Misplaced Pages

Laterality: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 13:58, 20 June 2015 editDrChrissy (talk | contribs)Extended confirmed users21,946 edits Laterality in other animals: chimps← Previous edit Latest revision as of 06:16, 14 December 2024 edit undoCitation bot (talk | contribs)Bots5,436,692 edits Added bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Motor skills | #UCB_Category 21/32 
(138 intermediate revisions by 68 users not shown)
Line 1: Line 1:
{{short description|Preference most humans show for one side of their body over the other}}
{{for|the linguistics topic|Lateral consonant}} {{for-multi|the linguistics topic|Lateral consonant|the academic journal|Laterality (journal)}}

{{Multiple issues| {{Multiple issues|
{{Refimprove|date=June 2007}} {{More citations needed|date=June 2007}}
{{format footnotes|date=March 2015}} {{Format footnotes|date=March 2015|reason=Parenthetical referencing has been ].}}
}} }}
The term '''laterality''' refers to the preference most ] show for one side of their ] over the other. Examples include ]/] and left/right-], it may also refer to the primary use of the left or right hemisphere in the brain. It may also apply to ]s or plants. The majority of tests have been conducted on humans, specifically to determine the effects on language. The term '''laterality''' refers to the preference most ] show for one side of their ] over the other. Examples include ] and left/right-]; it may also refer to the primary use of the left or right hemisphere in the brain. It may also apply to animals or plants. The majority of tests have been conducted on humans, specifically to determine the effects on ].


== Human laterality == == Human ==
Most humans are ]. Many are also right-sided in general (that is, they prefer to use their right ], right ] and right ] if forced to make a choice between the two). The reasons for this are not fully understood, but it is thought that because the left ] of the ] controls the right side of the body, the right side is generally stronger; it is suggested that the ] is dominant over the right in most humans because in 90–92% of all humans, the left hemisphere is the ] hemisphere.


Human ]s are predominantly right-handed, and so the right-sided trend may be socially as well as biologically enforced. This is quite apparent from a quick survey of ]s. The ] word "left" comes from the ] word {{Lang|ang|lyft}} which means "weak" or "useless". Similarly, the ] word for left, ''{{Lang|fr|gauche}}'', is also used to mean "awkward" or "tactless", and ''{{Lang|la|sinistra}}'', the ] word from which the English word "sinister" was derived, means "left". Similarly, in many cultures the word for "right" also means "correct". The English word "right" comes from the Anglo-Saxon word {{Lang|ang|riht}} which also means "straight" or "correct."
The majority of humans are ]. Many are also right-sided in general (that is, they prefer to use their right ], right ] and right ] if forced to make a choice between the two). The reasons for this are not fully understood, but it is thought that because the left ] of the ] controls the right side of the body, the right side is generally stronger; it is suggested that the left cerebral hemisphere is dominant over the right in most humans because in 90-92% of all humans, the left hemisphere is the ] hemisphere.


This linguistic and social bias is not restricted to ]: for example, ] are designed for right-handers to write, and no significant left-handed culture has ever been found in the world.
Human ]s are predominantly right-handed, and so the right-sided trend may be socially as well as biologically enforced. This is quite apparent from a quick survey of ]s. The ] word "left" comes from the ] word ''lyft'' which means "weak" or "useless". Similarly, the ] word for left, ''gauche'', is also used to mean "awkward" or "tactless", and ''sinistra'', the ] word from which the English word "sinister" was derived, means "left". Similarly, in many cultures the word for "right" also means "correct". The English word "right" comes from the Anglo-Saxon word ''riht'' which also means "straight" or "correct."


When a person is forced to use the hand opposite of the hand that they would naturally use, this is known as ''forced laterality'', or more specifically ''forced dextrality''. A study done by the Department of Neurology at ], ] suggests that forced dextrality may be part of the reason that the percentage of left-handed people decreases with the higher age groups, both because the effects of pressures toward right-handedness are cumulative over time (hence increasing with age for any given person subjected to them) and because the prevalence of such pressure is decreasing, such that fewer members of younger generations face any such pressure to begin with.<ref>{{cite journal | last1 = Ellis | first1 = S. J. | last2 = Ellis | first2 = P. J. | last3 = Marshall | first3 = E. | last4 = Joses | first4 = S. | year = 1998 | title = Is forced dextrality an explanation for the fall in the prevalence of sinistrality with age? A study in northern England | journal = Journal of Epidemiology and Community Health | volume = 52 | issue = 1| pages = 41–44 | doi=10.1136/jech.52.1.41| pmid = 9604040 | pmc = 1756611 }}</ref>
This linguistic and social bias is not restricted to European cultures: for example, ] characters are designed for right-handers to write, and no significant left-handed culture has ever been found in the world.


] is when a person has approximately equal skill with both ]s and/or both sides of the body. True ambidexterity is very rare. Although a small number of people can write competently with both hands and use both sides of their body well, even these people usually show preference for one side of their body over the other. However, this preference is not necessarily consistent for all activities. Some people may, for instance, use their right hand for ], and their ] for playing ] and ]<ref>{{cite journal | last1 = Oldfield | first1 = R.C. | year = 1971 | title = The assessment and analysis of handedness: The Edinburgh inventory | journal = Neuropsychologia | volume = 9 | issue = 1| pages = 97–113 | doi=10.1016/0028-3932(71)90067-4 | pmid=5146491}}</ref> (''see also:'' ]).
When a person is forced to use the hand opposite of the hand that they would naturally use, this is known as ''forced laterality'', or more specifically ''forced dextrality''. A study done by the Department of Neurology at Keele University, North Staffordshire Royal Infirmary suggests that forced dextrality may be part of the reason that the percentage of left-handed people decreases with the higher age groups, both because the effects of pressures toward right-handedness are cumulative over time (hence increasing with age for any given person subjected to them) and because the prevalence of such pressure is decreasing, such that fewer members of younger generations face any such pressure to begin with.<ref>{{cite journal | last1 = Ellis | first1 = S. J. | last2 = Ellis | first2 = P. J. | last3 = Marshall | first3 = E. | last4 = Joses | first4 = S. | year = 1998 | title = Is forced dextrality an explanation for the fall in the prevalence of sinistrality with age? A study in northern England | url = | journal = Journal of Epidemiology and Community Health | volume = 52 | issue = | pages = 41–44 | doi=10.1136/jech.52.1.41}}</ref>


Also, it is not uncommon that people ], e.g. when using a shovel, kicking a ball, or operating control pedals. In many cases, this may be because they are disposed for left-handedness but have been trained for right-handedness, which is usually attached to learning and behavioural disorders (term usually so called as "]").<ref>{{cite journal | last1 = Bache | first1 = M.A.B. | last2 =Naranjo | first2 = J. | year = 2014 | title = Laterality and sports performance | journal = Arch. Med. Dep. | volume = 31 | issue = 161| pages = 200–204 | issn=0212-8799}}</ref> In the sport of ], some players may find that they are more comfortable ] with their left or right hand, but ] with the other hand.
] is when a person has approximately equal skill with both ]s and/or both sides of the body. True ambidexterity is very rare. Although a small number of people can write competently with both hands and use both sides of their body well, even these people usually show preference for one side of their body over the other. However, this preference is not necessarily consistent for all activities. Some people may for example use their right hand for ], and their ] for playing ] and ]<ref>{{cite journal | last1 = Oldfield | first1 = R.C. | year = 1971 | title = The assessment and analysis of handedness: The Edinburgh inventory | url = | journal = Neuropsychologia | volume = 9 | issue = | pages = 97–113 | doi=10.1016/0028-3932(71)90067-4}}</ref> (''see also:'' ]).


Approximate statistics, complied in 1981, are given below:<ref>C. Porac and S. Coren. ''''. New York: Springer-Verlag, 1981.</ref>
Also, it is not uncommon that people preferring to use the right hand prefer to use the left leg, e.g. when using a shovel, kicking a ball, or operating control pedals. In many cases, this may be because they are disposed for left-handedness but have been trained for right-handedness. In the sport of ], some players may find that they are more comfortable bowling with their left or right hand, but batting with the other hand.

Approximate statistics are below:<ref>C. Porac and S. Coren. ''Lateral preferences and human behavior''. New York: Springer-Verlag, 1981.</ref>
*Favoring right hand: 88.2% *Favoring right hand: 88.2%
*Favoring right foot: 81.0% *Favoring right foot: 81.0%
*Favoring right eye: 71.1% *]: 71.1%
*Favoring right ear: 59.1% *]: 59.1%
*Same hand and foot: 84% *Same hand and foot: 84%
*Same ear and eye: 61.8% *Same ear and eye: 61.8%


Laterality of motor and sensory control has been the subject of a recent intense study and review.<ref> I. Derakhshan, MD, Neurologist.</ref> It turns out that the hemisphere of speech is the hemisphere of action in general and that the command hemisphere is located either in the right or the left hemisphere (never in both). Around eighty percent of people are left hemispheric for speech and the remainder are right hemispheric: ninety percent of right-handers are left hemispheric for speech, but only fifty percent of left-handers are right hemispheric for speech (the remainder are left hemispheric). The reaction time of the neurally dominant side of the body (the side opposite to the major hemisphere or the command center, as just defined) is shorter than that of the opposite side by an interval equal to the interhemispheric transfer time. Thus, one in five persons has a handedness that is the opposite for which they are wired (per laterality of command center or brainedness, as determined by reaction time study mentioned above). Laterality of ] and sensory control has been the subject of a recent intense study and review.<ref> I. Derakhshan, MD, Neurologist.</ref> It turns out that the hemisphere of speech is the hemisphere of action in general and that the command hemisphere is located either in the right or the left hemisphere (never in both). Around 80% of people are left hemispheric for speech and the remainder are right hemispheric: ninety percent of right-handers are ], but only 50% of left-handers are right hemispheric for speech (the remainder are left hemispheric). The ] of the neurally dominant side of the body (the side opposite to the major hemisphere or the command center, as just defined) is shorter than that of the opposite side by an interval equal to the interhemispheric transfer time. Thus, one in five persons has a handedness that is the opposite for which they are wired (per laterality of command center or brainedness, as determined by reaction time study mentioned above).


===Different expressions of laterality=== ===Different expressions===
* Board ]: The stance in a board sport is not necessarily the same as the normal footedness of the person. In skateboarding and other board sports a goofy footed stance is one with the right foot leading. A stance with the left foot forward is called regular or normal. ; Board ]: The stance in a ] is not necessarily the same as the normal-footedness of the person. In ] and other board sports, a "goofy footed" stance is one with the right foot leading. A stance with the left foot forward is called "regular" or "normal" stance.
; Jump and spin: Direction of rotation in ] and spins is not necessarily the same as the footedness or the handedness of each person. A ] can jump and spin ] (the most common direction), yet be left-footed and left-handed.
; ]: The eye preferred when ] is not possible, as through a ] or ] ].


=== Speech ===
* Jump and spin: Direction of rotation in ] and spins is not necessarily the same as the footedness or the handedness of each person. A skater can jump and spin counter-clockwise (the most common direction), yet be left-footed and left-handed.
] or ] has been studied in relation to a variety of human functions. With speech in particular, many studies have been used as evidence that it is generally localized in the ]. Research comparing the effects of ] in the two hemispheres, ] patients, and ] have aided in the knowledge of speech lateralization. In one particular study, the left hemisphere's sensitivity to differences in rapidly changing ] was noted (Annett, 1991). This has real world implication, since very fine ] are needed to comprehend and produce ]. In an ] demonstration performed by Ojemann and Mateer (1979), the exposed ] was ] revealing the same cortical sites were activated in ] and mouth movement sequences (Annett, 1991).


As suggested by Kimura (1975, 1982), left hemisphere speech lateralization might be based upon a preference for movement sequences as demonstrated by ] (ASL) studies. Since ASL requires intricate ], it was proposed that skilled hand motions and speech require sequences of action over time. In ] patients with a left hemispheric ] and damage, noticeable losses in their abilities to sign were noted. These cases were compared to studies of normal speakers with ] located at lesioned areas similar to the deaf patients. In the same study, deaf patients with right hemispheric lesions did not display any significant loss of signing nor any decreased capacity for motor sequencing (Annett, 1991).
* ]: The eye preferred when binocular vision is not possible, as through a keyhole or monocular microscope.


One theory, known as the acoustic laterality theory, the physical properties of certain speech sounds are what determine laterality to the left hemisphere. ], for example t, p, or k, leave a defined ] at the end of words that can easily be distinguished. This theory postulates that changing sounds such as these are preferentially processed by the left hemisphere. As a result of the right ear being responsible for transmission to sounds to the left hemisphere, it is capable of perceiving these sounds with rapid changes. This right ear advantage in hearing and speech laterality was evidenced in ]. ] results from this study showed greater left hemisphere activation when actual words were presented as opposed to pseudowords.<ref>{{cite journal | vauthors = Shtyrov Y, Pihko E, Pulvermüller F | title = Determinants of dominance: is language laterality explained by physical or linguistic features of speech? | journal = NeuroImage | volume = 27 | issue = 1 | pages = 37–47| date = 2005 | pmid = 16023039 | doi = 10.1016/j.neuroimage.2005.02.003 }}</ref> Two important aspects of ] are ], such as format patterning, and ] cues, such as ], ], and emotional state of the speaker (Imaizumi, Koichi, Kiritani, Hosoi & Tonoike, 1998).
=== Laterality and speech ===


In a study done with both ] and ], which took into account language experience, ], and onset of bilingualism among other variables, researchers were able to demonstrate left hemispheric dominance. In addition, bilinguals that began speaking a second language early in life demonstrated bilateral hemispheric involvement. The findings of this study were able to predict differing patterns of cerebral language lateralization in adulthood (Hull & Vaid, 2006).
Cerebral dominance or specialization has been studied in relation to a variety of human functions. With speech in particular, many studies have been used as evidence that it is generally localized in the ]. Research comparing the effects of lesions in the two hemispheres, ] patients, and perceptual asymmetries have aided in the knowledge of speech lateralization. In one particular study, the left hemisphere’s sensitivity to differences in rapidly changing sound cues was noted (Annett, 1991). This has real world implication, since very fine acoustic discriminations are needed to comprehend and produce speech signals. In an electrical stimulation demonstration performed by Ojemann and Mateer (1979), the exposed ] was mapped revealing the same cortical sites were activated in phoneme discrimination and mouth movement sequences (Annett, 1991).


== In other animals ==
As suggested by Kimura (1975, 1982), left hemisphere speech lateralization might be based upon a preference for movement sequences as demonstrated by ] (ASL) studies. Since ASL requires intricate hand movements for language communication, it was proposed that skilled hand motions and speech require sequences of action over time. In deaf patients suffering from a left hemispheric ] and damage, noticeable losses in their abilities to sign were noted. These cases were compared to studies of normal speakers with dysphasias located at lesioned areas similar to the deaf patients. In the same study, deaf patients with right hemispheric lesions did not display any significant loss of signing nor any decreased capacity for motor sequencing (Annett, 1991).
It has been shown that cerebral lateralization is a widespread phenomenon in the ].<ref>Rogers, Lesley J., Andrew, Richard J. (2002) Comparative Vertebrate Lateralization, Cambridge University Press</ref> Functional and structural differences between left and right brain hemispheres can be found in many other vertebrates and also in invertebrates.<ref name="Manns">{{cite journal|author1=Manns, M. |author2=Ströckens, F.|year=2014|title=Functional and structural comparison of visual lateralization in birds–similar but still different|journal=Frontiers in Psychology|volume=5|page=206|doi=10.3389/fpsyg.2014.00206|pmid=24723898|pmc=3971188|doi-access=free}}</ref>


It has been proposed that negative, withdrawal-associated emotions are processed predominantly by the right hemisphere, whereas the left hemisphere is largely responsible for processing positive, approach-related emotions. This has been called the "laterality-] hypothesis".<ref name="Barnard2015">{{cite journal|author=Barnard, S., Matthews, L., Messori, S., Podaliri-Vulpiani, M. and Ferri, N.|year=2015|title=Laterality as an indicator of emotional stress in ewes and lambs during a separation test|journal=Animal Cognition|volume=19|issue=1|pages=1–8|doi=10.1007/s10071-015-0928-3|pmid=26433604|s2cid=7008274}}</ref>
One theory, known as the acoustic laterality theory, the physical properties of certain speech sounds are what determine laterality to the left hemisphere. Stop consonants, for example t, p, or k, leave a defined silent period at the end of words that can easily be distinguished. This theory postulates that changing sounds such as these are preferentially processed by the left hemisphere. As a result of the right ear being responsible for transmission to sounds to the left hemisphere, it is capable of perceiving these sounds with rapid changes. This right ear advantage in hearing and speech laterality was evidenced in ]. ] results from this study showed greater left hemisphere activation when actual words were presented as opposed to pseudo-words (Shtyrov, Pihko, and Pulvermuller, 2005). Two important aspects of speech recognition are phonetic cues, such as format patterning, and prosody cues, such as intonation, accent, and emotional state of the speaker (Imaizumi, Koichi, Kiritani, Hosoi & Tonoike, 1998).


One sub-set of laterality in animals is limb dominance. Preferential limb use for specific tasks has been shown in species including chimpanzees, mice, bats, wallabies, parrots, chickens and toads.<ref name="Manns" />
In a study done with both ] and ], which took into account language experience, second language proficiency, and onset of bilingualism among other variables, researchers were able to demonstrate left hemispheric dominance. In addition, bilinguals that began speaking a second language early in life demonstrated bilateral hemispheric involvement. The findings of this study were able to predict differing patterns of cerebral language lateralization in adulthood (Hull & Vaid, 2006).


Another form of laterality is hemispheric dominance for processing conspecific vocalizations, reported for chimpanzees, sea lions, dogs, zebra finches and Bengalese finches.<ref name="Manns" />
== Laterality in other animals ==


=== In mice ===
Laterality in animals is also called limb dominance.
In mice (''Mus musculus''), laterality in paw usage has been shown to be a learned behavior (rather than inherited),<ref>{{Cite journal|last1=Biddle|first1=Fred G|last2=Eales|first2=Brenda A| year = 2006 |title=Hand-preference training in the mouse reveals key elements of its learning and memory process and resolves the phenotypic complexity in the behaviour|journal=Genome|language=en|volume=49|issue=6|pages=666–677|doi=10.1139/g06-026|pmid=16936846|issn=0831-2796}}</ref> due to which, in any population, half of the mice become left-handed while the other half becomes right-handed. The learning occurs by a gradual reinforcement of randomly occurring weak asymmetries in paw choice early in training, even when training in an unbiased world.<ref name=":0">{{Cite journal|last1=Ribeiro|first1=Andre S.|last2=Lloyd-Price|first2=Jason|last3=Eales|first3=Brenda A.|last4=Biddle|first4=Fred G.|year = 2010|title=Dynamic Agent-Based Model of Hand-Preference Behavior Patterns in the Mouse|journal=Adaptive Behavior|language=en|volume=18|issue=2|pages=116–131|doi=10.1177/1059712309339859|s2cid=10117297|issn=1059-7123}}</ref><ref name=":1">{{Cite journal|last1=Ribeiro|first1=Andre S.|last2=Eales|first2=Brenda A.|last3=Biddle|first3=Fred G.|year = 2011|title=Learning of paw preference in mice is strain dependent, gradual and based on short-term memory of previous reaches|journal=Animal Behaviour|language=en|volume=81|issue=1|pages=249–257|doi=10.1016/j.anbehav.2010.10.014|s2cid=26136740}}</ref> Meanwhile, reinforcement relies on short-term and long-term memory skills that are strain-dependent,<ref name=":0" /><ref name=":1" /> causing strains to differ in the degree of laterality of its individuals. Long-term memory of previously gained laterality in handedness due to training is heavily diminished in mice with absent corpus callosum and reduced hippocampal commissure.<ref>{{Cite journal|last1=Ribeiro|first1=Andre S.|last2=Eales|first2=Brenda A.|last3=Biddle|first3=Fred G.|year = 2013|title=Short-term and long-term memory deficits in handedness learning in mice with absent corpus callosum and reduced hippocampal commissure|journal=Behavioural Brain Research|language=en|volume=245|pages=145–151|doi=10.1016/j.bbr.2013.02.021|pmid=23454853|s2cid=40650630}}</ref> Regardless of the amount of past training and consequent biasing of paw choice, there is a degree of randomness in paw choice that is not removed by training,<ref>{{Cite journal|last1=Ribeiro|first1=Andre S.|last2=Eales|first2=Brenda A.|last3=Lloyd-Price|first3=Jason|last4=Biddle|first4=Fred G.|year = 2014|title=Predictability and randomness of paw choices are critical elements in the behavioural plasticity of mouse paw preference|journal=Animal Behaviour|language=en|volume=98|pages=167–176|doi=10.1016/j.anbehav.2014.10.008|s2cid=53144817}}</ref> which may provide adaptability to changing environments.


=== Mammals === === In other mammals ===
Like humans, horses have laterality processes in at least two areas of the neural organization, sensory and motor. During a study of thoroughbred horses researchers found that, the strength of motor laterality/bias increases with age. Researcher also discovered that horse under 4 years old, had a significant preference to use the right nostril first during olfaction.<ref>{{Cite journal|url = |title = Motor and sensory laterality in thoroughbred horses|last = McGreevy|first = |date = August 2005|journal = Applied Animal Behaviour Science|doi = 10.1016/j.applanim.2004.11.012|pmid = |access-date = |last2 = Rogers|issue = 4|volume = 92|pages = 337–352}}</ref> Along with olfaction, reacher have found laterality of eye usage of french horses when looking at novel objects. These researchers also found that emotional index and eye preference had a significant correlation. The researchers found that "the higher the emotionality, the more likely that the horse looked with its left eye. The less emotive French Saddlebreds, however, tended to glance at the object using the right eye, a tendency that was not found in the Trotters, although the emotive index was the same for both breeds".<ref>{{Cite journal|url = |title = Laterality of horses associated with emotionality in novel situations|last = Larose|first = Claire|date = July 1, 2006|journal = Laterality (Hove)|doi = 10.1080/13576500600624221|pmid = |access-date = |last2 = Richard-Yris|first2 = Marie-Annick|issue = 4|pages = 355–367|volume = 11}}</ref> Researchers found that racehorses exhibit laterality in stride patterns as well. The horses will use their preferred stride pattern at all times whether racing or not unless they are forced to change it while turning, injured, or fatigued.<ref>{{Cite journal|url = |title = Laterality in stride pattern preference in racehorses|last = Williams|first = |date = October 2007|journal = Animal Behavior|doi = 10.1016/j.anbehav.2007.01.014|pmid = |access-date = |issue = 4|pages = 941–950|volume = 74|last2 = Norris}}</ref> Most ] are run ], which favors right-side dominant (left ]) ]s, as they take a longer stride with the right foreleg, which helps them turn to the left.{{Citation needed|date=March 2009}} Trainers of left ] horses may put a blinder on the left eye to encourage the horse to turn the head slightly to the left and to take a longer step with the right foreleg just as right-side dominant horses do. {{Citation needed|date=March 2009}} ]s (''Equus caballus'') exhibit laterality in at least two areas of neural organization, i.e. sensory and motor. In ]s, the strength of motor laterality increases with age. Horses under 4 years old have a preference to initially use the right nostril during olfaction.<ref>{{Cite journal|title = Motor and sensory laterality in thoroughbred horses|author1=McGreevy, P. |author2=Rogers, L.|year= 2005|journal = Applied Animal Behaviour Science|doi = 10.1016/j.applanim.2004.11.012|issue = 4|volume = 92|pages = 337–352}}</ref> Along with olfaction, French horses have an eye laterality when looking at novel objects. There is a correlation between their score on an emotional index and eye preference; horses with higher emotionality are more likely to look with their left eye. The less emotive French saddlebreds glance at novel objects using the right eye, however, this tendency is absent in the ], although the emotive index is the same for both breeds.<ref>{{Cite journal|title = Laterality of horses associated with emotionality in novel situations|author=Larose, C., Richard-Yris, M.-A., Hausberger, M. and Rogers, L.J.|year=2006|journal = Laterality: Asymmetries of Body, Brain and Cognition|doi = 10.1080/13576500600624221|pmid = 16754236|issue = 4|pages = 355–367|volume = 11|s2cid=31432670}}</ref> ]s exhibit laterality in stride patterns as well. They use their preferred stride pattern at all times whether racing or not, unless they are forced to change it while turning, injured, or fatigued.<ref>{{Cite journal|title = Laterality in stride pattern preference in racehorses|author1=Williams, D.E. |author2=Norris, B.J|year=2007|journal = Animal Behaviour|doi = 10.1016/j.anbehav.2007.01.014|issue = 4|pages = 941–950|volume = 74|s2cid = 53166627}}</ref>


In ] (''Canis familiaris''), there is a correlation between motor laterality and noise sensitivity - a lack of paw preference is associated with noise-related fearfulness. (Branson and Rogers, 2006){{citation needed|date=June 2015}} Fearfulness is an undesirable trait in guide dogs, therefore, testing for laterality can be a useful predictor of a successful guide dog. Knowing a guide dog's laterality can also be useful for training because the dog may be better at walking to the left or the right of their blind owner.<ref name="Tomkins">{{cite journal |author= Tomkins, L.M., Thomson, P.C. and McGreevy, P.D.|year=2010|title = First-stepping Test as a measure of motor laterality in dogs (Canis familiaris) | journal = Journal of Veterinary Behavior: Clinical Applications and Research | volume = 5 | issue = 5| pages = 247–255 | doi = 10.1016/j.jveb.2010.03.001 }}</ref>
]s and other ] ]s have a left-hand preference for everyday tasks in the wild. ‘True’ handedness is unexpected in marsupials because, unlike other mammals, they lack a ]. Left-handedness was particularly apparent in the red kangaroo (''Macropus rufus'') and the eastern gray kangaroo (''Macropus giganteus''). Red-necked (Bennett’s) wallabies (''Macropus rufogriseus'') preferentially use their left hand for behaviours that involve fine manipulation, but the right for behaviours that require more physical strength. There was less evidence for handedness in ] species.<ref name="Sci-News">{{cite web|title=All kangaroos are lefties, scientists say|publisher=Sci-News.com|publisher=http://www.sci-news.com/biology/science-kangaroos-lefties-02929.html|date=June 18, 2015|accessdate=June 19, 2015}}</ref>


]s (''Felis catus'') show an individual handedness when reaching for static food. In one study, 46% preferred to use the right paw, 44% the left, and 10% were ambi-lateral; 60% used one paw 100% of the time. There was no difference between male and female cats in the proportions of left and right paw preferences. In moving-target reaching tests, cats have a left-sided behavioural asymmetry.<ref>{{cite journal|journal=Behavioural Processes|volume=39|issue=3|year=1997|pages=241–247|title=Paw preferences in cats (Felis silvestris catus) living in a household environment|doi=10.1016/S0376-6357(96)00758-9|author1=Pike, A.V.L. |author2=Maitland, D.P.|pmid=24897330|s2cid=26114508}}</ref> One study indicates that laterality in this species is strongly related to temperament. Furthermore, individuals with stronger paw preferences are rated as more confident, affectionate, active, and friendly.<ref name="McDowell2016">{{cite journal|author=McDowell, L.J., Wells, D.L., Hepper, P.G. and Dempster, M.|year=2016|title=Lateral bias and temperament in the domestic cat (Felis Silvestris)|journal=Journal of Comparative Psychology |volume=130|issue=4|pages=313–320|doi=10.1037/com0000030|pmid=27359075}}</ref>
Dogs are also being studied for laterality. A correlation has been found between motor laterality and noise sensitivity (Branson and Rogers, 2006) - a lack of paw preference is associated with noise-related fearfulness. Fearfulness is an undesirable trait for guide dogs, so testing laterality can be a useful predictor of a successful guide dog. Knowing a dog's laterality can also be useful for training a guide dog, because the dog may be better at walking to the left or the right of her blind owner depending on her paw preference and tasks at hand (or paw) (Tomkins, et al., 2010).


]s show right-handedness in certain conditions. This is expressed at the population level for females, but not males. The complexity of the task has a dominant effect on handedness in chimps.<ref>{{cite journal|author=Llorente, M., Riba, D., Palou, L., Carrasco, L., Mosquera, M., Colell, M. and Feliu, O.|year=2011|title=Population‐level right‐handedness for a coordinated bimanual task in naturalistic housed chimpanzees: replication and extension in 114 animals from Zambia and Spain|journal=American Journal of Primatology|volume=73|issue=3|pages=281-290}}</ref> ]s show right-handedness in certain conditions. This is expressed at the population level for females, but not males. The complexity of the task has a dominant effect on handedness in chimps.<ref>{{cite journal|author=Llorente, M., Riba, D., Palou, L., Carrasco, L., Mosquera, M., Colell, M. and Feliu, O.|year=2011|title=Population-level right-handedness for a coordinated bimanual task in naturalistic housed chimpanzees: replication and extension in 114 animals from Zambia and Spain|journal=American Journal of Primatology|volume=73|issue=3|pages=281–290|doi=10.1002/ajp.20895|pmid=20954250|s2cid=24054277}}</ref>

] use ] in their visual scanning of novel and familiar stimuli.<ref>{{cite journal |author=Phillips, C.J.C., Oevermans, H., Syrett, K.L., Jespersen, A.Y. and Pearce, G.P. |year=2015 |title=Lateralization of behavior in dairy cows in response to conspecifics and novel persons |journal=Journal of Dairy Science |volume=98 |issue=4 |pages=2389–2400 |doi=10.3168/jds.2014-8648|pmid=25648820 |doi-access=free }}</ref> Domestic cattle prefer to view novel stimuli with the left eye, (similar to horses, Australian magpies, chicks, toads and fish) but use the right eye for viewing familiar stimuli.<ref name="Robins">{{cite journal |author1=Robins, A. |author2=Phillips, C. |year=2010 |title=Lateralised visual processing in domestic cattle herds responding to novel and familiar stimuli |journal=Laterality |volume=15 |issue=5 |pages=514–534 |doi=10.1080/13576500903049324|pmid=19629847 |s2cid=13283847 }}</ref>

] is lateralized at the population level and shows a left-hand bias for climbing or grasping.<ref>{{cite journal |last1=Zucca |first1=P. |last2=Palladini |first2=A. |last3=Baciadonna |first3=L. |last4=Scaravelli |first4=D. |year=2010 |title=Handedness in the echolocating Schreiber's long-fingered bat (''Miniopterus schreibersii'') |journal=Behavioural Processes |volume=84 |issue=3 |pages=693–695 |doi=10.1016/j.beproc.2010.04.006|pmid=20399840 |s2cid=3093349 }}</ref>


Some types of ] indicate laterality through the fossil remains having differing tusk lengths.{{Citation needed|date=March 2012}} Some types of ] indicate laterality through the fossil remains having differing tusk lengths.{{Citation needed|date=March 2012}}

====In marsupials====
] are fundamentally different from other mammals in that they lack a ].<ref name="Nowak1999">{{cite book |last=Nowak |first=Ronald M. |title=Walker's Mammals of the World |url=https://archive.org/details/walkersmammalsof0002nowa |url-access=registration |date=1999 |publisher=Johns Hopkins University Press |isbn=978-0-8018-5789-8}}</ref> However, wild ]s and other ] ]s have a left-hand preference for everyday tasks. Left-handedness is particularly apparent in the ] (''Macropus rufus'') and the ] (''Macropus giganteus''). The ] (''Macropus rufogriseus'') preferentially uses the left hand for behaviours that involve fine manipulation, but the right for behaviours that require more physical strength. There is less evidence for handedness in ] species.<ref name="Sci-News">{{cite web |title=All kangaroos are lefties, scientists say |website=Sci-News.com |url=http://www.sci-news.com/biology/science-kangaroos-lefties-02929.html |date=June 18, 2015 |access-date=June 19, 2015}}</ref>


===In birds=== ===In birds===
]s tend to favor one foot when grasping objects (for example fruit when feeding). Some studies indicate that most parrots are left footed.<ref>Zeigler, H. Phillip & Hans-Joachim Bischof, eds. ''Vision, Brain, and Behavior in Birds.'' Cambridge, MA: MIT Press, 1993. 239.</ref> ]s tend to favor one foot when grasping objects (for example fruit when feeding). Some studies indicate that most parrots are left footed.<ref>Zeigler, H. Phillip & Hans-Joachim Bischof, eds. ''Vision, Brain, and Behavior in Birds.'' Cambridge, MA: MIT Press, 1993. 239.</ref>

The ] (''Gymnorhina tibicen'') uses both left-eye and right-eye laterality when performing anti-predator responses, which include ]. Prior to withdrawing from a potential predator, Australian magpies view the animal with the left eye (85%), but prior to approaching, the right eye is used (72%). The left eye is used prior to jumping (73%) and prior to circling (65%) the predator, as well as during circling (58%) and for high alert inspection of the predator (72%). The researchers commented that "mobbing and perhaps circling are agonistic responses controlled by the LE/right hemisphere, as also seen in other species. Alert inspection involves detailed examination of the predator and likely high levels of fear, known to be right hemisphere function."<ref>{{cite journal|author=Koboroff, A., Kaplan, G. and Rogers, L.J.|year=2008|title=Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator|journal=Brain Research Bulletin|volume=76|issue=3|pages=304–306|doi=10.1016/j.brainresbull.2008.02.015|pmid=18498946|s2cid=20559048|url=http://e-publications.une.edu.au/1959.11/3059}}</ref>

] (''Larus michahellis'') chicks show laterality when reverting from a supine to prone posture, and also in pecking at a dummy parental bill to beg for food. Lateralization occurs at both the population and individual level in the reverting response and at the individual level in begging. Females have a leftward preference in the righting response, indicating this is sex dependent. Laterality in the begging response in chicks varies according to laying order and matches variation in egg ]s concentration.
<ref>{{cite journal|author=Romano, M., Parolini, M., Caprioli, M., Spiezio, C., Rubolini, D. and Saino, N.|year=2015|title=Individual and population-level sex-dependent lateralization in yellow-legged gull (Larus michahellis) chicks|journal=Behavioural Processes|volume=115|pages=109–116|doi=10.1016/j.beproc.2015.03.012|pmid=25818662|s2cid=40189333}}</ref>

===In fish===
Laterality determines the organisation of rainbowfish (''Melanotaenia'' spp.) schools. These fish demonstrate an individual eye preference when examining their reflection in a mirror. Fish which show a right-eye preference in the mirror test prefer to be on the left side of the school. Conversely, fish that show a left-eye preference in the mirror test or were non-lateralised, prefer to be slightly to the right side of the school. The behaviour depends on the species and sex of the school.<ref name="Bibost">{{cite journal|author1=Bibost, A-L. |author2=Brown, C.|year=2013|title=Laterality enhances schooling position in rainbowfish, Melaotaenia spp|journal=PLOS ONE|volume=8|issue=11|pages=e80907|doi=10.1371/journal.pone.0080907|pmid=24260506|pmc=3829960|bibcode=2013PLoSO...880907B|doi-access=free}}</ref>

===In amphibians===
Three species of toads, the ] (''Bufo bufo''), ] (''Bufo viridis'') and the ] (''Bufo marinus'') show stronger escape and defensive responses when a model predator was placed on the toad's left side compared to their right side.<ref>{{cite journal|author=Lippolis, G., Bisazza, A., Rogers, L. J. and Vallortigara, G.|year=2002|title=Lateralisation of predator avoidance responses in three species of toads|journal=Laterality: Asymmetries of Body, Brain and Cognition|volume=7|issue=2|pages=163–183|doi=10.1080/13576500143000221|pmid=15513195|citeseerx=10.1.1.511.7850|s2cid=14978610}}</ref> ]s (''Babina daunchina'') have a right-ear preference for positive or neutral signals such as a conspecific's advertisement call and white noise, but a left-ear preference for negative signals such as predatory attack.<ref>{{cite journal|author=Xue, F., Fang, G., Yang, P., Zhao, E., Brauth, S. E. and Tang, Y.|year=2015|title=The biological significance of acoustic stimuli determines ear preference in the music frog|journal=The Journal of Experimental Biology|volume=218|issue=5|pages=740–747|doi=10.1242/jeb.114694|pmid=25740903|doi-access=free|bibcode=2015JExpB.218..740X }}</ref>

===In invertebrates===
The ] (''Ceratitis capitata'') exhibits left-biased population-level lateralisation of aggressive displays (boxing with forelegs and wing strikes) with no sex-differences.<ref>{{cite journal|author=Benelli, G. |author2=Donati, E. |author3=Romano, D. |author4=Stefanini, C. |author5=Messing, R. H. |author6=Canale, A. |year=2015|title= Lateralisation of aggressive displays in a tephritid fly|journal=The Science of Nature|volume=102|issue=1–2|pages=1–9|doi=10.1007/s00114-014-1251-6|pmid=25599665|bibcode=2015SciNa.102....1B|s2cid=17242438}}</ref> In ants, '']'' (rock ant) scouts show behavioural lateralization when exploring unknown nest sites, showing a population-level bias to prefer left turns. One possible reason for this is that its environment is partly maze-like and consistently turning in one direction is a good way to search and exit mazes without getting lost.<ref>{{cite journal |vauthors=Hunt ER, etal | year=2014 |title=Ants show a leftward turning bias when exploring unknown nest sites|journal=] |volume=10 |issue=12 |pmid=25540159 |doi=10.1098/rsbl.2014.0945 |pmc=4298197 |page=20140945}}</ref> This turning bias is correlated with slight asymmetries in the ants' compound eyes (differential ommatidia count).<ref>{{cite journal |vauthors=Hunt ER, etal | year=2018 |title=Asymmetric ommatidia count and behavioural lateralization in the ant ''Temnothorax albipennis''|journal=] |volume=8 |issue=5825 | page=5825 |doi=10.1038/s41598-018-23652-4| pmid=29643429 | pmc=5895843 | bibcode=2018NatSR...8.5825H }}</ref>


==See also== ==See also==
* ]
* ]
* ] * ]
*]
* ]
* ]
* ] * ]

{{Laterality}}


==References== ==References==
{{reflist}} {{reflist}}
* {{cite journal | last1 = Tomkins | first1 = Lisa M. | last2 = Thomson | first2 = Peter C. | last3 = McGreevy | first3 = Paul D. | year = 2010 | title = First-stepping Test as a measure of motor laterality in dogs (Canis familiaris) | url = | journal = Journal of Veterinary Behavior: Clinical Applications and Research | volume = 5 | issue = 5| pages = 247–255 | doi = 10.1016/j.jveb.2010.03.001 }}


==External links== ==External links==
* *

{{Laterality}}


]
] ]
] ]
] ]
]
]

Latest revision as of 06:16, 14 December 2024

Preference most humans show for one side of their body over the other For the linguistics topic, see Lateral consonant. For the academic journal, see Laterality (journal).
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Laterality" – news · newspapers · books · scholar · JSTOR (June 2007) (Learn how and when to remove this message)
This article includes inline citations, but they are not properly formatted. Please improve this article by correcting them. Parenthetical referencing has been deprecated. (March 2015) (Learn how and when to remove this message)
(Learn how and when to remove this message)

The term laterality refers to the preference most humans show for one side of their body over the other. Examples include left-handedness/right-handedness and left/right-footedness; it may also refer to the primary use of the left or right hemisphere in the brain. It may also apply to animals or plants. The majority of tests have been conducted on humans, specifically to determine the effects on language.

Human

Most humans are right-handed. Many are also right-sided in general (that is, they prefer to use their right eye, right foot and right ear if forced to make a choice between the two). The reasons for this are not fully understood, but it is thought that because the left cerebral hemisphere of the brain controls the right side of the body, the right side is generally stronger; it is suggested that the left cerebral hemisphere is dominant over the right in most humans because in 90–92% of all humans, the left hemisphere is the language hemisphere.

Human cultures are predominantly right-handed, and so the right-sided trend may be socially as well as biologically enforced. This is quite apparent from a quick survey of languages. The English word "left" comes from the Anglo-Saxon word lyft which means "weak" or "useless". Similarly, the French word for left, gauche, is also used to mean "awkward" or "tactless", and sinistra, the Latin word from which the English word "sinister" was derived, means "left". Similarly, in many cultures the word for "right" also means "correct". The English word "right" comes from the Anglo-Saxon word riht which also means "straight" or "correct."

This linguistic and social bias is not restricted to European cultures: for example, Chinese characters are designed for right-handers to write, and no significant left-handed culture has ever been found in the world.

When a person is forced to use the hand opposite of the hand that they would naturally use, this is known as forced laterality, or more specifically forced dextrality. A study done by the Department of Neurology at Keele University, North Staffordshire Royal Infirmary suggests that forced dextrality may be part of the reason that the percentage of left-handed people decreases with the higher age groups, both because the effects of pressures toward right-handedness are cumulative over time (hence increasing with age for any given person subjected to them) and because the prevalence of such pressure is decreasing, such that fewer members of younger generations face any such pressure to begin with.

Ambidexterity is when a person has approximately equal skill with both hands and/or both sides of the body. True ambidexterity is very rare. Although a small number of people can write competently with both hands and use both sides of their body well, even these people usually show preference for one side of their body over the other. However, this preference is not necessarily consistent for all activities. Some people may, for instance, use their right hand for writing, and their left hand for playing racket sports and eating (see also: cross-dominance).

Also, it is not uncommon that people preferring to use the right hand prefer to use the left leg, e.g. when using a shovel, kicking a ball, or operating control pedals. In many cases, this may be because they are disposed for left-handedness but have been trained for right-handedness, which is usually attached to learning and behavioural disorders (term usually so called as "cross dominance"). In the sport of cricket, some players may find that they are more comfortable bowling with their left or right hand, but batting with the other hand.

Approximate statistics, complied in 1981, are given below:

Laterality of motor and sensory control has been the subject of a recent intense study and review. It turns out that the hemisphere of speech is the hemisphere of action in general and that the command hemisphere is located either in the right or the left hemisphere (never in both). Around 80% of people are left hemispheric for speech and the remainder are right hemispheric: ninety percent of right-handers are left hemispheric for speech, but only 50% of left-handers are right hemispheric for speech (the remainder are left hemispheric). The reaction time of the neurally dominant side of the body (the side opposite to the major hemisphere or the command center, as just defined) is shorter than that of the opposite side by an interval equal to the interhemispheric transfer time. Thus, one in five persons has a handedness that is the opposite for which they are wired (per laterality of command center or brainedness, as determined by reaction time study mentioned above).

Different expressions

Board footedness
The stance in a boardsport is not necessarily the same as the normal-footedness of the person. In skateboarding and other board sports, a "goofy footed" stance is one with the right foot leading. A stance with the left foot forward is called "regular" or "normal" stance.
Jump and spin
Direction of rotation in figure skating jumps and spins is not necessarily the same as the footedness or the handedness of each person. A skater can jump and spin counter-clockwise (the most common direction), yet be left-footed and left-handed.
Ocular dominance
The eye preferred when binocular vision is not possible, as through a keyhole or monocular microscope.

Speech

Cerebral dominance or specialization has been studied in relation to a variety of human functions. With speech in particular, many studies have been used as evidence that it is generally localized in the left hemisphere. Research comparing the effects of lesions in the two hemispheres, split-brain patients, and perceptual asymmetries have aided in the knowledge of speech lateralization. In one particular study, the left hemisphere's sensitivity to differences in rapidly changing sound cues was noted (Annett, 1991). This has real world implication, since very fine acoustic discriminations are needed to comprehend and produce speech signals. In an electrical stimulation demonstration performed by Ojemann and Mateer (1979), the exposed cortex was mapped revealing the same cortical sites were activated in phoneme discrimination and mouth movement sequences (Annett, 1991).

As suggested by Kimura (1975, 1982), left hemisphere speech lateralization might be based upon a preference for movement sequences as demonstrated by American Sign Language (ASL) studies. Since ASL requires intricate hand movements for language communication, it was proposed that skilled hand motions and speech require sequences of action over time. In deaf patients with a left hemispheric stroke and damage, noticeable losses in their abilities to sign were noted. These cases were compared to studies of normal speakers with dysphasias located at lesioned areas similar to the deaf patients. In the same study, deaf patients with right hemispheric lesions did not display any significant loss of signing nor any decreased capacity for motor sequencing (Annett, 1991).

One theory, known as the acoustic laterality theory, the physical properties of certain speech sounds are what determine laterality to the left hemisphere. Stop consonants, for example t, p, or k, leave a defined silent period at the end of words that can easily be distinguished. This theory postulates that changing sounds such as these are preferentially processed by the left hemisphere. As a result of the right ear being responsible for transmission to sounds to the left hemisphere, it is capable of perceiving these sounds with rapid changes. This right ear advantage in hearing and speech laterality was evidenced in dichotic listening studies. Magnetic imaging results from this study showed greater left hemisphere activation when actual words were presented as opposed to pseudowords. Two important aspects of speech recognition are phonetic cues, such as format patterning, and prosody cues, such as intonation, accent, and emotional state of the speaker (Imaizumi, Koichi, Kiritani, Hosoi & Tonoike, 1998).

In a study done with both monolinguals and bilinguals, which took into account language experience, second language proficiency, and onset of bilingualism among other variables, researchers were able to demonstrate left hemispheric dominance. In addition, bilinguals that began speaking a second language early in life demonstrated bilateral hemispheric involvement. The findings of this study were able to predict differing patterns of cerebral language lateralization in adulthood (Hull & Vaid, 2006).

In other animals

It has been shown that cerebral lateralization is a widespread phenomenon in the animal kingdom. Functional and structural differences between left and right brain hemispheres can be found in many other vertebrates and also in invertebrates.

It has been proposed that negative, withdrawal-associated emotions are processed predominantly by the right hemisphere, whereas the left hemisphere is largely responsible for processing positive, approach-related emotions. This has been called the "laterality-valence hypothesis".

One sub-set of laterality in animals is limb dominance. Preferential limb use for specific tasks has been shown in species including chimpanzees, mice, bats, wallabies, parrots, chickens and toads.

Another form of laterality is hemispheric dominance for processing conspecific vocalizations, reported for chimpanzees, sea lions, dogs, zebra finches and Bengalese finches.

In mice

In mice (Mus musculus), laterality in paw usage has been shown to be a learned behavior (rather than inherited), due to which, in any population, half of the mice become left-handed while the other half becomes right-handed. The learning occurs by a gradual reinforcement of randomly occurring weak asymmetries in paw choice early in training, even when training in an unbiased world. Meanwhile, reinforcement relies on short-term and long-term memory skills that are strain-dependent, causing strains to differ in the degree of laterality of its individuals. Long-term memory of previously gained laterality in handedness due to training is heavily diminished in mice with absent corpus callosum and reduced hippocampal commissure. Regardless of the amount of past training and consequent biasing of paw choice, there is a degree of randomness in paw choice that is not removed by training, which may provide adaptability to changing environments.

In other mammals

Domestic horses (Equus caballus) exhibit laterality in at least two areas of neural organization, i.e. sensory and motor. In thoroughbreds, the strength of motor laterality increases with age. Horses under 4 years old have a preference to initially use the right nostril during olfaction. Along with olfaction, French horses have an eye laterality when looking at novel objects. There is a correlation between their score on an emotional index and eye preference; horses with higher emotionality are more likely to look with their left eye. The less emotive French saddlebreds glance at novel objects using the right eye, however, this tendency is absent in the trotters, although the emotive index is the same for both breeds. Racehorses exhibit laterality in stride patterns as well. They use their preferred stride pattern at all times whether racing or not, unless they are forced to change it while turning, injured, or fatigued.

In domestic dogs (Canis familiaris), there is a correlation between motor laterality and noise sensitivity - a lack of paw preference is associated with noise-related fearfulness. (Branson and Rogers, 2006) Fearfulness is an undesirable trait in guide dogs, therefore, testing for laterality can be a useful predictor of a successful guide dog. Knowing a guide dog's laterality can also be useful for training because the dog may be better at walking to the left or the right of their blind owner.

Domestic cats (Felis catus) show an individual handedness when reaching for static food. In one study, 46% preferred to use the right paw, 44% the left, and 10% were ambi-lateral; 60% used one paw 100% of the time. There was no difference between male and female cats in the proportions of left and right paw preferences. In moving-target reaching tests, cats have a left-sided behavioural asymmetry. One study indicates that laterality in this species is strongly related to temperament. Furthermore, individuals with stronger paw preferences are rated as more confident, affectionate, active, and friendly.

Chimpanzees show right-handedness in certain conditions. This is expressed at the population level for females, but not males. The complexity of the task has a dominant effect on handedness in chimps.

Cattle use visual/brain lateralisation in their visual scanning of novel and familiar stimuli. Domestic cattle prefer to view novel stimuli with the left eye, (similar to horses, Australian magpies, chicks, toads and fish) but use the right eye for viewing familiar stimuli.

Schreibers' long-fingered bat is lateralized at the population level and shows a left-hand bias for climbing or grasping.

Some types of mastodon indicate laterality through the fossil remains having differing tusk lengths.

In marsupials

Marsupials are fundamentally different from other mammals in that they lack a corpus callosum. However, wild kangaroos and other macropod marsupials have a left-hand preference for everyday tasks. Left-handedness is particularly apparent in the red kangaroo (Macropus rufus) and the eastern gray kangaroo (Macropus giganteus). The red-necked wallaby (Macropus rufogriseus) preferentially uses the left hand for behaviours that involve fine manipulation, but the right for behaviours that require more physical strength. There is less evidence for handedness in arboreal species.

In birds

Parrots tend to favor one foot when grasping objects (for example fruit when feeding). Some studies indicate that most parrots are left footed.

The Australian magpie (Gymnorhina tibicen) uses both left-eye and right-eye laterality when performing anti-predator responses, which include mobbing. Prior to withdrawing from a potential predator, Australian magpies view the animal with the left eye (85%), but prior to approaching, the right eye is used (72%). The left eye is used prior to jumping (73%) and prior to circling (65%) the predator, as well as during circling (58%) and for high alert inspection of the predator (72%). The researchers commented that "mobbing and perhaps circling are agonistic responses controlled by the LE/right hemisphere, as also seen in other species. Alert inspection involves detailed examination of the predator and likely high levels of fear, known to be right hemisphere function."

Yellow-legged gull (Larus michahellis) chicks show laterality when reverting from a supine to prone posture, and also in pecking at a dummy parental bill to beg for food. Lateralization occurs at both the population and individual level in the reverting response and at the individual level in begging. Females have a leftward preference in the righting response, indicating this is sex dependent. Laterality in the begging response in chicks varies according to laying order and matches variation in egg androgens concentration.

In fish

Laterality determines the organisation of rainbowfish (Melanotaenia spp.) schools. These fish demonstrate an individual eye preference when examining their reflection in a mirror. Fish which show a right-eye preference in the mirror test prefer to be on the left side of the school. Conversely, fish that show a left-eye preference in the mirror test or were non-lateralised, prefer to be slightly to the right side of the school. The behaviour depends on the species and sex of the school.

In amphibians

Three species of toads, the common toad (Bufo bufo), green toad (Bufo viridis) and the cane toad (Bufo marinus) show stronger escape and defensive responses when a model predator was placed on the toad's left side compared to their right side. Emei music frogs (Babina daunchina) have a right-ear preference for positive or neutral signals such as a conspecific's advertisement call and white noise, but a left-ear preference for negative signals such as predatory attack.

In invertebrates

The Mediterranean fruit fly (Ceratitis capitata) exhibits left-biased population-level lateralisation of aggressive displays (boxing with forelegs and wing strikes) with no sex-differences. In ants, Temnothorax albipennis (rock ant) scouts show behavioural lateralization when exploring unknown nest sites, showing a population-level bias to prefer left turns. One possible reason for this is that its environment is partly maze-like and consistently turning in one direction is a good way to search and exit mazes without getting lost. This turning bias is correlated with slight asymmetries in the ants' compound eyes (differential ommatidia count).

See also

References

  1. Ellis, S. J.; Ellis, P. J.; Marshall, E.; Joses, S. (1998). "Is forced dextrality an explanation for the fall in the prevalence of sinistrality with age? A study in northern England". Journal of Epidemiology and Community Health. 52 (1): 41–44. doi:10.1136/jech.52.1.41. PMC 1756611. PMID 9604040.
  2. Oldfield, R.C. (1971). "The assessment and analysis of handedness: The Edinburgh inventory". Neuropsychologia. 9 (1): 97–113. doi:10.1016/0028-3932(71)90067-4. PMID 5146491.
  3. Bache, M.A.B.; Naranjo, J. (2014). "Laterality and sports performance". Arch. Med. Dep. 31 (161): 200–204. ISSN 0212-8799.
  4. C. Porac and S. Coren. Lateral preferences and human behavior. New York: Springer-Verlag, 1981.
  5. Mimicking Man.com. I. Derakhshan, MD, Neurologist.
  6. Shtyrov Y, Pihko E, Pulvermüller F (2005). "Determinants of dominance: is language laterality explained by physical or linguistic features of speech?". NeuroImage. 27 (1): 37–47. doi:10.1016/j.neuroimage.2005.02.003. PMID 16023039.
  7. Rogers, Lesley J., Andrew, Richard J. (2002) Comparative Vertebrate Lateralization, Cambridge University Press
  8. ^ Manns, M.; Ströckens, F. (2014). "Functional and structural comparison of visual lateralization in birds–similar but still different". Frontiers in Psychology. 5: 206. doi:10.3389/fpsyg.2014.00206. PMC 3971188. PMID 24723898.
  9. Barnard, S., Matthews, L., Messori, S., Podaliri-Vulpiani, M. and Ferri, N. (2015). "Laterality as an indicator of emotional stress in ewes and lambs during a separation test". Animal Cognition. 19 (1): 1–8. doi:10.1007/s10071-015-0928-3. PMID 26433604. S2CID 7008274.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. Biddle, Fred G; Eales, Brenda A (2006). "Hand-preference training in the mouse reveals key elements of its learning and memory process and resolves the phenotypic complexity in the behaviour". Genome. 49 (6): 666–677. doi:10.1139/g06-026. ISSN 0831-2796. PMID 16936846.
  11. ^ Ribeiro, Andre S.; Lloyd-Price, Jason; Eales, Brenda A.; Biddle, Fred G. (2010). "Dynamic Agent-Based Model of Hand-Preference Behavior Patterns in the Mouse". Adaptive Behavior. 18 (2): 116–131. doi:10.1177/1059712309339859. ISSN 1059-7123. S2CID 10117297.
  12. ^ Ribeiro, Andre S.; Eales, Brenda A.; Biddle, Fred G. (2011). "Learning of paw preference in mice is strain dependent, gradual and based on short-term memory of previous reaches". Animal Behaviour. 81 (1): 249–257. doi:10.1016/j.anbehav.2010.10.014. S2CID 26136740.
  13. Ribeiro, Andre S.; Eales, Brenda A.; Biddle, Fred G. (2013). "Short-term and long-term memory deficits in handedness learning in mice with absent corpus callosum and reduced hippocampal commissure". Behavioural Brain Research. 245: 145–151. doi:10.1016/j.bbr.2013.02.021. PMID 23454853. S2CID 40650630.
  14. Ribeiro, Andre S.; Eales, Brenda A.; Lloyd-Price, Jason; Biddle, Fred G. (2014). "Predictability and randomness of paw choices are critical elements in the behavioural plasticity of mouse paw preference". Animal Behaviour. 98: 167–176. doi:10.1016/j.anbehav.2014.10.008. S2CID 53144817.
  15. McGreevy, P.; Rogers, L. (2005). "Motor and sensory laterality in thoroughbred horses". Applied Animal Behaviour Science. 92 (4): 337–352. doi:10.1016/j.applanim.2004.11.012.
  16. Larose, C., Richard-Yris, M.-A., Hausberger, M. and Rogers, L.J. (2006). "Laterality of horses associated with emotionality in novel situations". Laterality: Asymmetries of Body, Brain and Cognition. 11 (4): 355–367. doi:10.1080/13576500600624221. PMID 16754236. S2CID 31432670.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. Williams, D.E.; Norris, B.J (2007). "Laterality in stride pattern preference in racehorses". Animal Behaviour. 74 (4): 941–950. doi:10.1016/j.anbehav.2007.01.014. S2CID 53166627.
  18. Tomkins, L.M., Thomson, P.C. and McGreevy, P.D. (2010). "First-stepping Test as a measure of motor laterality in dogs (Canis familiaris)". Journal of Veterinary Behavior: Clinical Applications and Research. 5 (5): 247–255. doi:10.1016/j.jveb.2010.03.001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. Pike, A.V.L.; Maitland, D.P. (1997). "Paw preferences in cats (Felis silvestris catus) living in a household environment". Behavioural Processes. 39 (3): 241–247. doi:10.1016/S0376-6357(96)00758-9. PMID 24897330. S2CID 26114508.
  20. McDowell, L.J., Wells, D.L., Hepper, P.G. and Dempster, M. (2016). "Lateral bias and temperament in the domestic cat (Felis Silvestris)". Journal of Comparative Psychology. 130 (4): 313–320. doi:10.1037/com0000030. PMID 27359075.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Llorente, M., Riba, D., Palou, L., Carrasco, L., Mosquera, M., Colell, M. and Feliu, O. (2011). "Population-level right-handedness for a coordinated bimanual task in naturalistic housed chimpanzees: replication and extension in 114 animals from Zambia and Spain". American Journal of Primatology. 73 (3): 281–290. doi:10.1002/ajp.20895. PMID 20954250. S2CID 24054277.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. Phillips, C.J.C., Oevermans, H., Syrett, K.L., Jespersen, A.Y. and Pearce, G.P. (2015). "Lateralization of behavior in dairy cows in response to conspecifics and novel persons". Journal of Dairy Science. 98 (4): 2389–2400. doi:10.3168/jds.2014-8648. PMID 25648820.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. Robins, A.; Phillips, C. (2010). "Lateralised visual processing in domestic cattle herds responding to novel and familiar stimuli". Laterality. 15 (5): 514–534. doi:10.1080/13576500903049324. PMID 19629847. S2CID 13283847.
  24. Zucca, P.; Palladini, A.; Baciadonna, L.; Scaravelli, D. (2010). "Handedness in the echolocating Schreiber's long-fingered bat (Miniopterus schreibersii)". Behavioural Processes. 84 (3): 693–695. doi:10.1016/j.beproc.2010.04.006. PMID 20399840. S2CID 3093349.
  25. Nowak, Ronald M. (1999). Walker's Mammals of the World. Johns Hopkins University Press. ISBN 978-0-8018-5789-8.
  26. "All kangaroos are lefties, scientists say". Sci-News.com. June 18, 2015. Retrieved June 19, 2015.
  27. Zeigler, H. Phillip & Hans-Joachim Bischof, eds. Vision, Brain, and Behavior in Birds. Cambridge, MA: MIT Press, 1993. 239.
  28. Koboroff, A., Kaplan, G. and Rogers, L.J. (2008). "Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator". Brain Research Bulletin. 76 (3): 304–306. doi:10.1016/j.brainresbull.2008.02.015. PMID 18498946. S2CID 20559048.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Romano, M., Parolini, M., Caprioli, M., Spiezio, C., Rubolini, D. and Saino, N. (2015). "Individual and population-level sex-dependent lateralization in yellow-legged gull (Larus michahellis) chicks". Behavioural Processes. 115: 109–116. doi:10.1016/j.beproc.2015.03.012. PMID 25818662. S2CID 40189333.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Bibost, A-L.; Brown, C. (2013). "Laterality enhances schooling position in rainbowfish, Melaotaenia spp". PLOS ONE. 8 (11): e80907. Bibcode:2013PLoSO...880907B. doi:10.1371/journal.pone.0080907. PMC 3829960. PMID 24260506.
  31. Lippolis, G., Bisazza, A., Rogers, L. J. and Vallortigara, G. (2002). "Lateralisation of predator avoidance responses in three species of toads". Laterality: Asymmetries of Body, Brain and Cognition. 7 (2): 163–183. CiteSeerX 10.1.1.511.7850. doi:10.1080/13576500143000221. PMID 15513195. S2CID 14978610.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. Xue, F., Fang, G., Yang, P., Zhao, E., Brauth, S. E. and Tang, Y. (2015). "The biological significance of acoustic stimuli determines ear preference in the music frog". The Journal of Experimental Biology. 218 (5): 740–747. Bibcode:2015JExpB.218..740X. doi:10.1242/jeb.114694. PMID 25740903.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. Benelli, G.; Donati, E.; Romano, D.; Stefanini, C.; Messing, R. H.; Canale, A. (2015). "Lateralisation of aggressive displays in a tephritid fly". The Science of Nature. 102 (1–2): 1–9. Bibcode:2015SciNa.102....1B. doi:10.1007/s00114-014-1251-6. PMID 25599665. S2CID 17242438.
  34. Hunt ER, et al. (2014). "Ants show a leftward turning bias when exploring unknown nest sites". Biology Letters. 10 (12): 20140945. doi:10.1098/rsbl.2014.0945. PMC 4298197. PMID 25540159.
  35. Hunt ER, et al. (2018). "Asymmetric ommatidia count and behavioural lateralization in the ant Temnothorax albipennis". Scientific Reports. 8 (5825): 5825. Bibcode:2018NatSR...8.5825H. doi:10.1038/s41598-018-23652-4. PMC 5895843. PMID 29643429.

External links

Laterality
Side Left Both Right
General Ambidexterity
In cognitive abilities Geschwind–Galaburda hypothesis
In brain
In eyes Ocular dominance
In hands Left-handedness Cross-dominance Right-handedness
Handedness in boxing Southpaw stance Orthodox stance
Handedness in people Musicians
Handedness related to
Handedness measurement Edinburgh Handedness Inventory
Handedness genetics LRRTM1
In heart Levocardia Dextrocardia
In major viscera Situs solitus Situs ambiguus Situs inversus
In feet Footedness
Footedness in boardsports Regular foot Goofy foot
Categories: