Misplaced Pages

Charophyta: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 19:10, 10 May 2014 editPlantsurfer (talk | contribs)Extended confirmed users40,029 edits top: Viridiplantae← Previous edit Latest revision as of 21:43, 4 November 2024 edit undoCitation bot (talk | contribs)Bots5,436,068 edits Add: issue, bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles with specifically marked weasel-worded phrases from October 2024 | #UCB_Category 62/448 
(293 intermediate revisions by 84 users not shown)
Line 1: Line 1:
{{short description|Phylum of algae}}
{{For|an explanation of very similar terms|Streptophyta}}
{{Paraphyletic group {{Paraphyletic group
| auto = yes
| image = Chara sp reproductive structure.JPG
| image = CharaGlobularis.jpg
| domain = ]
| unranked_regnum = ] | image_caption = '']''
| taxon = Charophyta
| regnum = ]
| authority = ] 1897,<ref name=AB_97242/> ''sensu'' Leliaert et al. 2012
| divisio = '''Charophyta'''
| included = | includes =
] <br/> * ]
* ]
] <br/>
* '']''
]
* ]
:]
* ]
:]
] ** ]
** ]
:]
** ]
:]
| excludes = ]
| synonyms =
}} }}


'''Charophyta''' ({{IPAc-en|UK|k|ə|ˈ|r|ɒ|f|ᵻ|t|ə|,_|ˌ|k|ær|ə|ˈ|f|aɪ|t|ə}}) is a group of ] ], called '''charophytes''' ({{IPAc-en|ˈ|k|ær|ə|ˌ|f|aɪ|t|s}}), sometimes treated as a ],<ref name=":1">{{cite journal |last1=Lewis |first1=Louise A. |first2=Richard M. |last2=McCourt |year=2004 |title=Green algae and the origin of land plants |journal=] |volume=91 |issue=10 |pages=1535–56 |doi=10.3732/ajb.91.10.1535 |pmid=21652308 }}</ref> yet also as a superdivision<ref name="Rugg15">{{cite journal |last1=Ruggiero |first1=M. A. |last2=Gordon |first2=D. P. |last3=Orrell |first3=T. M. |last4=Bailly |first4=N. |last5=Bourgoin |first5=T. |last6=Brusca |first6=R. C. |display-authors=etal |date=2015 |title=A higher level classification of all living organisms |journal=] |volume=10 | issue = 4 |pages=e0119248 |doi=10.1371/journal.pone.0119248 |pmid=25923521 |pmc=4418965 |bibcode=2015PLoSO..1019248R |doi-access=free }}</ref> or an unranked ]. The terrestrial plants, the ] emerged deep within Charophyta, possibly from terrestrial unicellular charophytes,<ref>{{cite journal|last1=de Vries|first1=J|last2=Archibald|first2=JM|title=Plant evolution: landmarks on the path to terrestrial life.|journal=The New Phytologist|date=March 2018|volume=217|issue=4|pages=1428–1434|doi=10.1111/nph.14975|pmid=29318635|doi-access=free|bibcode=2018NewPh.217.1428D}}</ref> with the class ] as a ].<ref>{{Cite journal|last=Del-Bem|first=Luiz-Eduardo|date=2018-05-31|title=Xyloglucan evolution and the terrestrialization of green plants|journal=New Phytologist|language=en|volume=219|issue=4|pages=1150–1153|doi=10.1111/nph.15191|pmid=29851097|issn=0028-646X|doi-access=free|bibcode=2018NewPh.219.1150D |hdl=1843/36860|hdl-access=free}}</ref><ref name=":2">{{Cite journal|last1=Ruhfel|first1=Brad R.|last2=Gitzendanner|first2=Matthew A.|last3=Soltis|first3=Pamela S.|last4=Soltis|first4=Douglas E.|last5=Burleigh|first5=J. Gordon|date=2014-02-17|title=From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes|journal=BMC Evolutionary Biology|volume=14|issue=1 |pages=23|doi=10.1186/1471-2148-14-23|issn=1471-2148|pmid=24533922|pmc=3933183 |doi-access=free |bibcode=2014BMCEE..14...23R }}</ref><ref>{{Cite journal|last1=Wickett|first1=Norman J.|last2=Mirarab|first2=Siavash|last3=Nguyen|first3=Nam|last4=Warnow|first4=Tandy|last5=Carpenter|first5=Eric|last6=Matasci|first6=Naim|last7=Ayyampalayam|first7=Saravanaraj|last8=Barker|first8=Michael S.|last9=Burleigh|first9=J. Gordon|date=2014-11-11|title=Phylotranscriptomic analysis of the origin and early diversification of land plants|journal=Proceedings of the National Academy of Sciences|language=en|volume=111|issue=45|pages=E4859–E4868|doi=10.1073/pnas.1323926111|issn=0027-8424|pmc=4234587|pmid=25355905|bibcode=2014PNAS..111E4859W|doi-access=free}}</ref><ref>{{Cite journal|last1=Vries|first1=Jan de|last2=Stanton|first2=Amanda|last3=Archibald|first3=John M.|last4=Gould|first4=Sven B.|date=2016-02-16|title=Streptophyte Terrestrialization in Light of Plastid Evolution|journal=Trends in Plant Science|volume=21|language=en|issue=6|doi=10.1016/j.tplants.2016.01.021|pmid=26895731|issn=1360-1385|pages=467–476|bibcode=2016TPS....21..467D }}</ref><ref>Treatise on invertebrate paleontology. Part B. Protoctista 1. Volume1: Charophyta.</ref>
The '''Charophyta''' are a ] of freshwater ]<ref>{{cite journal | last = Lewis | first = Louise A. |author2=Richard M. McCourt | year = 2004 | title = Green algae and the origin of land plants | journal =] | volume = 91 | issue = 10 | pages = 1535–1556 | url = http://www.amjbot.org/cgi/content/abstract/91/10/1535 | doi = 10.3732/ajb.91.10.1535 | format = abstract | pmid=21652308}}</ref> that includes the class ], a ] to the terrestrial plants, the ].<ref name="pmid11743201">{{cite journal |author=Karol KG, McCourt RM, Cimino MT, Delwiche CF |title=The closest living relatives of land plants |journal=] |volume=294 |issue=5550 |pages=2351–3 |date=December 2001 |pmid=11743201 |doi=10.1126/science.1065156 |url=http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=11743201 |bibcode=2001Sci...294.2351K}}</ref> In some charophyte groups, such as ] or conjugating green algae, ] are absent and sexual reproduction does not involve free-swimming flagellate sperm. Flagellate sperm, however, are found in ]s (]) and ], orders of parenchymous charophytes that are the closest relatives of the land plants, where flagellate sperm are also present in all except the ] and ].<ref name=Vaughn>{{cite journal|last1=Vaughn|first1=K.C.|last2=Renzaglia|first2=K.S.|year=2006|title=Structural and immunocytochemical characterization of the ''Ginkgo biloba'' L. sperm motility apparatus.|journal=Protoplasma|volume=227|issue=2-4|pages=165-73}}</ref> Fossils of a stonewort of ] age that are similar to those of the present day have been described from the ] of Scotland.<ref name=Kelman2003/>


With the Embryophyta now ] placed in the Charophyte, it is a synonym of Streptophyta.<ref name=":0">{{Cite book|title=Handbook of the Protists|last1=Cook|first1=Martha E.|last2=Graham|first2=Linda E.|chapter=Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae |date=2017|publisher=Springer International Publishing|isbn=9783319281476|editor-last=Archibald|editor-first=John M.|pages=185–204|language=en|doi=10.1007/978-3-319-28149-0_36|editor-last2=Simpson|editor-first2=Alastair G. B.|editor-last3=Slamovits|editor-first3=Claudio H.}}</ref><ref>{{Cite journal|last1=Delwiche|first1=Charles F.|last2=Timme|first2=Ruth E.|title=Plants|journal=Current Biology|volume=21|issue=11|pages=R417–R422|doi=10.1016/j.cub.2011.04.021|pmid=21640897|year=2011|doi-access=free|bibcode=2011CBio...21.R417D }}</ref><ref>{{Cite journal|last1=Karol|first1=Kenneth G.|last2=McCourt|first2=Richard M.|last3=Cimino|first3=Matthew T.|last4=Delwiche|first4=Charles F.|date=2001-12-14|title=The Closest Living Relatives of Land Plants|journal=Science|language=en|volume=294|issue=5550|pages=2351–2353|doi=10.1126/science.1065156|issn=0036-8075|pmid=11743201|bibcode=2001Sci...294.2351K|s2cid=35983109}}</ref><ref>{{Cite journal|last1=Lewis|first1=Louise A.|last2=McCourt|first2=Richard M.|date=2004|title=Green algae and the origin of land plants|url=https://onlinelibrary.wiley.com/doi/abs/10.3732/ajb.91.10.1535|journal=American Journal of Botany|language=en|volume=91|issue=10|pages=1535–1556|doi=10.3732/ajb.91.10.1535|pmid=21652308 |issn=1537-2197}}</ref> The sister group of the charophytes are the ]. In some charophyte groups, such as the ] or conjugating green algae, ] are absent and sexual reproduction does not involve free-swimming flagellate sperm. Flagellate sperm, however, are found in ]s (]) and ], orders of parenchymatous charophytes that are the closest relatives of the land plants, where flagellate sperm are also present in all except the ] and ].<ref name=Vaughn>{{cite journal|last1=Vaughn|first1=K.C.|last2=Renzaglia|first2=K.S.|year=2006|title=Structural and immunocytochemical characterization of the ''Ginkgo biloba'' L. sperm motility apparatus|journal=Protoplasma|volume=227|issue=2–4|pages=165–73|doi=10.1007/s00709-005-0141-3|pmid=16736257|s2cid=9864200|url=https://naldc-legacy.nal.usda.gov/naldc/download.xhtml?id=32589&content=PDF}}</ref> Fossil stoneworts of early ] age that are similar to those of the present day have been described from the ] of Scotland.<ref name=Kelman2003/> Somewhat different charophytes have also been collected from the Late Devonian (Famennian) ] of South Africa. These include two species each of '']'' and '']'', which are the oldest fossils of Charophyte axes bearing in situ ].
==Classification==

Charophyta are complex green algae that form a sister group to the Chlorophyceae and the Embryophyceae.
The name comes from the ] '']'', but the finding that the Embryophyta actually emerged in them has ''not'' resulted in a much more restricted meaning of the Charophyta, namely to a much smaller side branch. This more restricted group corresponds to the ].
The ] and charophyte green algae and the embryophytes or land plants form a clade called the green plants or ], that is united among other things by the absence of ], the presence of ] and ] and the use of ] as a storage polysaccharide. Charophytes and embryophytes share the same mechanism of ] using a ] as a framework for assembly of the new dividing ]. Thus Charophyta and Embryophyta together form the clade ], excluding the Chlorophyta. Because the Charophyta do not include all descendents of their common ancestor with the embryophytes they form a ] group.<ref></ref>


==Description== ==Description==
The ], formerly known as the Conjugatophyceae, generally possess two fairly elaborate ] in each cell, rather than many discoid ones. They reproduce ] by the development of a septum between the two cell-halves or semi-cells (in unicellular forms, each daughter-cell develops the other semi-cell afresh) and sexually by conjugation, or the fusion of the entire cell-contents of the two conjugating cells. The saccoderm desmids and the placoderm or true desmids, unicellular or filamentous members of the Zygnematophyceae, are dominant in non-calcareous, acid waters of oligotrophic or primitive ] (e.g. Wastwater), or in lochans, tarns and bogs, as in the West of Scotland, Eire, parts of Wales and of the Lake District.<ref name=West>{{cite book|last1=West |first1=G.S |last2=Fritsch|first2=F.E.|title=A Treatise of the British Freshwater Algae|date=1927|publisher=Cambridge University Press|location=Cambridge}}</ref>
{{Expand section|1=examples and additional citations|date=April 2014}}
The charophytes are obligate water plants, growing submerged in calcareous fresh water. They are distributed throughout the world from the tropics to cold temperate zones. Charophytes such as ''Palaeonitella cranii'' and possibly the yet unassigned '']''<ref name=Hemsley>{{cite journal|last=Hemsley|first=A.R.|year=1989|title=The ultrastructure of the spores of the Devonian plant ''Parka decipiens''|journal=Annals of Botany|year=1989|volume=64|issue=3|pages=359-367}}</ref> are present in the fossil record of the ].<ref name=Kelman2003>{{cite journal|last1=Kelman|first1=R.|last2=Feist|first2=M.|last3=Trewin|first3=N.H.|last4=Hass|first4=H.|title=
Charophyte algae from the Rhynie chert|journal=Transactions of the Royal Society of Edinburgh: Earth Sciences|volume=94|issue=4|year=2003|pages=445-455}}</ref> ''Palaeonitella'' differed little from some present-day stoneworts.


'']'', the type of the ], is a simple filamentous form with circular, plate-like chloroplasts, reproducing by fragmentation, by dorsiventral, ] swarmers and, according to Wille, a twentieth-century algologist, by ]s.<ref name=Fritsch>{{cite book|last1=Fritsch|first1=F.E.|title=The Structure and Reproduction of the Algae, vol I|date=1935|publisher=Cambridge University Press|pages=205–206}}</ref> Sexual reproduction is simple and ] (the male and female gametes are outwardly indistinguishable).<ref name=Fritsch/>
The various groups included in the Charophyta have diverse and idiosyncratic reproductive systems, sometimes with complex reproductive organs. The unique habit among the algae of protecting the overwintering ] within the tissues of the parent ] is one of several characteristics Coleochaetales that suggest that they are a sister group to the embryophytes.<ref name=Becker2009>{{Cite journal

The ] (Charophyceae), or stoneworts, are freshwater and ] algae with slender green or grey stems; the grey colour of many species results from the deposition of lime on the walls, masking the green colour of the chlorophyll. The main stems are slender and branch occasionally. Lateral ]s occur in ] at regular intervals up the stem, they are attached by rhizoids to the substrate.<ref name="Bryant 2007">Bryant 2007, J. The Stoneworts (Chlorophyta, Charales) in Guiry, M.D., John, D.M., Rindi, F. and McCarthy, T.K (Ed) ''New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae''. Royal Irish Academy. {{ISBN|9781904890317}}</ref> The reproductive organs consist of ] and ], though the structures of these organs differ considerably from the corresponding organs in other algae. As a result of fertilization, a ] is formed, from which the sexually reproducing algae develops.

A new terrestrial genus found in sandy soil in the ], ''Streptofilum'', may belong in its own class due its unique phylogenetic position. A ] is absent, instead the ] consists of many layers of specific scales. It is a short, filamentous and unbranched algae surrounded by a mucilaginous sheath, which often disintegrates to diads and unicells.<ref name=":3" />

]|] (cellulose)|]|
], packages proteins|], creates ] (energy) for the cell (flat cristae)||]|]|], the transport network for molecules going to specific parts of the cell|]|Dense vesicle|] membranes (two, primary)|]; center of ]|Isthmus|Polar lobe|Lateral lobe|First order|Second order|Third order}}]]

===Reproduction===
The cells in Charophyta algae are all ], except during sexual reproduction, where a diploid unicellular zygote is produced. The zygote becomes four new haploid cells through meiosis, which will develop into new algae. In multicellular forms these haploid cells will grow into a ]. In embryophytes (land plants) the zygote will instead give rise to a multicellular ].<ref></ref><ref name=Becker2009>{{Cite journal
| last1 = Becker| first1 = B. | last1 = Becker| first1 = B.
| last2 = Marin | first2 = B. | last2 = Marin | first2 = B.
Line 35: Line 47:
| volume = 103 | volume = 103
| pages = 999–1004 | pages = 999–1004
| url= | doi = 10.1093/aob/mcp044
| url = http://aob.oxfordjournals.org/cgi/content/abstract/103/7/999
| doi = 10.1093/aob/mcp044
| pmid = 19273476 | pmid = 19273476
| issue = 7 | issue = 7
| pmc = 2707909 | pmc = 2707909
}}</ref> }}</ref>


Except from land plants, retention of the zygote is only known from some species in one group of green algae; the ]s. In these species the zygote is corticated by a layer of sterile gametophytic cells. Another similarity is the presence of ] in the inner wall of the zygote. In at least one species, it receives nourishment from the gametophyte through placental transfer cells.<ref></ref>
The Charales or stoneworts are freshwater plants with slender green or grey stems; the grey colour of many species results from the deposition of lime on the walls, masking the green colour of the chlorophyll. The main stems are slender and branch occasionally. Lateral branchlets occur in ] at regular intervals up the stem. The reproductive organs consist of ] and ], though the structures of these organs differ considerably from the corresponding organs in other algae. As a result of fertilization a ] is formed, from which the sexually reproducing plant develops.


==Classification==
Charophytes are frequently found in ] with dissolved calcium or magnesium carbonates. They tolerate low concentrations of salt, and are found in the inner reaches of the ]<ref name=Schubert>{{Cite book
Charophyta are complex green algae that form a sister group to the ] and within which the ] emerged. The ] and charophyte green algae and the embryophytes or land plants form a clade called the green plants or ], that is united among other things by the absence of ]s, the presence of ] and ], cellulose in the cell wall and the use of ], stored in the plastids, as a storage polysaccharide. The charophytes and embryophytes share several traits that distinguish them from the chlorophytes, such as the presence of certain enzymes (class I ], Cu/Zn ], ], flagellar ]), lateral flagella (when present), and, in many species, the use of ]s in ].<ref name="leliaert">{{cite journal |year=2012 |title=Phylogeny and molecular evolution of the green algae |url=http://images.algaebase.org/pdf/5628E58F0ecc431F0CsJm2B04CAD/49951.pdf |doi=10.1080/07352689.2011.615705 |journal=Critical Reviews in Plant Sciences |volume=31 |pages=1–46 |last1=Leliaert |first1=Frederik |last2=Smith |first2=David R. |last3=Moreau |first3=Hervé |last4=Herron |first4=Matthew D. |last5=Verbruggen |first5=Heroen |last6=Delwiche |first6=Charles F. |last7=De Clerck |first7=Olivier |issue=1 |bibcode=2012CRvPS..31....1L |s2cid=17603352 |access-date=2016-10-04 |archive-date=2015-06-26 |archive-url=https://web.archive.org/web/20150626102452/http://images.algaebase.org/pdf/5628E58F0ecc431F0CsJm2B04CAD/49951.pdf |url-status=dead }}</ref> Thus Charophyta and Embryophyta together form the clade ], excluding the Chlorophyta.
| last1 = Schubert| first1 = H.
| last2 = Blindow| first2 =I.
| year = 2004
| title = Charophytes of the Baltic Sea
| publisher = Gantner Verlag
| ISBN = 3906166066
}}</ref>
and in tropical brackish lagoons<ref name=PalmaSilva>{{Cite journal
| last1 = Palma-Silva| first1 = C.
| last2 = Albertoni| first2 = E.F.
| last3 = Esteves| first3 = F.A.
| year = 2004
| title = Charophytes as nutrient and energy reservoir in a tropical coastal lagoon impacted by humans (RJ, Brazil).
| journal = Brazilian Journal of Biology
| volume = 64
| pages = 479-487
}}</ref> but not in marine environments. The water must be still, or only slow­-flowing, ] or ] and little pollution due to sewage.{{cn|date=April 2014}}


Charophytes such as ''Palaeonitella cranii'' and possibly the yet unassigned '']''<ref name=Hemsley>{{cite journal|last=Hemsley|first=A.R.|title=The ultrastructure of the spores of the Devonian plant ''Parka decipiens''|journal=Annals of Botany|year=1989|volume=64|issue=3|pages=359–367|doi=10.1093/oxfordjournals.aob.a087852}}</ref> are present in the fossil record of the ].<ref name=Kelman2003>{{cite journal|last1=Kelman|first1=R.|last2=Feist|first2=M.|last3=Trewin|first3=N.H.|last4=Hass|first4=H.|title= Charophyte algae from the Rhynie chert|journal=Transactions of the Royal Society of Edinburgh: Earth Sciences|volume=94|issue=4|year=2003|pages=445–455|doi=10.1017/s0263593300000808|s2cid=128869547}}</ref> ''Palaeonitella'' differed little from some present-day stoneworts.
===Cell structure===
{{Expand section|date=April 2014}}


=== Cladogram ===
There are numerous small discoid chloroplasts, which are disposed around the periphery of the cells. No pyrenoids are present. The large internodal cells are sometimes multinucleate, and their nuclei often possess large nucleoli and scanty chromatin. In these cells the cytoplasm forms only a peripheral layer with a large central vacuole. The cell walls are composed of cellulose, though there may be also a superficial layer of a more gelatinous material of unknown composition.
There is an emerging consensus on green algal relationships, mainly based on molecular data.<ref name="leliaert" /><ref name="Marin20122">{{cite journal|last1=Marin|first1=Birger|year=2012|title=Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons|journal=Protist|volume=163|issue=5|pages=778–805|doi=10.1016/j.protis.2011.11.004|pmid=22192529}}</ref><ref name="Laurin-LemayBrinkmann20122">{{cite journal|last1=Laurin-Lemay|first1=Simon|last2=Brinkmann|first2=Henner|last3=Philippe|first3=Hervé|year=2012|title=Origin of land plants revisited in the light of sequence contamination and missing data|journal=Current Biology|volume=22|issue=15|pages=R593–R594|doi=10.1016/j.cub.2012.06.013|pmid=22877776|doi-access=free|bibcode=2012CBio...22.R593L }}</ref><ref>{{Cite journal|last1=Leliaert|first1=Frederik|last2=Tronholm|first2=Ana|last3=Lemieux|first3=Claude|last4=Turmel|first4=Monique|last5=DePriest|first5=Michael S.|last6=Bhattacharya|first6=Debashish|last7=Karol|first7=Kenneth G.|last8=Fredericq|first8=Suzanne|last9=Zechman|first9=Frederick W.|date=2016-05-09|title=Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.|journal=Scientific Reports|language=en|volume=6|pages=25367|doi=10.1038/srep25367|issn=2045-2322|pmc=4860620|pmid=27157793|bibcode=2016NatSR...625367L}}</ref><ref name=":0" /><ref name=":1" /><ref name=":2" /><ref>{{Cite journal|last1=Adl|first1=Sina M.|last2=Simpson|first2=Alastair G. B.|last3=Lane|first3=Christopher E.|last4=Lukeš|first4=Julius|last5=Bass|first5=David|last6=Bowser|first6=Samuel S.|last7=Brown|first7=Matthew W.|last8=Burki|first8=Fabien|last9=Dunthorn|first9=Micah|date=2012-09-01|title=The Revised Classification of Eukaryotes|journal=Journal of Eukaryotic Microbiology|language=en|volume=59|issue=5|pages=429–514|doi=10.1111/j.1550-7408.2012.00644.x|issn=1550-7408|pmid=23020233|pmc=3483872}}</ref><ref>{{Cite journal|last1=Lemieux|first1=Claude|last2=Otis|first2=Christian|last3=Turmel|first3=Monique|date=2007-01-12|title=A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies|journal=BMC Biology|volume=5|pages=2|doi=10.1186/1741-7007-5-2|issn=1741-7007|pmid=17222354|pmc=1781420 |doi-access=free }}</ref><ref name=":4">{{Cite journal|last=Umen|first=James G.|date=2014-11-01|title=Green Algae and the Origins of Multicellularity in the Plant Kingdom|journal=Cold Spring Harbor Perspectives in Biology|language=en|volume=6|issue=11|pages=a016170|doi=10.1101/cshperspect.a016170|issn=1943-0264|pmid=25324214|pmc=4413236}}</ref><ref>{{Cite journal|last1=Sánchez-Baracaldo|first1=Patricia|last2=Raven|first2=John A.|last3=Pisani|first3=Davide|last4=Knoll|first4=Andrew H.|date=2017-09-12|title=Early photosynthetic eukaryotes inhabited low-salinity habitats|journal=Proceedings of the National Academy of Sciences|volume=114|issue=37|pages=E7737–E7745|doi=10.1073/pnas.1620089114|pmid=28808007|pmc=5603991|bibcode=2017PNAS..114E7737S |doi-access=free}}</ref><ref>{{Cite journal|last1=Gitzendanner|first1=Matthew A.|last2=Soltis|first2=Pamela S.|last3=Wong|first3=Gane K.-S.|last4=Ruhfel|first4=Brad R.|last5=Soltis|first5=Douglas E.|date=2018|title=Plastid phylogenomic analysis of green plants: A billion years of evolutionary history|journal=American Journal of Botany|language=en|volume=105|issue=3|pages=291–301|doi=10.1002/ajb2.1048|pmid=29603143|issn=0002-9122|doi-access=free}}</ref><ref name=":3">{{Cite journal|last1=Mikhailyuk|first1=Tatiana|last2=Lukešová|first2=Alena|last3=Glaser|first3=Karin|last4=Holzinger|first4=Andreas|last5=Obwegeser|first5=Sabrina|last6=Nyporko|first6=Svetlana|last7=Friedl|first7=Thomas|last8=Karsten|first8=Ulf|date=2018|title=New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach|journal=Protist|volume=169|issue=3|pages=406–431|doi=10.1016/j.protis.2018.03.002|pmid=29860113|pmc=6071840|issn=1434-4610}}</ref><ref>{{Cite thesis|last=Glass|first=Sarah|date=2021|title=Chloroplast Genome Evolution in the Klebsormidiophyceae and Streptofilum|url=https://academicworks.cuny.edu/le_etds/17|type=MS thesis |publisher=Lehman College}}</ref> The Mesostigmatophyceae (including ''Spirotaenia'', and Chlorokybophyceae) are at the base of charophytes (streptophytes). The cladograms below show consensus phylogenetic relationships based on plastid genomes<ref name=Turmel-Lemieux-2018>{{Citation|last1=Turmel|first1=Monique|title=Evolution of the Plastid Genome in Green Algae|date=2018|work=Advances in Botanical Research|pages=157–193|publisher=Elsevier|doi=10.1016/bs.abr.2017.11.010|isbn=9780128134573|last2=Lemieux|first2=Claude |url=https://www.researchgate.net/publication/321734296}}</ref> and a new proposal for a third phylum of green plants based on analysis of nuclear genomes.<ref name=Li-2020>{{Cite journal|last1=Li|first1=Linzhou|last2=Wang|first2=Sibo|last3=Wang|first3=Hongli|last4=Sahu|first4=Sunil Kumar|last5=Marin|first5=Birger|last6=Li|first6=Haoyuan|last7=Xu|first7=Yan|last8=Liang|first8=Hongping|last9=Li|first9=Zhen|last10=Cheng|first10=Shifeng|last11=Reder|first11=Tanja
|year=2020 |title=The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants|journal=Nature Ecology & Evolution|language=en|volume=4|issue=9|pages=1220–1231 |doi=10.1038/s41559-020-1221-7|issn=2397-334X|pmc=7455551|pmid=32572216|bibcode=2020NatEE...4.1220L }}</ref>


{{clade gallery |width=400px |height=275px
The storage material is starch, except in the oospore, where oil also occurs. This starch also accumulates in special storage structures, termed bulbils, which consist of rounded cells of varying size which are developed in clusters on the lower stem and root nodes. They are mainly developed when plants are growing in fine slimy mud.
|header1=Consensus plastid phylogeny
|footer1=Consensus relationships among major green algal lineages inferred in recent plastid phylogenomic studies<ref name=Turmel-Lemieux-2018/>
|cladogram1=
{{clade |style=font-size:95%;line-height:95%
|label1=''']'''
|1={{clade
|1=]
|2={{clade
|label1=]
|sublabel1=(Charophyta ''s.l.'')
|1={{clade
|1=] ''s.l.''
|2={{clade
|1=]
|label2x=]
|2={{clade
|1=]
|2={{clade
|1=]
|2={{clade
|1=]
|2=]s <br/>(land plants)
}}
}}
}}
}}
}}
}}
}}
}}
|header2=Prasinodermophyta hypothesis
|footer2=Relationships among major green algal lineages based on a recent nuclear phylogenomic study<ref name=Li-2020/>
|cladogram2=
{{clade|style=font-size:95%;line-height:95%
|label1=''']'''/|sublabel1=''']'''
|1={{clade
|1={{clade
|label1=]
|1={{clade
|1=]
|2=]
}}
}}
|2={{clade
|1=]
|2={{clade
|label1=]
|sublabel1=(Charophyta ''s.l.'')
|1={{clade
|1=] ''s.l.''
|2={{clade
|1=]
|label2x=]
|2={{clade
|1=]
|2={{clade
|1=]
|2={{clade
|1=]
|2=]s <br/>(land plants)
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
Mesostigmatophyceae s.l. in the cladograms corresponds to a clade of a narrower circumscription, Mesostigmatophyceae s.s., and a separate class Chlorokybophyceae, as used by ].<ref name=AB_97242>{{AlgaeBase taxon |name=Charophytes |id=97242 |access-date=2022-02-21}}</ref>


The Mesostigmatophyceae{{which?|date=October 2024}} are not filamentous, but the other basal charophytes (streptophytes) are.<ref>{{Cite journal|last1=Nishiyama|first1=Tomoaki|last2=Sakayama|first2=Hidetoshi|last3=de Vries|first3=Jan|last4=Buschmann|first4=Henrik|last5=Saint-Marcoux|first5=Denis|last6=Ullrich|first6=Kristian K.|last7=Haas|first7=Fabian B.|last8=Vanderstraeten|first8=Lisa|last9=Becker|first9=Dirk|date=2018|title=The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization|journal=Cell|volume=174|issue=2|pages=448–464.e24|doi=10.1016/j.cell.2018.06.033|pmid=30007417|issn=0092-8674|doi-access=free}}</ref><ref name=":3" /><ref name=":4" />
] was first demonstrated in the giant cells of ''Chara'' internodes by ], in 1818.


==References==
===Sexual reproduction===
{{reflist}}
{{Expand section|date=April 2014}}

The reproductive organs of the Charales show a high degree of specialization. The female organ is a large oval structure with an envelope of spirally arranged, bright green filaments of cells. It is termed an oogonium. The male organ is also large, bright yellow or red in colour, spherical in shape, and is usually termed an antheridium, though some workers regard it as a multiple structure rather than a single organ. The sex organs are developed in pairs from the adaxial nodal cell at the upper nodes of the primary lateral branches, the oogonium being formed above the antheridium. They are sufficiently large to be easily seen with the naked eye, especially the bright orange or red antheridium. Many species are dioecious. In others the monoecious condition is complicated by the development of the antheridium before the formation of the oogonium, thus preventing fertilization by antherozoids of the same plant. In this case the two types of sex organs usually arise from different points on the lateral branches

===Vegetative propagation===
{{Expand section|date=April 2014}}


==External links==
Vegetative propagation occurs readily in the Charales. Secondary protonemata may develop even more rapidly than primary ones. Fragments of nodes, dormant cells of plants after hibernation or the basal nodes of primary rhizoids may all produce these secondary protonemata, from which fresh sexual plants can arise. It is probably this power of yegetative propagation which explains the fact that species of Characeae are generally found forming dense clonal mats in the beds of ponds or streams, covering quite large areas.
* {{Wikispecies-inline}}

== References ==
{{reflist}}


{{Taxonbar|from=Q133219}}
{{early plants}}
{{Plant classification}} {{Plant classification}}
{{Life on Earth}}


] ]
]
]
] ]

Latest revision as of 21:43, 4 November 2024

Phylum of algae For an explanation of very similar terms, see Streptophyta.

Charophyta
Chara globularis
Chara globularis
Scientific classificationEdit this classification
Clade: Viridiplantae
(unranked): Charophyta
Migula 1897, sensu Leliaert et al. 2012
Groups included
Cladistically included but traditionally excluded taxa

Embryophyta

Charophyta (UK: /kəˈrɒfɪtə, ˌkærəˈfaɪtə/) is a group of freshwater green algae, called charophytes (/ˈkærəˌfaɪts/), sometimes treated as a division, yet also as a superdivision or an unranked clade. The terrestrial plants, the Embryophyta emerged deep within Charophyta, possibly from terrestrial unicellular charophytes, with the class Zygnematophyceae as a sister group.

With the Embryophyta now cladistically placed in the Charophyte, it is a synonym of Streptophyta. The sister group of the charophytes are the Chlorophyta. In some charophyte groups, such as the Zygnematophyceae or conjugating green algae, flagella are absent and sexual reproduction does not involve free-swimming flagellate sperm. Flagellate sperm, however, are found in stoneworts (Charales) and Coleochaetales, orders of parenchymatous charophytes that are the closest relatives of the land plants, where flagellate sperm are also present in all except the conifers and flowering plants. Fossil stoneworts of early Devonian age that are similar to those of the present day have been described from the Rhynie chert of Scotland. Somewhat different charophytes have also been collected from the Late Devonian (Famennian) Waterloo Farm lagerstätte of South Africa. These include two species each of Octochara and Hexachara, which are the oldest fossils of Charophyte axes bearing in situ oogonia.

The name comes from the genus Chara, but the finding that the Embryophyta actually emerged in them has not resulted in a much more restricted meaning of the Charophyta, namely to a much smaller side branch. This more restricted group corresponds to the Charophyceae.

Description

The Zygnematophyceae, formerly known as the Conjugatophyceae, generally possess two fairly elaborate chloroplasts in each cell, rather than many discoid ones. They reproduce asexually by the development of a septum between the two cell-halves or semi-cells (in unicellular forms, each daughter-cell develops the other semi-cell afresh) and sexually by conjugation, or the fusion of the entire cell-contents of the two conjugating cells. The saccoderm desmids and the placoderm or true desmids, unicellular or filamentous members of the Zygnematophyceae, are dominant in non-calcareous, acid waters of oligotrophic or primitive lakes (e.g. Wastwater), or in lochans, tarns and bogs, as in the West of Scotland, Eire, parts of Wales and of the Lake District.

Klebsormidium, the type of the Klebsormidiophyceae, is a simple filamentous form with circular, plate-like chloroplasts, reproducing by fragmentation, by dorsiventral, biciliate swarmers and, according to Wille, a twentieth-century algologist, by aplanospores. Sexual reproduction is simple and isogamous (the male and female gametes are outwardly indistinguishable).

The Charales (Charophyceae), or stoneworts, are freshwater and brackish algae with slender green or grey stems; the grey colour of many species results from the deposition of lime on the walls, masking the green colour of the chlorophyll. The main stems are slender and branch occasionally. Lateral branchlets occur in whorls at regular intervals up the stem, they are attached by rhizoids to the substrate. The reproductive organs consist of antheridia and oogonia, though the structures of these organs differ considerably from the corresponding organs in other algae. As a result of fertilization, a protonema is formed, from which the sexually reproducing algae develops.

A new terrestrial genus found in sandy soil in the Czech Republic, Streptofilum, may belong in its own class due its unique phylogenetic position. A cell wall is absent, instead the cell membrane consists of many layers of specific scales. It is a short, filamentous and unbranched algae surrounded by a mucilaginous sheath, which often disintegrates to diads and unicells.

Representation of a charophyte
  1. Mucilage
  2. Cell wall (cellulose)
  3. Vacuole
  4. Golgi apparatus, packages proteins
  5. Mitochondrion, creates ATP (energy) for the cell (flat cristae)
  6. Nucleus
  7. Nucleolus
  8. Endoplasmic reticulum, the transport network for molecules going to specific parts of the cell
  9. Vesicles
  10. Dense vesicle
  11. Plastid membranes (two, primary)
  12. Pyrenoid; center of carbon fixation
  13. Isthmus
  14. Polar lobe
  15. Lateral lobe
  16. First order
  17. Second order
  18. Third order

Reproduction

The cells in Charophyta algae are all haploid, except during sexual reproduction, where a diploid unicellular zygote is produced. The zygote becomes four new haploid cells through meiosis, which will develop into new algae. In multicellular forms these haploid cells will grow into a gametophyte. In embryophytes (land plants) the zygote will instead give rise to a multicellular sporophyte.

Except from land plants, retention of the zygote is only known from some species in one group of green algae; the coleochaetes. In these species the zygote is corticated by a layer of sterile gametophytic cells. Another similarity is the presence of sporopollenin in the inner wall of the zygote. In at least one species, it receives nourishment from the gametophyte through placental transfer cells.

Classification

Charophyta are complex green algae that form a sister group to the Chlorophyta and within which the Embryophyta emerged. The chlorophyte and charophyte green algae and the embryophytes or land plants form a clade called the green plants or Viridiplantae, that is united among other things by the absence of phycobilins, the presence of chlorophyll a and chlorophyll b, cellulose in the cell wall and the use of starch, stored in the plastids, as a storage polysaccharide. The charophytes and embryophytes share several traits that distinguish them from the chlorophytes, such as the presence of certain enzymes (class I aldolase, Cu/Zn superoxide dismutase, glycolate oxidase, flagellar peroxidase), lateral flagella (when present), and, in many species, the use of phragmoplasts in mitosis. Thus Charophyta and Embryophyta together form the clade Streptophyta, excluding the Chlorophyta.

Charophytes such as Palaeonitella cranii and possibly the yet unassigned Parka decipiens are present in the fossil record of the Devonian. Palaeonitella differed little from some present-day stoneworts.

Cladogram

There is an emerging consensus on green algal relationships, mainly based on molecular data. The Mesostigmatophyceae (including Spirotaenia, and Chlorokybophyceae) are at the base of charophytes (streptophytes). The cladograms below show consensus phylogenetic relationships based on plastid genomes and a new proposal for a third phylum of green plants based on analysis of nuclear genomes.

Consensus plastid phylogeny
Viridiplantae

Chlorophyta

Streptophyta

Mesostigmatophyceae s.l.

Klebsormidiophyceae

Charophyceae

Coleochaetophyceae

Zygnematophyceae

Embryophytes
(land plants)

(Charophyta s.l.)
Consensus relationships among major green algal lineages inferred in recent plastid phylogenomic studies
Prasinodermophyta hypothesis
Viridiplantae/
Prasinodermophyta

Palmophyllophyceae

Prasinodermophyceae

Chlorophyta

Streptophyta

Mesostigmatophyceae s.l.

Klebsormidiophyceae

Charophyceae

Coleochaetophyceae

Zygnematophyceae

Embryophytes
(land plants)

(Charophyta s.l.)
green algae
Relationships among major green algal lineages based on a recent nuclear phylogenomic study

Mesostigmatophyceae s.l. in the cladograms corresponds to a clade of a narrower circumscription, Mesostigmatophyceae s.s., and a separate class Chlorokybophyceae, as used by AlgaeBase.

The Mesostigmatophyceae are not filamentous, but the other basal charophytes (streptophytes) are.

References

  1. ^ Guiry, M.D.; Guiry, G.M. "Charophytes". AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved 2022-02-21.
  2. ^ Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–56. doi:10.3732/ajb.91.10.1535. PMID 21652308.
  3. Ruggiero, M. A.; Gordon, D. P.; Orrell, T. M.; Bailly, N.; Bourgoin, T.; Brusca, R. C.; et al. (2015). "A higher level classification of all living organisms". PLOS One. 10 (4): e0119248. Bibcode:2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521.
  4. de Vries, J; Archibald, JM (March 2018). "Plant evolution: landmarks on the path to terrestrial life". The New Phytologist. 217 (4): 1428–1434. Bibcode:2018NewPh.217.1428D. doi:10.1111/nph.14975. PMID 29318635.
  5. Del-Bem, Luiz-Eduardo (2018-05-31). "Xyloglucan evolution and the terrestrialization of green plants". New Phytologist. 219 (4): 1150–1153. Bibcode:2018NewPh.219.1150D. doi:10.1111/nph.15191. hdl:1843/36860. ISSN 0028-646X. PMID 29851097.
  6. ^ Ruhfel, Brad R.; Gitzendanner, Matthew A.; Soltis, Pamela S.; Soltis, Douglas E.; Burleigh, J. Gordon (2014-02-17). "From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes". BMC Evolutionary Biology. 14 (1): 23. Bibcode:2014BMCEE..14...23R. doi:10.1186/1471-2148-14-23. ISSN 1471-2148. PMC 3933183. PMID 24533922.
  7. Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon (2014-11-11). "Phylotranscriptomic analysis of the origin and early diversification of land plants". Proceedings of the National Academy of Sciences. 111 (45): E4859 – E4868. Bibcode:2014PNAS..111E4859W. doi:10.1073/pnas.1323926111. ISSN 0027-8424. PMC 4234587. PMID 25355905.
  8. Vries, Jan de; Stanton, Amanda; Archibald, John M.; Gould, Sven B. (2016-02-16). "Streptophyte Terrestrialization in Light of Plastid Evolution". Trends in Plant Science. 21 (6): 467–476. Bibcode:2016TPS....21..467D. doi:10.1016/j.tplants.2016.01.021. ISSN 1360-1385. PMID 26895731.
  9. Treatise on invertebrate paleontology. Part B. Protoctista 1. Volume1: Charophyta.
  10. ^ Cook, Martha E.; Graham, Linda E. (2017). "Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae". In Archibald, John M.; Simpson, Alastair G. B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Springer International Publishing. pp. 185–204. doi:10.1007/978-3-319-28149-0_36. ISBN 9783319281476.
  11. Delwiche, Charles F.; Timme, Ruth E. (2011). "Plants". Current Biology. 21 (11): R417 – R422. Bibcode:2011CBio...21.R417D. doi:10.1016/j.cub.2011.04.021. PMID 21640897.
  12. Karol, Kenneth G.; McCourt, Richard M.; Cimino, Matthew T.; Delwiche, Charles F. (2001-12-14). "The Closest Living Relatives of Land Plants". Science. 294 (5550): 2351–2353. Bibcode:2001Sci...294.2351K. doi:10.1126/science.1065156. ISSN 0036-8075. PMID 11743201. S2CID 35983109.
  13. Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–1556. doi:10.3732/ajb.91.10.1535. ISSN 1537-2197. PMID 21652308.
  14. Vaughn, K.C.; Renzaglia, K.S. (2006). "Structural and immunocytochemical characterization of the Ginkgo biloba L. sperm motility apparatus". Protoplasma. 227 (2–4): 165–73. doi:10.1007/s00709-005-0141-3. PMID 16736257. S2CID 9864200.
  15. ^ Kelman, R.; Feist, M.; Trewin, N.H.; Hass, H. (2003). "Charophyte algae from the Rhynie chert". Transactions of the Royal Society of Edinburgh: Earth Sciences. 94 (4): 445–455. doi:10.1017/s0263593300000808. S2CID 128869547.
  16. West, G.S; Fritsch, F.E. (1927). A Treatise of the British Freshwater Algae. Cambridge: Cambridge University Press.
  17. ^ Fritsch, F.E. (1935). The Structure and Reproduction of the Algae, vol I. Cambridge University Press. pp. 205–206.
  18. Bryant 2007, J. The Stoneworts (Chlorophyta, Charales) in Guiry, M.D., John, D.M., Rindi, F. and McCarthy, T.K (Ed) New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae. Royal Irish Academy. ISBN 9781904890317
  19. ^ Mikhailyuk, Tatiana; Lukešová, Alena; Glaser, Karin; Holzinger, Andreas; Obwegeser, Sabrina; Nyporko, Svetlana; Friedl, Thomas; Karsten, Ulf (2018). "New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach". Protist. 169 (3): 406–431. doi:10.1016/j.protis.2018.03.002. ISSN 1434-4610. PMC 6071840. PMID 29860113.
  20. Evolution and development of land plant embryos - GtR - UKRI
  21. Becker, B.; Marin, B. (2009). "Streptophyte algae and the origin of embryophytes". Annals of Botany. 103 (7): 999–1004. doi:10.1093/aob/mcp044. PMC 2707909. PMID 19273476.
  22. Paleobotany: The Biology and Evolution of Fossil Plants
  23. ^ Leliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012). "Phylogeny and molecular evolution of the green algae" (PDF). Critical Reviews in Plant Sciences. 31 (1): 1–46. Bibcode:2012CRvPS..31....1L. doi:10.1080/07352689.2011.615705. S2CID 17603352. Archived from the original (PDF) on 2015-06-26. Retrieved 2016-10-04.
  24. Hemsley, A.R. (1989). "The ultrastructure of the spores of the Devonian plant Parka decipiens". Annals of Botany. 64 (3): 359–367. doi:10.1093/oxfordjournals.aob.a087852.
  25. Marin, Birger (2012). "Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons". Protist. 163 (5): 778–805. doi:10.1016/j.protis.2011.11.004. PMID 22192529.
  26. Laurin-Lemay, Simon; Brinkmann, Henner; Philippe, Hervé (2012). "Origin of land plants revisited in the light of sequence contamination and missing data". Current Biology. 22 (15): R593 – R594. Bibcode:2012CBio...22.R593L. doi:10.1016/j.cub.2012.06.013. PMID 22877776.
  27. Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S.; Bhattacharya, Debashish; Karol, Kenneth G.; Fredericq, Suzanne; Zechman, Frederick W. (2016-05-09). "Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov". Scientific Reports. 6: 25367. Bibcode:2016NatSR...625367L. doi:10.1038/srep25367. ISSN 2045-2322. PMC 4860620. PMID 27157793.
  28. Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien; Dunthorn, Micah (2012-09-01). "The Revised Classification of Eukaryotes". Journal of Eukaryotic Microbiology. 59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. ISSN 1550-7408. PMC 3483872. PMID 23020233.
  29. Lemieux, Claude; Otis, Christian; Turmel, Monique (2007-01-12). "A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies". BMC Biology. 5: 2. doi:10.1186/1741-7007-5-2. ISSN 1741-7007. PMC 1781420. PMID 17222354.
  30. ^ Umen, James G. (2014-11-01). "Green Algae and the Origins of Multicellularity in the Plant Kingdom". Cold Spring Harbor Perspectives in Biology. 6 (11): a016170. doi:10.1101/cshperspect.a016170. ISSN 1943-0264. PMC 4413236. PMID 25324214.
  31. Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences. 114 (37): E7737 – E7745. Bibcode:2017PNAS..114E7737S. doi:10.1073/pnas.1620089114. PMC 5603991. PMID 28808007.
  32. Gitzendanner, Matthew A.; Soltis, Pamela S.; Wong, Gane K.-S.; Ruhfel, Brad R.; Soltis, Douglas E. (2018). "Plastid phylogenomic analysis of green plants: A billion years of evolutionary history". American Journal of Botany. 105 (3): 291–301. doi:10.1002/ajb2.1048. ISSN 0002-9122. PMID 29603143.
  33. Glass, Sarah (2021). Chloroplast Genome Evolution in the Klebsormidiophyceae and Streptofilum (MS thesis). Lehman College.
  34. ^ Turmel, Monique; Lemieux, Claude (2018), "Evolution of the Plastid Genome in Green Algae", Advances in Botanical Research, Elsevier, pp. 157–193, doi:10.1016/bs.abr.2017.11.010, ISBN 9780128134573
  35. ^ Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng; Reder, Tanja (2020). "The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants". Nature Ecology & Evolution. 4 (9): 1220–1231. Bibcode:2020NatEE...4.1220L. doi:10.1038/s41559-020-1221-7. ISSN 2397-334X. PMC 7455551. PMID 32572216.
  36. Nishiyama, Tomoaki; Sakayama, Hidetoshi; de Vries, Jan; Buschmann, Henrik; Saint-Marcoux, Denis; Ullrich, Kristian K.; Haas, Fabian B.; Vanderstraeten, Lisa; Becker, Dirk (2018). "The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization". Cell. 174 (2): 448–464.e24. doi:10.1016/j.cell.2018.06.033. ISSN 0092-8674. PMID 30007417.

External links

Taxon identifiers
Charophyta
Classification of Archaeplastida or Plantae s.l.
Domain
Archaea
Bacteria
Eukaryota
(major groups
Excavata
Diaphoretickes
Hacrobia
Cryptista
Rhizaria
Alveolata
Stramenopiles
Plants
Amorphea
Amoebozoa
Opisthokonta
Animals
Fungi
Mesomycetozoea)
Archaeplastida
Picozoa
Rhodelphidia
Rhodophyta
(red algae)
Glaucophyta
incertae sedis
Viridiplantae
or Plantae s.s.
(green algae &
land plants)
Prasinodermophyta
 Chlorophyta
Prasinophytina
Chlorophytina
Streptophyta
Phragmoplastophyta
Anydrophyta
Embryophyta
(land plants)
  • (see below↓)
Embryophytes or Plantae sensu strictissimo
Bryophytes
Marchantiophyta
(liverworts)
Anthocerotophyta
(hornworts)
Bryophyta
(mosses)
 Polysporangiophytes
†Protracheophytes*
Tracheophytes
(vascular plants)
†Paratracheophytes*
Eutracheophytes
Lycophytes
Euphyllophytes
Moniliformopses
Lignophytes
Progymnosperms*
Spermatophytes
(seed plants)
Pteridosperms*
(seed ferns)
and other extinct
seed plant groups
Acrogymnospermae
(living gymnosperms)
Angiospermae
(flowering plants)
Extant life phyla/divisions by domain
Bacteria
Archaea
Eukaryote
"Protist"
Fungi
Plant
Animal
Incertae sedisParakaryon
Categories: