Revision as of 23:13, 18 July 2014 editSmokefoot (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers74,729 edits {{Refimprove|date=April 2011}} - add general ref and mention some dianhydrides and diamines← Previous edit | Latest revision as of 13:00, 2 December 2024 edit undoSmokefoot (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers74,729 edits replace image with Poly-oxydiphenylene-pyromellitimide.svg, per talk | ||
(143 intermediate revisions by 78 users not shown) | |||
Line 1: | Line 1: | ||
{{distinguish|Polyamide}} | |||
⚫ | ] | ||
{{Use dmy dates|date=February 2020}}{{short description|Class of polymers}} | |||
⚫ | '''Polyimide''' (sometimes abbreviated '''PI''') is a ] |
||
⚫ | ] | ||
⚫ | '''Polyimide''' (sometimes abbreviated '''PI''') is a ] containing ] groups belonging to the class of ]. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, such as high temperature ]s, displays, and various military roles. A classic polyimide is ], which is produced by condensation of ] and ].<ref name=Ullmann>Wright, Walter W. and Hallden-Abberton, Michael (2002) "Polyimides" in ''Ullmann's Encyclopedia of Industrial Chemistry'', Wiley-VCH, Weinheim. {{doi|10.1002/14356007.a21_253}}</ref> | ||
==History== | |||
The first polyimide was discovered in 1908 by Bogart and Renshaw.<ref>{{Cite journal|last1=Bogert|first1=Marston Taylor|last2=Renshaw|first2=Roemer Rex|title=4-Amino-0-Phthalic Acid and Some of ITS Derivatives.1|date=1908-07-01|url=https://doi.org/10.1021/ja01949a012|journal=Journal of the American Chemical Society|volume=30|issue=7|pages=1135–1144|doi=10.1021/ja01949a012|issn=0002-7863|hdl=2027/mdp.39015067267875|hdl-access=free}}</ref> They found that ] does not melt when heated but does release water upon the formation of a high molecular weight polyimide. The first semialiphatic polyimide was prepared by Edward and Robinson by melt fusion of diamines and tetra acids or diamines and diacids/diester.<ref>{{cite patent |country=US |number= 2710853|title= Polyimides of pyromellitic acid|inventor=Edwards, W. M.; Robinson, I. M.}}</ref> | |||
However, the first polyimide of significant commercial importance - Kapton - was pioneered in the 1950s by workers at DuPont who developed a successful route for synthesis of high molecular weight polyimide involving a soluble polymer precursor. Up to today this route continues being the primary route for the production of most polyimides. Polyimides have been in ] since 1955. The field of polyimides is covered by various extensive books<ref>{{Citation|last1=Palmer|first1=Robert J.|title=Polyamides, Plastics|date=2005-01-27|url=http://doi.wiley.com/10.1002/0471238961.1612011916011213.a01.pub2|encyclopedia=Kirk-Othmer Encyclopedia of Chemical Technology|pages=1612011916011213.a01.pub2|editor-last=John Wiley & Sons, Inc.|place=Hoboken, NJ, USA|publisher=John Wiley & Sons, Inc.|language=en|doi=10.1002/0471238961.1612011916011213.a01.pub2|isbn=978-0-471-23896-6|access-date=2020-12-02|last2=Updated by Staff}}</ref><ref>{{Cite book|url=https://www.worldcat.org/oclc/34745932|title=Polyimides : fundamentals and applications|date=1996|publisher=Marcel Dekker|others=Ghosh, Malay K., Mittal, K. L., 1945-|isbn=0-8247-9466-4|location=New York|oclc=34745932}}</ref><ref>{{Cite book|url=https://www.worldcat.org/oclc/19886566|title=Polyimides|date=1990|publisher=Blackie|others=Wilson, D. (Doug), Stenzenberger, H. D. (Horst D.), Hergenrother, P. M. (Paul M.)|isbn=0-412-02181-1|location=Glasgow|oclc=19886566}}</ref> and review articles.<ref>{{Cite journal|last=Sroog|first=C.E.|date=August 1991|title=Polyimides|url=https://linkinghub.elsevier.com/retrieve/pii/007967009190010I|journal=Progress in Polymer Science|language=en|volume=16|issue=4|pages=561–694|doi=10.1016/0079-6700(91)90010-I}}</ref><ref>{{Cite journal|last=Hergenrother|first=Paul M.|date=2016-07-27|title=The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview|url=https://journals.sagepub.com/doi/10.1177/095400830301500101|journal=High Performance Polymers|volume=15|pages=3–45|language=en|doi=10.1177/095400830301500101|s2cid=93989040}}</ref> | |||
==Classification== | ==Classification== | ||
According to the composition of their main chain, polyimides can be: | According to the composition of their main chain, polyimides can be: | ||
* ] |
* ], | ||
* Semi-aromatic, | * Semi-aromatic (also referred to as ''alipharomatic''), | ||
* ]: these are the most used polyimides because of their ]. |
* ]: these are the most used polyimides because of their ]. | ||
According to the type of interactions between the main chains, polyimides can be: | According to the type of interactions between the main chains, polyimides can be: | ||
Line 16: | Line 23: | ||
* The reaction between a di] and a ] (the most used method). | * The reaction between a di] and a ] (the most used method). | ||
* The reaction between a dianhydride and a di]. | * The reaction between a dianhydride and a di]. | ||
Dianhydrides used for these materials are ], ] ]. Common diamine building blocks include ] )"DAPE"), ] ("MDA"), and 3,3�-diaminodiphenylmethane.<ref name=Ullmann/> | |||
The polymerization of a diamine and a dianhydride can be carried out by a two-step method in which a ] is prepared first, or directly by a one-step method. The two-step method is the most widely used procedure for polyimide synthesis. First a soluble poly(amidocarboxylic acid) ('''2''') is prepared which is cyclized after further processing in a second step to the polyimide ('''3'''). A two-step process is necessary because the final polyimides are in most cases infusible and insoluble due to their aromatic structure. | |||
] | |||
Dianhydrides used as precursors to these materials include pyromellitic dianhydride, ] and ]. Common diamine building blocks include ] (DAPE), ] (MDA) and 3,3'-diaminodiphenylmethane.<ref name=Ullmann/> Hundreds of diamines and dianhydrides have been examined to tune the physical and especially the processing properties of these materials. These materials tend to be insoluble and have high softening temperatures, arising from charge-transfer interactions between the planar subunits.<ref>{{cite journal|doi=10.1016/j.progpolymsci.2012.02.005|title=Advanced polyimide materials: Syntheses, physical properties and applications|journal=Progress in Polymer Science|volume=37|issue=7|pages=907–974|year=2012|last1=Liaw|first1=Der-Jang|last2=Wang|first2=Kung-Li|last3=Huang|first3=Ying-Chi|last4=Lee|first4=Kueir-Rarn|last5=Lai|first5=Juin-Yih|last6=Ha|first6=Chang-Sik}}</ref> | |||
===Analysis=== | |||
The imidization reaction can be followed via ]. The IR spectrum is characterized during the reaction by the disappearance of absorption bands of the poly(amic acid) at 3400 to 2700 cm<sup>−1</sup> (OH stretch), ~1720 and 1660 (amide C=O) and ~1535 cm<sup>−1</sup> (C-N stretch). At the same time, the appearance of the characteristic imide bands can be observed, at ~1780 (C=O asymm), ~1720 (C=O symm), ~1360 (C-N stretch) and ~1160 and 745 cm<sup>−1</sup> (imide ring deformation).<ref>K. Faghihi, J. Appl. Polym. Sci., 2006, 102, 5062–5071. Y. Kung and S. Hsiao, J. Mater. Chem., 2011, 1746–1754. L. Burakowski, M. Leali and M. Angelo, Mater. Res., 2010, 13, 245–252.</ref> Detailed analyses of polyimide<ref>{{Cite journal |last1=Kato |first1=Tomofumi |last2=Yamada |first2=Yasuhiro |last3=Nishikawa |first3=Yasushi |last4=Ishikawa |first4=Hiroki |last5=Sato |first5=Satoshi |date=2021-06-30 |title=Carbonization mechanisms of polyimide: Methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons |url=https://www.sciencedirect.com/science/article/pii/S0008622321002839 |journal=Carbon |language=en |volume=178 |pages=58–80 |doi=10.1016/j.carbon.2021.02.090 |s2cid=233539984 |issn=0008-6223}}</ref> and carbonized polyimide<ref>{{Cite journal |last1=Kato |first1=Tomofumi |last2=Yamada |first2=Yasuhiro |last3=Nishikawa |first3=Yasushi |last4=Ishikawa |first4=Hiroki |last5=Sato |first5=Satoshi |date=2021-06-30 |title=Carbonization mechanisms of polyimide: Methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons |url=https://www.sciencedirect.com/science/article/pii/S0008622321002839 |journal=Carbon |language=en |volume=178 |pages=58–80 |doi=10.1016/j.carbon.2021.02.090 |s2cid=233539984 |issn=0008-6223}}</ref> and graphitized polyimide<ref>{{Cite journal |last1=Kato |first1=Tomofumi |last2=Yamada |first2=Yasuhiro |last3=Nishikawa |first3=Yasushi |last4=Otomo |first4=Toshiya |last5=Sato |first5=Hayato |last6=Sato |first6=Satoshi |date=2021-10-01 |title=Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine? |journal=Journal of Materials Science |language=en |volume=56 |issue=28 |pages=15798–15811 |doi=10.1007/s10853-021-06283-5 |bibcode=2021JMatS..5615798K |s2cid=235793266 |issn=1573-4803|doi-access=free }}</ref> have been reported. | |||
==Properties== | ==Properties== | ||
Thermosetting polyimides are known for thermal stability, good chemical resistance, excellent mechanical properties, and characteristic orange/yellow color. Polyimides compounded with ] or ] reinforcements have flexural |
Thermosetting polyimides are known for thermal stability, good chemical resistance, excellent mechanical properties, and characteristic orange/yellow color. Polyimides compounded with ] or ] reinforcements have ]s of up to {{convert|340|MPa|psi|abbr=on}} and ] of {{convert|21000|MPa|psi|abbr=on}}. ] polyimides exhibit very low ] and high ]. These properties are maintained during continuous use to temperatures of up to {{convert|232|C|F}} and for short excursions, as high as {{convert|704|C|F}}.<ref>. proofresearchacd.com</ref> Molded polyimide parts and laminates have very good heat resistance. Normal ]s for such parts and laminates range from cryogenic to those exceeding {{convert|260|C|F}}. Polyimides are also inherently resistant to flame combustion and do not usually need to be mixed with ]s. Most carry a ] of VTM-0. Polyimide laminates have a flexural strength half life at {{convert|249|C|F}} of 400 hours. | ||
Typical polyimide parts are not affected by commonly used solvents and oils |
Typical polyimide parts are not affected by commonly used solvents and oils – including hydrocarbons, esters, ethers, alcohols and ]s. They also resist weak acids but are not recommended for use in environments that contain alkalis or inorganic acids. Some polyimides, such as CP1 and CORIN XLS, are solvent-soluble and exhibit high optical clarity. The solubility properties lend them towards spray and low temperature cure applications. | ||
==Applications== | ==Applications== | ||
]s made of Kapton foil, thickness approx. 0.05 mm]] | |||
⚫ | Polyimide materials are lightweight, flexible, resistant to heat and chemicals. Therefore, they are used in the electronics industry for flexible cables |
||
] | |||
=== Insulation and passivation films=== | |||
⚫ | |||
⚫ | Polyimide materials are lightweight, flexible, resistant to heat and chemicals. Therefore, they are used in the ] for flexible cables and as an insulating film on ]. For example, in a laptop computer, the cable that connects the main logic board to the display (which must flex every time the laptop is opened or closed) is often a polyimide base with copper conductors. Examples of polyimide films include Apical, ], ], VTEC PI, Norton TH and Kaptrex. | ||
] | |||
Polyimide is used to coat ] for medical or high temperature applications.<ref>{{Cite book|doi=10.1117/12.2210957|chapter=Mechanical properties of polyimide coated optical fibers at elevated temperatures|title=Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI|volume=9702|pages=97020Y|year=2016|last1=Huang|first1=Lei|last2=Dyer|first2=Robert S.|last3=Lago|first3=Ralph J.|last4=Stolov|first4=Andrei A.|last5=Li|first5=Jie|s2cid=123400822|editor1-first=Israel|editor1-last=Gannot}}</ref> | |||
⚫ | An additional use of polyimide resin is as an insulating and passivation<ref> |
||
⚫ | An additional use of polyimide resin is as an insulating and ]<ref>{{cite journal|doi=10.1023/A:1012802117916|year=2001|last1=Jiang|first1=Jiann-Shan|journal=Journal of Materials Science: Materials in Electronics|volume=12|issue=11|pages=655–659|title=The effect of polyimide passivation on the electromigration of Cu multilayer interconnections|last2=Chiou|first2=Bi-Shiou|s2cid=136747058}}</ref> layer in the manufacture of ]s and ]s. The polyimide layers have good mechanical elongation and tensile strength, which also helps the adhesion between the polyimide layers or between polyimide layer and deposited metal layer. The minimum interaction between the gold film and the polyimide film, coupled with high temperature stability of the polyimide film, results in a system that provides reliable insulation when subjected to various types of environmental stresses.<ref>Krakauer, David (December 2006) . analog.com</ref><ref>Chen, Baoxing. . analog.com</ref> Polyimide is also used as a substrate for cellphone antennas.<ref>{{Cite web|url=https://appleinsider.com/articles/17/12/02/apple-to-adopt-speedy-lcp-circuit-board-tech-across-major-product-lines-in-2018|title = Apple to adopt speedy LCP circuit board tech across major product lines in 2018}}</ref> | ||
⚫ | Polyimide powder can be used to produce parts and shapes by sintering technologies ( |
||
Multi-layer insulation used on ] is usually made of polyimide coated with thin layers of ], silver, gold, or germanium. The gold-colored material often seen on the outside of spacecraft is typically actually single aluminized polyimide, with the single layer of aluminum facing in.<ref>{{cite web|title=Thermal Control Overview|url=http://www.sheldahl.com/Documents/Aerospace/Thermal%20Control%20Overview.pdf|website=Sheldahl Multi Layer Insulation|access-date=28 December 2015}}</ref> The yellowish-brown polyimide gives the surface its gold-like color. | |||
⚫ | In coal-fired power plants, waste incinerators or cement plants, polyimide fibres are used to filter hot gases. In this application, a polyimide needle felt separates dust and particulate matter from the exhaust gas. | ||
=== Mechanical parts === | |||
⚫ | Polyimide is also the most common material used for the reverse osmotic film in purification of water, or the concentration of dilute materials from water, such as maple syrup production.<ref>http://www.wisegeek.net/what-is-a-reverse-osmosis-water-softener.htm |
||
⚫ | Polyimide powder can be used to produce parts and shapes by sintering technologies (hot compression molding, direct forming, and isostatic pressing). Because of their high mechanical stability even at elevated temperatures they are used as bushings, bearings, sockets or constructive parts in demanding applications. To improve ] properties, compounds with solid lubricants like ], ], or ] are common. Polyimide parts and shapes include P84 NT, VTEC PI, Meldin, ], and Plavis. | ||
=== Filters === | |||
⚫ | The ] solar sailing spacecraft uses polyimide resin sails to operate without rocket engines.<ref>{{ |
||
⚫ | In coal-fired power plants, waste incinerators, or cement plants, polyimide fibres are used to filter hot gases. In this application, a polyimide needle felt separates dust and particulate matter from the ]. | ||
⚫ | Polyimide is also the most common material used for the reverse osmotic film in purification of water, or the concentration of dilute materials from water, such as maple syrup production.<ref> wisegeek.net</ref><ref>Shuey, Harry F. and Wan, Wankei (22 December 1983) {{US Patent|4532041}} Asymmetric polyimide reverse osmosis membrane, method for preparation of same and use thereof for organic liquid separations.</ref> | ||
=== Flexible circuits === | |||
{{Main|Flexible electronics}} | |||
Polyimide is used as the core of flexible circuit boards and flat-flex cables. Flexible circuit boards are thin and can be placed in odd-shaped electronics.<ref>{{Cite web |last=MCL |date=2017-06-13 |title=What is the Difference between FR4 and Polyamide PCB |url=https://www.mclpcb.com/blog/polyimide-pcb-material-information-fr4-vs-polyamide-pcb/ |access-date=2023-09-04 |website=mcl |language=en-US}}</ref> | |||
=== Other === | |||
Polyimide is used for medical tubing, e.g. vascular ], for its burst pressure resistance combined with flexibility and chemical resistance. | |||
The semiconductor industry uses polyimide as a high-temperature ]; it is also used as a mechanical stress buffer. | |||
⚫ | Some polyimide can be used like a ]; both "positive" and "negative" types of photoresist-like polyimide exist in the market. | ||
⚫ | The ] ] spacecraft uses polyimide resin sails to operate without rocket engines.<ref>{{cite magazine|last = Courtland |first = Rachel |magazine = The New Scientist | title = Maiden voyage for first true space sail |date = 10 May 2010 |url = https://www.newscientist.com/article/mg20627603.800-maiden-voyage-for-first-true-space-sail.html | access-date = 11 June 2010}}</ref> | ||
==See also== | ==See also== | ||
* |
*{{annotated link|Polyamide}} | ||
* |
*{{annotated link|Polyamide-imide}} | ||
* |
*{{annotated link|Polymerization}} | ||
==References== | ==References== | ||
Line 47: | Line 83: | ||
==Further reading== | ==Further reading== | ||
*Modern Plastic Mid-October Encyclopedia Issue, Polyimide, thermoset, |
*Modern Plastic Mid-October Encyclopedia Issue, Polyimide, thermoset, p. 146. | ||
* (Chapter 1). | |||
==External links== | ==External links== | ||
* , ] | * , ] | ||
{{Plastics}} | {{Plastics}} | ||
{{Use dmy dates|date=October 2010}} | |||
<!---Place all category tags here--> | |||
⚫ | ] | ||
] | |||
] | ] | ||
⚫ | ] | ||
] | ] | ||
] | ] |
Latest revision as of 13:00, 2 December 2024
Not to be confused with Polyamide. Class of polymersPolyimide (sometimes abbreviated PI) is a polymer containing imide groups belonging to the class of high-performance plastics. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, such as high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline.
History
The first polyimide was discovered in 1908 by Bogart and Renshaw. They found that 4-amino phthalic anhydride does not melt when heated but does release water upon the formation of a high molecular weight polyimide. The first semialiphatic polyimide was prepared by Edward and Robinson by melt fusion of diamines and tetra acids or diamines and diacids/diester.
However, the first polyimide of significant commercial importance - Kapton - was pioneered in the 1950s by workers at DuPont who developed a successful route for synthesis of high molecular weight polyimide involving a soluble polymer precursor. Up to today this route continues being the primary route for the production of most polyimides. Polyimides have been in mass production since 1955. The field of polyimides is covered by various extensive books and review articles.
Classification
According to the composition of their main chain, polyimides can be:
- Aliphatic,
- Semi-aromatic (also referred to as alipharomatic),
- Aromatic: these are the most used polyimides because of their thermostability.
According to the type of interactions between the main chains, polyimides can be:
- Thermoplastic: very often called pseudothermoplastic.
- Thermosetting: commercially available as uncured resins, polyimide solutions, stock shapes, thin sheets, laminates and machined parts.
Synthesis
Several methods are possible to prepare polyimides, among them:
- The reaction between a dianhydride and a diamine (the most used method).
- The reaction between a dianhydride and a diisocyanate.
The polymerization of a diamine and a dianhydride can be carried out by a two-step method in which a poly(amidocarboxylic acid) is prepared first, or directly by a one-step method. The two-step method is the most widely used procedure for polyimide synthesis. First a soluble poly(amidocarboxylic acid) (2) is prepared which is cyclized after further processing in a second step to the polyimide (3). A two-step process is necessary because the final polyimides are in most cases infusible and insoluble due to their aromatic structure.
Dianhydrides used as precursors to these materials include pyromellitic dianhydride, benzoquinonetetracarboxylic dianhydride and naphthalene tetracarboxylic dianhydride. Common diamine building blocks include 4,4'-diaminodiphenyl ether (DAPE), meta-phenylenediamine (MDA) and 3,3'-diaminodiphenylmethane. Hundreds of diamines and dianhydrides have been examined to tune the physical and especially the processing properties of these materials. These materials tend to be insoluble and have high softening temperatures, arising from charge-transfer interactions between the planar subunits.
Analysis
The imidization reaction can be followed via IR spectroscopy. The IR spectrum is characterized during the reaction by the disappearance of absorption bands of the poly(amic acid) at 3400 to 2700 cm (OH stretch), ~1720 and 1660 (amide C=O) and ~1535 cm (C-N stretch). At the same time, the appearance of the characteristic imide bands can be observed, at ~1780 (C=O asymm), ~1720 (C=O symm), ~1360 (C-N stretch) and ~1160 and 745 cm (imide ring deformation). Detailed analyses of polyimide and carbonized polyimide and graphitized polyimide have been reported.
Properties
Thermosetting polyimides are known for thermal stability, good chemical resistance, excellent mechanical properties, and characteristic orange/yellow color. Polyimides compounded with graphite or glass fiber reinforcements have flexural strengths of up to 340 MPa (49,000 psi) and flexural moduli of 21,000 MPa (3,000,000 psi). Thermoset polymer matrix polyimides exhibit very low creep and high tensile strength. These properties are maintained during continuous use to temperatures of up to 232 °C (450 °F) and for short excursions, as high as 704 °C (1,299 °F). Molded polyimide parts and laminates have very good heat resistance. Normal operating temperatures for such parts and laminates range from cryogenic to those exceeding 260 °C (500 °F). Polyimides are also inherently resistant to flame combustion and do not usually need to be mixed with flame retardants. Most carry a UL rating of VTM-0. Polyimide laminates have a flexural strength half life at 249 °C (480 °F) of 400 hours.
Typical polyimide parts are not affected by commonly used solvents and oils – including hydrocarbons, esters, ethers, alcohols and freons. They also resist weak acids but are not recommended for use in environments that contain alkalis or inorganic acids. Some polyimides, such as CP1 and CORIN XLS, are solvent-soluble and exhibit high optical clarity. The solubility properties lend them towards spray and low temperature cure applications.
Applications
Insulation and passivation films
Polyimide materials are lightweight, flexible, resistant to heat and chemicals. Therefore, they are used in the electronics industry for flexible cables and as an insulating film on magnet wire. For example, in a laptop computer, the cable that connects the main logic board to the display (which must flex every time the laptop is opened or closed) is often a polyimide base with copper conductors. Examples of polyimide films include Apical, Kapton, UPILEX, VTEC PI, Norton TH and Kaptrex.
Polyimide is used to coat optical fibers for medical or high temperature applications.
An additional use of polyimide resin is as an insulating and passivation layer in the manufacture of Integrated circuits and MEMS chips. The polyimide layers have good mechanical elongation and tensile strength, which also helps the adhesion between the polyimide layers or between polyimide layer and deposited metal layer. The minimum interaction between the gold film and the polyimide film, coupled with high temperature stability of the polyimide film, results in a system that provides reliable insulation when subjected to various types of environmental stresses. Polyimide is also used as a substrate for cellphone antennas.
Multi-layer insulation used on spacecraft is usually made of polyimide coated with thin layers of aluminum, silver, gold, or germanium. The gold-colored material often seen on the outside of spacecraft is typically actually single aluminized polyimide, with the single layer of aluminum facing in. The yellowish-brown polyimide gives the surface its gold-like color.
Mechanical parts
Polyimide powder can be used to produce parts and shapes by sintering technologies (hot compression molding, direct forming, and isostatic pressing). Because of their high mechanical stability even at elevated temperatures they are used as bushings, bearings, sockets or constructive parts in demanding applications. To improve tribological properties, compounds with solid lubricants like graphite, PTFE, or molybdenum sulfide are common. Polyimide parts and shapes include P84 NT, VTEC PI, Meldin, Vespel, and Plavis.
Filters
In coal-fired power plants, waste incinerators, or cement plants, polyimide fibres are used to filter hot gases. In this application, a polyimide needle felt separates dust and particulate matter from the exhaust gas.
Polyimide is also the most common material used for the reverse osmotic film in purification of water, or the concentration of dilute materials from water, such as maple syrup production.
Flexible circuits
Main article: Flexible electronicsPolyimide is used as the core of flexible circuit boards and flat-flex cables. Flexible circuit boards are thin and can be placed in odd-shaped electronics.
Other
Polyimide is used for medical tubing, e.g. vascular catheters, for its burst pressure resistance combined with flexibility and chemical resistance.
The semiconductor industry uses polyimide as a high-temperature adhesive; it is also used as a mechanical stress buffer.
Some polyimide can be used like a photoresist; both "positive" and "negative" types of photoresist-like polyimide exist in the market.
The IKAROS solar sailing spacecraft uses polyimide resin sails to operate without rocket engines.
See also
- Polyamide – Macromolecule with repeating units linked by amide bonds
- Polyamide-imide – Class of polymers
- Polymerization – Chemical reaction to form polymer chains
References
- ^ Wright, Walter W. and Hallden-Abberton, Michael (2002) "Polyimides" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a21_253
- Bogert, Marston Taylor; Renshaw, Roemer Rex (1 July 1908). "4-Amino-0-Phthalic Acid and Some of ITS Derivatives.1". Journal of the American Chemical Society. 30 (7): 1135–1144. doi:10.1021/ja01949a012. hdl:2027/mdp.39015067267875. ISSN 0002-7863.
- US 2710853, Edwards, W. M.; Robinson, I. M., "Polyimides of pyromellitic acid"
- Palmer, Robert J.; Updated by Staff (27 January 2005), "Polyamides, Plastics", in John Wiley & Sons, Inc. (ed.), Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 1612011916011213.a01.pub2, doi:10.1002/0471238961.1612011916011213.a01.pub2, ISBN 978-0-471-23896-6, retrieved 2 December 2020
- Polyimides : fundamentals and applications. Ghosh, Malay K., Mittal, K. L., 1945-. New York: Marcel Dekker. 1996. ISBN 0-8247-9466-4. OCLC 34745932.
{{cite book}}
: CS1 maint: others (link) - Polyimides. Wilson, D. (Doug), Stenzenberger, H. D. (Horst D.), Hergenrother, P. M. (Paul M.). Glasgow: Blackie. 1990. ISBN 0-412-02181-1. OCLC 19886566.
{{cite book}}
: CS1 maint: others (link) - Sroog, C.E. (August 1991). "Polyimides". Progress in Polymer Science. 16 (4): 561–694. doi:10.1016/0079-6700(91)90010-I.
- Hergenrother, Paul M. (27 July 2016). "The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview". High Performance Polymers. 15: 3–45. doi:10.1177/095400830301500101. S2CID 93989040.
- Liaw, Der-Jang; Wang, Kung-Li; Huang, Ying-Chi; Lee, Kueir-Rarn; Lai, Juin-Yih; Ha, Chang-Sik (2012). "Advanced polyimide materials: Syntheses, physical properties and applications". Progress in Polymer Science. 37 (7): 907–974. doi:10.1016/j.progpolymsci.2012.02.005.
- K. Faghihi, J. Appl. Polym. Sci., 2006, 102, 5062–5071. Y. Kung and S. Hsiao, J. Mater. Chem., 2011, 1746–1754. L. Burakowski, M. Leali and M. Angelo, Mater. Res., 2010, 13, 245–252.
- Kato, Tomofumi; Yamada, Yasuhiro; Nishikawa, Yasushi; Ishikawa, Hiroki; Sato, Satoshi (30 June 2021). "Carbonization mechanisms of polyimide: Methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons". Carbon. 178: 58–80. doi:10.1016/j.carbon.2021.02.090. ISSN 0008-6223. S2CID 233539984.
- Kato, Tomofumi; Yamada, Yasuhiro; Nishikawa, Yasushi; Ishikawa, Hiroki; Sato, Satoshi (30 June 2021). "Carbonization mechanisms of polyimide: Methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons". Carbon. 178: 58–80. doi:10.1016/j.carbon.2021.02.090. ISSN 0008-6223. S2CID 233539984.
- Kato, Tomofumi; Yamada, Yasuhiro; Nishikawa, Yasushi; Otomo, Toshiya; Sato, Hayato; Sato, Satoshi (1 October 2021). "Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?". Journal of Materials Science. 56 (28): 15798–15811. Bibcode:2021JMatS..5615798K. doi:10.1007/s10853-021-06283-5. ISSN 1573-4803. S2CID 235793266.
- P2SI 900HT Tech Sheet. proofresearchacd.com
- Huang, Lei; Dyer, Robert S.; Lago, Ralph J.; Stolov, Andrei A.; Li, Jie (2016). "Mechanical properties of polyimide coated optical fibers at elevated temperatures". In Gannot, Israel (ed.). Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI. Vol. 9702. pp. 97020Y. doi:10.1117/12.2210957. S2CID 123400822.
- Jiang, Jiann-Shan; Chiou, Bi-Shiou (2001). "The effect of polyimide passivation on the electromigration of Cu multilayer interconnections". Journal of Materials Science: Materials in Electronics. 12 (11): 655–659. doi:10.1023/A:1012802117916. S2CID 136747058.
- Krakauer, David (December 2006) Digital Isolation Offers Compact, Low-Cost Solutions to Challenging Design Problems. analog.com
- Chen, Baoxing. iCoupler Products with isoPower Technology: Signal and Power Transfer Across Isolation Barrier Using Microtransformers. analog.com
- "Apple to adopt speedy LCP circuit board tech across major product lines in 2018".
- "Thermal Control Overview" (PDF). Sheldahl Multi Layer Insulation. Retrieved 28 December 2015.
- What is a reverse osmosis water softener? wisegeek.net
- Shuey, Harry F. and Wan, Wankei (22 December 1983) U.S. patent 4,532,041 Asymmetric polyimide reverse osmosis membrane, method for preparation of same and use thereof for organic liquid separations.
- MCL (13 June 2017). "What is the Difference between FR4 and Polyamide PCB". mcl. Retrieved 4 September 2023.
- Courtland, Rachel (10 May 2010). "Maiden voyage for first true space sail". The New Scientist. Retrieved 11 June 2010.
Further reading
- Modern Plastic Mid-October Encyclopedia Issue, Polyimide, thermoset, p. 146.
- Varun Ratta: POLYIMIDES: Chemistry & structure-property relationships – literature review (Chapter 1).