Revision as of 13:17, 3 August 2014 editProkaryotes (talk | contribs)Extended confirmed users17,246 edits improve← Previous edit | Latest revision as of 19:41, 13 December 2024 edit undoHeadbomb (talk | contribs)Edit filter managers, Autopatrolled, Extended confirmed users, Page movers, File movers, New page reviewers, Pending changes reviewers, Rollbackers, Template editors454,506 edits →Eruption: | Altered template type. Add: chapter-url, chapter, title. Removed or converted URL. | Use this tool. Report bugs. | #UCB_Gadget | ||
(289 intermediate revisions by more than 100 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Very large volume eruption of basalt lava}} | |||
] in the US showing multiple flood basalt flows of the ]. The upper basalt is Roza Member, while the lower ] exposes Frenchmen Springs Member basalt]] | |||
] in the US showing multiple flood basalt flows of the ]. The upper basalt is Roza Member, while the lower ] exposes Frenchmen Springs Member basalt]] | |||
A '''flood basalt''' (or '''plateau basalt'''<ref name=Jackson1997fb>{{cite book |editor1-last=Jackson |editor1-first=Julia A. |title=Glossary of geology. |date=1997 |publisher=American Geological Institute |location=Alexandria, Virginia |isbn=0922152349 |edition=Fourth |chapter=flood basalt}}</ref>) is the result of a giant ] or series of ]s that covers large stretches of land or the ] floor with ] ]. Many flood basalts have been attributed to the onset of a ] reaching the surface of the Earth via a ].<ref name="RichardsDucan1989">{{Cite journal |author=Mark A. Richards |author2=Robert A. Duncan |author3=Vincent E. Courtillot |year=1989 |title=Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails |journal=Science Magazine |volume=246 |issue=4926 |pages=103–107 |bibcode=1989Sci...246..103R |doi=10.1126/science.246.4926.103 |pmid=17837768 |s2cid=9147772}}</ref> ] such as the ] of India are often called '']'', after the Swedish word ''trappa'' (meaning "staircase"), due to the characteristic stairstep ] of many associated landscapes. | |||
A '''flood basalt''' is the result of a giant ] or series of ]s that coats large stretches of land or the ] floor with ] ]. Flood basalt provinces are often called ''']''', which derives from the characteristic stairstep morphology of many associated landscapes. Eleven distinct flood basalt episodes occurred in the past 250 million years, resulting in ]s, creating ]s and ]s on Earth.<ref>{{cite journal|url=http://www.sciencemag.org/content/241/4866/663 http://pubs.giss.nasa.gov/docs/1988/1988_Rampino_Stothers_1.pdf|authors=Michael R. Rampino & Richard B. Stothers|title=Flood Basalt Volcanism During the Past 250 Million Years|doi=10.1126/science.241.4866.663|year=1988|journal=Science|volume=241|issue=4866|pages=663-668}}</ref> Large igneous provinces have been connected to five ] events. The timing of six out of eleven known provinces coincide with episodes of ] and marine ]/dysoxia. Thus, suggesting that volcanic CO2 emissions can force an important effect on the ].<ref>{{cite journal|url=http://www.sciencedirect.com/science/article/pii/S0012825200000374|author=P.B. Wignall|title=Large igneous provinces and mass extinctions|doi=10.1016/S0012-8252(00)00037-4|year=2001|journal=Earth-Science Reviews|volume=53|issue=1-2|pages=1-33}}</ref> | |||
] and ] (1988) cited eleven distinct flood basalt episodes occurring in the past 250 million years, creating ]s, ]s, and ]s.<ref>{{cite journal |author=Michael R. Rampino |author2=Richard B. Stothers|title=Flood Basalt Volcanism During the Past 250 Million Years|doi=10.1126/science.241.4866.663|year=1988|journal=Science|volume=241|issue=4866|pages=663–668|pmid=17839077|bibcode=1988Sci...241..663R|s2cid=33327812|url=https://zenodo.org/record/1230982}} {{dead link|date=June 2021|bot=medic}}{{cbignore|bot=medic}}</ref> However, more have been recognized such as the large ],<ref>{{cite journal|title=The Ontong Java Plateau|author1=Neal, C.|author2=Mahoney, J.|author3=Kroenke, L.|url=http://www3.nd.edu/~icpmslab/pdfs/OJP_Paper.pdf|year=1997|journal=Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophysical Monograph 100|url-status=dead|archive-url=https://web.archive.org/web/20170101204714/http://www3.nd.edu/~icpmslab/pdfs/OJP_Paper.pdf|archive-date=2017-01-01}}</ref> and the ], though the latter may be linked to the ]. | |||
== Formation == | |||
One proposed explanation for flood basalts is that they are caused by the combination of ] and its associated ], in conjunction with a ] also undergoing decompression melting, producing vast quantities of a ]ic ]. These have a very low ], which is why they 'flood' rather than form taller ]es. Another explanation is that they result from the release, over a short time period, of melt that has accumulated in the mantle over a long time period.<ref name=Foulger>{{cite book |title=Plates vs. Plumes: A Geological Controversy |author=Foulger, G.R. |url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-1405161485.html |year=2010 |isbn=978-1-4051-6148-0 |publisher=Wiley-Blackwell}}</ref> | |||
Large igneous provinces have been connected to five ] events,<ref name="VolumeRateCO2">{{cite journal |last1=Jiang |first1=Qiang |last2=Jourdan |first2=Fred |last3=Olierook |first3=Hugo K. H. |last4=Merle |first4=Renaud E. |last5=Bourdet |first5=Julien |last6=Fougerouse |first6=Denis |last7=Godel |first7=Belinda |last8=Walker |first8=Alex T. |date=25 July 2022 |title=Volume and rate of volcanic {{CO2}} emissions governed the severity of past environmental crises |journal=] |volume=119 |issue=31 |pages=e2202039119 |doi=10.1073/pnas.2202039119 |doi-access=free |pmid=35878029 |pmc=9351498 |bibcode=2022PNAS..11902039J }}</ref> and may be associated with ] impacts.<ref>{{Cite journal | doi = 10.1016/0031-9201(93)90011-W| title = A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism| journal = Physics of the Earth and Planetary Interiors| volume = 76| issue = 3–4| pages = 189| year = 1993| last1 = Negi | first1 = J. G. | last2 = Agrawal | first2 = P. K. | last3 = Pandey | first3 = O. P. | last4 = Singh | first4 = A. P. |bibcode = 1993PEPI...76..189N }}</ref> | |||
The ] of central ], the ], and the ] of western ] are three regions covered by prehistoric flood basalts. The largest and best-preserved continental flood basalt terrain on Earth is part of the ] in ].<ref></ref> The ] on the ] are additional, even more extensive, flood basalts. Flood basalts on the ] produce ]s. | |||
==Description== | |||
The surface covered by one eruption can vary from around 200,000 km² (]) to 1,500,000 km² (Siberian Traps). The thickness can vary from 2000 metres (Deccan Traps) to 12,000 m {{Citation needed|date=July 2007}} (]). These are smaller than the original ]s due to ]. | |||
] basalt]] | |||
], ]: ''''</ref>]] | |||
Flood basalts are the most voluminous of all ],<ref>{{cite book |last1=Philpotts |first1=Anthony R. |last2=Ague |first2=Jay J. |title=Principles of igneous and metamorphic petrology |date=2009 |publisher=Cambridge University Press |location=Cambridge, UK |isbn=9780521880060 |edition=2nd |page=52}}</ref> forming enormous deposits of ] rock<ref name=Jackson1997>{{cite book |editor1-last=Jackson |editor1-first=Julia A. |title=Glossary of geology. |date=1997 |publisher=American Geological Institute |location=Alexandria, Virginia |isbn=0922152349 |edition=Fourth |chapter=plateau basalt}}</ref><ref name=Allaby2013>{{cite book |last1=Allaby |first1=Michael |title=A dictionary of geology and earth sciences |date=2013 |publisher=Oxford University Press |location=Oxford |isbn=9780199653065 |edition=Fourth |chapter=flood basalt}}</ref> found throughout the geologic record.<ref name=Jackson1997/>{{sfn|Philpotts|Ague|2009|p=380}} They are a highly distinctive form of ],<ref>{{cite book |last1=Schmincke |first1=Hans-Ulrich |title=Volcanism |date=2003 |publisher=Springer |location=Berlin |isbn=978-3-540-43650-8 |page=107}}</ref> set apart from all other forms of volcanism by the huge volumes of lava erupted in geologically short time intervals. A single flood basalt province may contain hundreds of thousands of cubic kilometers of basalt erupted over less than a million years, with individual events each erupting hundreds of cubic kilometers of basalt.{{sfn|Philpotts|Ague|2009|p=380}} This highly fluid basalt lava can spread laterally for hundreds of kilometers from its source vents,{{sfn|Philpotts|Ague|2009|p=53}} covering areas of tens of thousands of square kilometers.{{sfn|Schmincke|2003|p=107}} Successive eruptions form thick accumulations of nearly horizontal flows, erupted in rapid succession over vast areas, flooding the Earth's surface with lava on a regional scale.<ref name=Jackson1997/>{{sfn|Philpotts|Ague|2009|p=52}} | |||
==Petrography== | |||
] basalt]] | |||
Flood basalts have tholeiite and ] compositions (according to the classification of ] and ]). The composition of the basalts from the ] is fairly typical of that of flood basalts; it contains ]s occupying around 25] of the volume of rock, trapped in ]. These phenocrysts are ] (] and ]), ]s, opaque ]s such as ] or ], and occasionally some olivine. Sometimes more differentiated volcanic products such as ]s, ]s and ]s have been observed, but only in small quantities at the top of former ]s. | |||
These vast accumulations of flood basalt constitute ]s. These are characterized by plateau landforms, so that flood basalts are also described as ''plateau basalts''. Canyons cut into the flood basalts by erosion display stair-like slopes, with the lower parts of flows forming cliffs and the upper part of flows or ] layers of sediments forming slopes. These are known in Dutch as ''trap'' or in Swedish as ''trappa'', which has come into English as ''trap rock'', a term particularly used in the quarry industry.{{sfn|Philpotts|Ague|2009|p=52}}{{sfn|Schmincke|2003|p=108}} | |||
==Structures== | |||
Subaerial flood basalts can be of two kinds : | |||
* with a smooth or twisted surface : very compact surface; ] (gas bubbles) are rare. ] was easy (magma maintained at a high ] and more ] in a chamber of a size such that confining ]s did not confine gases to the melt before expulsion). Such lava flows may form ]s; when degassing fractures and conduits are present, very large flows may reach the surface. | |||
* with a chaotic surface : the basalt flood is very rich in bubbles of gas, with an irregular, fragmental surface. Degassing was difficult (less fluid magma expelled from a rift with no chance of progressive expansion in a hot chamber; the degassing took place closer to the surface where the flow forms a crust which cracks under the pressure of the gases in the flow itself and during more rapid cooling). | |||
In the ] in ], France, there is a good example of chaotic lava flow, produced by eruptions from ] and ]. | |||
The great thickness of the basalt accumulations, often in excess of {{convert|1000|m|sigfig=1|sp=us}},{{sfn|Schmincke|2003|p=108}} usually reflects a very large number of thin flows, varying in thickness from meters to tens of meters, or more rarely to {{convert|100|m||sp=us}}. There are occasionally very thick individual flows. The world's thickest basalt flow may be the Greenstone flow of the ] of ], US, which is {{convert|600|m||sp=us}} thick. This flow may have been part of a lava lake the size of ].{{sfn|Philpotts|Ague|2009|p=53}} | |||
At depth, flows can crystallise more slowly, producing ]. | |||
Deep erosion of flood basalts exposes vast numbers of parallel dikes that fed the eruptions.{{sfn|Philpotts|Ague|2009|p=57}} Some individual dikes in the ] are over {{convert|100|km|sigfig=1|sp=us}} long.{{sfn|Schmincke|2003|p=108}} In some cases, erosion exposes radial sets of dikes with diameters of several thousand kilometers.{{sfn|Philpotts|Ague|2009|p=380}} Sills may also be present beneath flood basalts, such as the ] of ], US. The sheet intrusions (dikes and sills) beneath flood basalts are typically ] that closely matches the composition of the overlying flood basalts. In some cases, the chemical signature allows individual dikes to be connected with individual flows.{{sfn|Philpotts|Ague|2009|pp=381-382}} | |||
==Geochemistry== | |||
], ], ]]] | |||
] analysis of the major ]s reveals a composition close to that of ] basalts (]) but also close to that of ]s (OIB). These are in fact ]s with a ] percentage close to 50%. | |||
===Smaller-scale features=== | |||
Two kinds of basaltic floods basalts can be distinguished : | |||
Flood basalt commonly displays ], formed as the rock cooled and contracted after solidifying from the lava. The rock fractures into columns, typically with five to six sides, parallel to the direction of heat flow out of the rock. This is generally perpendicular to the upper and lower surfaces, but rainwater infiltrating the rock unevenly can produce "cold fingers" of distorted columns. Because heat flow out of the base of the flow is slower than from its upper surface, the columns are more regular and larger in the bottom third of the flow. The greater hydrostatic pressure, due to the weight of overlying rock, also contributes to making the lower columns larger. By analogy with Greek temple architecture, the more regular lower columns are described as the ''colonnade'' and the more irregular upper fractures as the ''entablature'' of the individual flow. Columns tend to be larger in thicker flows, with columns of the very thick Greenstone flow, mentioned earlier, being around {{convert|10|m|sigfig=1|sp=us}} thick.{{sfn|Philpotts|Ague|2009|p=55}} | |||
*those poor in P<sub>2</sub>O<sub>5</sub> and in TiO<sub>2</sub>, called ] (low ] and ]) | |||
*those rich in P<sub>2</sub>O<sub>5</sub> and in TiO<sub>2</sub>, called ] (high phosphorus and titanium) | |||
Another common small-scale feature of flood basalts is ''pipe-stem vesicles''. Flood basalt lava cools quite slowly, so that dissolved gases in the lava have time to come out of solution as bubbles (vesicles) that float to the top of the flow. Most of the rest of the flow is massive and free of vesicles. However, the more rapidly cooling lava close to the base of the flow forms a thin ] of glassy rock, and the more rapidly crystallized rock just above the glassy margin contains vesicles trapped as the rock was rapidly crystallizing. These have a distinctive appearance likened to a clay ] stem, particularly as the vesicle is usually subsequently filled with ] or other light-colored minerals that contrast with the surrounding dark basalt.{{sfn|Philpotts|Ague|2009|p=58}} | |||
The ]s <sup>87</sup>Sr/<sup>86</sup>Sr and <sup>206</sup>Pb/<sup>204</sup>Pb are different from that observed in general, which shows that the basalt flood magma was contaminated as it passed through the ]. It is this contamination that explains the difference between the two kinds of basalt mentioned above. The LPT type has an excess of elements from the ] such as ] and ]. | |||
=== Petrology === | |||
The content in ]s of basaltic floods is lower than that of ocean island basalts, but higher than that of mid-ocean ridge basalts. | |||
At still smaller scales, the ] of flood basalts is ], consisting of tiny interlocking crystals. These interlocking crystals give trap rock its tremendous toughness and durability.{{sfn|Philpotts|Ague|2009|p=55}} Crystals of ] are embedded in or wrapped around crystals of ] and are randomly oriented. This indicates rapid emplacement so that the lava is no longer flowing rapidly when it begins to crystallize.{{sfn|Philpotts|Ague|2009|p=53}} Flood basalts are almost devoid of large ], larger crystals present in the lava prior to its being erupted to the surface, which are often present in other extrusive igneous rocks. Phenocrysts are more abundant in the ] that fed lava to the surface.{{sfn|Philpotts|Ague|2009|p=383}} | |||
Flood basalts are most often ] ]s. ] tholeiite (the characteristic rock of ]{{sfn|Philpotts|Ague|2009|p=366}}) occurs less commonly, and there are rare cases of ]s. Regardless of composition, the flows are very homogeneous and rarely contain ], fragments of the surrounding rock (]) that have been entrained in the lava. Because the lavas are low in dissolved gases, ] is extremely rare. Except where the flows entered lakes and became ], the flows are massive (featureless). Occasionally, flood basalts are associated with very small volumes of ] or ] (much more silica-rich volcanic rock), which forms late in the development of a large igneous province and marks a shift to more centralized volcanism.{{sfn|Philpotts|Ague|2009|p=381}} | |||
==Other occurrences and implications== | |||
*Flood basalt ] has been implicated (along with the impact of large ]s and/or ]s, as well as ] and long-term ]s) in major ] events in the past. | |||
=== Geochemistry === | |||
*Basalt floods on the planet ] are larger than those on Earth (see: ]). Their study may help understand the mechanisms responsible for these major geological events. | |||
] | |||
Flood basalts show a considerable degree of chemical uniformity across geologic time,{{sfn|Philpotts|Ague|2009|p=380}} being mostly iron-rich tholeiitic basalts. Their major element chemistry is similar to mid-ocean ridge basalts (MORBs), while their trace element chemistry, particularly of the ], resembles that of ].<ref name=Wilson2007>{{cite book |last1=Wilson |first1=Marjorie |title=Igneous Petrogenesis |chapter=Continental tholeiitic flood basalt provinces |date=2007 |pages=287–323 |doi=10.1007/978-94-010-9388-0_10|isbn=978-0-412-75080-9 }}</ref> They typically have a silica content of around 52%. The magnesium number (the ] of magnesium out of the total iron and magnesium content) is around 55,{{sfn|Philpotts|Ague|2009|p=383}} versus 60 for a typical MORB.{{sfn|Philpotts|Ague|2009|p=367}} The ] show abundance patterns suggesting that the original (primitive) magma formed from rock of the ] that was nearly ''undepleted''; that is, it was mantle rock rich in ] and from which little magma had previously been extracted. The chemistry of plagioclase and olivine in flood basalts suggests that the magma was only slightly contaminated with melted rock of the ], but some high-temperature minerals had already crystallized out of the rock before it reached the surface.{{sfn|Philpotts|Ague|2009|p=382}} In other words, the flood basalt is moderately ].<ref name=Wilson2007/> However, only small amounts of plagioclase appear to have crystallized out of the melt.{{sfn|Philpotts|Ague|2009|p=382}} | |||
Though regarded as forming a chemically homogeneous group, flood basalts sometimes show significant chemical diversity even with in a single province. For example, the flood basalts of the ] can be divided into a low phosphorus and titanium group (LPT) and a high phosphorus and titanium group (HPT). The difference has been attributed to inhomogeneity in the upper mantle,<ref>{{cite journal |last1=Hawkesworth |first1=C. J. |last2=Mantovani |first2=M. S. M. |last3=Taylor |first3=P. N. |last4=Palacz |first4=Z. |title=Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts |journal=Nature |date=July 1986 |volume=322 |issue=6077 |pages=356–359 |doi=10.1038/322356a0|bibcode=1986Natur.322..356H |s2cid=4261508 }}</ref> but ] ratios suggest the difference may arise from the LPT magma being contaminated with a greater amount of melted crust.<ref>{{cite journal |last1=Mantovani |first1=M. S. M. |last2=Marques |first2=L. S. |last3=De Sousa |first3=M. A. |last4=Civetta |first4=L. |last5=Atalla |first5=L. |last6=Innocenti |first6=F. |title=Trace Element and Strontium Isotope Constraints on the Origin and Evolution of Paran Continental Flood Basalts of Santa Catarina State (Southern Brazil) |journal=Journal of Petrology |date=1 February 1985 |volume=26 |issue=1 |pages=187–209 |doi=10.1093/petrology/26.1.187}}</ref> | |||
==Formation== | |||
] | |||
Theories of the formation of flood basalts must explain how such vast amounts of magma could be generated and erupted as lava in such short intervals of time. They must also explain the similar compositions and tectonic settings of flood basalts erupted across geologic time and the ability of flood basalt lava to travel such great distances from the eruptive fissures before solidifying. | |||
===Generation of melt=== | |||
A tremendous amount of heat is required for so much magma to be generated in so short a time.{{sfn|Philpotts|Ague|2009|p=380}} This is widely believed to have been supplied by a ] impinging on the base of the Earth's ], its rigid outermost shell.<ref>{{cite journal |last1=White |first1=Robert |last2=McKenzie |first2=Dan |title=Magmatism at rift zones: The generation of volcanic continental margins and flood basalts |journal=Journal of Geophysical Research |date=1989 |volume=94 |issue=B6 |pages=7685 |doi=10.1029/JB094iB06p07685|bibcode=1989JGR....94.7685W }}</ref><ref name="Saunders2005">{{cite journal |last1=Saunders |first1=A. D. |title=Large Igneous Provinces: Origin and Environmental Consequences |journal=Elements |date=1 December 2005 |volume=1 |issue=5 |pages=259–263 |doi=10.2113/gselements.1.5.259|bibcode=2005Eleme...1..259S }}</ref>{{sfn|Philpotts|Ague|2009|p=52}} The plume consists of unusually hot mantle rock of the ], the ductile layer just below the lithosphere, that creeps upwards from deeper in the Earth's interior.{{sfn|Schmincke|2003|p=111}} The hot asthenosphere ] the lithosphere above the plume, allowing magma produced by decompressional melting of the plume head to find pathways to the surface.{{sfn|Schmincke|2003|pp=110-111}}{{sfn|Philpotts|Ague|2009|p=57}} | |||
The swarms of parallel dikes exposed by deep erosion of flood basalts show that considerable ] has taken place. The dike swarms of west Scotland and Iceland show extension of up to 5%. Many flood basalts are associated with rift valleys, are located on passive continental plate margins, or extend into ]s (failed arms of ]s where continental rifting begins.) Flood basalts on continents are often aligned with ] volcanism in ocean basins.{{sfn|Philpotts|Ague|2009|pp=57, 380}} The ], located in South America and Africa on opposite sides of the Atlantic Ocean, formed around 125 million years ago as the South Atlantic opened, while a second set of smaller flood basalts formed near the Triassic-Jurassic boundary in eastern North America as the North Atlantic opened.{{sfn|Philpotts|Ague|2009|p=52}}{{sfn|Schmincke|2003|p=108}} However, the North Atlantic flood basalts are not connected with any hot spot traces, but seem to have been evenly distributed along the entire divergent boundary.{{sfn|Philpotts|Ague|2009|p=381}} | |||
Flood basalts are often interbedded with sediments, typically ]. The deposition of sediments begins before the first flood basalt eruptions, so that subsidence and crustal thinning are precursors to flood basalt activity.{{sfn|Philpotts|Ague|2009|p=380}} The surface continues to subside as basalt erupt, so that the older beds are often found below sea level.{{sfn|Philpotts|Ague|2009|p=57}} Basalt strata at depth (''dipping reflectors'') have been found by ] along passive continental margins.{{sfn|Schmincke|2003|p=111}} | |||
=== Ascent to the surface === | |||
The composition of flood basalts may reflect the mechanisms by which the magma reaches the surface. The original melt formed in the upper mantle (the ''primitive melt'') cannot have the composition of quartz tholeiite, the most common and typically least evolved volcanic rock of flood basalts, because quartz tholeiites are too rich in iron relative to magnesium to have formed in equilibrium with typical mantle rock. The primitive melt may have had the composition of ], but picrite basalt is uncommon in flood basalt provinces. One possibility is that a primitive melt ''stagnates'' when it reaches the mantle-crust boundary, where it is not buoyant enough to penetrate the lower-density crust rock. As a tholeiitic magma differentiates (changes in composition as high-temperature minerals crystallize and settle out of the magma) its density reaches a minimum at a magnesium number of about 60, similar to that of flood basalts. This restores buoyancy and permits the magma to complete its journey to the surface, and also explains why flood basalts are predominantly quartz tholeiites. Over half the original magma remains in the lower crust as ] in a system of dikes and sills.<ref name=Cox1980>{{cite journal |last1=Cox |first1=K. G. |title=A Model for Flood Basalt Vulcanism |journal=Journal of Petrology |date=1 November 1980 |volume=21 |issue=4 |pages=629–650 |doi=10.1093/petrology/21.4.629}}</ref>{{sfn|Philpotts|Ague|2009|p=383}} | |||
As the magma rises, the drop in pressure also lowers the ], the temperature at which the magma is fully liquid. This likely explains the lack of phenocrysts in erupted flood basalt. The ''resorption'' (dissolution back into the melt) of a mixture of solid olivine, augite, and plagioclase—the high-temperature minerals likely to form as phenocrysts—may also tend to drive the composition closer to quartz tholeiite and help maintain buoyancy.{{sfn|Philpotts|Ague|2009|p=382}}{{sfn|Philpotts|Ague|2009|p=383}} | |||
=== Eruption === | |||
Once the magma reaches the surface, it flows rapidly across the landscape, literally flooding the local topography. This is possible in part because of the rapid rate of extrusion (over a cubic km per day per km of fissure length{{sfn|Schmincke|2003|p=108}}) and the relatively low viscosity of basaltic lava. However, the lateral extent of individual flood basalt flows is astonishing even for so fluid a lava in such quantities.{{sfn|Philpotts|Ague|2009|pp=52-53}} It is likely that the lava spreads by a process of ''inflation'' in which the lava moves beneath a solid insulating crust, which keeps it hot and mobile.<ref name="SelfEtal1996">{{cite journal |last1=Self |first1=S. |last2=Thordarson |first2=Th. |last3=Keszthelyi |first3=L. |last4=Walker |first4=G. P. L. |last5=Hon |first5=K. |last6=Murphy |first6=M. T. |last7=Long |first7=P. |last8=Finnemore |first8=S. |title=A new model for the emplacement of Columbia River basalts as large, inflated Pahoehoe Lava Flow Fields |journal=Geophysical Research Letters |date=15 September 1996 |volume=23 |issue=19 |pages=2689–2692 |doi=10.1029/96GL02450|bibcode=1996GeoRL..23.2689S }}</ref> Studies of the Ginkgo flow of the Columbia River Plateau, which is {{convert|30 to 70|m||sp=us}} thick, show that the temperature of the lava dropped by just {{convert|20|C||sp=us}} over a distance of {{convert|500|km||sp=us}}. This demonstrates that the lava must have been insulated by a surface crust and that the flow was ], reducing heat exchange with the upper crust and base of the flow.<ref name="HoCashman1997">{{cite journal |last1=Ho |first1=Anita M. |last2=Cashman |first2=Katharine V. |title=Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group |journal=Geology |date=1 May 1997 |volume=25 |issue=5 |pages=403–406 |doi=10.1130/0091-7613(1997)025<0403:TCOTGF>2.3.CO;2|bibcode=1997Geo....25..403H }}</ref>{{sfn|Philpotts|Ague|2009|pp=53-54}} It has been estimated that the Ginkgo flow advanced 500 km in six days (a rate of advance of about 3.5 km per hour).<ref name="HoCashman1997"/> | |||
The lateral extent of a flood basalt flow is roughly proportional to the cube of the thickness of the flow near its source. Thus, a flow that is double in thickness at its source can travel roughly eight times as far.{{sfn|Philpotts|Ague|2009|p=53}} | |||
Flood basalt flows are predominantly ] flows, with ] flows much less common.<ref>{{cite book |last1=Self |first1=S. |last2=Thordarson |first2=T. |last3=Keszthelyi |first3=L. |title=Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism |chapter=Emplacement of Continental Flood Basalt Lava Flows |year=1997 |series=Geophysical Monograph Series |volume=100 |pages=381–410 |doi=10.1029/GM100p0381 |bibcode=1997GMS...100..381S |isbn=9781118664346 |chapter-url=https://books.google.com/books?id=5H8vobp2x3AC&dq=flood+basalt+aa&pg=PA381 |access-date=17 January 2022}}</ref> | |||
Eruption in flood basalt provinces is episodic, and each episode has its own chemical signature. There is some tendency for lava within a single eruptive episode to become more silica-rich with time, but there is no consistent trend across episodes.{{sfn|Philpotts|Ague|2009|p=382}} | |||
==Large igneous provinces== | |||
{{Main|Large igneous province}} | |||
Large Igneous Provinces (LIPs) were originally defined as voluminous outpourings, predominantly of basalt, over geologically very short durations. This definition did not specify minimum size, duration, petrogenesis, or setting. A new attempt to refine classification focuses on size and setting. LIPs characteristically cover large areas, and the great bulk of the magmatism occurs in less than 1 Ma. Principal LIPs in the ocean basins include ''Oceanic Volcanic Plateaus'' (OPs) and ''Volcanic Passive Continental Margins''. ''Oceanic flood basalts'' are LIPs distinguished from ]s by some investigators because they do not form morphologic plateaus, being neither flat-topped nor elevated more than 200 m above the seafloor. Examples include the Caribbean, Nauru, East Mariana, and Pigafetta provinces. Continental flood basalts (CFBs) or plateau basalts are the continental expressions of large igneous provinces.<ref>{{cite book |last1=Winter |first1=John |title=Principles of Igneous and Metamorphic Petrology |date=2010 |publisher=Prentice Hall |location=New York |isbn=9780321592576 |pages=301–302 |edition=2nd}}</ref> | |||
==Impact== | |||
Flood basalts contribute significantly to the growth of continental crust. They are also catastrophic events, which likely contributed to many ] in the geologic record. | |||
===Crust formation=== | |||
The extrusion of flood basalts, averaged over time, is comparable with the rate of extrusion of lava at mid-ocean ridges and much higher than the rate of extrusion by hotspots.{{sfn|Schmincke|2003|pp=107-108}} However, extrusion at mid-ocean ridges is relatively steady, while extrusion of flood basalts is highly episodic. Flood basalts create new continental crust at a rate of {{convert|0.1 to 8|km3|sigfig=1|sp=us}} per year, while the eruptions that form oceanic plateaus produce {{convert|2 to 20 |km3|sigfig=1|sp=us}} of crust per year.{{sfn|Schmincke|2003|p=108}} | |||
Much of the new crust formed during flood basalt episodes takes the form of ], with over half the original magma crystallizing out as cumulates in sills at the base of the crust.<ref name=Cox1980/> | |||
===Mass extinctions=== | |||
] | |||
The eruption of flood basalts has been linked with mass extinctions. For example, the ], erupted at the ], may have contributed to the extinction of the non-avian dinosaurs.<ref name="Wignall2005">{{cite journal |last1=Wignall |first1=P. |title=The Link between Large Igneous Province Eruptions and Mass Extinctions |journal=Elements |date=1 December 2005 |volume=1 |issue=5 |pages=293–297 |doi=10.2113/gselements.1.5.293|bibcode=2005Eleme...1..293W }}</ref> Likewise, mass extinctions at the ] boundary, the ] boundary, and in the ] ] of the ] correspond to the ages of large igneous provinces in Siberia, the Central Atlantic Magmatic Province, and the ] flood basalt.{{sfn|Philpotts|Ague|2009|p=52}} | |||
Some idea of the impact of flood basalts can be given by comparison with historical large eruptions. The ] was the largest in the historical record, killing 75% of the livestock and a quarter of the population of Iceland. However, the eruption produced just {{convert|14|km3||sp=us}} of lava,<ref name=GuilbaudEtal2005>{{cite journal |last1=Guilbaud |first1=M.N. |last2=Self |first2=S. |last3=Thordarson |first3=T. |last4=Blake |first4=S. |year=2005 |title=Morphology, surface structures, and emplacement of lavas produced by Laki, AD 1783–1784 |journal=Geological Society of America Special Papers |volume=396 |pages=81–102 |isbn=9780813723969 |url=https://books.google.com/books?id=efqyc-fh82YC&dq=guilbaud+2005+morphology&pg=PA81 |access-date=12 January 2022}}</ref>{{sfn|Philpotts|Ague|2009|p=52}} which is tiny compared with the Roza Member of the Columbia River Plateau, erupted in the mid-], which contained at least {{convert|1500|km3||sp=us}} of lava.<ref name=Allaby2013/> | |||
During the eruption of the ], some {{convert|5 to 16|e6km3|e6mi3|abbr=off|sp=us}} of magma penetrated the crust, covering an area of {{convert|5|e6km2|e6mi2|abbr=off}}, equal to 62% of the area of the contiguous states of the United States. The hot magma contained vast quantities of ] and ], and released additional carbon dioxide and ] from deep ]s and younger ] beds in the region. The released gases created over 6400 ]-like ''pipes'',<ref name="SaundersReichow2009">{{cite journal | title=The Siberian Traps and the End-Permian mass extinction: a critical review | first1=A. | last1=Saunders | first2=M. | last2=Reichow | journal=Chinese Science Bulletin | year=2009 | volume=54 | issue=1 | pages=20–37 | doi=10.1007/s11434-008-0543-7| bibcode=2009ChSBu..54...20S | s2cid=1736350 | url=https://figshare.com/articles/journal_contribution/10119755 | hdl=2381/27540 | hdl-access=free }}</ref> each typically over {{convert|1.6|km|mi|0}} in diameter. The pipes emitted up to 160 trillion tons of carbon dioxide and 46 trillion tons of methane. Coal ash from burning coal beds spread toxic ], ], ], and ] across northern Canada. ] beds heated by the magma released ], ], ], which damaged the ] and reduced ultraviolet shielding by as much as 85%. Over 5 trillion tons of ] was also released. The carbon dioxide produced extreme greenhouse conditions, with global average sea water temperatures peaking at {{convert|38|C|F}}, the highest ever seen in the geologic record. Temperatures did not drop to {{convert|32|C|F}} for another 5.1 million years. Temperatures this high are lethal to most marine organisms, and land plants have difficulty continuing to photosynthesize at temperatures above {{convert|35|C|F}}. The Earth's equatorial zone became a dead zone.<ref>{{cite book |last1=McGhee |first1=George R. |title=Carboniferous Giants and Mass Extinction: The Late Paleozoic Ice Age World |date=2018 |publisher=Columbia University Press |location=New York |isbn=9780231180979 |pages=190–240}}</ref> | |||
However, not all large igneous provinces are connected with extinction events.{{sfn|Philpotts|Ague|2009|p=384}} The formation and effects of a flood basalt depend on a range of factors, such as continental configuration, latitude, volume, rate, duration of eruption, style and setting (continental vs. oceanic), the preexisting ], and the ] resilience to change.<ref>{{Cite journal|first1=David P.G. |last1=Bond |first2=Paul B. |last2=Wignall|title=Large igneous provinces and mass extinctions: An update|journal=GSA Special Papers |volume=505 |year=2014 |pages=29–55 |doi=10.1130/2014.2505(02)|isbn=9780813725055 |url=https://hull-repository.worktribe.com/373637/1/10877%20Bond.pdf}}</ref> | |||
], ], Canada]] | |||
]s and ]; click to enlarge.]] | |||
==List of flood basalts== | ==List of flood basalts== | ||
{{ |
{{See also|List of flood basalt provinces|World's largest eruptions}} | ||
Representative continental flood basalts (also known as ''traps'') and oceanic plateaus, together forming a listing of ]s:<ref>Sur l'âge des trapps basaltiques (On the ages of flood basalt events); Vincent E. Courtillota & Paul R. Renneb; Comptes Rendus Geoscience; Vol: 335 Issue: 1, January, 2003; pp: 113-140</ref> | |||
Representative continental flood basalts and oceanic plateaus, arranged by chronological order, together forming a listing of ]s:<ref>{{cite journal |last1=Courtillot |first1=Vincent E. |last2=Renne |first2=Paul R. |title=Sur l'âge des trapps basaltiques |journal=Comptes Rendus Geoscience |date=1 January 2003 |volume=335 |issue=1 |pages=113–140 |doi=10.1016/S1631-0713(03)00006-3 |url=https://ui.adsabs.harvard.edu/abs/2003CRGeo.335..113C/abstract |access-date=23 October 2021 |trans-title=On the ages of flood basalt events |issn=1631-0713 |bibcode=2003CRGeo.335..113C}}</ref> | |||
# ] (south-central British Columbia, Canada) | |||
# ] | |||
{| class="wikitable sortable" | |||
# ]-] flood basalts (see ]) | |||
# ] in the ] | |||
!Name | |||
# ] | |||
# ] | |||
!Initial or peak activity<br>(] ago) | |||
# ] | |||
# ] (western China) | |||
!Surface area<br>(in thousands of km<sup>2</sup>) | |||
# ] (India) 66 million years ago (end of ] period) | |||
# ] | |||
!Volume<br>(in km<sup>3</sup>) | |||
# ] | |||
# ] | |||
!Associated event | |||
# ]<ref>{{cite journal | author = Brian Taylor | date = 31 January 2006 | title = The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi | journal = Earth and Planetary Science Letters | volume = 241 | issue = 3–4 | pages = 372–380 | doi = 10.1016/j.epsl.2005.11.049 | url = http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V61-4HYMY91-3&_user=10&_coverDate=01%2F31%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=e4d9bec5f67ec31555a6b42b8ba732ef | accessdate = 2007-05-22 | bibcode=2006E&PSL.241..372T}} .</ref> | |||
# ] (Brazil-Namibia) | |||
|- | |||
# ] (South Africa-Antarctica) | |||
# ] | |||
|] | |||
# ] (Russia) 251 million years ago (end of ]) | |||
|{{sort|.0010|10}} | |||
|{{sort|.00050|50}} | |||
|{{sort|3.3|3300}} | |||
| | |||
|- | |||
|] | |||
|{{sort|.0017|17}} | |||
|{{sort|.00160|160}} | |||
|{{sort|174.3|174,300}} | |||
|]<ref name="RichardsDucan1989" /><ref>{{cite journal |last1=Nash |first1=Barbara P. |last2=Perkins |first2=Michael E. |last3=Christensen |first3=John N. |last4=Lee |first4=Der-Chuen |last5=Halliday |first5=A. N. |title=The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas |journal=Earth and Planetary Science Letters |date=15 July 2006 |volume=247 |issue=1 |pages=143–156 |doi=10.1016/j.epsl.2006.04.030 |url=https://www.research-collection.ethz.ch/handle/20.500.11850/24040 |access-date=23 October 2021 |language=en |issn=0012-821X |bibcode=2006E&PSL.247..143N}}</ref> | |||
|- | |||
|] | |||
|{{sort|.0031|31}} | |||
|{{sort|.00600|600}} | |||
|{{sort|350|350,000}} | |||
| | |||
|- | |||
|] (NAIP) | |||
|{{sort|.0056|56 (phase 2)}} | |||
|{{sort|.01300|1300}} | |||
|{{sort|6600|6,600,000}} | |||
|]<ref name="bondwig">{{harvnb|Bond|Wignall|2014|p=17}}</ref> | |||
|- | |||
|] | |||
|{{sort|.0066|66}} | |||
|{{sort|.01500|1500}} | |||
|{{sort|3000|3,000,000{{citation needed|date=June 2021}}}} | |||
|] | |||
|- | |||
|] | |||
|{{sort|.0095|95 (main phase)}} | |||
|{{sort|.02000|2000}} | |||
|{{sort|4000|4,000,000}} | |||
|] (OAE 2)<ref name="bondwig"/> | |||
|- | |||
|] | |||
|{{sort|.0119|119}} | |||
|{{sort|.01200|1200}} | |||
| | |||
|]<ref>{{Cite journal | |||
| last1 = Wallace | first1 = P. J. | |||
| last2 = Frey | first2 = F. A. | |||
| last3 = Weis | first3 = D. | |||
| last4 = Coffin | first4 = M. F. | |||
| year = 2002 | journal = Journal of Petrology | volume = 43 | issue =7 | pages = 1105–1108 | |||
| title = Origin and Evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago: Editorial | |||
| doi = 10.1093/petrology/43.7.1105 | bibcode = 2002JPet...43.1105W| doi-access = free }}</ref> | |||
|- | |||
|] | |||
|{{sort|.0120|120 (phase 1)}} | |||
|{{sort|.02000|2000}} | |||
|{{sort|80000|80,000,000}} | |||
|] (OAE 1a)<ref name="bondwig"/> | |||
|- | |||
|] (HALIP) | |||
|{{sort|.0125|120-130}} | |||
|{{sort|.01000|1000}} | |||
| | |||
|] (OAE 1a) <ref>{{cite journal |last1=Polteau |first1=Stéphane |last2=Planke |first2=Sverre |last3=Faleide |first3=Jan Inge |last4=Svensen |first4=Henrik |last5=Myklebust |first5=Reidun |title=The Cretaceous High Arctic Large Igneous Province |date=1 May 2010 |journal=EGU General Assembly 2010 |page=13216 | bibcode = 2010EGUGA..1213216P |url=https://ui.adsabs.harvard.edu/abs/2010EGUGA..1213216P/abstract}}</ref> | |||
|- | |||
|] | |||
|{{sort|.0132|132}} | |||
|{{sort|.01500|1500}} | |||
|{{sort|2300|2,300,000}} | |||
| | |||
|- | |||
|] | |||
|{{sort|.0183|183}} | |||
|{{sort|.03000|3000}} | |||
|{{sort|2500|2,500,000}} | |||
|]<ref>{{cite journal |last1=Pálfy |first1=József |last2=Smith |first2=Paul L. |date=August 2000 |title=Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism |journal=Geology |volume=28 |issue=8 |pages=747–750 |doi=10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2|bibcode=2000Geo....28..747P |url=http://real.mtak.hu/34435/1/Palfy_Smith_2000_Geology.pdf }}</ref> | |||
|- | |||
|] | |||
|{{sort|.0201|201}} | |||
|{{sort|.11000|11000}} | |||
|{{sort|2000|~2,000,000 – 3,000,000}} | |||
|]<ref>{{cite journal |doi=10.1126/science.1234204|last1= Blackburn |first1=Terrence J.|last2= Olsen |first2= Paul E. |last3= Bowring |first3= Samuel A. |last4= McLean |first4= Noah M.|last5= Kent |first5= Dennis V. |last6= Puffer |first6= John |last7= McHone |first7= Greg |last8= Rasbury |first8= Troy |last9= Et-Touhami7|first9= Mohammed |year=2013|title= Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province |journal= Science |volume=340|pages=941–945 |bibcode= 2013Sci...340..941B|issue=6135|pmid=23519213|s2cid= 15895416 |url= http://academiccommons.columbia.edu/download/fedora_content/download/ac%3A170114/CONTENT/Blackburn_2013.pdf }}</ref> | |||
|- | |||
|] | |||
|{{sort|.0251|251}} | |||
|{{sort|.07000|7000}} | |||
|{{sort|4000|4,000,000}} | |||
|]<ref>{{cite journal | |||
| author = Campbell, I.|author2=Czamanske, G. |author3=Fedorenko, V. |author4=Hill, R. |author5=Stepanov, V. | |||
| year = 1992 | |||
| title = Synchronism of the Siberian Traps and the Permian-Triassic Boundary | |||
| journal = Science | |||
| volume = 258 | |||
| issue = 5089 | |||
| pages = 1760–1763 | |||
| doi = 10.1126/science.258.5089.1760 | |||
| pmid=17831657 | |||
|bibcode=1992Sci...258.1760C|s2cid=41194645 }}</ref> | |||
|- | |||
|] | |||
|{{sort|.0265|265}} | |||
|{{sort|.00250|250}} | |||
|{{sort|300|300,000}} | |||
|]<ref>{{Cite journal|title = A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction|author-link1=Mei-Fu Zhou|last = Zhou|first = MF |display-authors=etal |date = 2002|journal = Earth and Planetary Science Letters|doi = 10.1016/s0012-821x(01)00608-2|volume=196|issue = 3–4|pages=113–122|bibcode =2002E&PSL.196..113Z}}</ref> | |||
|- | |||
|] | |||
|{{sort|.0373|373}} | |||
|{{sort|.00320|320}} | |||
| | |||
|]<ref>{{Cite journal|doi = 10.1016/j.palaeo.2013.06.020|title = New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction|last = J|first = Ricci |display-authors=etal |date = 2013|journal = Palaeogeography, Palaeoclimatology, Palaeoecology|volume = 386|pages = 531–540| bibcode=2013PPP...386..531R }}</ref> | |||
|- | |||
|] | |||
|{{sort|.0540|540}} | |||
|{{sort|.00040|40}} | |||
|250,000 | |||
|End-] event<ref>{{Cite journal|last1=Brueseke|first1=Matthew E.|last2=Hobbs|first2=Jasper M.|last3=Bulen|first3=Casey L.|last4=Mertzman|first4=Stanley A.|last5=Puckett|first5=Robert E.|last6=Walker|first6=J. Douglas|last7=Feldman|first7=Josh|date=2016-09-01|title=Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)|journal=] |volume=260|pages=164–177|doi=10.1016/j.lithos.2016.05.016|bibcode=2016Litho.260..164B|doi-access=free}}</ref> | |||
|- | |||
|]{{citation needed|date=June 2021}} | |||
|{{sort|.0870|850}} | |||
|{{sort|.02700|2700}} | |||
| | |||
| | |||
|- | |||
|] | |||
|{{sort|.1270|1270}} | |||
|{{sort|.02700|2700}} | |||
|{{sort|500|500,000<ref name="QIE">{{cite book|last=Lambert|first=Maurice B.|title=Volcanoes|year=1978|publisher=]|location=], ]|isbn=978-0-88894-227-2|url-access=registration|url=https://archive.org/details/volcanoes0000lamb}}</ref>}} | |||
|Contains the ]s related to the ]<ref name="AS">{{cite book|last=Ernst|first=Richard E.|author2=Buchan, Kenneth L.|title=Mantle plumes: their identification through time|publisher=]|year=2001|pages=143, 145, 146, 147, 148, 259|isbn=978-0-8137-2352-5}}</ref> | |||
|} | |||
===Elsewhere in the Solar System=== | |||
Flood basalts are the dominant form of magmatism on the other planets and moons of the Solar System.<ref>{{cite journal |last1=Self |first1=Stephen |last2=Coffin |first2=Millard F. |last3=Rampino |first3=Michael R. |last4=Wolff |first4=John A. |title=Large Igneous Provinces and Flood Basalt Volcanism |journal=The Encyclopedia of Volcanoes |date=2015 |pages=441–455 |doi=10.1016/B978-0-12-385938-9.00024-9|isbn=9780123859389 }}</ref> | |||
The ] on the ] have been described as flood basalts<ref name=Benes1979>{{cite journal |last1=Benes |first1=K. |year=1979 |title=Flood basalt volcanism on the Moon and Mars |journal=Geologie en Mijnbouw |volume=58 |number=2 |pages=209–212}}</ref> composed of picritic basalt.<ref>{{cite journal |last1=O’Hara |first1=M. J. |title=Flood Basalts and Lunar Petrogenesis |journal=Journal of Petrology |date=1 July 2000 |volume=41 |issue=7 |pages=1121–1125 |doi=10.1093/petrology/41.7.1121|doi-access=free }}</ref> Individual eruptive episodes were likely similar in volume to flood basalts of Earth, but were separated by much longer quiescent intervals and were likely produced by different mechanisms.<ref>{{cite journal |last1=Oshigami |first1=Shoko |last2=Watanabe |first2=Shiho |last3=Yamaguchi |first3=Yasushi |last4=Yamaji |first4=Atsushi |last5=Kobayashi |first5=Takao |last6=Kumamoto |first6=Atsushi |last7=Ishiyama |first7=Ken |last8=Ono |first8=Takayuki |title=Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data: MARE VOLCANISM BASED ON KAGUYA LRS DATA |journal=Journal of Geophysical Research: Planets |date=May 2014 |volume=119 |issue=5 |pages=1037–1045 |doi=10.1002/2013JE004568|s2cid=130489146 |doi-access=free }}</ref> | |||
] | |||
Extensive flood basalts are present on Mars.<ref>{{cite journal |last1=Jaeger |first1=W.L. |last2=Keszthelyi |first2=L.P. |last3=Skinner |first3=J.A. |last4=Milazzo |first4=M.P. |last5=McEwen |first5=A.S. |last6=Titus |first6=T.N. |last7=Rosiek |first7=M.R. |last8=Galuszka |first8=D.M. |last9=Howington-Kraus |first9=E. |last10=Kirk |first10=R.L. |title=Emplacement of the youngest flood lava on Mars: A short, turbulent story |journal=Icarus |date=January 2010 |volume=205 |issue=1 |pages=230–243 |doi=10.1016/j.icarus.2009.09.011|bibcode=2010Icar..205..230J }}</ref> | |||
== Uses == | |||
Trap rock is the most durable ] of all rock types, because the interlocking crystals are oriented at random.{{sfn|Philpotts|Ague|2009|p=52}} | |||
==See also== | ==See also== | ||
{{commons category|Flood basalts}} | |||
*] | |||
{{Portal|Geology}} | |||
*] | |||
* |
*{{annotated link|Supervolcano}} | ||
* |
*{{annotated link|Volcanic plateau}} | ||
==References== | ==References== | ||
{{Reflist}} | |||
<!--See http://en.wikipedia.org/Wikipedia:Footnotes for an explanation of how to generate | |||
footnotes using the <ref(erences/)> tags--> | |||
==External links== | |||
{{reflist}} | |||
* {{YouTube|st_2C_Wrw4A|Flood Volcanism Explained}} | |||
* White, R.S. and McKenzie, D.P., 1989, Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geophys. Res.,94, 7685-7729. | |||
{{basalt}} | {{basalt}} | ||
{{Doomsday}} | |||
{{Authority control}} | |||
{{DEFAULTSORT:Flood Basalt}} | {{DEFAULTSORT:Flood Basalt}} | ||
] | ] | ||
] | ] | ||
] | ] | ||
] | |||
] | ] | ||
] | ] | ||
] | |||
] | |||
] | |||
] | ] | ||
] | ] | ||
] | ] | ||
] | |||
] | ] | ||
] | ] | ||
] | ] | ||
] | |||
] | ] | ||
] | ] |
Latest revision as of 19:41, 13 December 2024
Very large volume eruption of basalt lavaA flood basalt (or plateau basalt) is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Many flood basalts have been attributed to the onset of a hotspot reaching the surface of the Earth via a mantle plume. Flood basalt provinces such as the Deccan Traps of India are often called traps, after the Swedish word trappa (meaning "staircase"), due to the characteristic stairstep geomorphology of many associated landscapes.
Michael R. Rampino and Richard Stothers (1988) cited eleven distinct flood basalt episodes occurring in the past 250 million years, creating large igneous provinces, lava plateaus, and mountain ranges. However, more have been recognized such as the large Ontong Java Plateau, and the Chilcotin Group, though the latter may be linked to the Columbia River Basalt Group.
Large igneous provinces have been connected to five mass extinction events, and may be associated with bolide impacts.
Description
Flood basalts are the most voluminous of all extrusive igneous rocks, forming enormous deposits of basaltic rock found throughout the geologic record. They are a highly distinctive form of intraplate volcanism, set apart from all other forms of volcanism by the huge volumes of lava erupted in geologically short time intervals. A single flood basalt province may contain hundreds of thousands of cubic kilometers of basalt erupted over less than a million years, with individual events each erupting hundreds of cubic kilometers of basalt. This highly fluid basalt lava can spread laterally for hundreds of kilometers from its source vents, covering areas of tens of thousands of square kilometers. Successive eruptions form thick accumulations of nearly horizontal flows, erupted in rapid succession over vast areas, flooding the Earth's surface with lava on a regional scale.
These vast accumulations of flood basalt constitute large igneous provinces. These are characterized by plateau landforms, so that flood basalts are also described as plateau basalts. Canyons cut into the flood basalts by erosion display stair-like slopes, with the lower parts of flows forming cliffs and the upper part of flows or interbedded layers of sediments forming slopes. These are known in Dutch as trap or in Swedish as trappa, which has come into English as trap rock, a term particularly used in the quarry industry.
The great thickness of the basalt accumulations, often in excess of 1,000 meters (3,000 ft), usually reflects a very large number of thin flows, varying in thickness from meters to tens of meters, or more rarely to 100 meters (330 ft). There are occasionally very thick individual flows. The world's thickest basalt flow may be the Greenstone flow of the Keweenaw Peninsula of Michigan, US, which is 600 meters (2,000 ft) thick. This flow may have been part of a lava lake the size of Lake Superior.
Deep erosion of flood basalts exposes vast numbers of parallel dikes that fed the eruptions. Some individual dikes in the Columbia River Plateau are over 100 kilometers (60 mi) long. In some cases, erosion exposes radial sets of dikes with diameters of several thousand kilometers. Sills may also be present beneath flood basalts, such as the Palisades Sill of New Jersey, US. The sheet intrusions (dikes and sills) beneath flood basalts are typically diabase that closely matches the composition of the overlying flood basalts. In some cases, the chemical signature allows individual dikes to be connected with individual flows.
Smaller-scale features
Flood basalt commonly displays columnar jointing, formed as the rock cooled and contracted after solidifying from the lava. The rock fractures into columns, typically with five to six sides, parallel to the direction of heat flow out of the rock. This is generally perpendicular to the upper and lower surfaces, but rainwater infiltrating the rock unevenly can produce "cold fingers" of distorted columns. Because heat flow out of the base of the flow is slower than from its upper surface, the columns are more regular and larger in the bottom third of the flow. The greater hydrostatic pressure, due to the weight of overlying rock, also contributes to making the lower columns larger. By analogy with Greek temple architecture, the more regular lower columns are described as the colonnade and the more irregular upper fractures as the entablature of the individual flow. Columns tend to be larger in thicker flows, with columns of the very thick Greenstone flow, mentioned earlier, being around 10 meters (30 ft) thick.
Another common small-scale feature of flood basalts is pipe-stem vesicles. Flood basalt lava cools quite slowly, so that dissolved gases in the lava have time to come out of solution as bubbles (vesicles) that float to the top of the flow. Most of the rest of the flow is massive and free of vesicles. However, the more rapidly cooling lava close to the base of the flow forms a thin chilled margin of glassy rock, and the more rapidly crystallized rock just above the glassy margin contains vesicles trapped as the rock was rapidly crystallizing. These have a distinctive appearance likened to a clay tobacco pipe stem, particularly as the vesicle is usually subsequently filled with calcite or other light-colored minerals that contrast with the surrounding dark basalt.
Petrology
At still smaller scales, the texture of flood basalts is aphanitic, consisting of tiny interlocking crystals. These interlocking crystals give trap rock its tremendous toughness and durability. Crystals of plagioclase are embedded in or wrapped around crystals of pyroxene and are randomly oriented. This indicates rapid emplacement so that the lava is no longer flowing rapidly when it begins to crystallize. Flood basalts are almost devoid of large phenocrysts, larger crystals present in the lava prior to its being erupted to the surface, which are often present in other extrusive igneous rocks. Phenocrysts are more abundant in the dikes that fed lava to the surface.
Flood basalts are most often quartz tholeiites. Olivine tholeiite (the characteristic rock of mid-ocean ridges) occurs less commonly, and there are rare cases of alkali basalts. Regardless of composition, the flows are very homogeneous and rarely contain xenoliths, fragments of the surrounding rock (country rock) that have been entrained in the lava. Because the lavas are low in dissolved gases, pyroclastic rock is extremely rare. Except where the flows entered lakes and became pillow lava, the flows are massive (featureless). Occasionally, flood basalts are associated with very small volumes of dacite or rhyolite (much more silica-rich volcanic rock), which forms late in the development of a large igneous province and marks a shift to more centralized volcanism.
Geochemistry
Flood basalts show a considerable degree of chemical uniformity across geologic time, being mostly iron-rich tholeiitic basalts. Their major element chemistry is similar to mid-ocean ridge basalts (MORBs), while their trace element chemistry, particularly of the rare earth elements, resembles that of ocean island basalt. They typically have a silica content of around 52%. The magnesium number (the mol% of magnesium out of the total iron and magnesium content) is around 55, versus 60 for a typical MORB. The rare earth elements show abundance patterns suggesting that the original (primitive) magma formed from rock of the Earth's mantle that was nearly undepleted; that is, it was mantle rock rich in garnet and from which little magma had previously been extracted. The chemistry of plagioclase and olivine in flood basalts suggests that the magma was only slightly contaminated with melted rock of the Earth's crust, but some high-temperature minerals had already crystallized out of the rock before it reached the surface. In other words, the flood basalt is moderately evolved. However, only small amounts of plagioclase appear to have crystallized out of the melt.
Though regarded as forming a chemically homogeneous group, flood basalts sometimes show significant chemical diversity even with in a single province. For example, the flood basalts of the Parana Basin can be divided into a low phosphorus and titanium group (LPT) and a high phosphorus and titanium group (HPT). The difference has been attributed to inhomogeneity in the upper mantle, but strontium isotope ratios suggest the difference may arise from the LPT magma being contaminated with a greater amount of melted crust.
Formation
Theories of the formation of flood basalts must explain how such vast amounts of magma could be generated and erupted as lava in such short intervals of time. They must also explain the similar compositions and tectonic settings of flood basalts erupted across geologic time and the ability of flood basalt lava to travel such great distances from the eruptive fissures before solidifying.
Generation of melt
A tremendous amount of heat is required for so much magma to be generated in so short a time. This is widely believed to have been supplied by a mantle plume impinging on the base of the Earth's lithosphere, its rigid outermost shell. The plume consists of unusually hot mantle rock of the asthenosphere, the ductile layer just below the lithosphere, that creeps upwards from deeper in the Earth's interior. The hot asthenosphere rifts the lithosphere above the plume, allowing magma produced by decompressional melting of the plume head to find pathways to the surface.
The swarms of parallel dikes exposed by deep erosion of flood basalts show that considerable crustal extension has taken place. The dike swarms of west Scotland and Iceland show extension of up to 5%. Many flood basalts are associated with rift valleys, are located on passive continental plate margins, or extend into aulacogens (failed arms of triple junctions where continental rifting begins.) Flood basalts on continents are often aligned with hotspot volcanism in ocean basins. The Paraná and Etendeka traps, located in South America and Africa on opposite sides of the Atlantic Ocean, formed around 125 million years ago as the South Atlantic opened, while a second set of smaller flood basalts formed near the Triassic-Jurassic boundary in eastern North America as the North Atlantic opened. However, the North Atlantic flood basalts are not connected with any hot spot traces, but seem to have been evenly distributed along the entire divergent boundary.
Flood basalts are often interbedded with sediments, typically red beds. The deposition of sediments begins before the first flood basalt eruptions, so that subsidence and crustal thinning are precursors to flood basalt activity. The surface continues to subside as basalt erupt, so that the older beds are often found below sea level. Basalt strata at depth (dipping reflectors) have been found by reflection seismology along passive continental margins.
Ascent to the surface
The composition of flood basalts may reflect the mechanisms by which the magma reaches the surface. The original melt formed in the upper mantle (the primitive melt) cannot have the composition of quartz tholeiite, the most common and typically least evolved volcanic rock of flood basalts, because quartz tholeiites are too rich in iron relative to magnesium to have formed in equilibrium with typical mantle rock. The primitive melt may have had the composition of picrite basalt, but picrite basalt is uncommon in flood basalt provinces. One possibility is that a primitive melt stagnates when it reaches the mantle-crust boundary, where it is not buoyant enough to penetrate the lower-density crust rock. As a tholeiitic magma differentiates (changes in composition as high-temperature minerals crystallize and settle out of the magma) its density reaches a minimum at a magnesium number of about 60, similar to that of flood basalts. This restores buoyancy and permits the magma to complete its journey to the surface, and also explains why flood basalts are predominantly quartz tholeiites. Over half the original magma remains in the lower crust as cumulates in a system of dikes and sills.
As the magma rises, the drop in pressure also lowers the liquidus, the temperature at which the magma is fully liquid. This likely explains the lack of phenocrysts in erupted flood basalt. The resorption (dissolution back into the melt) of a mixture of solid olivine, augite, and plagioclase—the high-temperature minerals likely to form as phenocrysts—may also tend to drive the composition closer to quartz tholeiite and help maintain buoyancy.
Eruption
Once the magma reaches the surface, it flows rapidly across the landscape, literally flooding the local topography. This is possible in part because of the rapid rate of extrusion (over a cubic km per day per km of fissure length) and the relatively low viscosity of basaltic lava. However, the lateral extent of individual flood basalt flows is astonishing even for so fluid a lava in such quantities. It is likely that the lava spreads by a process of inflation in which the lava moves beneath a solid insulating crust, which keeps it hot and mobile. Studies of the Ginkgo flow of the Columbia River Plateau, which is 30 to 70 meters (98 to 230 ft) thick, show that the temperature of the lava dropped by just 20 °C (68 °F) over a distance of 500 kilometers (310 mi). This demonstrates that the lava must have been insulated by a surface crust and that the flow was laminar, reducing heat exchange with the upper crust and base of the flow. It has been estimated that the Ginkgo flow advanced 500 km in six days (a rate of advance of about 3.5 km per hour).
The lateral extent of a flood basalt flow is roughly proportional to the cube of the thickness of the flow near its source. Thus, a flow that is double in thickness at its source can travel roughly eight times as far.
Flood basalt flows are predominantly pāhoehoe flows, with ʻaʻā flows much less common.
Eruption in flood basalt provinces is episodic, and each episode has its own chemical signature. There is some tendency for lava within a single eruptive episode to become more silica-rich with time, but there is no consistent trend across episodes.
Large igneous provinces
Main article: Large igneous provinceLarge Igneous Provinces (LIPs) were originally defined as voluminous outpourings, predominantly of basalt, over geologically very short durations. This definition did not specify minimum size, duration, petrogenesis, or setting. A new attempt to refine classification focuses on size and setting. LIPs characteristically cover large areas, and the great bulk of the magmatism occurs in less than 1 Ma. Principal LIPs in the ocean basins include Oceanic Volcanic Plateaus (OPs) and Volcanic Passive Continental Margins. Oceanic flood basalts are LIPs distinguished from oceanic plateaus by some investigators because they do not form morphologic plateaus, being neither flat-topped nor elevated more than 200 m above the seafloor. Examples include the Caribbean, Nauru, East Mariana, and Pigafetta provinces. Continental flood basalts (CFBs) or plateau basalts are the continental expressions of large igneous provinces.
Impact
Flood basalts contribute significantly to the growth of continental crust. They are also catastrophic events, which likely contributed to many mass extinctions in the geologic record.
Crust formation
The extrusion of flood basalts, averaged over time, is comparable with the rate of extrusion of lava at mid-ocean ridges and much higher than the rate of extrusion by hotspots. However, extrusion at mid-ocean ridges is relatively steady, while extrusion of flood basalts is highly episodic. Flood basalts create new continental crust at a rate of 0.1 to 8 cubic kilometers (0.02 to 2 cu mi) per year, while the eruptions that form oceanic plateaus produce 2 to 20 cubic kilometers (0.5 to 5 cu mi) of crust per year.
Much of the new crust formed during flood basalt episodes takes the form of underplating, with over half the original magma crystallizing out as cumulates in sills at the base of the crust.
Mass extinctions
The eruption of flood basalts has been linked with mass extinctions. For example, the Deccan Traps, erupted at the Cretaceous-Paleogene boundary, may have contributed to the extinction of the non-avian dinosaurs. Likewise, mass extinctions at the Permian-Triassic boundary, the Triassic-Jurassic boundary, and in the Toarcian Age of the Jurassic correspond to the ages of large igneous provinces in Siberia, the Central Atlantic Magmatic Province, and the Karoo-Ferrar flood basalt.
Some idea of the impact of flood basalts can be given by comparison with historical large eruptions. The 1783 eruption of Lakagígar was the largest in the historical record, killing 75% of the livestock and a quarter of the population of Iceland. However, the eruption produced just 14 cubic kilometers (3.4 cu mi) of lava, which is tiny compared with the Roza Member of the Columbia River Plateau, erupted in the mid-Miocene, which contained at least 1,500 cubic kilometers (360 cu mi) of lava.
During the eruption of the Siberian Traps, some 5 to 16 million cubic kilometers (1.2 to 3.8 million cubic miles) of magma penetrated the crust, covering an area of 5 million square kilometres (1.9 million square miles), equal to 62% of the area of the contiguous states of the United States. The hot magma contained vast quantities of carbon dioxide and sulfur oxides, and released additional carbon dioxide and methane from deep petroleum reservoirs and younger coal beds in the region. The released gases created over 6400 diatreme-like pipes, each typically over 1.6 kilometres (1 mi) in diameter. The pipes emitted up to 160 trillion tons of carbon dioxide and 46 trillion tons of methane. Coal ash from burning coal beds spread toxic chromium, arsenic, mercury, and lead across northern Canada. Evaporite beds heated by the magma released hydrochloric acid, methyl chloride, methyl bromide, which damaged the ozone layer and reduced ultraviolet shielding by as much as 85%. Over 5 trillion tons of sulfur dioxide was also released. The carbon dioxide produced extreme greenhouse conditions, with global average sea water temperatures peaking at 38 °C (100 °F), the highest ever seen in the geologic record. Temperatures did not drop to 32 °C (90 °F) for another 5.1 million years. Temperatures this high are lethal to most marine organisms, and land plants have difficulty continuing to photosynthesize at temperatures above 35 °C (95 °F). The Earth's equatorial zone became a dead zone.
However, not all large igneous provinces are connected with extinction events. The formation and effects of a flood basalt depend on a range of factors, such as continental configuration, latitude, volume, rate, duration of eruption, style and setting (continental vs. oceanic), the preexisting climate, and the biota resilience to change.
List of flood basalts
See also: List of flood basalt provinces and World's largest eruptionsRepresentative continental flood basalts and oceanic plateaus, arranged by chronological order, together forming a listing of large igneous provinces:
Elsewhere in the Solar System
Flood basalts are the dominant form of magmatism on the other planets and moons of the Solar System.
The maria on the Moon have been described as flood basalts composed of picritic basalt. Individual eruptive episodes were likely similar in volume to flood basalts of Earth, but were separated by much longer quiescent intervals and were likely produced by different mechanisms.
Extensive flood basalts are present on Mars.
Uses
Trap rock is the most durable construction aggregate of all rock types, because the interlocking crystals are oriented at random.
See also
- Supervolcano – Volcano that has had an eruption with a volcanic explosivity index (VEI) of 8
- Volcanic plateau – Plateau produced by volcanic activity
References
- Jackson, Julia A., ed. (1997). "flood basalt". Glossary of geology (Fourth ed.). Alexandria, Virginia: American Geological Institute. ISBN 0922152349.
- ^ Mark A. Richards; Robert A. Duncan; Vincent E. Courtillot (1989). "Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails". Science Magazine. 246 (4926): 103–107. Bibcode:1989Sci...246..103R. doi:10.1126/science.246.4926.103. PMID 17837768. S2CID 9147772.
- Michael R. Rampino; Richard B. Stothers (1988). "Flood Basalt Volcanism During the Past 250 Million Years". Science. 241 (4866): 663–668. Bibcode:1988Sci...241..663R. doi:10.1126/science.241.4866.663. PMID 17839077. S2CID 33327812. PDF via NASA
- Neal, C.; Mahoney, J.; Kroenke, L. (1997). "The Ontong Java Plateau" (PDF). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophysical Monograph 100. Archived from the original (PDF) on 2017-01-01.
- Jiang, Qiang; Jourdan, Fred; Olierook, Hugo K. H.; Merle, Renaud E.; Bourdet, Julien; Fougerouse, Denis; Godel, Belinda; Walker, Alex T. (25 July 2022). "Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises". Proceedings of the National Academy of Sciences of the United States of America. 119 (31): e2202039119. Bibcode:2022PNAS..11902039J. doi:10.1073/pnas.2202039119. PMC 9351498. PMID 35878029.
- Negi, J. G.; Agrawal, P. K.; Pandey, O. P.; Singh, A. P. (1993). "A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism". Physics of the Earth and Planetary Interiors. 76 (3–4): 189. Bibcode:1993PEPI...76..189N. doi:10.1016/0031-9201(93)90011-W.
- Vincent Courtillot, Paul Renne: On the ages of flood basalt events
- Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. p. 52. ISBN 9780521880060.
- ^ Jackson, Julia A., ed. (1997). "plateau basalt". Glossary of geology (Fourth ed.). Alexandria, Virginia: American Geological Institute. ISBN 0922152349.
- ^ Allaby, Michael (2013). "flood basalt". A dictionary of geology and earth sciences (Fourth ed.). Oxford: Oxford University Press. ISBN 9780199653065.
- ^ Philpotts & Ague 2009, p. 380.
- Schmincke, Hans-Ulrich (2003). Volcanism. Berlin: Springer. p. 107. ISBN 978-3-540-43650-8.
- ^ Philpotts & Ague 2009, p. 53.
- Schmincke 2003, p. 107.
- ^ Philpotts & Ague 2009, p. 52.
- ^ Schmincke 2003, p. 108.
- ^ Philpotts & Ague 2009, p. 57.
- Philpotts & Ague 2009, pp. 381–382.
- ^ Philpotts & Ague 2009, p. 55.
- Philpotts & Ague 2009, p. 58.
- ^ Philpotts & Ague 2009, p. 383.
- Philpotts & Ague 2009, p. 366.
- ^ Philpotts & Ague 2009, p. 381.
- ^ Wilson, Marjorie (2007). "Continental tholeiitic flood basalt provinces". Igneous Petrogenesis. pp. 287–323. doi:10.1007/978-94-010-9388-0_10. ISBN 978-0-412-75080-9.
- Philpotts & Ague 2009, p. 367.
- ^ Philpotts & Ague 2009, p. 382.
- Hawkesworth, C. J.; Mantovani, M. S. M.; Taylor, P. N.; Palacz, Z. (July 1986). "Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts". Nature. 322 (6077): 356–359. Bibcode:1986Natur.322..356H. doi:10.1038/322356a0. S2CID 4261508.
- Mantovani, M. S. M.; Marques, L. S.; De Sousa, M. A.; Civetta, L.; Atalla, L.; Innocenti, F. (1 February 1985). "Trace Element and Strontium Isotope Constraints on the Origin and Evolution of Paran Continental Flood Basalts of Santa Catarina State (Southern Brazil)". Journal of Petrology. 26 (1): 187–209. doi:10.1093/petrology/26.1.187.
- White, Robert; McKenzie, Dan (1989). "Magmatism at rift zones: The generation of volcanic continental margins and flood basalts". Journal of Geophysical Research. 94 (B6): 7685. Bibcode:1989JGR....94.7685W. doi:10.1029/JB094iB06p07685.
- Saunders, A. D. (1 December 2005). "Large Igneous Provinces: Origin and Environmental Consequences". Elements. 1 (5): 259–263. Bibcode:2005Eleme...1..259S. doi:10.2113/gselements.1.5.259.
- ^ Schmincke 2003, p. 111.
- Schmincke 2003, pp. 110–111.
- Philpotts & Ague 2009, pp. 57, 380.
- ^ Cox, K. G. (1 November 1980). "A Model for Flood Basalt Vulcanism". Journal of Petrology. 21 (4): 629–650. doi:10.1093/petrology/21.4.629.
- Philpotts & Ague 2009, pp. 52–53.
- Self, S.; Thordarson, Th.; Keszthelyi, L.; Walker, G. P. L.; Hon, K.; Murphy, M. T.; Long, P.; Finnemore, S. (15 September 1996). "A new model for the emplacement of Columbia River basalts as large, inflated Pahoehoe Lava Flow Fields". Geophysical Research Letters. 23 (19): 2689–2692. Bibcode:1996GeoRL..23.2689S. doi:10.1029/96GL02450.
- ^ Ho, Anita M.; Cashman, Katharine V. (1 May 1997). "Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group". Geology. 25 (5): 403–406. Bibcode:1997Geo....25..403H. doi:10.1130/0091-7613(1997)025<0403:TCOTGF>2.3.CO;2.
- Philpotts & Ague 2009, pp. 53–54.
- Self, S.; Thordarson, T.; Keszthelyi, L. (1997). "Emplacement of Continental Flood Basalt Lava Flows". Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph Series. Vol. 100. pp. 381–410. Bibcode:1997GMS...100..381S. doi:10.1029/GM100p0381. ISBN 9781118664346. Retrieved 17 January 2022.
- Winter, John (2010). Principles of Igneous and Metamorphic Petrology (2nd ed.). New York: Prentice Hall. pp. 301–302. ISBN 9780321592576.
- Schmincke 2003, pp. 107–108.
- Wignall, P. (1 December 2005). "The Link between Large Igneous Province Eruptions and Mass Extinctions". Elements. 1 (5): 293–297. Bibcode:2005Eleme...1..293W. doi:10.2113/gselements.1.5.293.
- Guilbaud, M.N.; Self, S.; Thordarson, T.; Blake, S. (2005). "Morphology, surface structures, and emplacement of lavas produced by Laki, AD 1783–1784". Geological Society of America Special Papers. 396: 81–102. ISBN 9780813723969. Retrieved 12 January 2022.
- Saunders, A.; Reichow, M. (2009). "The Siberian Traps and the End-Permian mass extinction: a critical review". Chinese Science Bulletin. 54 (1): 20–37. Bibcode:2009ChSBu..54...20S. doi:10.1007/s11434-008-0543-7. hdl:2381/27540. S2CID 1736350.
- McGhee, George R. (2018). Carboniferous Giants and Mass Extinction: The Late Paleozoic Ice Age World. New York: Columbia University Press. pp. 190–240. ISBN 9780231180979.
- Philpotts & Ague 2009, p. 384.
- Bond, David P.G.; Wignall, Paul B. (2014). "Large igneous provinces and mass extinctions: An update" (PDF). GSA Special Papers. 505: 29–55. doi:10.1130/2014.2505(02). ISBN 9780813725055.
- Courtillot, Vincent E.; Renne, Paul R. (1 January 2003). "Sur l'âge des trapps basaltiques" [On the ages of flood basalt events]. Comptes Rendus Geoscience. 335 (1): 113–140. Bibcode:2003CRGeo.335..113C. doi:10.1016/S1631-0713(03)00006-3. ISSN 1631-0713. Retrieved 23 October 2021.
- Nash, Barbara P.; Perkins, Michael E.; Christensen, John N.; Lee, Der-Chuen; Halliday, A. N. (15 July 2006). "The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas". Earth and Planetary Science Letters. 247 (1): 143–156. Bibcode:2006E&PSL.247..143N. doi:10.1016/j.epsl.2006.04.030. ISSN 0012-821X. Retrieved 23 October 2021.
- ^ Bond & Wignall 2014, p. 17
- Wallace, P. J.; Frey, F. A.; Weis, D.; Coffin, M. F. (2002). "Origin and Evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago: Editorial". Journal of Petrology. 43 (7): 1105–1108. Bibcode:2002JPet...43.1105W. doi:10.1093/petrology/43.7.1105.
- Polteau, Stéphane; Planke, Sverre; Faleide, Jan Inge; Svensen, Henrik; Myklebust, Reidun (1 May 2010). "The Cretaceous High Arctic Large Igneous Province". EGU General Assembly 2010: 13216. Bibcode:2010EGUGA..1213216P.
- Pálfy, József; Smith, Paul L. (August 2000). "Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism" (PDF). Geology. 28 (8): 747–750. Bibcode:2000Geo....28..747P. doi:10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2.
- Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V.; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami7, Mohammed (2013). "Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province" (PDF). Science. 340 (6135): 941–945. Bibcode:2013Sci...340..941B. doi:10.1126/science.1234204. PMID 23519213. S2CID 15895416.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - Campbell, I.; Czamanske, G.; Fedorenko, V.; Hill, R.; Stepanov, V. (1992). "Synchronism of the Siberian Traps and the Permian-Triassic Boundary". Science. 258 (5089): 1760–1763. Bibcode:1992Sci...258.1760C. doi:10.1126/science.258.5089.1760. PMID 17831657. S2CID 41194645.
- Zhou, MF; et al. (2002). "A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction". Earth and Planetary Science Letters. 196 (3–4): 113–122. Bibcode:2002E&PSL.196..113Z. doi:10.1016/s0012-821x(01)00608-2.
- J, Ricci; et al. (2013). "New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 386: 531–540. Bibcode:2013PPP...386..531R. doi:10.1016/j.palaeo.2013.06.020.
- Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh (2016-09-01). "Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)". Lithos. 260: 164–177. Bibcode:2016Litho.260..164B. doi:10.1016/j.lithos.2016.05.016.
- Lambert, Maurice B. (1978). Volcanoes. North Vancouver, British Columbia: Energy, Mines and Resources Canada. ISBN 978-0-88894-227-2.
- Ernst, Richard E.; Buchan, Kenneth L. (2001). Mantle plumes: their identification through time. Geological Society of America. pp. 143, 145, 146, 147, 148, 259. ISBN 978-0-8137-2352-5.
- Self, Stephen; Coffin, Millard F.; Rampino, Michael R.; Wolff, John A. (2015). "Large Igneous Provinces and Flood Basalt Volcanism". The Encyclopedia of Volcanoes: 441–455. doi:10.1016/B978-0-12-385938-9.00024-9. ISBN 9780123859389.
- Benes, K. (1979). "Flood basalt volcanism on the Moon and Mars". Geologie en Mijnbouw. 58 (2): 209–212.
- O’Hara, M. J. (1 July 2000). "Flood Basalts and Lunar Petrogenesis". Journal of Petrology. 41 (7): 1121–1125. doi:10.1093/petrology/41.7.1121.
- Oshigami, Shoko; Watanabe, Shiho; Yamaguchi, Yasushi; Yamaji, Atsushi; Kobayashi, Takao; Kumamoto, Atsushi; Ishiyama, Ken; Ono, Takayuki (May 2014). "Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data: MARE VOLCANISM BASED ON KAGUYA LRS DATA". Journal of Geophysical Research: Planets. 119 (5): 1037–1045. doi:10.1002/2013JE004568. S2CID 130489146.
- Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L. (January 2010). "Emplacement of the youngest flood lava on Mars: A short, turbulent story". Icarus. 205 (1): 230–243. Bibcode:2010Icar..205..230J. doi:10.1016/j.icarus.2009.09.011.
External links
Types of basalts | |
---|---|
Basalts by tectonic setting | |
Basalts by form and flow | |
Basalts by chemistry | |
Important minerals | |
Geology portal |