Misplaced Pages

Biome: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 16:48, 25 September 2006 editAntiVandalBot (talk | contribs)258,750 editsm BOT - rv 152.157.144.31 (talk) to last version by Blobglob← Previous edit Latest revision as of 18:35, 15 December 2024 edit undoPaleorthid (talk | contribs)Extended confirmed users, Rollbackers14,907 editsm Anthropogenic biomes: copy edit 
Line 1: Line 1:
{{Short description|Biogeographical unit with a particular biological community}}
In ], a ''biome'' is a major regional group of distinctive ] and ] ] best adapted to the region's physical ], ], ], and ]. A biome is made up of ] at stable steady state and all associated transitional, disturbed, or degraded, ], ] and ], but can often be identified by the ] type.
]


A '''biome''' ({{IPAc-en|ˈ|b|aɪ|.|oʊ|m}}) is a distinct ] with specific ], ], and ]. It consists of a biological ] that has formed in response to its physical environment and regional ].<ref>{{Cite book |last1=Bowman |first1=William D. |title=Ecology |last2=Hacker |first2=Sally D. |publisher=] |year=2021 |isbn=978-1605359212 |edition=5th |pages=H3–1–51 |language=English}}</ref><ref>{{cite book |last=Rull |first=Valentí |title=Quaternary Ecology, Evolution, and Biogeography |date=2020 |publisher=] |isbn=978-0-12-820473-3 |page=67 |chapter=Organisms: adaption, extinction, and biogeographical reorganizations}}</ref> Biomes may span more than one continent. A biome encompasses multiple ] within its boundaries. It can also comprise a variety of ].
A fundamental classification of biomes is into:
# ] (or continental) biomes and
# Aquatic biomes.


While a biome can cover small areas, a ] is a mix of organisms that coexist in a defined space on a much smaller scale. For example, the ] is the collection of bacteria, viruses, and other microorganisms that are present on or in a human body.<ref>{{cite web |title=Finally, A Map Of All The Microbes On Your Body |url=https://www.npr.org/sections/health-shots/2012/06/13/154913334/finally-a-map-of-all-the-microbes-on-your-body |website=] |access-date=2018-04-05 |archive-url=https://web.archive.org/web/20180416013033/https://www.npr.org/sections/health-shots/2012/06/13/154913334/finally-a-map-of-all-the-microbes-on-your-body |archive-date=2018-04-16 |url-status=live}}</ref>
Biomes are often given local names. For example, a ] biome is known commonly as '']'' in central ], '']'' or ] in southern ], '']'' in ], '']'' in ] and '']'' or '']'' in ].
Sometimes an entire biome may be targeted for protection, especially under an individual nation's ].


A biota is the total collection of organisms of a geographic region or a time period, from local geographic scales and instantaneous temporal scales all the way up to whole-planet and whole-timescale spatiotemporal scales. The biotas of the Earth make up the ].
== Latitude classification ==


== Terminology ==
] is a major climate-influencing factor determining biomes. There is a good correlation between the distribution of climates with ], and homogeneous ] bands. Another major factor is ]. This can be illustrated by the fact that ] increases away from the poles towards the ], and increases with ].
The term was suggested in 1916 by ], originally as a synonym for '']'' of ] (1877).<ref>{{cite journal|last=Clements |first=F. E. |date=1917 |url=http://www.jstor.org/stable/2255652|title=The development and structure of biotic communities |journal=] |volume=5 |pages=120–121 |jstor=2255652 |archive-url=https://web.archive.org/web/20161007005736/http://www.jstor.org/stable/2255652?seq=1#page_scan_tab_contents |archive-date=2016-10-07}}</ref> Later, it gained its current definition, based on earlier concepts of ], ] and ] (used in opposition to ]), with the inclusion of the animal element and the exclusion of the taxonomic element of ].<ref name="Coutinho">{{cite journal|last=Coutinho |first=L. M. |date=2006 |title=O conceito de bioma |language=pt |trans-title=The biome concept |journal=] |volume=20 |number=1 |pages=13–23 |doi=10.1590/S0102-33062006000100002 |doi-access=free }}</ref><ref>Martins, F. R. & Batalha, M. A. (2011). Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. In: Felfili, J. M., Eisenlohr, P. V.; Fiuza de Melo, M. M. R.; Andrade, L. A.; Meira Neto, J. A. A. (Org.). ''Fitossociologia no Brasil: métodos e estudos de caso.'' Vol. 1. Viçosa: Editora UFV. pp. 44–85. {{Webarchive|url=https://web.archive.org/web/20160924062109/http://files.hisaias.webnode.com/200000112-37f2239e9a/Cap%202.pdf|date=2016-09-24}}. Earlier version, 2003, {{Webarchive|url=https://web.archive.org/web/20160827014258/http://www2.ib.unicamp.br/profs/fsantos/bt682/2003/Apostila-FormasVida-2003.pdf|date=2016-08-27}}.</ref> In 1935, ] added the climatic and soil aspects to the idea, calling it '']''.<ref>{{cite book|last1=Cox |first1=C. B. |last2=Moore |first2=P.D. |last3=Ladle |first3=R. J. |date=2016 |title=Biogeography: an ecological and evolutionary approach |edition=9th |publisher=] |location=Hoboken |page=20 |isbn=9781118968581 |url=https://books.google.com/books?id=RBcWCgAAQBAJ |archive-url=https://web.archive.org/web/20161126224232/https://books.google.com/books?id=RBcWCgAAQBAJ |archive-date=2016-11-26 |via=]}}</ref><ref>{{cite journal|last=Tansley |first=A.G. |date=1935 |title=The use and abuse of vegetational terms and concepts. |journal=] |volume=16 |number=3 |pages=284–307 |doi=10.2307/1930070 |jstor=1930070 |url=http://www.ecology150anniversary.net/wp-content/uploads/2015/12/tansley-1935.pdf |access-date=2016-09-24 |url-status=dead |archive-url=https://web.archive.org/web/20161006125220/http://www.ecology150anniversary.net/wp-content/uploads/2015/12/tansley-1935.pdf |archive-date=2016-10-06}}</ref> The ] (1964–74) projects popularized the concept of biome.<ref>Box, E.O. & Fujiwara, K. (2005). Vegetation types and their broad-scale distribution. In: ] (ed.). ''Vegetation ecology''. Blackwell Scientific, Oxford. pp. 106–128, {{Webarchive|url=https://web.archive.org/web/20160828093637/https://e.famnit.upr.si/pluginfile.php/14045/mod_resource/content/1/Vegetation%20Ecology.pdf|date=2016-08-28}}.</ref>
The most widely used classification of biomes is related to ] (or temperature zoning) and ]


However, in some contexts, the term ''biome'' is used in a different manner. In German literature, particularly in the ] terminology, the term is used similarly as '']'' (a concrete geographical unit), while the biome definition used in this article is used as an international, non-regional, terminology—irrespectively of the continent in which an area is present, it takes the same biome name—and corresponds to his "zonobiome", "orobiome" and "pedobiome" (biomes determined by climate zone, altitude or soil).<ref name="WalterBreckle">{{cite book|last1=Walter |first1=H. |last2=Breckle |first2=S-W. |date=2002 |title=Walter's Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere |location=New York |publisher=] |page=86 |isbn=9783540433156 |url=https://books.google.com/books?id=SdaCSwxK5bIC |archive-url=https://web.archive.org/web/20161127041949/https://books.google.com/books?id=SdaCSwxK5bIC |archive-date=2016-11-27 |via=]}}</ref>
=== Arctic or subarctic area ===
* humid type : ]


In the Brazilian literature, the term ''biome'' is sometimes used as a synonym of '']'', an area based on ] (the term '']'' being used when plant species are considered), or also as synonym of the "morphoclimatic and phytogeographical domain" of ], a geographic space with subcontinental dimensions, with the predominance of similar geomorphologic and climatic characteristics, and of a certain vegetation form. Both include many biomes in fact.<ref name="Coutinho" /><ref>{{cite journal|last=Batalha |first=M.A. |date=2011 |title=The Brazilian cerrado is not a biome. |journal=Biota Neotropica |volume=11 |pages=21–24 |doi=10.1590/S1676-06032011000100001 |doi-access=free }}</ref><ref>{{cite journal |last1=Fiaschi |first1=P. |last2=Pirani |first2=J.R. |date=2009 |title=Review of plant biogeographic studies in Brazil |journal=] |volume=47 |issue=5 |pages=477–496 |doi=10.1111/j.1759-6831.2009.00046.x |s2cid=84315246 |url=https://www.researchgate.net/publication/249500929 |archive-url=https://web.archive.org/web/20170831040555/https://www.researchgate.net/publication/249500929_Review_of_plant_biogeographic_studies_in_Brazil |archive-date=2017-08-31}}</ref>
=== Subarctic and boreal area ===
* humid type: ] or ]
The Boreal Forest is the largest of all biomes. It is located in the northern hemishphere just south of the tundra.


=== Temperate cold === == Classifications ==
To divide the world into a few ecological zones is difficult, notably because of the small-scale variations that exist everywhere on earth and because of the gradual changeover from one biome to the other. Their boundaries must therefore be drawn arbitrarily and their characterization made according to the average conditions that predominate in them.<ref>{{cite book |last1=Schultz |first1=Jürgen |date=1995 |title=The ecozones of the world |pages=2–3 |isbn=978-3-540-28527-4 |publisher=Springer}}</ref>


A 1978 study on North American ]<ref>{{cite journal |last1=Sims |first1=Phillip L. |last2=Singh |first2=J.S. |title=The Structure and Function of Ten Western North American Grasslands: III. Net Primary Production, Turnover and Efficiencies of Energy Capture and Water Use |journal=] |date=July 1978 |volume=66 |issue=2 |pages=573–597 |publisher=] |doi=10.2307/2259152 |jstor=2259152|bibcode=1978JEcol..66..573S }}</ref> found a positive ] between ] in mm/yr and above-ground net primary production in g/m<sup>2</sup>/yr. The general results from the study were that precipitation and water use led to above-ground primary production, while ] and temperature lead to below-ground primary production (roots), and temperature and water lead to cool and warm season growth habit.<ref>{{cite book |editor1-last=Pomeroy |editor1-first=Lawrence R. |editor2-last=Alberts |editor2-first=James J. |title=Concepts of Ecosystem Ecology |location=New York |publisher=] |date=1988}}</ref> These findings help explain the categories used in Holdridge's bioclassification scheme (see below), which were then later simplified by Whittaker. The number of classification schemes and the variety of determinants used in those schemes, however, should be taken as strong indicators that biomes do not fit perfectly into the classification schemes created.
* humid type : ], ]


=== Holdridge (1947, 1964) life zones ===
=== Tropical ===
]
* humid area: ]
{{Main|Holdridge life zones}}
* semi-humid area: ], ]
In 1947, the American botanist and climatologist ] classified climates based on the biological effects of temperature and ] on ] under the assumption that these two ] factors are the largest determinants of the types of vegetation found in a habitat. Holdridge uses the four axes to define 30 so-called "humidity provinces", which are clearly visible in his diagram. While this scheme largely ignores soil and sun exposure, Holdridge acknowledged that these were important.
* Semi-arid area: ]
* Arid area: ]; and ]s


=== Aquatic === === Allee (1949) biome-types ===
The principal biome-types by Allee (1949):<ref>{{Cite book|last=Allee |first=W.C. |date=1949 |title=Principles of animal ecology |location=Philadelphia |publisher=Saunders Co. |url=https://www.biodiversitylibrary.org/bibliography/7325#/summary |archive-url=https://web.archive.org/web/20171001021240/http://www.biodiversitylibrary.org/bibliography/7325#/summary |archive-date=2017-10-01}}</ref>
* ]
* ] * ]
* ] * ]
* ]
* ]
* ]s
* ]
* ]s
* ]
* ]


=== Kendeigh (1961) biomes ===
* ]
The principal biomes of the world by Kendeigh (1961):<ref>{{cite book|last=Kendeigh |first=S.C. |date=1961 |title=Animal ecology |location=Englewood Cliffs, NJ |publisher=]}}</ref>
* ]
* ''Terrestrial''
* ]
** ]
* ]s
* ]s ** ]
* ] ** ]
* ] ** ]
** ]
** ]
** ]
** ]
** ]
* Marine
** ]ic ] and ]
** Balanoid-gastropod-]
** ]-]
** ]


=== Whittaker (1962, 1970, 1975) biome-types ===
== Altitude and latitude classification ==
]
Another system of classification takes into account altitude and humidity, ignoring temperature as a factor. This classification is used to define the ] list of ]s identified by the ] (WWF) as priorities for conservation.
] classified biomes using two abiotic factors: precipitation and temperature. His scheme can be seen as a simplification of Holdridge's; more readily accessible, but missing Holdridge's greater specificity.


Whittaker based his approach on theoretical assertions and empirical sampling. He had previously compiled a review of biome classifications.<ref>{{cite journal|last=Whittaker |first=Robert H. |journal=] |title=Classification of Natural Communities |volume=28 |number=1 |date=January–March 1962 |pages=1–239|doi=10.1007/BF02860872 |bibcode=1962BotRv..28....1W |s2cid=25771073 }}</ref>
This classification gives the following terrestrial biomes :


==== Key definitions for understanding Whittaker's scheme ====
*] (arctic, humid)
* ]: sometimes referring to the plants' appearance; or the biome's apparent characteristics, outward features, or appearance of ecological communities or species - including plants.
*] (subarctic, humid)
* Biome: a grouping of terrestrial ecosystems on a given continent that is similar in vegetation structure, physiognomy, features of the environment and characteristics of their animal communities.
*] (temperate cold, humid to semi-humid)
* ]: a major kind of community of plants on a given continent.
*] (temperate, humid)
* Biome-type: grouping of convergent biomes or formations of different continents, defined by physiognomy.
*] (temperate, semi-arid)
* Formation-type: a grouping of convergent formations.
*] (temperate warm, semi-humid to semi-arid with winter rainfall)
*] (tropical and subtropical, semi-humid)
*] (tropical and subtropical, humid)
*] (tropical and subtropical, semi-humid)
*] (tropical and subtropical, semi-arid)
*] (temperate to tropical, arid)
*] (subtropical and tropical, salt and brackish water inundated)
*] (temperate to tropical, fresh water inundated)
*] (temperate to tropical, high altitude)


Whittaker's distinction between biome and formation can be simplified: formation is used when applied to ] only, while biome is used when concerned with both plants and animals. Whittaker's convention of biome-type or formation-type is a broader method to categorize similar communities.<ref name="Whittaker1975">{{cite book|last1=Whittaker |first1=Robert H. |title=Communities and Ecosystems |location=New York |publisher=] |date=1975}}</ref> <!---The world biome-types, as displayed on a world map, can be viewed at the following link: (This link is now dead.)--->
==Other biomes ==


==== Whittaker's parameters for classifying biome-types ====
The ]ic biome, consisting entirely of microscopic life in rock ]s and cracks, ]s beneath the surface, has only recently been discovered and does not fit well into most classification schemes.
Whittaker used what he called "gradient analysis" of ] patterns to relate communities to climate on a worldwide scale. Whittaker considered four main ecoclines in the terrestrial realm.<ref name="Whittaker1975"/>
# Intertidal levels: The wetness gradient of areas that are exposed to alternating water and dryness with intensities that vary by location from high to low tide
# Climatic moisture gradient
# Temperature gradient by altitude
# Temperature gradient by latitude


Along these gradients, Whittaker noted several trends that allowed him to qualitatively establish biome-types:
==See also==
* The gradient runs from favorable to the extreme, with corresponding changes in productivity.
*]
* Changes in physiognomic complexity vary with how favorable of an environment exists (decreasing community structure and reduction of stratal differentiation as the environment becomes less favorable).
*]
* Trends in the diversity of structure follow trends in species diversity; alpha and beta species diversities decrease from favorable to extreme environments.
*]
* Each growth-form (i.e. grasses, shrubs, etc.) has its characteristic place of maximum importance along the ecoclines.
*]
* The same growth forms may be dominant in similar environments in widely different parts of the world.


Whittaker summed the effects of gradients (3) and (4) to get an overall temperature gradient and combined this with a gradient (2), the moisture gradient, to express the above conclusions in what is known as the Whittaker classification scheme. The scheme graphs average annual precipitation (x-axis) versus average annual temperature (y-axis) to classify biome-types.
==External link==
*


==== Biome-types ====
]
{{Div col}}
]
# ]
]
# ]
#* ]
#* ]
# ]
# ]
# ]
# ]
#* ]
#* ]
# Subarctic-subalpine needle-leaved forests (])
# ]
# ]
# ]
# ]
# ]
#* ]
#* ]
#* ]
#* ]
#* ]
# ]
# ]
# ]
# ]
# ]
# ]
# ]
# ]
# ]
# ]
# ]
# ]
# Salt marsh
# Wetland<ref>Whittaker, R. H. (1970). ''Communities and Ecosystems''. Toronto, pp. 51–64, .</ref>
{{Div col end}}


=== Goodall (1974–) ecosystem types ===
]
The multi-authored series ''Ecosystems of the World'', edited by ], provides a comprehensive coverage of the major "ecosystem types or biomes" on Earth:<ref>{{cite book|editor-last=Goodall |editor-first=D. W. |title=Ecosystems of the World |publisher=] |location=Amsterdam |volume=36 |url=https://www.elsevier.com/books/book-series/ecosystems-of-the-world |archive-url=https://web.archive.org/web/20160918205830/https://www.elsevier.com/books/book-series/ecosystems-of-the-world |archive-date=2016-09-18}}</ref>
]

]
{{Ordered list |list_style_type=upper-roman
]
|Terrestrial Ecosystems
]
{{Ordered list |list_style_type=upper-alpha
]
|Natural Terrestrial Ecosystems
]
{{Ordered list
]
|Wet Coastal Ecosystems
]
|Dry Coastal Ecosystems
]
|Polar and Alpine Tundra
]
|Mires: Swamp, Bog, Fen, and Moor
]
|Temperate Deserts and Semi-Deserts
]
|Coniferous Forests
]
|Temperate Deciduous Forests
]
|Natural Grasslands
]
|Heathlands and Related Shrublands
]
|Temperate Broad-Leaved Evergreen Forests
]
|Mediterranean-Type Shrublands
]
|Hot Deserts and Arid Shrublands
]
|Tropical Savannas
|Tropical Rain Forest Ecosystems
|Wetland Forests
|Ecosystems of Disturbed Ground
}}
|Managed Terrestrial Ecosystems
{{Ordered list|start = 17
|Managed Grasslands
|Field Crop Ecosystems
|Tree Crop Ecosystems
|Greenhouse Ecosystems
|Bioindustrial Ecosystems
}}
}}
|Aquatic Ecosystems
{{Ordered list |list_style_type=upper-alpha
|Inland Aquatic Ecosystems
{{Ordered list|start = 22
|River and Stream Ecosystems
|Lakes and Reservoirs
}}
|Marine Ecosystems
{{Ordered list|start = 24
|Intertidal and Littoral Ecosystems
|Coral Reefs
|Estuaries and Enclosed Seas
|Ecosystems of the Continental Shelves
|Ecosystems of the Deep Ocean
}}
|Managed Aquatic Ecosystems
{{Ordered list|start = 29|Managed Aquatic Ecosystems}}
}}
|Underground Ecosystems
{{Ordered list|start = 30|Cave Ecosystems}}
}}

=== Walter (1976, 2002) zonobiomes ===
The eponymously named ] classification scheme considers the seasonality of temperature and precipitation. The system, also assessing precipitation and temperature, finds nine major biome types, with the important climate traits and ]s. The boundaries of each biome correlate to the conditions of moisture and cold stress that are strong determinants of plant form, and therefore the vegetation that defines the region. Extreme conditions, such as flooding in a swamp, can create different kinds of communities within the same biome.<ref name="WalterBreckle"/><ref>{{cite book |last=Walter |first=H. |date=1976 |title=Die ökologischen Systeme der Kontinente (Biogeosphäre). Prinzipien ihrer Gliederung mit Beispielen |language=de |trans-title=The ecological systems of the continents (biogeosphere). Principles of their outline with examples |location=Stuttgart}}</ref><ref>{{cite book |last1=Walter |first1=H. |last2=Breckle |first2=S-W. |date=1991 |title=Ökologie der Erde |language=de |trans-title=Ecology of the Earth |volume=1, Grundlagen |location=Stuttgart}}</ref>

{| class="wikitable"
! Number
! Zonobiome
! Zonal soil type
! Zonal vegetation type
|-
! ZB I
| ], always moist, little temperature seasonality
| Equatorial brown clays
| Evergreen ]
|-
! ZB II
| ], summer rainy season and cooler "winter" dry season
| Red clays or red earths
| ], seasonal ], scrub, or savanna
|-
! ZB III
| ], highly seasonal, ] climate
| Serosemes, sierozemes
| Desert vegetation with considerable exposed surface
|-
! ZB IV
| ], winter rainy season and summer drought
| Mediterranean brown earths
| ]ous (drought-adapted), frost-sensitive shrublands and woodlands
|-
! ZB V
| Warm temperate, occasional frost, often with summer rainfall maximum
| Yellow or red forest soils, slightly podsolic soils
| Temperate evergreen forest, somewhat frost-sensitive
|-
! ZB VI
| ], moderate climate with winter freezing
| Forest brown earths and grey forest soils
| Frost-resistant, ], temperate forest
|-
! ZB VII
| ], arid, with warm or hot summers and cold winters
| Chernozems to serozems
| Grasslands and temperate deserts
|-
! ZB VIII
| ], cold temperate with cool summers and long winters
| Podsols
| Evergreen, frost-hardy, needle-leaved forest (])
|-
! ZB IX
| ], short, cool summers and long, cold winters
| Tundra humus soils with solifluction (] soils)
| Low, evergreen vegetation, without trees, growing over permanently frozen soils
|-
|}

=== Schultz (1988) eco-zones ===
Schultz (1988, 2005) defined nine ''ecozones'' (his concept of ecozone is more similar to the concept of biome than to the concept of ] of BBC):<ref name="Schultz">Schultz, J. ''Die Ökozonen der Erde'', 1st ed., Ulmer, Stuttgart, Germany, 1988, 488 pp.; 2nd ed., 1995, 535 pp.; 3rd ed., 2002; 4th ed., 2008; 5th ed., 2016. Transl.: ''The Ecozones of the World: The Ecological Divisions of the Geosphere''. Berlin: Springer-Verlag, 1995; 2nd ed., 2005, .</ref>
{{Div col}}
# polar/subpolar zone
# boreal zone
# humid mid-latitudes
# dry mid-latitudes
# subtropics with winter rain
# subtropics with year-round rain
# dry tropics and subtropics
# tropics with summer rain
# tropics with year-round rain
{{Div col end}}

=== Bailey (1989) ecoregions ===
] nearly developed a ] classification system of ]s for the United States in a map published in 1976. He subsequently expanded the system to include the rest of North America in 1981, and the world in 1989. The Bailey system, based on climate, is divided into four domains (polar, humid temperate, dry, and humid tropical), with further divisions based on other climate characteristics (subarctic, warm temperate, hot temperate, and subtropical; marine and continental; lowland and mountain).<ref>{{cite web |url=http://www.fs.fed.us/land/ecosysmgmt/index.html |archive-url=https://web.archive.org/web/20090101030631/http://www.fs.fed.us/land/ecosysmgmt/index.html |archive-date=2009-01-01 |title=Bailey System |publisher=]}}</ref><ref>{{cite journal |last=Bailey |first=R. G. |date=1989 |title=Explanatory supplement to ecoregions map of the continents. |journal=] |volume=16 |issue=4 |pages=307–309|doi=10.1017/S0376892900009711 |bibcode=1989EnvCo..16..307B |s2cid=83599915 }} </ref>
* '''100 Polar Domain'''
** 120 ] Division (Köppen: ])
** M120 Tundra Division&nbsp;– Mountain Provinces
** 130 Subarctic Division (Köppen: ])
** M130 Subarctic Division&nbsp;– Mountain Provinces
* '''200 Humid Temperate Domain'''
** 210 Warm Continental Division (Köppen: portion of ])
** M210 Warm Continental Division&nbsp;– Mountain Provinces
** 220 Hot Continental Division (Köppen: portion of ])
** M220 Hot Continental Division&nbsp;– Mountain Provinces
** 230 Subtropical Division (Köppen: portion of ])
** M230 Subtropical Division&nbsp;– Mountain Provinces
** 240 Marine Division (Köppen: ])
** M240 Marine Division&nbsp;– Mountain Provinces
** 250 Prairie Division (Köppen: arid portions of ], ], ])
** 260 Mediterranean Division (Köppen: ])
** M260 Mediterranean Division&nbsp;– Mountain Provinces
* '''300 Dry Domain'''
** 310 Tropical/Subtropical Steppe Division
** M310 Tropical/Subtropical Steppe Division&nbsp;– Mountain Provinces
** 320 Tropical/Subtropical Desert Division
** 330 Temperate Steppe Division
** 340 Temperate Desert Division
* '''400 Humid Tropical Domain'''
** 410 Savanna Division
** 420 Rainforest Division

{{Anchor|Biome_WWF_System}}

=== Olson & Dinerstein (1998) biomes for WWF / Global 200 ===
]
{{Main|Global 200}}

A team of biologists convened by the ] (WWF) developed a scheme that divided the world's land area into ]s (called "ecozones" in a BBC scheme), and these into ] (Olson & Dinerstein, 1998, etc.). Each ecoregion is characterized by a main biome (also called major habitat type).<ref name="Olson1998">Olson, D. M. & E. Dinerstein (1998). The Global 200: A representation approach to conserving the Earth's most biologically valuable ecoregions. ''Conservation Biol.'' 12:502–515, {{Webarchive|url=https://web.archive.org/web/20161007001330/http://planet.uwc.ac.za/nisl/Biodiversity/pdf/OlsonDinerstein1998.pdf|date=2016-10-07}}.</ref><ref name="Olson2001">Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. ''Bioscience'' 51(11):933–938, {{Webarchive|url=https://web.archive.org/web/20120917072415/http://wolfweb.unr.edu/~ldyer/classes/396/olsonetal.pdf|date=2012-09-17}}.</ref>

This classification is used to define the ] list of ]s identified by the WWF as priorities for conservation.<ref name="Olson1998" />

For the ], there is a specific EcoID, format XXnnNN (XX is the ], nn is the biome number, NN is the individual number).

==== ]s (terrestrial and freshwater) ====
{{Div col}}
* NA: ]
* PA: ]
* AT: ]
* IM: ]
* AA: ]
* NT: ]
* OC: ]
* AN: ]<ref name="Olson2001" />
{{Div col end}}
The applicability of the realms scheme above - based on Udvardy (1975)—to most freshwater taxa is unresolved.<ref name="Abell">Abell, R., M. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras-Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. d. Reis, J. G. Lundberg, M. H. Sabaj Perez, and P. Petry. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. ''BioScience'' 58:403–414, {{Webarchive|url=https://web.archive.org/web/20161006151241/http://www.feow.org/downloads/Abell_et_al_08_BioScience.pdf|date=2016-10-06}}.</ref>

==== Biogeographic realms (]) ====
{{Div col}}
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]
* ]<ref name="Spalding" >Spalding, M. D. et al. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. ''BioScience'' 57: 573–583, {{Webarchive|url=https://web.archive.org/web/20161006104440/http://algae.thu.edu.tw/lab/2013_Meeting_FebJune/2007_Marine_ecoregions_of_the_world.pdf |date=2016-10-06 }}.</ref>
{{Div col end}}

==== Biomes (terrestrial) ====
# ] (tropical and subtropical, humid)
# ] (tropical and subtropical, semihumid)
# ] (tropical and subtropical, semihumid)
# ] (temperate, humid)
# ] (temperate, humid to semihumid)
# ] (subarctic, humid)
# ] (tropical and subtropical, semiarid)
# ] (temperate, semiarid)
# ] (temperate to tropical, fresh or brackish water inundated)
# ] (alpine or montane climate)
# ] (Arctic)
# ] or ]s (temperate warm, semihumid to semiarid with winter rainfall)
# ] (temperate to tropical, arid)
# ] (subtropical and tropical, salt water inundated)<ref name="Olson2001" />

==== Biomes (freshwater) ====
According to the WWF, the following are classified as ] biomes:<ref>"Freshwater Ecoregions of the World: Major Habitat Types" {{cite web |url=http://www.feow.org/mht.php |title=Freshwater Ecoregions of the World |access-date=2008-05-13 |url-status=dead |archive-url=https://web.archive.org/web/20081007024422/http://www.feow.org/mht.php |archive-date=2008-10-07}}</ref>
{{Div col}}
* Large ]s
* Large ]
* Polar ]s
* Montane ]s
* Temperate ]
* Temperate floodplain rivers and ]s
* Temperate ]
* Tropical and subtropical ]
* Tropical and subtropical floodplain rivers and ]s
* Tropical and subtropical ]
* Xeric freshwaters and ]s
* ]
{{Div col end}}

==== Biomes (marine) ====
Biomes of the coastal and ] areas (]):
* Polar
* Temperate shelves and sea
* Temperate ]
* Tropical ]
* ]<ref>{{cite web|website=] |url=http://www.worldwildlife.org/science/ecoregions/marine/item1266.html |title=Marine Ecoregions of the World |archive-url=https://web.archive.org/web/20090207101156/http://www.worldwildlife.org/science/ecoregions/marine/item1266.html |archive-date=2009-02-07}}</ref>

==== Summary of the scheme ====
* ]
** ]s (terrestrial) (8)
*** ] (867), each characterized by a main biome type (14)
**** ] (]s)
* ]
** ]s (freshwater) (8)
*** ] (426), each characterized by a main biome type (12)
**** ] (biotopes)
* ]
** Biogeographic realms (marine) (12)
*** (]) (62)
**** ] (232), each characterized by a main biome type (5)
***** ] (biotopes)

Example:
* ]
** ]: ]
*** ]: ] (PA0418); biome type: ]
**** ]: ], vegetation belt between 1,100 and 1,450 m, Oromediterranean zone, nemoral zone (temperate zone)
***** ]: ''Oreoherzogio-Abietetum illyricae'' Fuk. (])
****** Plant: Silver fir ('']'')

== Other biomes ==

=== Marine biomes ===
{{further|Marine habitats}}

Pruvot (1896) zones or "systems":<ref>{{Cite book|last=Pruvot |first=G. |title=Conditions générales de la vie dans les mers et principes de distribution des organismes marins: Année Biologique |language=fr |trans-title=General conditions of life in the seas and principles of distribution of marine organisms: Biological Year |volume=2 |pages=559–587 |date=1896 |url=https://www.biodiversitylibrary.org/item/23581#page/597/mode/1up |archive-url=https://web.archive.org/web/20161018205608/http://www.biodiversitylibrary.org/item/23581#page/597/mode/1up |archive-date=2016-10-18}}</ref>
* ]
* ]
* ]

]:<ref>{{Cite book|last=Longhurst |first=A. |date=1998 |title=Ecological Geography of the Sea |location=San Diego |publisher=] |isbn=9780124555594 |url=https://books.google.com/books?id=MFHK18F5aCsC |via=]}}</ref>
* Coastal
* Polar
* Trade wind
* Westerly

Other marine ]s (not covered yet by the Global 200/WWF scheme):{{citation needed|date=September 2016}}
{{Div col}}
* ]
* ]
* ]s
* ]s
* ]
* ] (trades and westerlies)
* ]
* ] (ocean trench)
* ]/]
* ]
* ]
* Coastal lagoons/Atoll lagoons
* ]
* ]
{{Div col end}}

=== Anthropogenic biomes ===
{{further|Anthropogenic biome}}

Humans have altered global patterns of ] and ] processes. As a result, vegetation forms predicted by conventional biome systems can no longer be observed across much of Earth's land surface as they have been replaced by crops and rangelands or cities. ] provide an alternative view of the terrestrial biosphere based on global patterns of sustained direct human interaction with ecosystems, including ], ]s, ], ] and other ]. Anthropogenic biomes offer a way to recognize the irreversible coupling of human and ecological systems at global scales and manage Earth's biosphere and anthropogenic biomes.

Major anthropogenic biomes:
* Dense settlements
* ]s
* ]s
* Forested
* Indoor<ref>{{Cite news |url=https://www.nytimes.com/2015/03/19/science/the-next-frontier-the-great-indoors.html?ref=science |title=The Next Frontier: The Great Indoors |last=Zimmer |first=Carl |date=March 19, 2015 |work=] |access-date=2021-02-04 |archive-url=https://web.archive.org/web/20180614024514/https://www.nytimes.com/2015/03/19/science/the-next-frontier-the-great-indoors.html?ref=science |archive-date=June 14, 2018 |url-status=live}}</ref>

=== Microbial biomes ===
{{main|Microbiome}}
{{Further|Habitat#Microhabitats}}

==== Endolithic biomes ====
The ]ic biome, consisting entirely of microscopic life in rock ] and cracks, kilometers beneath the surface, has only recently been discovered, and does not fit well into most classification schemes.<ref>{{cite web |title=What is the Endolithic Biome? (with picture) |url=http://www.wisegeek.com/what-is-the-endolithic-biome.htm |website=wiseGEEK |access-date=2017-03-07 |archive-url=https://web.archive.org/web/20170307124108/http://www.wisegeek.com/what-is-the-endolithic-biome.htm |archive-date=2017-03-07 |url-status=live}}</ref>

== Effects of climate change ==

Anthropogenic ] has the potential to greatly alter the distribution of Earth's biomes.<ref name="Dobrowski-2021">{{Cite journal |last1=Dobrowski |first1=Solomon Z. |last2=Littlefield |first2=Caitlin E. |last3=Lyons |first3=Drew S. |last4=Hollenberg |first4=Clark |last5=Carroll |first5=Carlos |last6=Parks |first6=Sean A. |last7=Abatzoglou |first7=John T. |last8=Hegewisch |first8=Katherine |last9=Gage |first9=Josh |date=September 29, 2021 |title=Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes |journal=] |volume=2 |issue=1 |page=198 |doi=10.1038/s43247-021-00270-z |bibcode=2021ComEE...2..198D |s2cid=238208819|doi-access=free }}</ref><ref>{{Citation |last1=Rockström |first1=Johan |title="A Safe Operating Space for Humanity" (2009) |date=2017-12-31 |url=http://dx.doi.org/10.12987/9780300188479-042 |work=The Future of Nature |pages=491–505 |publisher=] |access-date=2022-09-18 |last2=Steffen |first2=Will |last3=Noone |first3=Kevin |doi=10.12987/9780300188479-042 |isbn=9780300188479 |s2cid=246162286}}</ref> Meaning, biomes around the world could change so much that they would be at risk of becoming new biomes entirely.<ref>{{Cite journal |last1=Nolan |first1=Connor |last2=Overpeck |first2=Jonathan T. |last3=Allen |first3=Judy R. M. |last4=Anderson |first4=Patricia M. |last5=Betancourt |first5=Julio L. |last6=Binney |first6=Heather A. |last7=Brewer |first7=Simon |last8=Bush |first8=Mark B. |last9=Chase |first9=Brian M. |last10=Cheddadi |first10=Rachid |last11=Djamali |first11=Morteza |last12=Dodson |first12=John |last13=Edwards |first13=Mary E. |last14=Gosling |first14=William D. |last15=Haberle |first15=Simon |date=2018-08-31 |title=Past and future global transformation of terrestrial ecosystems under climate change |journal=Science |language=en |volume=361 |issue=6405 |pages=920–923 |doi=10.1126/science.aan5360 |pmid=30166491 |bibcode=2018Sci...361..920N |s2cid=52131254 |issn=0036-8075|doi-access=free }}</ref> More specifically, between 54% and 22% of global land area will experience climates that correspond to other biomes.<ref name="Dobrowski-2021" /> 3.6% of land area will experience climates that are completely new or unusual.<ref>{{Cite journal |last1=Abatzoglou |first1=John T. |last2=Dobrowski |first2=Solomon Z. |last3=Parks |first3=Sean A. |date=2020-03-03 |title=Multivariate climate departures have outpaced univariate changes across global lands |url=http://dx.doi.org/10.1038/s41598-020-60270-5 |journal=Scientific Reports |volume=10 |issue=1 |page=3891 |doi=10.1038/s41598-020-60270-5 |pmid=32127547 |pmc=7054431 |bibcode=2020NatSR..10.3891A |issn=2045-2322}}</ref><ref>{{Cite journal |last1=Williams |first1=John W. |last2=Jackson |first2=Stephen T. |last3=Kutzbach |first3=John E. |date=2007-04-03 |title=Projected distributions of novel and disappearing climates by 2100 AD |journal=] |volume=104 |issue=14 |pages=5738–5742 |doi=10.1073/pnas.0606292104 |pmid=17389402 |pmc=1851561 |bibcode=2007PNAS..104.5738W |issn=0027-8424 |doi-access=free}}</ref> An example of a biome shift is ], which can change grass savanna into shrub savanna.<ref>{{Cite journal |last=Stevens |first=Nicola |last2=Lehmann |first2=Caroline E. R. |last3=Murphy |first3=Brett P. |last4=Durigan |first4=Giselda |date=January 2017 |title=Savanna woody encroachment is widespread across three continents |url=https://onlinelibrary.wiley.com/doi/10.1111/gcb.13409 |journal=Global Change Biology |language=en |volume=23 |issue=1 |pages=235–244 |doi=10.1111/gcb.13409 |issn=1354-1013|hdl=20.500.11820/ff572887-5c50-4c25-8b65-a9ce5bd8ea2a |hdl-access=free }}</ref>

Average temperatures have risen more than twice the usual amount in both arctic and mountainous biomes,<ref name="De Boeck-2019">{{Cite journal |last1=De Boeck |first1=Hans J. |last2=Hiltbrunner |first2=Erika |last3=Jentsch |first3=Anke |last4=Vandvik |first4=Vigdis |date=2019-03-28 |title=Editorial: Responses to Climate Change in the Cold Biomes |journal=] |volume=10 |pages=347 |doi=10.3389/fpls.2019.00347 |issn=1664-462X |pmc=6447700 |pmid=30984216 |doi-access=free}}</ref><ref>{{Cite journal |last1=Gobiet |first1=Andreas |last2=Kotlarski |first2=Sven |last3=Beniston |first3=Martin |last4=Heinrich |first4=Georg |last5=Rajczak |first5=Jan |last6=Stoffel |first6=Markus |date=September 15, 2014 |title=21st century climate change in the European Alps—A review |journal=] |language=en |volume=493 |pages=1138–1151 |doi=10.1016/j.scitotenv.2013.07.050 |pmid=23953405 |bibcode=2014ScTEn.493.1138G|doi-access=free |hdl=20.500.11850/87298 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Johannessen |first1=Ola M. |last2=Kuzmina |first2=Svetlana I. |last3=Bobylev |first3=Leonid P. |last4=Miles |first4=Martin W. |date=2016-12-01 |title=Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation |journal=] |volume=68 |issue=1 |pages=28234 |doi=10.3402/tellusa.v68.28234 |bibcode=2016TellA..6828234J |s2cid=123468873 |issn=1600-0870|doi-access=free }}</ref> which leads to the conclusion that arctic and mountainous biomes are currently the most vulnerable to climate change.<ref name="De Boeck-2019" /> South American terrestrial biomes have been predicted to go through the same temperature trends as arctic and mountainous biomes.<ref name="Anjos-2021">{{Cite journal |last1=Anjos |first1=Luciano J. S. |last2=Barreiros de Souza |first2=Everaldo |last3=Amaral |first3=Calil Torres |last4=Igawa |first4=Tassio Koiti |last5=Mann de Toledo |first5=Peter |date=2021-01-01 |title=Future projections for terrestrial biomes indicate widespread warming and moisture reduction in forests up to 2100 in South America |journal=] |language=en |volume=25 |pages=e01441 |doi=10.1016/j.gecco.2020.e01441 |issn=2351-9894 |s2cid=234107449 |doi-access=free}}</ref><ref>{{Cite journal |last1=Locosselli |first1=Giuliano Maselli |last2=Brienen |first2=Roel J. W. |last3=Leite |first3=Melina de Souza |last4=Gloor |first4=Manuel |last5=Krottenthaler |first5=Stefan |last6=Oliveira |first6=Alexandre A. de |last7=Barichivich |first7=Jonathan |last8=Anhuf |first8=Dieter |last9=Ceccantini |first9=Gregorio |last10=Schöngart |first10=Jochen |last11=Buckeridge |first11=Marcos |date=2020-12-14 |title=Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature |journal=] |volume=117 |issue=52 |pages=33358–33364 |doi=10.1073/pnas.2003873117 |pmid=33318167 |pmc=7776984 |bibcode=2020PNAS..11733358M |issn=0027-8424 |doi-access=free}}</ref> With its annual average temperature continuing to increase, the moisture currently located in forest biomes will dry up.<ref name="Anjos-2021" /><ref name="Marcolla-2020">{{Cite journal |last1=Marcolla |first1=Barbara |last2=Migliavacca |first2=Mirco |last3=Rödenbeck |first3=Christian |last4=Cescatti |first4=Alessandro |date=2020-04-30 |title=Patterns and trends of the dominant environmental controls of net biome productivity |url=https://bg.copernicus.org/articles/17/2365/2020/ |journal=] |language=English |volume=17 |issue=8 |pages=2365–2379 |bibcode=2020BGeo...17.2365M |doi=10.5194/bg-17-2365-2020 |issn=1726-4170 |s2cid=219056644 |doi-access=free |hdl-access=free |hdl=10449/64139}}</ref>{{excerpt|Effects of climate change on biomes|paragraphs=1}}

== See also ==
{{Div col}}
* {{annotated link|Climate classification}}
* {{annotated link|Ecotope}}
* {{annotated link|Life zone}}
* {{annotated link|Natural environment}}
{{Div col end}}

== References ==
{{reflist}}

== Further reading ==
* Ritter, Michael E. (2005). . University of Wisconsin-Stevens Point.

== External links ==
{{Wiktionary|Biome}}
{{Wikivoyage|Biomes and ecosystems}}
* University of California Museum of Paleontology Berkeley's
* Gale/Cengage (archived 11 July 2011)
* {{Cite web| url=http://www.eoearth.org/topics/view/51cbfc84f702fc2ba812bc2d/|title=Biomes| publisher=]}}
*
* (archived 22 February 2011)
* Panda.org's (archived 6 July 2017)
* NASA's Earth Observatory
*

{{Biomes}}
{{Earth}}
{{Biological organisation}}
{{Portal bar|Biology|Earth sciences|Ecology|Environment}}
{{Authority control}}

]
]

Latest revision as of 18:35, 15 December 2024

Biogeographical unit with a particular biological community
One way of mapping terrestrial (land) biomes around the world

A biome (/ˈbaɪ.oʊm/) is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate. Biomes may span more than one continent. A biome encompasses multiple ecosystems within its boundaries. It can also comprise a variety of habitats.

While a biome can cover small areas, a microbiome is a mix of organisms that coexist in a defined space on a much smaller scale. For example, the human microbiome is the collection of bacteria, viruses, and other microorganisms that are present on or in a human body.

A biota is the total collection of organisms of a geographic region or a time period, from local geographic scales and instantaneous temporal scales all the way up to whole-planet and whole-timescale spatiotemporal scales. The biotas of the Earth make up the biosphere.

Terminology

The term was suggested in 1916 by Clements, originally as a synonym for biotic community of Möbius (1877). Later, it gained its current definition, based on earlier concepts of phytophysiognomy, formation and vegetation (used in opposition to flora), with the inclusion of the animal element and the exclusion of the taxonomic element of species composition. In 1935, Tansley added the climatic and soil aspects to the idea, calling it ecosystem. The International Biological Program (1964–74) projects popularized the concept of biome.

However, in some contexts, the term biome is used in a different manner. In German literature, particularly in the Walter terminology, the term is used similarly as biotope (a concrete geographical unit), while the biome definition used in this article is used as an international, non-regional, terminology—irrespectively of the continent in which an area is present, it takes the same biome name—and corresponds to his "zonobiome", "orobiome" and "pedobiome" (biomes determined by climate zone, altitude or soil).

In the Brazilian literature, the term biome is sometimes used as a synonym of biogeographic province, an area based on species composition (the term floristic province being used when plant species are considered), or also as synonym of the "morphoclimatic and phytogeographical domain" of Ab'Sáber, a geographic space with subcontinental dimensions, with the predominance of similar geomorphologic and climatic characteristics, and of a certain vegetation form. Both include many biomes in fact.

Classifications

To divide the world into a few ecological zones is difficult, notably because of the small-scale variations that exist everywhere on earth and because of the gradual changeover from one biome to the other. Their boundaries must therefore be drawn arbitrarily and their characterization made according to the average conditions that predominate in them.

A 1978 study on North American grasslands found a positive logistic correlation between evapotranspiration in mm/yr and above-ground net primary production in g/m/yr. The general results from the study were that precipitation and water use led to above-ground primary production, while solar irradiation and temperature lead to below-ground primary production (roots), and temperature and water lead to cool and warm season growth habit. These findings help explain the categories used in Holdridge's bioclassification scheme (see below), which were then later simplified by Whittaker. The number of classification schemes and the variety of determinants used in those schemes, however, should be taken as strong indicators that biomes do not fit perfectly into the classification schemes created.

Holdridge (1947, 1964) life zones

Holdridge life zone classification scheme. Although conceived as three-dimensional by its originator, it is usually shown as a two-dimensional array of hexagons in a triangular frame.
Main article: Holdridge life zones

In 1947, the American botanist and climatologist Leslie Holdridge classified climates based on the biological effects of temperature and rainfall on vegetation under the assumption that these two abiotic factors are the largest determinants of the types of vegetation found in a habitat. Holdridge uses the four axes to define 30 so-called "humidity provinces", which are clearly visible in his diagram. While this scheme largely ignores soil and sun exposure, Holdridge acknowledged that these were important.

Allee (1949) biome-types

The principal biome-types by Allee (1949):

Kendeigh (1961) biomes

The principal biomes of the world by Kendeigh (1961):

Whittaker (1962, 1970, 1975) biome-types

The distribution of vegetation types as a function of mean annual temperature and precipitation.

Whittaker classified biomes using two abiotic factors: precipitation and temperature. His scheme can be seen as a simplification of Holdridge's; more readily accessible, but missing Holdridge's greater specificity.

Whittaker based his approach on theoretical assertions and empirical sampling. He had previously compiled a review of biome classifications.

Key definitions for understanding Whittaker's scheme

  • Physiognomy: sometimes referring to the plants' appearance; or the biome's apparent characteristics, outward features, or appearance of ecological communities or species - including plants.
  • Biome: a grouping of terrestrial ecosystems on a given continent that is similar in vegetation structure, physiognomy, features of the environment and characteristics of their animal communities.
  • Formation: a major kind of community of plants on a given continent.
  • Biome-type: grouping of convergent biomes or formations of different continents, defined by physiognomy.
  • Formation-type: a grouping of convergent formations.

Whittaker's distinction between biome and formation can be simplified: formation is used when applied to plant communities only, while biome is used when concerned with both plants and animals. Whittaker's convention of biome-type or formation-type is a broader method to categorize similar communities.

Whittaker's parameters for classifying biome-types

Whittaker used what he called "gradient analysis" of ecocline patterns to relate communities to climate on a worldwide scale. Whittaker considered four main ecoclines in the terrestrial realm.

  1. Intertidal levels: The wetness gradient of areas that are exposed to alternating water and dryness with intensities that vary by location from high to low tide
  2. Climatic moisture gradient
  3. Temperature gradient by altitude
  4. Temperature gradient by latitude

Along these gradients, Whittaker noted several trends that allowed him to qualitatively establish biome-types:

  • The gradient runs from favorable to the extreme, with corresponding changes in productivity.
  • Changes in physiognomic complexity vary with how favorable of an environment exists (decreasing community structure and reduction of stratal differentiation as the environment becomes less favorable).
  • Trends in the diversity of structure follow trends in species diversity; alpha and beta species diversities decrease from favorable to extreme environments.
  • Each growth-form (i.e. grasses, shrubs, etc.) has its characteristic place of maximum importance along the ecoclines.
  • The same growth forms may be dominant in similar environments in widely different parts of the world.

Whittaker summed the effects of gradients (3) and (4) to get an overall temperature gradient and combined this with a gradient (2), the moisture gradient, to express the above conclusions in what is known as the Whittaker classification scheme. The scheme graphs average annual precipitation (x-axis) versus average annual temperature (y-axis) to classify biome-types.

Biome-types

  1. Tropical rainforest
  2. Tropical seasonal rainforest
  3. Temperate giant rainforest
  4. Montane rainforest
  5. Temperate deciduous forest
  6. Temperate evergreen forest
  7. Subarctic-subalpine needle-leaved forests (taiga)
  8. Elfin woodland
  9. Thorn forest
  10. Thorn scrub
  11. Temperate woodland
  12. Temperate shrublands
  13. Savanna
  14. Temperate grassland
  15. Alpine grasslands
  16. Tundra
  17. Tropical desert
  18. Warm-temperate desert
  19. Cool temperate desert scrub
  20. Arctic-alpine desert
  21. Bog
  22. Tropical fresh-water swamp forest
  23. Temperate fresh-water swamp forest
  24. Mangrove swamp
  25. Salt marsh
  26. Wetland

Goodall (1974–) ecosystem types

The multi-authored series Ecosystems of the World, edited by David W. Goodall, provides a comprehensive coverage of the major "ecosystem types or biomes" on Earth:

  1. Terrestrial Ecosystems
    1. Natural Terrestrial Ecosystems
      1. Wet Coastal Ecosystems
      2. Dry Coastal Ecosystems
      3. Polar and Alpine Tundra
      4. Mires: Swamp, Bog, Fen, and Moor
      5. Temperate Deserts and Semi-Deserts
      6. Coniferous Forests
      7. Temperate Deciduous Forests
      8. Natural Grasslands
      9. Heathlands and Related Shrublands
      10. Temperate Broad-Leaved Evergreen Forests
      11. Mediterranean-Type Shrublands
      12. Hot Deserts and Arid Shrublands
      13. Tropical Savannas
      14. Tropical Rain Forest Ecosystems
      15. Wetland Forests
      16. Ecosystems of Disturbed Ground
    2. Managed Terrestrial Ecosystems
      1. Managed Grasslands
      2. Field Crop Ecosystems
      3. Tree Crop Ecosystems
      4. Greenhouse Ecosystems
      5. Bioindustrial Ecosystems
  2. Aquatic Ecosystems
    1. Inland Aquatic Ecosystems
      1. River and Stream Ecosystems
      2. Lakes and Reservoirs
    2. Marine Ecosystems
      1. Intertidal and Littoral Ecosystems
      2. Coral Reefs
      3. Estuaries and Enclosed Seas
      4. Ecosystems of the Continental Shelves
      5. Ecosystems of the Deep Ocean
    3. Managed Aquatic Ecosystems
      1. Managed Aquatic Ecosystems
  3. Underground Ecosystems
    1. Cave Ecosystems

Walter (1976, 2002) zonobiomes

The eponymously named Heinrich Walter classification scheme considers the seasonality of temperature and precipitation. The system, also assessing precipitation and temperature, finds nine major biome types, with the important climate traits and vegetation types. The boundaries of each biome correlate to the conditions of moisture and cold stress that are strong determinants of plant form, and therefore the vegetation that defines the region. Extreme conditions, such as flooding in a swamp, can create different kinds of communities within the same biome.

Number Zonobiome Zonal soil type Zonal vegetation type
ZB I Equatorial, always moist, little temperature seasonality Equatorial brown clays Evergreen tropical rainforest
ZB II Tropical, summer rainy season and cooler "winter" dry season Red clays or red earths Tropical seasonal forest, seasonal dry forest, scrub, or savanna
ZB III Subtropical, highly seasonal, arid climate Serosemes, sierozemes Desert vegetation with considerable exposed surface
ZB IV Mediterranean, winter rainy season and summer drought Mediterranean brown earths Sclerophyllous (drought-adapted), frost-sensitive shrublands and woodlands
ZB V Warm temperate, occasional frost, often with summer rainfall maximum Yellow or red forest soils, slightly podsolic soils Temperate evergreen forest, somewhat frost-sensitive
ZB VI Nemoral, moderate climate with winter freezing Forest brown earths and grey forest soils Frost-resistant, deciduous, temperate forest
ZB VII Continental, arid, with warm or hot summers and cold winters Chernozems to serozems Grasslands and temperate deserts
ZB VIII Boreal, cold temperate with cool summers and long winters Podsols Evergreen, frost-hardy, needle-leaved forest (taiga)
ZB IX Polar, short, cool summers and long, cold winters Tundra humus soils with solifluction (permafrost soils) Low, evergreen vegetation, without trees, growing over permanently frozen soils

Schultz (1988) eco-zones

Schultz (1988, 2005) defined nine ecozones (his concept of ecozone is more similar to the concept of biome than to the concept of ecozone of BBC):

  1. polar/subpolar zone
  2. boreal zone
  3. humid mid-latitudes
  4. dry mid-latitudes
  5. subtropics with winter rain
  6. subtropics with year-round rain
  7. dry tropics and subtropics
  8. tropics with summer rain
  9. tropics with year-round rain

Bailey (1989) ecoregions

Robert G. Bailey nearly developed a biogeographical classification system of ecoregions for the United States in a map published in 1976. He subsequently expanded the system to include the rest of North America in 1981, and the world in 1989. The Bailey system, based on climate, is divided into four domains (polar, humid temperate, dry, and humid tropical), with further divisions based on other climate characteristics (subarctic, warm temperate, hot temperate, and subtropical; marine and continental; lowland and mountain).

  • 100 Polar Domain
    • 120 Tundra Division (Köppen: Ft)
    • M120 Tundra Division – Mountain Provinces
    • 130 Subarctic Division (Köppen: E)
    • M130 Subarctic Division – Mountain Provinces
  • 200 Humid Temperate Domain
    • 210 Warm Continental Division (Köppen: portion of Dcb)
    • M210 Warm Continental Division – Mountain Provinces
    • 220 Hot Continental Division (Köppen: portion of Dca)
    • M220 Hot Continental Division – Mountain Provinces
    • 230 Subtropical Division (Köppen: portion of Cf)
    • M230 Subtropical Division – Mountain Provinces
    • 240 Marine Division (Köppen: Do)
    • M240 Marine Division – Mountain Provinces
    • 250 Prairie Division (Köppen: arid portions of Cf, Dca, Dcb)
    • 260 Mediterranean Division (Köppen: Cs)
    • M260 Mediterranean Division – Mountain Provinces
  • 300 Dry Domain
    • 310 Tropical/Subtropical Steppe Division
    • M310 Tropical/Subtropical Steppe Division – Mountain Provinces
    • 320 Tropical/Subtropical Desert Division
    • 330 Temperate Steppe Division
    • 340 Temperate Desert Division
  • 400 Humid Tropical Domain
    • 410 Savanna Division
    • 420 Rainforest Division

Olson & Dinerstein (1998) biomes for WWF / Global 200

Terrestrial biomes of the world according to Olson et al. and used by the WWF and Global 200.
Main article: Global 200

A team of biologists convened by the World Wildlife Fund (WWF) developed a scheme that divided the world's land area into biogeographic realms (called "ecozones" in a BBC scheme), and these into ecoregions (Olson & Dinerstein, 1998, etc.). Each ecoregion is characterized by a main biome (also called major habitat type).

This classification is used to define the Global 200 list of ecoregions identified by the WWF as priorities for conservation.

For the terrestrial ecoregions, there is a specific EcoID, format XXnnNN (XX is the biogeographic realm, nn is the biome number, NN is the individual number).

Biogeographic realms (terrestrial and freshwater)

The applicability of the realms scheme above - based on Udvardy (1975)—to most freshwater taxa is unresolved.

Biogeographic realms (marine)

Biomes (terrestrial)

  1. Tropical and subtropical moist broadleaf forests (tropical and subtropical, humid)
  2. Tropical and subtropical dry broadleaf forests (tropical and subtropical, semihumid)
  3. Tropical and subtropical coniferous forests (tropical and subtropical, semihumid)
  4. Temperate broadleaf and mixed forests (temperate, humid)
  5. Temperate coniferous forests (temperate, humid to semihumid)
  6. Boreal forests/taiga (subarctic, humid)
  7. Tropical and subtropical grasslands, savannas, and shrublands (tropical and subtropical, semiarid)
  8. Temperate grasslands, savannas, and shrublands (temperate, semiarid)
  9. Flooded grasslands and savannas (temperate to tropical, fresh or brackish water inundated)
  10. Montane grasslands and shrublands (alpine or montane climate)
  11. Tundra (Arctic)
  12. Mediterranean forests, woodlands, and scrub or sclerophyll forests (temperate warm, semihumid to semiarid with winter rainfall)
  13. Deserts and xeric shrublands (temperate to tropical, arid)
  14. Mangrove (subtropical and tropical, salt water inundated)

Biomes (freshwater)

According to the WWF, the following are classified as freshwater biomes:

Biomes (marine)

Biomes of the coastal and continental shelf areas (neritic zone):

Summary of the scheme

Example:

Other biomes

Marine biomes

Further information: Marine habitats

Pruvot (1896) zones or "systems":

Longhurst (1998) biomes:

  • Coastal
  • Polar
  • Trade wind
  • Westerly

Other marine habitat types (not covered yet by the Global 200/WWF scheme):

Anthropogenic biomes

Further information: Anthropogenic biome

Humans have altered global patterns of biodiversity and ecosystem processes. As a result, vegetation forms predicted by conventional biome systems can no longer be observed across much of Earth's land surface as they have been replaced by crops and rangelands or cities. Anthropogenic biomes provide an alternative view of the terrestrial biosphere based on global patterns of sustained direct human interaction with ecosystems, including agriculture, human settlements, urbanization, forestry and other uses of land. Anthropogenic biomes offer a way to recognize the irreversible coupling of human and ecological systems at global scales and manage Earth's biosphere and anthropogenic biomes.

Major anthropogenic biomes:

Microbial biomes

Main article: Microbiome Further information: Habitat § Microhabitats

Endolithic biomes

The endolithic biome, consisting entirely of microscopic life in rock pores and cracks, kilometers beneath the surface, has only recently been discovered, and does not fit well into most classification schemes.

Effects of climate change

Anthropogenic climate change has the potential to greatly alter the distribution of Earth's biomes. Meaning, biomes around the world could change so much that they would be at risk of becoming new biomes entirely. More specifically, between 54% and 22% of global land area will experience climates that correspond to other biomes. 3.6% of land area will experience climates that are completely new or unusual. An example of a biome shift is woody plant encroachment, which can change grass savanna into shrub savanna.

Average temperatures have risen more than twice the usual amount in both arctic and mountainous biomes, which leads to the conclusion that arctic and mountainous biomes are currently the most vulnerable to climate change. South American terrestrial biomes have been predicted to go through the same temperature trends as arctic and mountainous biomes. With its annual average temperature continuing to increase, the moisture currently located in forest biomes will dry up.

This section is an excerpt from Effects of climate change on biomes.
Predicated changes for Earth's biomes under two different climate change scenarios for 2081–2100. Top row is low emissions scenario, bottom row is high emissions scenario. Biomes are classified with Holdridge life zones system. A shift of 1 or 100% (darker colours) indicates that the region has fully moved into a completely different biome zone type.
Climate change is already now altering biomes, adversely affecting terrestrial and marine ecosystems. Climate change represents long-term changes in temperature and average weather patterns. This leads to a substantial increase in both the frequency and the intensity of extreme weather events. As a region's climate changes, a change in its flora and fauna follows. For instance, out of 4000 species analyzed by the IPCC Sixth Assessment Report, half were found to have shifted their distribution to higher latitudes or elevations in response to climate change.

See also

  • Climate classification – Systems that categorize the world's climates
  • Ecotope – Smallest ecologically distinct landscape features in a landscape mapping and classification system
  • Life zone – Concept was developed by C. Hart Merriam in 1889
  • Natural environment – Living and non-living things on Earth

References

  1. Bowman, William D.; Hacker, Sally D. (2021). Ecology (5th ed.). Oxford University Press. pp. H3–1–51. ISBN 978-1605359212.
  2. Rull, Valentí (2020). "Organisms: adaption, extinction, and biogeographical reorganizations". Quaternary Ecology, Evolution, and Biogeography. Academic Press. p. 67. ISBN 978-0-12-820473-3.
  3. "Finally, A Map Of All The Microbes On Your Body". NPR. Archived from the original on 2018-04-16. Retrieved 2018-04-05.
  4. Clements, F. E. (1917). "The development and structure of biotic communities". Journal of Ecology. 5: 120–121. JSTOR 2255652. Archived from the original on 2016-10-07.
  5. ^ Coutinho, L. M. (2006). "O conceito de bioma" [The biome concept]. Acta Botanica Brasilica (in Portuguese). 20 (1): 13–23. doi:10.1590/S0102-33062006000100002.
  6. Martins, F. R. & Batalha, M. A. (2011). Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. In: Felfili, J. M., Eisenlohr, P. V.; Fiuza de Melo, M. M. R.; Andrade, L. A.; Meira Neto, J. A. A. (Org.). Fitossociologia no Brasil: métodos e estudos de caso. Vol. 1. Viçosa: Editora UFV. pp. 44–85. Archived 2016-09-24 at the Wayback Machine. Earlier version, 2003, Archived 2016-08-27 at the Wayback Machine.
  7. Cox, C. B.; Moore, P.D.; Ladle, R. J. (2016). Biogeography: an ecological and evolutionary approach (9th ed.). Hoboken: John Wiley & Sons. p. 20. ISBN 9781118968581. Archived from the original on 2016-11-26 – via Google Books.
  8. Tansley, A.G. (1935). "The use and abuse of vegetational terms and concepts" (PDF). Ecology. 16 (3): 284–307. doi:10.2307/1930070. JSTOR 1930070. Archived from the original (PDF) on 2016-10-06. Retrieved 2016-09-24.
  9. Box, E.O. & Fujiwara, K. (2005). Vegetation types and their broad-scale distribution. In: van der Maarel, E. (ed.). Vegetation ecology. Blackwell Scientific, Oxford. pp. 106–128, Archived 2016-08-28 at the Wayback Machine.
  10. ^ Walter, H.; Breckle, S-W. (2002). Walter's Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere. New York: Springer-Verlag. p. 86. ISBN 9783540433156. Archived from the original on 2016-11-27 – via Google Books.
  11. Batalha, M.A. (2011). "The Brazilian cerrado is not a biome". Biota Neotropica. 11: 21–24. doi:10.1590/S1676-06032011000100001.
  12. Fiaschi, P.; Pirani, J.R. (2009). "Review of plant biogeographic studies in Brazil". Journal of Systematics and Evolution. 47 (5): 477–496. doi:10.1111/j.1759-6831.2009.00046.x. S2CID 84315246. Archived from the original on 2017-08-31.
  13. Schultz, Jürgen (1995). The ecozones of the world. Springer. pp. 2–3. ISBN 978-3-540-28527-4.
  14. Sims, Phillip L.; Singh, J.S. (July 1978). "The Structure and Function of Ten Western North American Grasslands: III. Net Primary Production, Turnover and Efficiencies of Energy Capture and Water Use". Journal of Ecology. 66 (2). British Ecological Society: 573–597. Bibcode:1978JEcol..66..573S. doi:10.2307/2259152. JSTOR 2259152.
  15. Pomeroy, Lawrence R.; Alberts, James J., eds. (1988). Concepts of Ecosystem Ecology. New York: Springer-Verlag.
  16. Allee, W.C. (1949). Principles of animal ecology. Philadelphia: Saunders Co. Archived from the original on 2017-10-01.
  17. Kendeigh, S.C. (1961). Animal ecology. Englewood Cliffs, NJ: Prentice-Hall.
  18. Whittaker, Robert H. (January–March 1962). "Classification of Natural Communities". Botanical Review. 28 (1): 1–239. Bibcode:1962BotRv..28....1W. doi:10.1007/BF02860872. S2CID 25771073.
  19. ^ Whittaker, Robert H. (1975). Communities and Ecosystems. New York: MacMillan Publishing.
  20. Whittaker, R. H. (1970). Communities and Ecosystems. Toronto, pp. 51–64, .
  21. Goodall, D. W. (ed.). Ecosystems of the World. Vol. 36. Amsterdam: Elsevier. Archived from the original on 2016-09-18.
  22. Walter, H. (1976). Die ökologischen Systeme der Kontinente (Biogeosphäre). Prinzipien ihrer Gliederung mit Beispielen [The ecological systems of the continents (biogeosphere). Principles of their outline with examples] (in German). Stuttgart.{{cite book}}: CS1 maint: location missing publisher (link)
  23. Walter, H.; Breckle, S-W. (1991). Ökologie der Erde [Ecology of the Earth] (in German). Vol. 1, Grundlagen. Stuttgart.{{cite book}}: CS1 maint: location missing publisher (link)
  24. Schultz, J. Die Ökozonen der Erde, 1st ed., Ulmer, Stuttgart, Germany, 1988, 488 pp.; 2nd ed., 1995, 535 pp.; 3rd ed., 2002; 4th ed., 2008; 5th ed., 2016. Transl.: The Ecozones of the World: The Ecological Divisions of the Geosphere. Berlin: Springer-Verlag, 1995; 2nd ed., 2005, .
  25. "Bailey System". US Forest Service. Archived from the original on 2009-01-01.
  26. Bailey, R. G. (1989). "Explanatory supplement to ecoregions map of the continents". Environmental Conservation. 16 (4): 307–309. Bibcode:1989EnvCo..16..307B. doi:10.1017/S0376892900009711. S2CID 83599915.
  27. ^ Olson, D. M. & E. Dinerstein (1998). The Global 200: A representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biol. 12:502–515, Archived 2016-10-07 at the Wayback Machine.
  28. ^ Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933–938, Archived 2012-09-17 at the Wayback Machine.
  29. Abell, R., M. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras-Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. d. Reis, J. G. Lundberg, M. H. Sabaj Perez, and P. Petry. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403–414, Archived 2016-10-06 at the Wayback Machine.
  30. Spalding, M. D. et al. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583, Archived 2016-10-06 at the Wayback Machine.
  31. "Freshwater Ecoregions of the World: Major Habitat Types" "Freshwater Ecoregions of the World". Archived from the original on 2008-10-07. Retrieved 2008-05-13.
  32. "Marine Ecoregions of the World". World Wide Fund. Archived from the original on 2009-02-07.
  33. Pruvot, G. (1896). Conditions générales de la vie dans les mers et principes de distribution des organismes marins: Année Biologique [General conditions of life in the seas and principles of distribution of marine organisms: Biological Year] (in French). Vol. 2. pp. 559–587. Archived from the original on 2016-10-18.
  34. Longhurst, A. (1998). Ecological Geography of the Sea. San Diego: Academic Press. ISBN 9780124555594 – via Google Books.
  35. Zimmer, Carl (March 19, 2015). "The Next Frontier: The Great Indoors". The New York Times. Archived from the original on June 14, 2018. Retrieved 2021-02-04.
  36. "What is the Endolithic Biome? (with picture)". wiseGEEK. Archived from the original on 2017-03-07. Retrieved 2017-03-07.
  37. ^ Dobrowski, Solomon Z.; Littlefield, Caitlin E.; Lyons, Drew S.; Hollenberg, Clark; Carroll, Carlos; Parks, Sean A.; Abatzoglou, John T.; Hegewisch, Katherine; Gage, Josh (September 29, 2021). "Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes". Communications Earth & Environment. 2 (1): 198. Bibcode:2021ComEE...2..198D. doi:10.1038/s43247-021-00270-z. S2CID 238208819.
  38. Rockström, Johan; Steffen, Will; Noone, Kevin (2017-12-31), ""A Safe Operating Space for Humanity" (2009)", The Future of Nature, Yale University Press, pp. 491–505, doi:10.12987/9780300188479-042, ISBN 9780300188479, S2CID 246162286, retrieved 2022-09-18
  39. Nolan, Connor; Overpeck, Jonathan T.; Allen, Judy R. M.; Anderson, Patricia M.; Betancourt, Julio L.; Binney, Heather A.; Brewer, Simon; Bush, Mark B.; Chase, Brian M.; Cheddadi, Rachid; Djamali, Morteza; Dodson, John; Edwards, Mary E.; Gosling, William D.; Haberle, Simon (2018-08-31). "Past and future global transformation of terrestrial ecosystems under climate change". Science. 361 (6405): 920–923. Bibcode:2018Sci...361..920N. doi:10.1126/science.aan5360. ISSN 0036-8075. PMID 30166491. S2CID 52131254.
  40. Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A. (2020-03-03). "Multivariate climate departures have outpaced univariate changes across global lands". Scientific Reports. 10 (1): 3891. Bibcode:2020NatSR..10.3891A. doi:10.1038/s41598-020-60270-5. ISSN 2045-2322. PMC 7054431. PMID 32127547.
  41. Williams, John W.; Jackson, Stephen T.; Kutzbach, John E. (2007-04-03). "Projected distributions of novel and disappearing climates by 2100 AD". Proceedings of the National Academy of Sciences. 104 (14): 5738–5742. Bibcode:2007PNAS..104.5738W. doi:10.1073/pnas.0606292104. ISSN 0027-8424. PMC 1851561. PMID 17389402.
  42. Stevens, Nicola; Lehmann, Caroline E. R.; Murphy, Brett P.; Durigan, Giselda (January 2017). "Savanna woody encroachment is widespread across three continents". Global Change Biology. 23 (1): 235–244. doi:10.1111/gcb.13409. hdl:20.500.11820/ff572887-5c50-4c25-8b65-a9ce5bd8ea2a. ISSN 1354-1013.
  43. ^ De Boeck, Hans J.; Hiltbrunner, Erika; Jentsch, Anke; Vandvik, Vigdis (2019-03-28). "Editorial: Responses to Climate Change in the Cold Biomes". Frontiers in Plant Science. 10: 347. doi:10.3389/fpls.2019.00347. ISSN 1664-462X. PMC 6447700. PMID 30984216.
  44. Gobiet, Andreas; Kotlarski, Sven; Beniston, Martin; Heinrich, Georg; Rajczak, Jan; Stoffel, Markus (September 15, 2014). "21st century climate change in the European Alps—A review". Science of the Total Environment. 493: 1138–1151. Bibcode:2014ScTEn.493.1138G. doi:10.1016/j.scitotenv.2013.07.050. hdl:20.500.11850/87298. PMID 23953405.
  45. Johannessen, Ola M.; Kuzmina, Svetlana I.; Bobylev, Leonid P.; Miles, Martin W. (2016-12-01). "Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation". Tellus A: Dynamic Meteorology and Oceanography. 68 (1): 28234. Bibcode:2016TellA..6828234J. doi:10.3402/tellusa.v68.28234. ISSN 1600-0870. S2CID 123468873.
  46. ^ Anjos, Luciano J. S.; Barreiros de Souza, Everaldo; Amaral, Calil Torres; Igawa, Tassio Koiti; Mann de Toledo, Peter (2021-01-01). "Future projections for terrestrial biomes indicate widespread warming and moisture reduction in forests up to 2100 in South America". Global Ecology and Conservation. 25: e01441. doi:10.1016/j.gecco.2020.e01441. ISSN 2351-9894. S2CID 234107449.
  47. Locosselli, Giuliano Maselli; Brienen, Roel J. W.; Leite, Melina de Souza; Gloor, Manuel; Krottenthaler, Stefan; Oliveira, Alexandre A. de; Barichivich, Jonathan; Anhuf, Dieter; Ceccantini, Gregorio; Schöngart, Jochen; Buckeridge, Marcos (2020-12-14). "Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature". Proceedings of the National Academy of Sciences. 117 (52): 33358–33364. Bibcode:2020PNAS..11733358M. doi:10.1073/pnas.2003873117. ISSN 0027-8424. PMC 7776984. PMID 33318167.
  48. Marcolla, Barbara; Migliavacca, Mirco; Rödenbeck, Christian; Cescatti, Alessandro (2020-04-30). "Patterns and trends of the dominant environmental controls of net biome productivity". Biogeosciences. 17 (8): 2365–2379. Bibcode:2020BGeo...17.2365M. doi:10.5194/bg-17-2365-2020. hdl:10449/64139. ISSN 1726-4170. S2CID 219056644.
  49. Kummu, Matti; Heino, Matias; Taka, Maija; Varis, Olli; Viviroli, Daniel (21 May 2021). "Climate change risks pushing one-third of global food production outside the safe climatic space". One Earth. 4 (5): 720–729. Bibcode:2021OEart...4..720K. doi:10.1016/j.oneear.2021.04.017. PMC 8158176. PMID 34056573.
  50. "IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems:Summary for Policymakers" (PDF).
  51. "Summary for Policymakers — Special Report on the Ocean and Cryosphere in a Changing Climate". Retrieved 2019-12-23.
  52. "Climate Change". National Geographic. 28 March 2019. Retrieved 1 November 2021.
  53. Witze, Alexandra. "Why extreme rains are gaining strength as the climate warms". Nature. Retrieved 30 July 2021.
  54. "Summary for Policymakers". Climate Change 2021: The Physical Science Basis. Working Group I contribution to the WGI Sixth Assessment Report of the Intergovernmental Panel on Climate Change (PDF). Intergovernmental Panel on Climate Change. 9 August 2021. p. SPM-23; Fig. SPM.6. Archived (PDF) from the original on 4 November 2021.
  55. Van der Putten, Wim H.; Macel, Mirka; Visser, Marcel E. (2010-07-12). "Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels". Philosophical Transactions of the Royal Society B: Biological Sciences. 365 (1549): 2025–2034. doi:10.1098/rstb.2010.0037. PMC 2880132. PMID 20513711.
  56. Parmesan, C., M.D. Morecroft, Y. Trisurat, R. Adrian, G.Z. Anshari, A. Arneth, Q. Gao, P. Gonzalez, R. Harris, J. Price, N. Stevens, and G.H. Talukdarr, 2022: Chapter 2: Terrestrial and Freshwater Ecosystems and Their Services. In Climate Change 2022: Impacts, Adaptation and Vulnerability . Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 257-260 |doi=10.1017/9781009325844.004

Further reading

External links

Biogeographic regionalisations
Biomes
Terrestrial
biomes
Polar/montane
Temperate
Tropical and
subtropical
Dry
Wet
Aquatic
biomes
Other biomes
Biogeographic
realms
Terrestrial
Marine
Subdivisions
See also
Earth
Atmosphere
Climate
Continents
Culture and society
Environment
Geodesy
Geophysics
Geology
Oceans
Planetary science
Hierarchy of life
Portals: Categories: