8.329, 1904. See relevant quotes under "Categories, Cenopythagorean Categories" in Commens Dictionary of Peirce's Terms (CDPT), Bergman & Paalova, eds., U. of Helsinki.
- See quotes under "Firstness, First [as a category]" in CDPT.
- ^ The ground blackness is the pure abstraction of the quality black. Something black is something embodying blackness, pointing us back to the abstraction. The quality black amounts to reference to its own pure abstraction, the ground blackness. The question is not merely of noun (the ground) versus adjective (the quality), but rather of whether we are considering the black(ness) as abstracted away from application to an object, or instead as so applied (for instance to a stove). Yet note that Peirce's distinction here is not that between a property-general and a property-individual (a trope). See "On a New List of Categories" (1867), in the section appearing in CP 1.551. Regarding the ground, cf. the Scholastic conception of a relation's foundation, Google limited preview Deely 1982, p. 61.
- A quale in this sense is a such, just as a quality is a suchness. Cf. under "Use of Letters" in §3 of Peirce's "Description of a Notation for the Logic of Relatives", Memoirs of the American Academy, v. 9, pp. 317–378 (1870), separately reprinted (1870), from which see p. 6 via Google books, also reprinted in CP 3.63:
Now logical terms are of three grand classes. The first embraces those whose logical form involves only the conception of quality, and which therefore represent a thing simply as "a —." These discriminate objects in the most rudimentary way, which does not involve any consciousness of discrimination. They regard an object as it is in itself as such (quale); for example, as horse, tree, or man. These are absolute terms. (Peirce, 1870. But also see "Quale-Consciousness", 1898, in CP 6.222–237.)
- See quotes under "Secondness, Second [as a category]" in CDPT.
- See quotes under "Thirdness, Third [as a category]" in CDPT.
- Lewis, Clarence Irving (1918), A Survey of Symbolic Logic, see ch. 1, §7 "Peirce", pp. 79–106, see p. 79 (Internet Archive). Note that Lewis's bibliography lists works by Frege, tagged with asterisks as important.
- Avery, John (2003) Information theory and evolution, p. 167; also Mitchell, Melanie, "My Scientific Ancestry Archived October 8, 2014, at the Wayback Machine".
- Beil, Ralph G. and Ketner, Kenneth (2003), "Peirce, Clifford, and Quantum Theory", International Journal of Theoretical Physics v. 42, n. 9, pp. 1957–1972.
- Houser, Roberts, and Van Evra, eds. (1997), Studies in the Logic of Charles Sanders Peirce, Indiana U., Bloomington, IN.
- Misak, ed. (2004), The Cambridge Companion to Peirce, Cambridge U., UK.
- ^ Peirce (1882), "Introductory Lecture on the Study of Logic" delivered September 1882, Johns Hopkins University Circulars, v. 2, n. 19, pp. 11–12 (via Google), November 1882. Reprinted (The Essential Peirce, 1:210–214; Writings of Charles S. Peirce, 4:378–382; Collected Papers of Charles Sanders Peirce, 7.59–76). The definition of logic quoted by Peirce is by Peter of Spain.
- Peirce (1878), "The Doctrine of Chances", Popular Science Monthly, v. 12, pp. 604–615 (CP 2.645–668, Writings of Charles S. Peirce, 3:276–290, The Essential Peirce, 1:142–154).
... death makes the number of our risks, the number of our inferences, finite, and so makes their mean result uncertain. The very idea of probability and of reasoning rests on the assumption that this number is indefinitely great. ... logicality inexorably requires that our interests shall not be limited. ... Logic is rooted in the social principle.
- Peirce, Collected Papers of Charles Sanders Peirce, 5.448 footnote, from "The Basis of Pragmaticism" in 1906.
- ^ Peirce, (1868), "Questions concerning certain Faculties claimed for Man", Journal of Speculative Philosophy v. 2, n. 2, pp. 103–114. On thought in signs, see p. 112. Reprinted Collected Papers of Charles Sanders Peirce, 5.213–263 (on thought in signs, see 253), Writings of Charles S. Peirce, 2:193–211, The Essential Peirce, 2:11–27. Arisbe Eprint Archived 2007-10-14 at the Wayback Machine.
- Peirce (1902), The Carnegie Institute Application, Memoir 10, MS L75.361–362, Arisbe Eprint Archived 2011-05-24 at the Wayback Machine.
- ^ Peirce, "Grounds of Validity of the Laws of Logic: Further Consequences of Four Incapacities", Journal of Speculative Philosophy v. II, n. 4, pp. 193–208. Reprinted Collected Papers of Charles Sanders Peirce, 5.318–357, Writings of Charles S. Peirce, 2:242–272 (Peirce Edition Project, Eprint Archived 2010-05-28 at the Wayback Machine), The Essential Peirce, 1:56–82.
- Peirce (1905), "What Pragmatism Is", The Monist, v. XV, n. 2, pp. 161–181, see 167. Reprinted Collected Papers of Charles Sanders Peirce, 5.411–437, see 416. Arisbe Eprint.
- Peirce 1907, Collected Papers of Charles Sanders Peirce, 5.484. Reprinted, The Essential Peirce, 2:411 in "Pragmatism" (398–433).
- See "Quasi-mind" in Commens Digital Companion to C.S. Peirce.
- Peirce, "Carnegie Application", The New Elements of Mathematics v. 4, p. 54.
- Peirce (1867), "Upon Logical Comprehension and Extension" (CP 2.391–426), (Writings of Charles S. Peirce, 2:70–86 Archived 2019-12-09 at the Wayback Machine).
- ^ See pp. 404–409 in "Pragmatism" in The Essential Peirce, 2. Ten quotes on collateral experience from Peirce provided by Joseph Ransdell can be viewed here at peirce-l's Lyris archive. Note: Ransdell's quotes from Collected Papers of Charles Sanders Peirce, 8.178–179 are also in The Essential Peirce, 2:493–494, which gives their date as 1909; and his quote from Collected Papers of Charles Sanders Peirce, 8.183 is also in The Essential Peirce, 2:495–496, which gives its date as 1909.
- Peirce, letter to William James, dated 1909, see The Essential Peirce, 2:492.
- ^ See "76 definitions of the sign by C. S. Peirce", collected by Robert Marty (U. of Perpignan, France).
- Peirce, A Letter to Lady Welby (1908), Semiotic and Significs, pp. 80–81:
I define a Sign as anything which is so determined by something else, called its Object, and so determines an effect upon a person, which effect I call its Interpretant, that the latter is thereby mediately determined by the former. My insertion of "upon a person" is a sop to Cerberus, because I despair of making my own broader conception understood.
- Eco, Umberto (1984). Semiotics and the Philosophy of Language. Bloomington & Indianapolis: Indiana University Press. p. 15. ISBN 978-0-25320398-4.
- ^ Peirce (1909), A Letter to William James, The Essential Peirce, 2:492–502. Fictional object, 498. Object as universe of discourse, 492. See "Dynamical Object" at Commens Digital Companion to C.S. Peirce.
- See "Immediate Object", etc., at Commens Digital Companion to C.S. Peirce.
- ^ Peirce (1903 MS), "Nomenclature and Divisions of Triadic Relations, as Far as They Are Determined", under other titles in Collected Papers (CP) v. 2, paragraphs 233–272, and reprinted under the original title in Essential Peirce (EP) v. 2, pp. 289–299. Also see image of MS 339 (August 7, 1904) supplied to peirce-l by Bernard Morand of the Institut Universitaire de Technologie (France), Département Informatique.
- ^ On the varying terminology, look up in Commens Digital Companion to C.S. Peirce.
- Popular Science Monthly, v. 13, pp. 470–482, see 472 or the book at Wikisource. Collected Papers of Charles Sanders Peirce, 2.619–644
- See, under "Abduction" at Commens Digital Companion to C.S. Peirce, the following quotes:
- On correction of "A Theory of Probable Inference", see quotes from "Minute Logic", Collected Papers of Charles Sanders Peirce, 2.102, c. 1902, and from the Carnegie Application (L75), 1902, Historical Perspectives on Peirce's Logic of Science v. 2, pp. 1031–1032.
- On new logical form for abduction, see quote from Harvard Lectures on Pragmatism, 1903, Collected Papers of Charles Sanders Peirce, 5.188–189.
- "Lectures on Pragmatism", 1903, Collected Papers of Charles Sanders Peirce, 5.171.
- A Letter to J. H. Kehler (dated 1911), The New Elements of Mathematics v. 3, pp. 203–204, see in "Retroduction" at Commens Digital Companion to C.S. Peirce.
- Peirce (1868), "Nominalism versus Realism", Journal of Speculative Philosophy v. 2, n. 1, pp. 57–61. Reprinted (CP 6.619–624), (Writings of Charles S. Peirce, 2:144–153 Archived 2008-05-31 at the Wayback Machine).
- On developments in Peirce's realism, see:
- Peirce (1897), "The Logic of Relatives", The Monist v. VII, n. 2 pp. 161–217, see 206 (via Google). Reprinted Collected Papers of Charles Sanders Peirce, 3.456–552.
- Peirce (1905), "Issues of Pragmaticism", The Monist v. XV, n. 4, pp. 481–499, see 495–496 (via Google). Reprinted (CP 5.438–463, see 453–457).
- Peirce (c. 1905), Letter to Signor Calderoni, Collected Papers of Charles Sanders Peirce, 8.205–213, see 208.
- Lane, Robert (2007), "Peirce's Modal Shift: From Set Theory to Pragmaticism", Journal of the History of Philosophy, v. 45, n. 4.
- Peirce (1893–1894, MS 949, p. 1)
- Peirce (1903 MS), Collected Papers of Charles Sanders Peirce, 6.176: "But I now define a pseudo-continuum as that which modern writers on the theory of functions call a continuum. But this is fully represented by the totality of real values, rational and irrational ."
- Peirce (1902 MS) and Ransdell, Joseph, ed. (1998), "Analysis of the Methods of Mathematical Demonstration", Memoir 4 Archived 2013-11-03 at the Wayback Machine, Draft C, MS L75.90–102, see 99–100. (Once there, scroll down).
- See:
- Peirce (1908), "Some Amazing Mazes (Conclusion), Explanation of Curiosity the First", The Monist, v. 18, n. 3, pp. 416–444, see 463–464. Reprinted Collected Papers of Charles Sanders Peirce, 4.594–642, see 642.
- Havenel, Jérôme (2008), "Peirce's Clarifications on Continuity", Transactions Winter 2008 pp. 68–133, see 119. Abstract.
- Peirce in his 1906 "Answers to Questions concerning my Belief in God", Collected Papers of Charles Sanders Peirce, 6.495, Eprint Archived February 23, 2008, at the Wayback Machine, reprinted in part as "The Concept of God" in Philosophical Writings of Peirce, J. Buchler, ed., 1940, pp. 375–378:
I will also take the liberty of substituting "reality" for "existence." This is perhaps overscrupulosity; but I myself always use exist in its strict philosophical sense of "react with the other like things in the environment." Of course, in that sense, it would be fetichism to say that God "exists." The word "reality," on the contrary, is used in ordinary parlance in its correct philosophical sense. I define the real as that which holds its characters on such a tenure that it makes not the slightest difference what any man or men may have thought them to be, or ever will have thought them to be, here using thought to include, imagining, opining, and willing (as long as forcible means are not used); but the real thing's characters will remain absolutely untouched.
- See his "The Doctrine of Necessity Examined" (1892) and "Reply to the Necessitarians" (1893), to both of which editor Paul Carus responded.
- Peirce (1891), "The Architecture of Theories", The Monist v. 1, pp. 161–176, see p. 170, via Internet Archive. Reprinted (CP 6.7–34) and (The Essential Peirce, 1:285–297, see p. 293).
- Peirce, C.S. (1871), Review: Fraser's Edition of the Works of George Berkeley in North American Review 113(October):449–472, reprinted in Collected Papers of Charles Sanders Peirce v. 8, paragraphs 7–38 and in Writings of Charles S. Peirce v. 2, pp. 462–486. Peirce Edition Project Eprint Archived 2018-07-06 at the Wayback Machine.
- See "tychism", "tychasm", "tychasticism", and the rest, at http://www.helsinki.fi/science/commens/dictionary.html Archived August 22, 2010, at the Wayback Machine Commens Digital Companion to C.S. Peirce. https://web.archive.org/web/20111024011940/http://www.helsinki.fi/science/commens/dictionary.html
- See p. 115 in Reasoning and the Logic of Things (Peirce's 1898 lectures).
External links
- Arisbe: The Peirce Gateway, Joseph Ransdell, ed. Archived 2022-11-30 at the Wayback Machine. Includes over 100 annotated writings by Peirce, hundreds of papers on Peirce, and archives of a Peirce email forum.
- Center for Applied Semiotics (CAS) (1998–2003), Donald Cunningham & Jean Umiker-Sebeok, Indiana U.
- Centro Internacional de Estudos Peirceanos (CIEP) and previously Centro de Estudos Peirceanos (CeneP), Lucia Santaella et al., Pontifical Catholic U. of São Paulo (PUC-SP), Brazil. In Portuguese, some English.
- Centro de Estudos de Pragmatismo (CEP), Ivo Assad Ibri, Pontifical Catholic U. of São Paulo (PUC-SP), Brazil. In Portuguese.
- "Cognitio ". Journal on Pragmatism organized by the Centre for Pragmatism Studies (PPG-Fil, PUC-SP) ISSN 2316-5278
- Commens Digital Companion to C.S. Peirce, Mats Bergman, Sami Paavola, & João Queiroz, formerly Commens at Helsinki U. Includes Commens Dictionary of Peirce's Terms with Peirce's definitions, often many per term across the decades, and the Digital Encyclopedia of Charles S. Peirce (old edition still at old website).
- Centro Studi Peirce Archived September 8, 2013, at the Wayback Machine, Carlo Sini, Rossella Fabbrichesi, et al., U. of Milan, Italy. In Italian and English. Part of Pragma.
- Charles S. Peirce Foundation. Co-sponsoring the 2014 Peirce International Centennial Congress (100th anniversary of Peirce's death).
- Charles S. Peirce Society
Transactions of the Charles S. Peirce Society. Quarterly journal of Peirce studies since spring 1965. Table of Contents of all issues. - Charles S. Peirce Studies, Brian Kariger, ed.
- Charles Sanders Peirce at the Mathematics Genealogy Project
- Collegium for the Advanced Study of Picture Act and Embodiment: The Peirce Archive. Humboldt U, Berlin, Germany. Cataloguing Peirce's innumerable drawings & graphic materials. More info (Prof. Aud Sissel Hoel).
- Digital Encyclopedia of Charles S. Peirce, João Queiroz (now at UFJF) & Ricardo Gudwin (at Unicamp), eds., Universidade Estadual de Campinas (Portuguese), Brazil, in English. 84 authors listed, 51 papers online & more listed, as of January 31, 2009. Newer edition now at Commens Digital Companion to C.S. Peirce.
- Existential Graphs, Jay Zeman, ed., U. of Florida. Has 4 Peirce texts.
- Grupo de Estudios Peirceanos (GEP) / Peirce Studies Group, Jaime Nubiola, ed., U. of Navarra, Spain. Big study site, Peirce & others in Spanish & English, bibliography, more.
- Helsinki Peirce Research Center (HPRC), Ahti-Veikko Pietarinen et al., U. of Helsinki.
- His Glassy Essence. Autobiographical Peirce. Kenneth Laine Ketner.
- Institute for Studies in Pragmaticism, Kenneth Laine Ketner, Clyde Hendrick, et al., Texas Tech U. Peirce's life and works.
- International Research Group on Abductive Inference, Uwe Wirth et al., eds., Goethe U., Frankfurt, Germany. Uses frames. Click on link at bottom of its home page for English. Moved to U. of Gießen, Germany, home page not in English but see Artikel section there.
- Interview with Dan Everett on C.S. Peirce and Peircean linguistics (2024) – Dan Everett talks to James McElvenny about Peirce in the History and Philosophy of the Language Sciences podcast series.
- L'I.R.S.C.E. (1974–2003) – Institut de Recherche en Sémiotique, Communication et Éducation, Gérard Deledalle, Joëlle Réthoré, U. of Perpignan, France.
- Minute Semeiotic, Vinicius Romanini, U. of São Paulo, Brazil. English, Portuguese.
- Peirce at Signo: Theoretical Semiotics on the Web, Louis Hébert, director, supported by U. of Québec. Theory, application, exercises of Peirce's Semiotics and Esthetics. English, French.
- Peirce Edition Project (PEP) Archived 2019-10-20 at the Wayback Machine, Indiana U.–Purdue U. Indianapolis (IUPUI). André De Tienne, Nathan Houser, et al. Editors of the Writings of Charles S. Peirce (W) and The Essential Peirce (EP) v. 2. Many study aids such as the Robin Catalog of Peirce's manuscripts & letters and:
Biographical introductions to EP 1–2 and W 1–6 & 8
Most of Writings of Charles S. Peirce, 2 readable online.
PEP's branch at Université du Québec à Montréal (UQÀM). Working on Writings of Charles S. Peirce, 7: Peirce's work on the Century Dictionary. Definition of the week. - Peirce's Existential Graphs, Frithjof Dau, Germany
- Peirce Research Group, Department of Philosophy "Piero Martinetti" – University of Milan, Italy.
- Pragmatism Cybrary, David Hildebrand & John Shook.
- Research Group on Semiotic Epistemology and Mathematics Education (late 1990s), Institut für Didaktik der Mathematik (Michael Hoffman, Michael Otte, Universität Bielefeld, Germany). See Peirce Project Newsletter v. 3, n. 1, p. 13.
- Semiotics according to Robert Marty, with 76 definitions of the sign by C. S. Peirce.
- Works by Charles Sanders Peirce at LibriVox (public domain audiobooks)
Metaphysics | |
---|---|
Theories |
|
Concepts |
|
Metaphysicians |
|
Notable works |
|
Related topics | |
Classical logic | |||||
---|---|---|---|---|---|
General | |||||
Classical logics | |||||
Principles | |||||
Rules |
| ||||
People | |||||
Works |
Pragmatism | |
---|---|
Classical | |
Protopragmatists or related thinkers | |
Analytic, neo- and other |
- Charles Sanders Peirce
- 1839 births
- 1914 deaths
- 19th-century American mathematicians
- 19th-century American philosophers
- 20th-century American mathematicians
- 20th-century American philosophers
- American Episcopalians
- American logicians
- American semioticians
- American statisticians
- Analytic philosophers
- Anglican philosophers
- Communication scholars
- Critical theorists
- American epistemologists
- Fellows of the American Academy of Arts and Sciences
- Harvard John A. Paulson School of Engineering and Applied Sciences alumni
- Idealists
- Johns Hopkins University faculty
- Lattice theorists
- Logicians
- Mathematicians from Massachusetts
- Members of the United States National Academy of Sciences
- Modal logicians
- The Nation (U.S. magazine) people
- Ontologists
- Panpsychism
- People from Cambridge, Massachusetts
- Philosophers from Massachusetts
- Philosophers from Pennsylvania
- American philosophers of education
- American philosophers of language
- American philosophers of mathematics
- American philosophers of mind
- American philosophers of science
- Philosophical theists
- Pragmatists
- Semioticians
- United States Coast Survey personnel
- United States Coast and Geodetic Survey personnel