Misplaced Pages

Torpedo: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 14:44, 10 July 2017 editAndy Dingley (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers160,399 edits rv - now that's just plain wrong. If you're going to mess with it, at least learn the subject first and source your additions. Undid revision 789924158 by Trekphiler (talk)← Previous edit Latest revision as of 02:33, 10 January 2025 edit undoCitation bot (talk | contribs)Bots5,435,500 edits Altered title. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 2/3 
(669 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{See also|Anti-submarine missile}}
{{short description|Self-propelled underwater weapon}}
{{about|the self-propelled weapon|the pre-1900 naval meaning of "torpedo"|Naval mine|other uses}} {{about|the self-propelled weapon|the pre-1900 naval meaning of "torpedo"|Naval mine|other uses}}
]]] ]]]


The modern '''torpedo''' is a self-propelled weapon with an explosive ], launched above or below the water surface, propelled underwater towards a target, and designed to detonate either on contact with its target or in proximity to it. A modern '''torpedo''' is an underwater ranged weapon launched above or below the water surface, self-propelled towards a target, and with an explosive ] designed to detonate either on contact with or in proximity to the target. Historically, such a device was called an automotive, automobile, locomotive, or fish torpedo; colloquially a ''fish''. The term ''torpedo'' originally applied to a variety of devices, most of which would today be called ]. From about 1900, ''torpedo'' has been used strictly to designate a self-propelled underwater explosive device.


While the 19th-century ] had evolved primarily with a view to engagements between armored warships with ], the invention and refinement of torpedoes from the 1860s onwards allowed small ]s and other lighter ]s, ]s/]s, even improvised ]s or ], and later ], to destroy large ships without the need of large guns, though sometimes at the risk of being hit by longer-range artillery fire.
Historically, it was called an automotive, automobile, locomotive or fish torpedo; colloquially called a ''fish''. The term ''torpedo'' was originally employed for a variety of devices, most of which would today be called ]. From about 1900, ''torpedo'' has been used strictly to designate an underwater self-propelled weapon.


Modern torpedoes are classified variously as lightweight or heavyweight; straight-running, autonomous homers, and wire-guided types. They can be launched from a variety of platforms. In modern warfare, a submarine-launched torpedo is almost certain to hit its target; the best defense is a counterattack using another torpedo.<ref>{{cite magazine |url=https://www.popularmechanics.com/military/weapons/a41926547/why-torpedoes-are-tough-to-defend-against/ |title=Why One of the Slowest Weapons in Modern Warfare Is the Toughest to Defend Against |last=Mizokami |first=Kyle |date=November 16, 2022 |magazine=] |access-date=February 11, 2023}}</ref><ref>{{cite web |url=https://www.thedrive.com/the-war-zone/33018/modern-submarine-torpedo-attacks-are-nothing-like-what-you-see-in-the-movies |title=Modern Submarine Torpedo Attacks Are Nothing Like What You See In The Movies |date=April 16, 2020 |last=Amick |first=Aaron |work=The Drive |access-date=February 11, 2023}}</ref>
While the ] had evolved primarily around engagements between armoured ships with ], the torpedo allowed ]s and other lighter surface ships, ]s, even ordinary fishing boats or ], and later, aircraft, to destroy large armoured ships without the need of large guns, though sometimes at the risk of being hit by longer-range shellfire.
Today's torpedoes can be divided into lightweight and heavyweight classes; and into straight-running, autonomous homers, and wire-guided. They can be launched from a variety of platforms.


==Etymology== ==Etymology==
The word ''torpedo'' comes from the name of a genus of ]s in the order '']'', which in turn comes from the ] "torpere" (to be stiff or numb). In naval usage, the American ] introduced the name to refer to a towed ] charge used by his French ] ] (first tested in 1800) to demonstrate that it could sink ]s.


The word ''torpedo'' was first used as a name for ] (in the order '']''), which in turn comes from the Latin word '']'' ("lethargy" or "sluggishness").<ref>{{cite web |title=torpedo (n.) |url=https://www.etymonline.com/word/torpedo |website=Online Etymology Dictionary |publisher=Douglas Harper |access-date=28 March 2024}}</ref> In naval usage, the American inventor ] was reported to have first used the term as the name of a submarine of his own design, the "American Turtle or Torpedo." This usage likely inspired ]'s use of the term to describe his stationary ], and later ]'s naming of the first self-propelled torpedo.<ref>{{cite web |title=torpedo |url=https://www.merriam-webster.com/dictionary/torpedo#:~:text=Like%20the%20adjective%20torpid%2C%20torpedo,fish%20that%20torpedo%20first%20entered |website=Merriam-Webster Dictionary | date=19 March 2024 |publisher=Merriam-Webster |access-date=28 March 2024}}</ref><ref>{{cite web |title=Navy's Use of Torpedoes |url=https://www.history.navy.mil/browse-by-topic/exploration-and-innovation/navy-torpedoes.html |website=Naval History and Heritage Command |publisher=U.S. Navy |access-date=28 March 2024}}</ref><ref>{{cite web |title=HISTORY OF EARLY TORPEDOES (1800-1870) |url=https://maritime.org/doc/jolie/part1.php |publisher=San Francisco Maritime National Park Association |access-date=28 March 2024}}</ref>
==History==


==History==
=== Middle Ages === === Middle Ages ===
The concept of a torpedo existed many centuries before it was later successfully developed. In 1275, ] described "...an egg which moves itself and burns."<ref>{{citation | first= James Riddick | last= Partington | authorlink = J. R. Partington | title=A History of Greek Fire and Gunpowder | publisher=Johns Hopkins University Press | year=1999 | page=203 | isbn=0-8018-5954-9 | url=https://books.google.com/?id=30IJLnwpc8EC}}</ref> Torpedo-like weapons were first proposed many centuries before they were successfully developed. For example, in 1275, engineer ] – who worked as a military scientist for the ] of Egypt – wrote that it might be possible to create a projectile resembling "an egg", which propelled itself through water, whilst carrying "fire".<ref>{{citation | first= James Riddick | last= Partington | author-link = J. R. Partington | title=A History of Greek Fire and Gunpowder | publisher=Johns Hopkins University Press |location=Baltimore, Maryland | year=1999 | page=203 | isbn=0-8018-5954-9 | url=https://books.google.com/books?id=30IJLnwpc8EC}}</ref>


===Early naval mines=== ===Early naval mines===
{{Main article|naval mine}} {{Main|Naval mine}}
] ]
] ]
In modern language, a 'torpedo' is an underwater self-propelled explosive, but historically, the term also applied to primitive naval mines. These were used on an ad hoc basis during the early modern period up to the late 19th century. Early spar torpedoes were created by the Dutchman ] in the employ of ] of ]; he attached explosives to the end of a beam affixed to one of his own submarines and they were used (to little effect) during the English ] in 1626.<ref>{{cite book|url=https://books.google.com/books?isbn=1591143411|title=Gray, Edwyn. Nineteenth Century Torpedoes and Their Inventors. Naval Institute Press, 2004.}}</ref>


In modern language, a "torpedo" is an underwater self-propelled explosive, but historically, the term also applied to primitive naval mines and ]. These were used on an ad hoc basis during the early modern period up to the late 19th century.
An early submarine, the ], attempted to lay a bomb with a timed fuse on the hull of ] during the ], but failed in the attempt.


In the early 17th century, the Dutchman ], in the employ of ], invented the spar torpedo; he attached explosives to the end of a beam affixed to one of his submarines. These were used (to little effect) during the English ] in 1626.<ref name="gray">{{Harvard citation no brackets|Gray|2004}}</ref> The first use of a torpedo by a submarine was in 1775, by the American {{ship||Turtle|submersible|2}}, which attempted to lay a bomb with a timed fuse on the hull of {{HMS|Eagle|1774|6}} during the ], but failed in the attempt.
In the early 1800s, the American inventor ], while in France, "conceived the idea of destroying ships by introducing floating mines under their bottoms in submarine boats."<!--Is that quote in Lossing?--> He coined the term "torpedo" in reference to the explosive charges he outfitted his submarine ]. However, both the French and the Dutch governments were uninterested in the submarine. Fulton then concentrated on developing the torpedo independent of a submarine deployment. On 15 October 1805, while in England, Fulton put on a public display of his "infernal machine", sinking the brig ''Dorothea'' with a submerged bomb filled with {{convert|180|lb|abbr=on}} of gunpowder and a clock set to explode in 18 minutes. However, the British government refused to purchase the invention, stating they did not wish to "introduce into naval warfare a system that would give great advantage to weaker maritime nations."<!--Is that quote in Lossing?--> Fulton carried out a similar demonstration for the US government on 20 July 1807, destroying a vessel in New York's harbor. Further development languished as Fulton focused on his "steam-boat matters". During the ], torpedoes were employed in attempts to destroy British vessels and protect American harbors. In fact a submarine deployed torpedo was used in an unsuccessful attempt to destroy ] while in ]. This prompted the British Capt. Hardy to warn the Americans to cease efforts with the use of any "torpedo boat" in this "cruel and unheard-of warfare", or he would "order every house near the shore to be destroyed."<ref name=Lossing>{{Cite book |last=Lossing |first=Benson |title=The Pictorial Field-Book of the War of 1812 |publisher=Harper & Brothers, Publishers |year=1868 |pages=240–243, 693}}</ref>


In the early 1800s, the American inventor ], while in France, "conceived the idea of destroying ships by introducing floating mines under their bottoms in submarine boats".<!--Is that quote in Lossing?--> He employed the term "torpedo" for the explosive charges with which he outfitted his submarine ''Nautilus''. However, both the French and the Dutch governments were uninterested in the submarine. Fulton then concentrated on developing the torpedo-like weapon independent of a submarine deployment, and in 1804 succeeded in convincing the British government to employ his 'catamaran' against the French.<ref name="davey">{{Harvard citation no brackets|Davey|2016}}</ref> An April 1804 torpedo attack on French ships anchored at Boulogne, and a follow-up attack in October, produced several explosions but no significant damage and the weapon was abandoned.
Torpedoes were used by the ] during the ] in 1855 against British warships in the ]. They used an early form of chemical detonator.
During the ], the term torpedo was used for what is today called a ], floating on or below the water surface using an air-filled ] or similar flotation device. These devices were very primitive and apt to prematurely explode. They would be detonated on contact with the ship, or after a set time, although electrical detonators were also occasionally used. ] was the first warship to be sunk in 1862 by an electrically detonated mine. ]es were also used; an explosive device was mounted at the end of a spar up to {{convert|30|ft|m}} long projecting forward underwater from the bow of the attacking vessel, which would then ram the opponent with the explosives. These were used by the Confederate submarine ] to sink the ] although the weapon was apt to cause as much harm to its user as to its target. ] ]'s famous/apocryphal command during the ] in 1864, "]" refers to a minefield laid at ].


Fulton carried out a demonstration for the US government on 20 July 1807, destroying a vessel in New York's harbor. Further development languished as Fulton focused on his "steam-boat matters". After the ] broke out, the ] established a blockade of the ]. During the war, American forces unsuccessfully attempted to destroy the British ship of the line ] while it was lying at anchor in ]'s harbor with torpedoes launched from small boats. This prompted the captain of ''Ramillies'', ], to warn the Americans to cease using this "cruel and unheard-of warfare" or he would "order every house near the shore to be destroyed". The fact that Hardy had been previously so lenient and considerate to the Americans led them to abandon such attempts with immediate effect.<ref name=Lossing>{{Cite book |last=Lossing |first=Benson |title=The Pictorial Field-Book of the War of 1812 |publisher=Harper & Brothers, Publishers |location=New York |year=1868 |pages=240–243, 693 |oclc=886707577}}</ref>
On 26 May 1877, during the ], the Romanian spar torpedo boat ''Rândunica'' attacked and sank the Ottoman river monitor ''Seyfi''.<ref>Cristian Crăciunoiu, ''Romanian Navy Torpedo Boats'', p. 19</ref> This was the first instance in history when a torpedo craft sank its targets without also sinking.<ref>Lawrence Sondhaus, ''Navies of Europe'', p. 9</ref>

Torpedoes were used by the ] during the ] in 1855 against British warships in the ]. They used an early form of chemical detonator. During the ], the term torpedo was used for what is today called a ], floating on or below the water surface using an air-filled ] or similar flotation device. These devices were very primitive and apt to prematurely explode. They would be detonated on contact with the ship or after a set time, although electrical detonators were also occasionally used. {{USS|Cairo}} was the first warship to be sunk in 1862 by an electrically-detonated mine. Spar torpedoes were also used; an explosive device was mounted at the end of a spar up to {{convert|30|ft|m}} long projecting forward underwater from the bow of the attacking vessel, which would then ram the opponent with the explosives. These were used by the ] submarine {{ship||H. L. Hunley|submarine|2}} to sink {{USS|Housatonic|1861|6}} although the weapon was apt to cause as much harm to its user as to its target. ] ]'s famous/apocryphal command during the ] in 1864, "]" refers to a minefield laid at ].

]

On 26 May 1877, during the ], the Romanian spar torpedo boat {{ship|NMS|Rândunica||2}} attacked and sank the Ottoman ] ''Seyfi''.<ref>{{cite book |first=Cristian |last=Crăciunoiu |title=Romanian navy torpedo boats |url=https://books.google.com/books?id=VilMAQAAIAAJ |year=2003 |publisher=Modelism |isbn=978-973-8101-17-3 |page=19}}</ref> This was the first instance in history when a torpedo boat sank its targets without also sinking.<ref>{{cite book|author=Lawrence Sondhaus|title=Navies of Europe|url=https://books.google.com/books?id=elbJAwAAQBAJ&pg=PA88|date=11 June 2014|publisher=Routledge|isbn=978-1-317-86978-8|pages=88–}}</ref>


===Invention of the modern torpedo=== ===Invention of the modern torpedo===
] ]


A prototype of the self-propelled torpedo was created on a commission placed by ], an ] from ] (modern-day ]), at the time a port city of the ] and ], an English engineer who was the manager of a town factory, ''Stabilimento Tecnico di Fiume'' (STF). In 1864, Luppis presented Whitehead with the plans of the '']'' ("Coastsaver"), a floating weapon driven by ropes from the land that had been dismissed by the naval authorities due to the impractical steering and propulsion mechanisms.
In 1866 British engineer ] invented the first effective self-propelled torpedo, the eponymous ]. French and German inventions followed closely, and the term ''torpedo'' came to describe self-propelled projectiles that traveled under or on water. By 1900, the term no longer included mines and booby-traps as the navies of the world added ]s, ]s and ]s to their fleets.<ref>Edwyn Gray, ''The Devil's Device the Story of Robert Whitehead, Inventor of the Torpedo'' (1975).</ref><ref>Katherine C. Epstein, ''Torpedo: Inventing the Military-Industrial Complex in the United States and Great Britain'' (Harvard University Press, 2014).</ref>


In 1866, Whitehead invented the first effective self-propelled torpedo, the eponymous ], the first modern torpedo. French and German inventions followed closely, and the term ''torpedo'' came to describe self-propelled projectiles that traveled under or on water. By 1900, the term no longer included mines and booby-traps as the navies of the world added submarines, ]s and ]s to their fleets.<ref>{{Harvard citation no brackets|Gray|1975}}</ref><ref>{{Harvard citation no brackets|Epstein|2014}}</ref>
A prototype self-propelled torpedo was created by a commission placed by ], an ] from Fiume (now ]), a port city of the ], and ], an ] engineer who was the manager of a town factory. In 1864, Luppis presented Whitehead with the plans of the ''salvacoste'' (coastsaver), a floating weapon driven by ropes from the land that had been dismissed by the naval authorities due to the impractical steering and propulsion mechanisms.


Whitehead was unable to improve the machine substantially, since the clockwork motor, attached ropes, and surface attack mode all contributed to a slow and cumbersome weapon. However, he kept considering the problem after the contract had finished, and eventually developed a tubular device, designed to run underwater on its own, and powered by compressed air. The result was a submarine weapon, the ''Minenschiff'' (mine ship), the first modern self-propelled torpedo, officially presented to the Austrian Imperial Naval commission on December 21, 1866. Whitehead was unable to improve the machine substantially, since the clockwork motor, attached ropes, and surface attack mode all contributed to a slow and cumbersome weapon. However, he kept considering the problem after the contract had finished, and eventually developed a tubular device, designed to run underwater on its own, and powered by compressed air. The result was a submarine weapon, the ''Minenschiff'' (mine ship), the first modern self-propelled torpedo, officially presented to the Austrian Imperial Naval commission on 21 December 1866.


The first trials were not successful as the weapon was unable to maintain a course on a steady depth. After much work, Whitehead introduced his "secret" in 1868 which overcame this. It was a mechanism consisting of a ] that caused the torpedo's hydroplanes to be adjusted so as to maintain a preset depth. The first trials were not successful as the weapon was unable to maintain a course at a steady depth. After much work, Whitehead introduced his "secret" in 1868 which overcame this. It was a mechanism consisting of a ] that caused the torpedo's hydroplanes to be adjusted to maintain a preset depth.


===Production and spread=== ===Production and spread===
] (right) invented the modern self-propelled torpedo in 1866. Pictured examining a battered test torpedo in ] c. 1875.]] ] (right) invented the first modern torpedo in 1866. Pictured examining a battered test torpedo in ] c. 1875.]]

The Austrian government decided to invest in the invention, and the factory in Rijeka started producing more Whitehead torpedoes. In 1870, he improved the devices to travel up to approximately {{convert|1000|yards|m}} at a speed of up to {{convert|6|knot|km/h|lk=in}}. ] (RN) representatives visited Rijeka for a demonstration in late 1869, and in 1870 a batch of torpedoes was ordered. In 1871, the British Admiralty paid Whitehead ]15,000 for certain of his developments and production started at the Royal Laboratories in ] the following year.


After the Austrian government decided to invest in the invention, Whitehead started the first torpedo factory in Fiume. In 1870, he improved the devices to travel up to approximately {{convert|1000|yards|m|abbr=on}} at a speed of up to {{convert|6|knot|km/h|abbr=on}}, and by 1881 the factory was exporting torpedoes to ten other countries. The torpedo was powered by compressed air and had an explosive charge of ].<ref></ref> Whitehead went on to develop more efficient devices, demonstrating torpedoes capable of {{convert|18|knots|km/h|abbr=on}} in 1876, {{convert|24|knots|km/h|abbr=on}} in 1886, and, finally, {{convert|30|knots|km/h|abbr=on}} in 1890. The company in Fiume went bankrupt in 1873, but was reformed as ] a few years later, and by 1881 it was exporting torpedoes to ten other countries. The torpedo was powered by compressed air and had an explosive charge of ].<ref>{{cite web |url=http://www.maritime.org/doc/whitehead3/pg13.htm |title=The Whitehead Torpedo, notes on handling etc., U.S.N. |website=maritime.org |year=1890 |access-date=10 December 2018}}</ref> Whitehead went on to develop more efficient devices, demonstrating torpedoes capable of {{convert|18|knots|km/h}} in 1876, {{convert|24|knots|km/h}} in 1886, and, finally, {{convert|30|knots|km/h}} in 1890.


In the 1880s, a British committee, informed by hydrodynamicist Dr. ], conducted comparative tests and determined that a blunt nose, contrary to prior assumptions, did not hinder speed: in fact, the blunt nose provided a speed advantage of approximately one knot compared to the traditional pointed nose design. This discovery allowed for larger explosive payloads and increased air storage for propulsion without compromising speed.<ref>{{Cite web |title=A Brief History of U.S. Navy Torpedo Development - Part 1 |url=https://www.maritime.org/doc/jolie/part1.php#page011 |access-date=2024-07-12 |website=www.maritime.org}}</ref>
] representatives visited Fiume for a demonstration in late 1869, and in 1870 a batch of torpedoes was ordered. In 1871, the British ] paid Whitehead ]15,000 for certain of his developments and production started at the Royal Laboratories in Woolwich the following year. In 1893, RN torpedo production was transferred to the ]. The British later established a Torpedo Experimental Establishment at ] and a production facility at the Royal Naval Torpedo Factory, ] in 1910. These are now closed.


]-class ] submarine ] (1886) was the first submarine in history to fire a torpedo while submerged.]] ]-class ] submarine ] (1886) was the first submarine in history to fire a torpedo while submerged.]]
Whitehead opened a new factory near ], ] in 1890, which continued making torpedoes until the end of the ]. Because orders from the RN were not as large as expected, torpedoes were mostly exported. A series of devices was produced at Fiume, with diameters from {{convert|14|in|cm|abbr=on}} upward. The largest Whitehead torpedo was {{convert|18|in|cm|0|abbr=on}} in diameter and {{convert|19|ft|m|abbr=on}} long, made of polished steel or ], with a {{convert|200|lb|kg|adj=on}} gun-cotton warhead. It was propelled by a three-cylinder ] engine, using compressed air at around {{convert|1300|psi|MPa|abbr=on|lk=on}} and driving two ] propellers, and was designed to self-regulate its course and depth as far as possible. By 1881, nearly 1500 torpedoes had been produced. Whitehead also opened a factory at St Tropez in 1890 that exported torpedoes to Brazil, Holland, Turkey and Greece. Whitehead opened a new factory adjacent to ], England, in 1890, which continued making torpedoes until the end of ]. Because orders from the RN were not as large as expected, torpedoes were mostly exported. A series of devices was produced at Rijeka, with diameters from {{convert|14|in|cm|abbr=on}} upward. The largest Whitehead torpedo was {{convert|18|in|cm|0|abbr=on}} in diameter and {{convert|19|ft|m|abbr=on}} long, made of polished steel or ], with a {{convert|200|lb|kg|adj=on}} gun-cotton warhead. It was propelled by a three-cylinder ] radial engine, using compressed air at around {{convert|1300|psi|MPa|abbr=on|lk=on}} and driving two ] propellers, and was designed to self-regulate its course and depth as far as possible. By 1881, nearly 1,500 torpedoes had been produced. Whitehead also opened a factory at ] in 1890 that exported torpedoes to Brazil, The Netherlands, Turkey, and Greece.


Whitehead purchased rights to the ] of ] in 1888 but it was not sufficiently accurate, so in 1890 he purchased a better design to improve control of his designs, which came to be called the "Devil's Device". The firm of ] in Germany also produced torpedoes and exported them to Russia, Japan and Spain. In 1885, Britain ordered a batch of 50 as torpedo production at home and at Fiume could not meet demand. Whitehead purchased rights to the ] of ] in 1888 but it was not sufficiently accurate, so in 1890 he purchased a better design to improve control of his designs, which came to be called the "Devil's Device". The firm of ] in Germany also produced torpedoes and exported them to Russia, Japan, and Spain. In 1885, Britain ordered a batch of 50 as torpedo production at home and Rijeka could not meet demand.


In 1893, Royal Navy torpedo production was transferred to the ]. The British later established a ] at {{HMS|Vernon|shore establishment|6}} and a production facility at the ], ], in 1910. These are now closed.
By WW1, Whitehead's torpedo remained a worldwide success, and his company was able to maintain a monopoly on torpedo production. By that point, his torpedo had grown to a diameter of 18 inches with a maximum speed of 30.5 knots with a warhead weighing 170 pounds.


By World War I, Whitehead's torpedo remained a worldwide success, and his company was able to maintain a monopoly on torpedo production. By that point, his torpedo had grown to a diameter of 18 inches with a maximum speed of {{convert|30.5|kn}} with a warhead weighing {{convert|170|lb|kg}}.
Whitehead faced competition from the American ] ], whose ], driven by a ], was simpler and cheaper. It was produced from 1885 to 1895, and it ran straight, leaving no wake. A Torpedo Test Station was set up on ] in 1870. The Howell torpedo was the only ] model until Whitehead torpedoes produced by ] entered service in 1894. Five varieties were produced, all {{convert|18|in|cm|abbr=on}} diameter. The ] started using the Whitehead torpedo in 1892 after an American company, E.W. Bliss, secured manufacturing rights.<ref>{{cite web|url=http://navalunderseamuseum.org/media/6c06204b6731dd48ffff8336ffffe906.pdf|archive-url=https://web.archive.org/web/20130512032155/http://navalunderseamuseum.org/media/6c06204b6731dd48ffff8336ffffe906.pdf|dead-url=yes|archive-date=May 12, 2013|title=Artifact Spotlight: Whitehead torpedo|accessdate=December 18, 2012}}</ref>{{Inconsistent|date=November 2016|reason=redundant but dualling statements re Bliss: 1892 vs 1894?}}


Whitehead faced competition from the American ] ], whose ], driven by a ], was simpler and cheaper. It was produced from 1885 to 1895, and it ran straight, leaving no wake. A Torpedo Test Station was set up in ] in 1870. The Howell torpedo was the only ] model until an American company, ] secured manufacturing rights to produce Whitehead torpedoes. These were put into service for the U.S. Navy in 1892. Five varieties were produced, all 18-inch diameter.<ref>{{cite web|url=http://navalunderseamuseum.org/media/6c06204b6731dd48ffff8336ffffe906.pdf|archive-url=https://web.archive.org/web/20130512032155/http://navalunderseamuseum.org/media/6c06204b6731dd48ffff8336ffffe906.pdf|url-status=dead|archive-date=12 May 2013|title=Artifact Spotlight: Whitehead torpedo |website=navalunderseamuseum.org |access-date=18 December 2012}}</ref>
===Torpedo boats and guidance systems===
]


The Royal Navy introduced the Brotherhood wet heater engine in 1907 with the ] which greatly increased the speed and/or range over compressed air engines and wet heater type engines became the standard in many major navies up to and during the Second World War.
] were superseded by ], large steam powered ships with heavy gun armament and heavy armour, in the mid 19th century. Ultimately this line of development led to the ] category of all-big-gun battleship, starting with {{HMS|Dreadnought|1906|6}}.


]
Although these ships were incredibly powerful, the new weight of armour slowed them down, and the huge guns needed to penetrate that armour fired at very slow rates. This allowed for the possibility of a small and fast ship that could attack the battleships, at a much lower cost. The introduction of the torpedo provided a weapon that could cripple, or sink, any battleship.


===Torpedo boats and guidance systems===
The first boat designed to fire the self-propelled ] was {{HMS|Lightning|1876|6}}, completed in 1877. The French navy followed suit in 1878 with ], launched in 1878 though she had been ordered in 1875. The first ]s were built at the shipyards of Sir ], and gained recognition for their effectiveness.
]


] were superseded by ], large steam-powered ships with heavy gun armament and heavy armor, in the mid 19th century. Ultimately this line of development led to the ] category of all-big-gun battleships, starting with {{HMS|Dreadnought|1906|6}}.
At the same time inventors were working on building a guided torpedo. Prototypes were built by ], ], and Victor von Scheliha, but the first practical guided missile was patented by ], an emigre to ], in 1877.<ref name=gray>{{cite book | last = Gray | first = Edwyn | authorlink = | coauthors = | title = Nineteenth-Century Torpedoes and Their Inventors | publisher = Naval Institute Press | year = 2004 | location = | pages = | url = | doi = | id = | isbn = 1-59114-341-1}}</ref>


Although these ships were incredibly powerful, the new weight of armor slowed them down, and the huge guns needed to penetrate that armor fired at very slow rates. The development of torpedoes allowed for the possibility that small and fast vessels could credibly threaten if not sink even the most powerful battleships. While such attacks would carry enormous risks to the attacking boats and their crews (which would likely need to expose themselves to artillery fire which their small vessels were not designed to withstand) this was offset by the ability to construct large numbers of small vessels far more quickly and for a much lower unit cost compared to a capital ship.
] was the first practical guided torpedo.]]
It was designed to run at a consistent depth of {{convert|12|ft|m}}, and was fitted with an indicator mast that just broke the surface of the water. At night the mast had a small light, only visible from the rear. Two steel drums were mounted one behind the other inside the torpedo, each carrying several thousands yards of high-tensile steel wire. The drums connected via a ] to twin ] propellers. If one drum was rotated faster than the other, then the rudder was activated. The other ends of the wires were connected to steam-powered winding engines, which were arranged so that speeds could be varied within fine limits, giving sensitive steering control for the torpedo.<ref>National Archive in WO32/6064 In minute to Director of Artillery from Inspector General of Fortifications.</ref>


The first boat designed to fire the self-propelled ] was {{HMS|Lightning|1876|6}}, completed in 1877. The ] followed suit in 1878 with {{ship|French torpedo boat|Torpilleur No 1||2}}, launched in 1878 though she had been ordered in 1875. The first torpedo boats were built at the shipyards of Sir ] and gained recognition for their effectiveness.
The torpedo attained a speed of {{convert|20|kn|mph}} using a wire {{convert|.04|in|mm}} in diameter but later this was changed to {{convert|.07|in|mm}} to increase the speed to {{convert|27|kn|mph}}. The torpedo was fitted with elevators controlled by a depth-keeping mechanism, and the fore and aft rudders operated by the differential between the drums.<ref name="Beanse">The Brennan Torpedo by Alec Beanse EAN 978-0-9548453-6-0</ref>


At the same time, inventors were working on building a guided torpedo. Prototypes were built by ], ], and Victor von Scheliha, but the first practical guided missile was patented by ], an emigre to Australia, in 1877.<ref name=gray/>
Brennan travelled to Britain, where the ] examined the torpedo and found it unsuitable for shipboard use. However, the ] proved more amenable, and in early August 1881 a special ] committee was instructed to inspect the torpedo at Chatham and report back directly to the Secretary of State for War, ]. The report strongly recommended that an improved model be built at government expense. In 1883 an agreement was reached between the Brennan Torpedo Company and the government. The newly appointed Inspector-General of Fortifications in England, ], appreciated the value of the torpedo and in spring 1883 an experimental station was established at ], ] on the River Medway and a workshop for Brennan was set up at the Chatham Barracks, the home of the Royal Engineers. Between 1883 and 1885 the Royal Engineers held trials and in 1886 the torpedo was recommended for adoption as a harbour defence torpedo. It was used throughout the ] for more than fifteen years.<ref name="Beanse" />


] was the first practical guided torpedo.]]
Around 1897, ] patented a ]led boat and later demonstrated the feasibility of radio-guided torpedoes to the ] military, only to be turned down.
It was designed to run at a consistent depth of {{convert|12|ft|m}}, and was fitted with an indicator mast that just broke the surface of the water. At night the mast had a small light, only visible from the rear. Two steel drums were mounted one behind the other inside the torpedo, each carrying several thousand yards of high-tensile steel wire. The drums connected via a ] to twin ] propellers. If one drum was rotated faster than the other, then the rudder was activated. The other ends of the wires were connected to steam-powered winding engines, which were arranged so that speeds could be varied within fine limits, giving sensitive steering control for the torpedo.<ref>National Archive in WO32/6064 In minute to Director of Artillery from Inspector General of Fortifications.</ref>

The torpedo attained a speed of {{convert|20|kn}} using a wire {{convert|0.04|in|mm|order=flip}} in diameter but later this was changed to {{convert|0.07|in|mm|order=flip|abbr=on}} to increase the speed to {{convert|27|kn}}. The torpedo was fitted with elevators controlled by a depth-keeping mechanism, and the fore and aft rudders operated by the differential between the drums.<ref name="Beanse">The Brennan Torpedo by Alec Beanse {{ISBN|978-0-9548453-6-0}}</ref>

Brennan traveled to Britain, where the Admiralty examined the torpedo and found it unsuitable for shipboard use. However, the ] proved more amenable, and in early August 1881, a special ] committee was instructed to inspect the torpedo at Chatham and report back directly to the Secretary of State for War, ]. The report strongly recommended that an improved model be built at government expense. In 1883 an agreement was reached between the Brennan Torpedo Company and the government. The newly appointed Inspector-General of Fortifications in England, ], appreciated the value of the torpedo and in spring 1883 an experimental station was established at ], ], on the ], and a workshop for Brennan was set up at the ], the home of the Royal Engineers. Between 1883 and 1885 the Royal Engineers held trials and in 1886 the torpedo was recommended for adoption as a harbor defense torpedo. It was used throughout the ] for more than fifteen years.<ref name="Beanse" />


===Use in conflict=== ===Use in conflict===
] '']'' during the ]]] ], during the ].]]
The ] frigate {{HMS|Shah|1873|6}} was the first naval vessel to fire a self-propelled torpedo in anger during the ] against rebel Peruvian ironclad {{ship||Huáscar|ironclad|2}} on 29 May 1877. The Peruvian ship successfully outran the device.<ref>{{Cite book|title = Ironclads At War: The Origin And Development Of The Armored Battleship |last1 = Greene |first1 = Jack |publisher = Da Capo Press |location=Pennsylvania |year = 1997|isbn = 0-78674-298-4 |pages = 290|last2 = Massignani |first2 = Alessandro }}</ref> On 16 January 1878, the Turkish steamer ''Intibah'' became the first vessel to be sunk by self-propelled torpedoes, launched from torpedo boats operating from the tender {{ship|Russian tender|Velikiy Knyaz Konstantin||2}} under the command of ] during the ].

In another early use of the torpedo, during the ], the Peruvian ] ] commanded by captain ] attacked the ] on 28 August 1879 at ] with a self-propelled ] only to have it reverse course. The ship ''Huascar'' was saved when an officer jumped overboard to divert it.<ref>{{cite web |url=http://www.unjbg.edu.pe/libro/Basadre/la_Verdadera_epopeya/epopeya_cap2.pdf |title=El Huáscar Muralla Móvil Del Perú |first=Eduardo |last=Avaroa |work=] |year=2013 |accessdate=31 August 2013 |language=es |archive-url=https://web.archive.org/web/20160304071732/http://www.unjbg.edu.pe/libro/Basadre/la_Verdadera_epopeya/epopeya_cap2.pdf |archive-date=4 March 2016 |url-status=dead }}</ref>


The Royal Navy's frigate ] was the first naval vessel to fire a torpedo in anger during the ] against rebel Peruvian ] '']'' on 29 May 1877. The Peruvian ship successfully outran the device.<ref>{{Cite book|title = Ironclads At War: The Origin And Development Of The Armored Battleship|last = Greene|first = Jack|publisher = De Capo Press|year = 1997|isbn = 0786742984|location = |pages = 290|last2 = Massignani|first2 = Alessandro}}</ref> On 16 January 1878, the ] steamer ''Intibah'' became the first vessel to be sunk by self-propelled torpedoes, launched from torpedo boats operating from the tender ] under the command of ] during the ]. In another early use of the torpedo, ]an frigate ] was sunk on April 23, 1891 by a torpedo from the gunboat '']'', during the ]. The Chinese ] ] was purportedly hit and disabled by a torpedo after numerous attacks by Japanese torpedo boats during the ] in 1894. At this time torpedo attacks were still very close range and very dangerous to the attackers. The Chilean ] {{ship|Chilean ironclad|Blanco Encalada||2}} was sunk on 23 April 1891 by a self-propelled torpedo from the ''Almirante Lynch'', during the ], becoming the first ironclad warship sunk by this weapon.<ref>{{cite book |last=Scheina |first=Robert L. |date=1987 |title=Latin America: A Naval History, 1810–1987 |publisher=Naval Institute Press |isbn=0-87021-295-8 |page=64 }}</ref> The Chinese ] {{ship|Chinese turret ship|Dingyuan||2}} was purportedly hit and disabled by a torpedo after numerous attacks by Japanese torpedo boats during the ] in 1894. At this time torpedo attacks were still very close range and very dangerous to the attackers.


] was sunk by Japanese torpedo boats during the ].]] ].]]
Several western sources reported that the ] Imperial Chinese military, under the direction of ], acquired ''electric torpedoes,'' which they deployed in numerous waterways, along with fortresses and numerous other modern military weapons acquired by China.<ref>{{cite book|url=https://books.google.com/books?id=Z1U4AAAAIAAJ&pg=PA425&dq=electric+torpedoes+chinese&hl=en&ei=Ig5gTaTfJ8GAlAejx6CiDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CCsQ6AEwATgo#v=onepage&q=electric%20torpedoes%20steel%20clad&f=false|title=Overland monthly and Out West magazine|author=Bret Harte|year=1886|publisher=A. Roman & Company|location=SAN FRANCISCO: NO. 120 SUTTER STREET|page=425|isbn=|pages=|accessdate=February 19, 2011}}(Original from the University of California)</ref> At the Tientsin Arsenal in 1876, the Chinese developed the capacity to manufacture these "electric torpedoes" on their own.<ref>{{cite book|url=https://books.google.com/books?id=pEfWaxPhdnIC&pg=PA249&dq=electric+torpedoes+chinese&hl=en&ei=eg1gTZ3iI4SClAeurfDrCw&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDcQ6AEwBDgK#v=onepage&q=electric%20torpedoes%20chinese&f=false|title=Late Ch'ing, 1800–1911 Volume 11, Part 2 of The Cambridge History of China Series, Denis Crispin Twitchett|author=John King Fairbank|year=1980|publisher=Cambridge University Press|location=|page=249|isbn=0-521-22029-7|pages=|accessdate=February 19, 2011}}</ref> Although a form of Chinese art, the ], depict such torpedoes being used against Russian ships during the ], whether they were actually used in battle against them is undocumented and unknown.<ref>{{cite book|url=https://books.google.com/books?id=wWvl9O4Gn1UC&pg=PA204&dq=dong+fuxiang+torpedoes&hl=en&ei=IBZgTafKB4Kdlge3h_DxCw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCcQ6AEwAA#v=onepage&q=dong%20fuxiang%20torpedoes&f=false|title=Some did it for civilisation, some did it for their country: a revised view of the boxer war|author=Jane E. Elliott|year=2002|publisher=Chinese University Press|location=|page=204|isbn=962-996-066-4|pages=|accessdate=2010-06-28}}</ref> Several western sources reported that the ] Imperial Chinese military, under the direction of ], acquired ''electric torpedoes,'' which they deployed in numerous waterways, along with fortresses and numerous other modern military weapons acquired by China.<ref>{{cite book |url=https://books.google.com/books?id=Z1U4AAAAIAAJ&pg=PA425 |title=Overland monthly and Out West magazine|editor-first=Bret |editor-last=Harte|year=1886 |publisher=A. Roman & Company|location=San Francisco, California|page=425|oclc=10002180}}</ref> At the ] Arsenal in 1876, the Chinese developed the capacity to manufacture these "electric torpedoes" on their own.<ref>{{cite book|url=https://books.google.com/books?id=pEfWaxPhdnIC&pg=PA249 |title=The Cambridge History of China: Late Ch'ing, 1800–1911 Part 2 |editor-first=John King
|editor-last=Fairbank |editor-first2=Kwang-Ching |editor-last2=Liu|editor1-link=John K. Fairbank|editor2-link=Kwang-Ching Liu |year=1980 |publisher=Cambridge University Press |page=249|isbn=0-521-22029-7}}</ref> Although a form of Chinese art, the ], depict such torpedoes being used against Russian ships during the ], whether they were actually used in battle against them is undocumented and unknown.<ref>{{cite book|url=https://books.google.com/books?id=wWvl9O4Gn1UC&pg=PA204 |title=Some Did it for Civilisation, Some did it for Their Country: A Revised View of the Boxer War |first=Jane E. |last=Elliott |year=2002 |publisher=Chinese University Press|location=Hong Kong |page=204 |isbn=962-996-066-4}}</ref>


The ] (1904–1905) was the first great war of the 20th century.<ref>Olender p. 233</ref> During the course of the war the ] and ] navies launched nearly 300 torpedoes at each other, all of them of the "self propelled automotive" type.<ref>Olender p. 236</ref> The deployment of these new underwater weapons resulted in only one battleship, but two armored cruisers and two destroyers being sunk in action; with the remainder of the 80 some odd warships being sunk by the more conventional methods of gunfire, mines, and scuttling.<ref>Olender p. 234</ref> The ] (1904–1905) was the first great war of the 20th century.<ref>{{Harvard citation no brackets|Olender|2010|p=233}}</ref> During the war the ] and ] navies launched nearly 300 torpedoes at each other, all of them of the "self-propelled automotive" type.<ref>{{Harvard citation no brackets|Olender|2010|p=236}}</ref> The deployment of these new underwater weapons resulted in one battleship, two armored cruisers, and two destroyers being sunk in action, with the remainder of the roughly 80 warships being sunk by the more conventional methods of gunfire, mines, and ].<ref>{{Harvard citation no brackets|Olender|2010|p=234}}</ref>


On 27 May 1905, during the ], Admiral ]'s ], the battleship ], had been gunned to a wreck by ]'s 12&nbsp;inch gunned ]. With the Russians sunk and scattering, Togo prepared for pursuit, and while doing so ordered his ]s (TBDs) (mostly referred to as just ''destroyers'' in most written accounts) to finish off the Russian battleship. The ''Knyaz Suvorov'' was set upon by 17 torpedo firing warships, ten of which were destroyers and four torpedo boats. 21 torpedoes were launched at the ], and three struck home, one fired from the destroyer ''IJN Murasame'' and two from torpedo boats #72 and #75.<ref>Olender p. 235</ref> The flagship slipped under the waves shortly thereafter, taking over 900 men with her to the bottom.<ref>Olender p. 225</ref> On 27 May 1905, during the ], Admiral ]'s ], the battleship {{ship|Russian battleship|Knyaz Suvorov||2}}, had been gunned to a wreck by ]'s 12-inch gunned ]. With the Russians sunk and scattering, Tōgō prepared for pursuit, and while doing so ordered his ]s (TBDs) (mostly referred to as just ''destroyers'' in most written accounts) to finish off the Russian battleship. ''Knyaz Suvorov'' was set upon by 17 torpedo-firing warships, ten of which were destroyers and four torpedo boats. Twenty-one torpedoes were launched at the ], and three struck home, one fired from the destroyer {{ship|Japanese destroyer|Murasame|1903|2}} and two from torpedo boats ''No. 72'' and ''No. 75''.<ref>{{Harvard citation no brackets|Olender|2010|p=235}}</ref> The flagship slipped under the waves shortly thereafter, taking over 900 men with her to the bottom.<ref>{{Harvard citation no brackets|Olender|2010|p=225}}</ref> On December 9, 1912, the Greek submarine "Dolphin" launched a torpedo against the Ottoman cruiser "Medjidieh".<ref> (in Greek)</ref>


===Aerial torpedo=== ===Aerial torpedo===
] conceived of the ].]] ] conceived of the ].]]


The end of the war fuelled new theories, and the idea of dropping lightweight torpedoes from aircraft was conceived in the early 1910s by ], an officer in the ].<ref name="Hopkins">Hopkins, Albert Allis. ''The Scientific American War Book: The Mechanism and Technique of War'', Chapter XLV: Aerial Torpedoes and Torpedo Mines. Munn & Company, Incorporated, 1915</ref> Awarded a patent in 1912,<ref>{{US patent reference|number=1032394|y=1912|m=07|d=16|inventor=Bradley A. Fiske|title=Method of and apparatus for delivering submarine torpedoes from airships}}</ref><ref name="Hart">Hart, Albert Bushnell. ''Harper's pictorial library of the world war, Volume 4''. Harper, 1920, p. 335.</ref> Fiske worked out the mechanics of carrying and releasing the ] from a ], and defined tactics that included a night-time approach so that the target ship would be less able to defend itself. Fiske determined that the notional ] should descend rapidly in a sharp spiral to evade enemy guns, then when about {{convert|10|to|20|ft|0}} above the water the aircraft would straighten its flight long enough to line up with the torpedo's intended path. The aircraft would release the torpedo at a distance of {{convert|1500|to|2000|yd|-2}} from the target.<ref name=Hopkins/> Fiske reported in 1915 that, using this method, enemy fleets could be attacked within their own harbors if there were enough room for the torpedo track.<ref>''The New York Times'', July 23, 1915. Retrieved on September 29, 2009.</ref> The end of the Russo-Japanese War fuelled new theories, and the idea of dropping lightweight torpedoes from aircraft was conceived in the early 1910s by ], an officer in the ].<ref name="Hopkins">Hopkins, Albert Allis. ''The Scientific American War Book: The Mechanism and Technique of War'', Chapter XLV: Aerial Torpedoes and Torpedo Mines. Munn & Company, Incorporated, 1915</ref> Awarded a patent in 1912,<ref>{{US patent reference|number=1032394|y=1912|m=07|d=16|inventor=Bradley A. Fiske|title=Method of and apparatus for delivering submarine torpedoes from airships}}</ref><ref name="Hart">Hart, Albert Bushnell. ''Harper's pictorial library of the world war, Volume 4''. Harper, 1920, p. 335.</ref> Fiske worked out the mechanics of carrying and releasing the ] from a ], and defined tactics that included a night-time approach so that the target ship would be less able to defend itself. Fiske determined that the notional ] should descend rapidly in a sharp spiral to evade enemy guns, then when about {{convert|10|to|20|ft|0}} above the water the aircraft would straighten its flight long enough to line up with the torpedo's intended path. The aircraft would release the torpedo at a distance of {{convert|1500|to|2000|yd|-2}} from the target.<ref name=Hopkins/> Fiske reported in 1915 that, using this method, enemy fleets could be attacked within their harbors if there was enough room for the torpedo track.<ref>{{cite web |work=The New York Times |date=23 July 1915 |url=https://query.nytimes.com/gst/abstract.html?res=9B00E6D71038E633A25750C2A9619C946496D6CF |title=Torpedo Boat That Flies. Admiral Fiske Invents a Craft to Attack Fleets in Harbors |access-date=29 September 2009}}</ref>


Meanwhile, the ] began actively experimenting with this possibility. The first successful aerial torpedo drop was performed by Gordon Bell in 1914 - dropping a Whitehead torpedo from a ] ]. The success of these experiments led to the construction of the first purpose-built operational torpedo aircraft, the ], built from 1915.<ref>{{cite book|url=https://books.google.com/books?id=6z7quhWS-BoC|title=Aircraft Carriers: A History of Carrier Aviation and Its Influence on World Events, Volume II: 1946-2006 |author=Norman Polmar|year=2008|publisher=Potomac Books, Inc.|page=16}}</ref> Meanwhile, the ] began actively experimenting with this possibility. The first successful aerial torpedo drop was performed by Gordon Bell in 1914 dropping a Whitehead torpedo from a ] ]. The success of these experiments led to the construction of the first purpose-built operational torpedo aircraft, the ], built-in 1915.<ref>{{cite book|url=https://books.google.com/books?id=6z7quhWS-BoC|title=Aircraft Carriers: A History of Carrier Aviation and Its Influence on World Events, Volume II: 1946–2006 |first=Norman |last=Polmar|year=2008|publisher=Potomac Books, Inc. |location=Washington, D.C. |page=16 |isbn=978-1-57488-665-8}}</ref>


] was the first torpedo aircraft when built in 1915.]] ] was the first torpedo aircraft when built-in 1915.]]
An order for ten aircraft was placed, and 936 aircraft were built by ten different British aircraft companies during the ]. The two prototype aircraft were embarked upon ], which sailed for the ] on 21 March 1915 to take part in the ].<ref>{{cite book|author=C. H. Barnes|title=Shorts Aircraft Since 1900|publisher=London: Putnam|year=1967|page=113}}</ref> An order for ten aircraft was placed, and 936 aircraft were built by ten different British aircraft companies during the ]. The two prototype aircraft were embarked upon {{HMS|Ben-my-Chree}}, which sailed for the ] on 21 March 1915 to take part in the ].<ref>{{cite book|first=C. H. |last=Barnes |title=Shorts Aircraft Since 1900 |location=London |publisher=Putnam|year=1967|page=113 |oclc=463063844}}</ref>
On 12 August 1915 one of these, piloted by ] ], was the first aircraft in the world to attack an enemy ship with an air-launched torpedo.<ref name="Guinness" >{{cite book|title=Guinness Book of Air Facts and Feats|edition=3rd|year=1977|quote=The first air attack using a torpedo dropped by an aeroplane was carried out by Flight Commander Charles H. K. Edmonds, flying a Short 184 seaplane from ''Ben-my-Chree'' on 12 August 1915, against a 5,000&nbsp;ton Turkish supply ship in the ]. Although the enemy ship was hit and sunk, the captain of a British submarine claimed to have fired a torpedo simultaneously and sunk the ship. It was further stated that the British submarine E14 had attacked and immobilised the ship four days earlier.}}</ref> On 12 August 1915 one of these, piloted by ] ], was the first aircraft in the world to attack an enemy ship with an air-launched torpedo.<ref name="Guinness" >{{cite book|title=Guinness Book of Air Facts and Feats|edition=3rd|year=1977 |publisher=Book Club Associates |location=London |oclc=11494729 |quote=The first air attack using a torpedo dropped by an airplane was carried out by Flight Commander Charles H. K. Edmonds, flying a Short 184 seaplane from ''Ben-my-Chree'' on 12 August 1915, against a 5,000-ton Turkish supply ship in the ]. Although the enemy ship was hit and sunk, the captain of a British submarine claimed to have fired a torpedo simultaneously and sunk the ship. It was further stated that the British submarine E14 had attacked and immobilized the ship four days earlier.}}</ref>


On 17 August 1915, another Turkish ship was sunk by an aerial torpedo. On this occasion Flight Commander Edmonds torpedoed a Turkish transport ship a few miles north of the Dardanelles. His formation colleague, ] ], was forced to land on the water owing to engine trouble but, seeing an enemy ] close by, taxied up to it and released his torpedo, sinking the tug. Without the weight of the torpedo Dacre was able to take off and return to the ''Ben-My-Chree''.<ref>Bruce, J.M. . '']'', 28 December 1956, p. 1000</ref> On 17 August 1915 Flight Commander Edmonds torpedoed and sank an Ottoman transport ship a few miles north of the Dardanelles. His formation colleague, ] G B Dacre, was forced to land on the water owing to engine trouble but, seeing an enemy ] close by, taxied up to it and released his torpedo, sinking the tug. Without the weight of the torpedo Dacre was able to take off and return to ''Ben-My-Chree''.<ref>{{cite web |last=Bruce |first=J. M. |url=http://www.flightglobal.com/pdfarchive/view/1956/1956%20-%201835.html |title=The Short Seaplanes: Historic Military Aircraft No. 14: Part 3 |work=] |date=28 December 1956 |pages=1000}}</ref>


===World War I=== ===World War I===
]]] ]]]
] ]


Torpedoes were widely used in the ], both against shipping and against submarines. Germany disrupted the supply lines to Britain largely by use of submarine torpedoes (though submarines also extensively used guns).<ref>The war's top ace used them exclusively, and stuck religiously to the "cruiser rules"</ref> Britain and its allies also used torpedoes throughout the war. U-boats themselves were often targeted, twenty being sunk by torpedo. Two Royal Italian Navy ]s scored a success against an Austrian-Hungarian ], sinking the battleship ] with two torpedoes. Torpedoes were widely used in ], both against shipping and against submarines.<ref name=uboat>{{cite web |url=https://uboat.net/wwi/fates/losses.html |title=U-boat Losses 1914–1918 |website=uboat.net |access-date=10 December 2018}}</ref> Germany disrupted the supply lines to Britain largely by use of submarine torpedoes, though submarines also extensively used guns. Britain and its allies also used torpedoes throughout the war. U-boats themselves were often targeted, twenty being sunk by torpedo.<ref name=uboat/> Two Royal Italian Navy ] scored a success against an Austrian-Hungarian ], sinking the battleship {{SMS|Szent István}} with two torpedoes.


The Royal Navy had been experimenting with ways to further increase the range of torpedoes during World War 1 using pure oxygen instead of compressed air, this work ultimately leading to the development of the oxygen-enriched air ] intended originally for the {{sclass2|G3|battlecruiser|2}}s and {{sclass2|N3|battleship|4}} battleships of 1921, both being cancelled due to the ].
Initially the ] purchased Whitehead or Schwartzkopf torpedoes but by 1917 they were conducting experiments with pure oxygen instead of compressed air. Because of explosions they abandoned the experiments but resumed them in 1926 and by 1933 had a working torpedo. They also used conventional wet-heater torpedoes.

Initially, the ] purchased Whitehead or Schwartzkopf torpedoes but by 1917, like the Royal Navy, they were conducting experiments with pure oxygen instead of compressed air. Because of explosions they abandoned the experiments but resumed them in 1926 and by 1933 had a working torpedo. They also used conventional ] torpedoes.


=== World War II === === World War II ===
In the ], tight budgets caused nearly all navies to skimp on testing their torpedoes. As a result, only the Japanese had fully tested torpedoes (in particular the ], nicknamed ''Long Lance'' postwar by historian ])<ref name="Morison, Samuel Eliot 1950 p.195">Morison, Samuel Eliot. ''History of United States Naval Operations in World War II: Breaking the Bismarcks Barrier'' (New York, 1950), p.195.</ref><ref></ref> <!--And unless you can find a ''wartime'' record of it being called Long Lance, this ''postwar'' account gives Morison prececence.--> at the start of ]. The lack of reliability caused major problems for the American submarine force in the early years of the American involvement in World War II, primarily in the ]. In the ], financial stringency caused nearly all navies to skimp on testing their torpedoes. Only the British and Japanese had fully tested new technologies for torpedoes (in particular the ], nicknamed ''Long Lance'' postwar by the US official historian ])<ref name="Morison, Samuel Eliot 1950 p.195">{{cite book |last=Morison |first=Samuel Eliot |title=History of United States Naval Operations in World War II: Breaking the Bismarcks Barrier |location=New York |year=1950 |pages=195}}</ref><ref>{{cite book |page=195 |last=Morison |first=Samuel Eliot |title=The Two Ocean War: A Short History of the United States Navy in the Second World War |publisher=Little, Brown |year=1963}}</ref> <!--And unless you can find a ''wartime'' record of it being called Long Lance, this ''postwar'' account gives Morison precedence.--> at the start of World War II. Unreliable torpedoes caused many problems for the American submarine force in the early years of the war, primarily in the ]. One possible exception to the pre-war neglect of torpedo development was the 45-cm caliber, 1931-premiered Japanese ], the sole aerial torpedo (''Koku Gyorai'') developed and brought into service by the Japanese Empire before the war.<ref>{{cite web | url=http://www.navweaps.com/Weapons/WTJAP_WWII.htm| title=Japan Torpedoes of World War II| website=NavWeaps.com| access-date=2009-08-05}}</ref> The Type 91 had an advanced ] and jettisonable, wooden ] which released upon entering the water, making it a formidable anti-ship weapon; Nazi Germany considered manufacturing it as the ''Luftorpedo LT 850'' ].<ref>{{cite book |page=13 |author=Fumio Aikō |date=July 25, 1985 |title=Koku Gyorai Note |language=ja |publisher=Privately printed book}}</ref>


The Royal Navy's 24.5-inch oxygen-enriched air torpedo saw service in the two {{sclass|Nelson|battleship|4}} battleships although by World War II the use of enriched oxygen had been discontinued due to safety concerns.<ref>'' Washington's Cherry trees, The Evolution of the British 1921-22 Capital Ships'', NJM Campbell, Warship Volume 1, Conway Maritime Press, Greenwich, {{ISBN| 0 85177 132 7}}, pp. 9-10.</ref> In the final phase of the action against {{ship|German battleship|Bismarck||2|up=y}}, {{HMS|Rodney|29|2}} fired a pair of 24.5-inch torpedoes from her port-side tube and claimed one hit.<ref>''Reports of Proceedings 1921-1964'', G.G.O. Gatacre, Nautical Press & Publications, Sydney, 1982, {{ISBN|0 949756 02 4}}, pg.140</ref><ref>''On His Majesty's Service, 1940-41'', Joseph H. Wellings, http://www.ibiblio.org/anrs/docs/D/D7/1002wellings_onhismajestysservice.pdf</ref><ref>Ballantyne, p. 142</ref><ref>''Killing the Bismarck'', Iain Ballantyne, Pen & Sword Books, Yorkshire, {{ISBN|978 1 84415 983 3}}, pp. 258–260.</ref> According to ], "if true, the only instance in history of one battleship torpedoing another".<ref>'' Pursuit: The Sinking of the Bismarck'', Ludovic Kennedy, William Collins, {{ISBN|0 00 211739 8}}</ref> The Royal Navy continued the development of oxygen-enriched air torpedoes with the ] of the 1920s designed for the {{sclass2|County|cruiser|2}}s although once again these were converted to run on normal air at the start of World War II. Around this time too the Royal Navy were perfecting the Brotherhood burner cycle engine which offered a performance as good as the oxygen-enriched air engine but without the issues arising from the oxygen equipment and which was first used in the extremely successful and long-lived ] torpedo of 1925. This torpedo served throughout WW II (with 3,732 being fired by September 1944) and is still in limited service in the 21st century. The improved Mark VIII** was used in two particularly notable incidents; on 6 February 1945 the only intentional wartime sinking of one submarine by another while both were submerged took place when ] ] ] with four Mark VIII** torpedoes and on 2 May 1982 when the Royal Navy submarine {{HMS|Conqueror|S48|6}} sank the Argentine cruiser {{ship|ARA|General Belgrano}} with two Mark VIII** torpedoes during the ].<ref name="Belgrano sinking">{{cite news |last=Brown |first=Colin |title=Sinking the Belgrano: the Pinochet connection |url=https://www.independent.co.uk/news/world/world-history/sinking-the-belgrano-the-pinochet-connection-7609047.html?origin=internalSearch |access-date=2012-05-02 |newspaper=The Independent |date=2012-04-03 |author2=Kim Sengupta |archive-url=https://web.archive.org/web/20150623025157/http://www.independent.co.uk/news/world/world-history/sinking-the-belgrano-the-pinochet-connection-7609047.html?origin=internalSearch |archive-date=23 June 2015 |location=London |url-status=dead }}</ref> This is the only sinking of a surface ship by a nuclear-powered submarine in wartime and the second (of three) sinkings of a surface ship by any submarine since the end of World War II). The ] sinkings were of the ]n frigate {{INS|Khukri|F149|6}} and the South Korean corvette ].
] torpedo -- nicknamed "Long Lance" after the war]]
{{clear}}
Many classes of ships, including submarines, and aircraft were armed with torpedoes.{{clarify|date=October 2013}}<!--not all navies all the time....--> Naval strategy at the time was to use torpedoes, launched from submarines or warships, against enemy warships in a fleet action on the high seas. There was concern torpedoes would be ineffective against warships' heavy armor; an answer to this was to detonate torpedoes underneath a ship, badly damaging its ] and the other structural members in the hull, commonly called "breaking its back". This was demonstrated by ]s in ]. The torpedo would be set to run at a depth just beneath the ship, relying on a magnetic exploder to activate at the appropriate time.


] – nicknamed "Long Lance" after the war]]
Germany, Britain and the U.S. independently devised ways to do this; German and American torpedoes, however, suffered problems with their depth-keeping mechanisms, coupled with faults in ]s shared by all designs. Inadequate testing had failed to reveal the effect of the Earth's magnetic field on ships and exploder mechanisms, which resulted in premature detonation. The '']'' and ] promptly identified and eliminated the problems. In the ], there was an extended wrangle over the problems plaguing the ] (and its ]). Cursory trials had allowed bad designs to enter service. Both the Navy ] and the ] were too busy protecting their own interests to correct the errors, and fully functioning torpedoes only became available to the USN twenty-one months into the Pacific War.<ref>Blair, p. 20.</ref>
Many classes of surface ships, submarines, and aircraft were armed with torpedoes. Naval strategy at the time was to use torpedoes, launched from submarines or warships, against enemy warships in a fleet action on the high seas. There were concerns torpedoes would be ineffective against warships' heavy armor; an answer to this was to detonate torpedoes underneath a ship, badly damaging its ] and the other structural members in the hull, commonly called "breaking its back". This was demonstrated by ]s in World War I. The torpedo would be set to run at a depth just beneath the ship, relying on a magnetic exploder to activate at the appropriate time.


Germany, Britain, and the U.S. independently devised ways to do this; German and American torpedoes, however, suffered problems with their depth-keeping mechanisms, coupled with faults in ]s shared by all designs. Inadequate testing had failed to reveal the effect of the Earth's magnetic field on ships and exploder mechanisms, which resulted in premature detonation. The '']'' and Royal Navy promptly identified and eliminated the problems. In the United States Navy (USN), there was an extended wrangle over the problems plaguing the ] (and its ]). Cursory trials had allowed bad designs to enter service. Both the Navy ] and the ] were too busy protecting their interests to correct the errors, and fully functioning torpedoes only became available to the USN twenty-one months into the Pacific War.<ref>{{Harvard citation no brackets|Blair|1975|p=20}}</ref>
] torpedoes into a ] medium bomber, May 1942. This type of torpedo was later used to sink the Argentinian cruiser ] during the 1982 ]]]


] torpedoes into a ] medium bomber, May 1942. This type of torpedo was used to sink the Argentinian cruiser {{ship|ARA|General Belgrano||2}} during the 1982 ]]]
British submarines used torpedoes to interdict the Axis supply shipping to North Africa, while ] ] ] by torpedo and (after a mistaken, but abortive, attack on ]) scored one crucial hit in the hunt for the German battleship ]. Large tonnages of merchant shipping were sunk by submarines with torpedoes in both the ] and the Pacific War.


British submarines used torpedoes to interdict the Axis supply shipping to ], while ] ] ] by a torpedo and (after a mistaken, but abortive, attack on {{HMS|Sheffield|C24|2}}) scored one crucial hit in the hunt for the German battleship {{ship|German battleship|Bismarck||2}}. Large tonnages of merchant shipping were sunk by submarines with torpedoes in both the ] and the Pacific War.
Torpedo boats, such as ]s, ]s, or ]s, enabled relatively small but fast craft to carry enough firepower, in theory, to destroy a larger ship, though this rarely occurred in practice. The largest warship sunk by torpedoes from small craft in WW2 was the British cruiser ], sunk by Italian ]s on the night of 12/13 August 1942 during ]. Destroyers of all navies were also armed with torpedoes to attack larger ships. In the ], destroyer torpedoes from the escorts of American task force "Taffy 3" showed effectiveness at defeating armor. Damage and confusion caused by torpedo attacks were instrumental {{Original research inline|date=September 2011}} <!--Remove FACT TAG as statement is cited but not directly supported by citation--> in beating back a superior Japanese force of battleships and cruisers.<ref></ref> In the ] in December 1943, torpedo hits from British destroyers ] and ] slowed German ] '']'' enough for British ] ] to catch and sink her, and in May 1945 the British 26th Destroyer Flotilla (coincidentally led by ''Saumarez'' again) ambushed and sank Japanese heavy cruiser ].

Torpedo boats, such as ], ]s, or ], enabled the relatively small but fast craft to carry enough firepower, in theory, to destroy a larger ship, though this rarely occurred in practice. The largest warship sunk by torpedoes from small craft in World War II was the British cruiser {{HMS|Manchester|15|2}}, sunk by Italian ]s on the night of 12/13 August 1942 during ]. Destroyers of all navies were also armed with torpedoes to attack larger ships. In the ], destroyer torpedoes from the escorts of the American task force "Taffy 3" showed effectiveness at defeating armor. Damage and confusion caused by torpedo attacks were instrumental {{Original research inline|date=September 2011}} <!--Remove FACT TAG as the statement is cited but not directly supported by citation--> in beating back a superior Japanese force of battleships and cruisers. In the ] in December 1943, torpedo hits from British destroyers {{HMS|Savage|G20|2}} and {{HMS|Saumarez|G12|2}} slowed the German battleship {{ship|German battleship|Scharnhorst||2}} enough for the British battleship {{HMS|Duke of York|17|2}} to catch and sink her, and in May 1945 the British 26th Destroyer Flotilla (coincidentally led by ''Saumarez'' again) ambushed and sank Japanese heavy cruiser {{ship|Japanese cruiser|Haguro||2}}.

=== Frequency-hopping ===
{{main|Hedy Lamarr}}
During ], ] and composer ] developed a radio guidance system for ] torpedoes, it intended to use ] technology to defeat the threat of ] by the ]. As radio guidance had been abandoned some years earlier, it was not pursued.<ref name="EFF1997">{{cite press release|title=Movie Legend Hedy Lamarr to be Given Special Award at EFF's Sixth Annual Pioneer Awards|publisher=Electronic Frontier Foundation|date=March 11, 1997|url=http://w2.eff.org/awards/pioneer/1997.php|access-date=February 1, 2014|url-status=dead|archive-url=https://web.archive.org/web/20071016063043/http://w2.eff.org/awards/pioneer/1997.php|archive-date=October 16, 2007|df=mdy-all}}</ref> Although the ] never adopted the technology, it did, in the 1960s,<ref>{{Cite web|url=https://www.eetimes.com/document.asp?doc_id=1279374|title=short history of spread spectrum|date=26 January 2012|website=Electronic Engineering (EE) Times|archive-url=https://web.archive.org/web/20180826005036/https://www.eetimes.com/document.asp?doc_id=1279374|archive-date=August 26, 2018|url-status=live|df=mdy-all}}</ref> investigate various spread-spectrum techniques. Spread-spectrum techniques are incorporated into ] technology and are similar to methods used in legacy versions of ].<ref name="newscientist20112">, ''New Scientist'', December 8, 2011; retrieved February 4, 2014.</ref><ref name="WiredEFF2">{{cite magazine|url=http://archive.wired.com/politics/law/news/1997/03/2507|access-date=November 9, 2013|title=Privacy Implications of Hedy Lamarr's Idea|magazine=Wired|publisher=Condé Nast Digital|date=March 11, 1997|first=Ashley|last=Craddock|archive-url=https://web.archive.org/web/20150805043848/http://archive.wired.com/politics/law/news/1997/03/2507|archive-date=August 5, 2015|url-status=live|df=mdy-all}}</ref><ref name="NYT19412">{{cite news|url=http://ipmall.info/hosted_resources/nic/nic_LamarrNYT.pdf|title=Hedy Lamarr Inventor|work=The New York Times|date=October 1, 1941|access-date=February 1, 2014|url-status=dead|archive-url=https://web.archive.org/web/20160410084732/http://ipmall.info/hosted_resources/nic/nic_LamarrNYT.pdf|archive-date=April 10, 2016|df=mdy-all}}</ref> This work led to their induction into the ] in 2014.<ref name="EFF1997"/><ref>{{cite web|url=http://invent.org/inductee-detail/?IID=501|title=Spotlight – National Inventors Hall of Fame|publisher=invent.org|access-date=May 26, 2015|archive-url=https://web.archive.org/web/20150501105813/http://invent.org/inductee-detail/?IID=501|archive-date=May 1, 2015|url-status=live|df=mdy-all}}</ref>


=== Post–World War II === === Post–World War II ===
] of the ]. Preserved at the ].]]
Because of improved submarine strength and speed, torpedoes had to be given improved warheads and better motors. During the ] torpedoes were an important asset with the advent of nuclear-powered submarines, which did not have to surface often, particularly those carrying strategic nuclear missiles.
Because of improved submarine strength and speed, torpedoes had to be given improved warheads and better motors. During the ] torpedoes were an important asset with the advent of ]s, which did not have to surface often, particularly those carrying strategic ]s.


A number of navies have launched torpedo strikes since World War II, including: Several navies have launched torpedo strikes since World War II, including:
* During the ] the United States Navy successfully attacked a dam with air-launched torpedoes.<ref>{{cite book * During the ] the United States Navy successfully attacked a dam with air-launched torpedoes.<ref>{{cite book |last=Faltum |first=Andrew |title=The Essex Aircraft Carriers
|publisher=The Nautical & Aviation Publishing Company of America |year=1996 |location=Baltimore, Maryland |pages=125–126 |isbn=1-877853-26-7}}</ref>
| last = Faltum | first = Andrew | title = The Essex Aircraft Carriers
* Israeli Navy ] crippled the American electronic intelligence vessel ] with gunfire and torpedoes during the 1967 ], resulting in the loss of 34 crew.
| publisher = The Nautical & Aviation Publishing Company of America | year = 1996
* A ] {{sclass|Daphné|submarine|2}} sank the Indian frigate {{INS|Khukri|1958|6}} on 9 December 1971 during the ], with the loss of over 18 officers and 176 sailors.
| location = Baltimore, Maryland | pages = 125–126 | isbn = 1-877853-26-7}}</ref>
* Israeli Navy ] crippled the technical research ship ] with gunfire and torpedoes during the 1967 ], resulting in the loss of 46 crew. * The British Royal Navy nuclear attack submarine {{HMS|Conqueror|S48|6}} sank the ] ] {{ship|ARA|General Belgrano}} on 2 May 1982 with two ] torpedoes during the ] with the loss of 323 lives.
* On 16 June 1982, during the ], an unnamed ] torpedoed and sank the Lebanese coaster ''Transit'',<ref name=":0">{{Cite web |last= |first= |date= |title=Stichting Maritiem Historische Data - Schip |url=https://www.marhisdata.nl/schip&id=2654 |access-date=11 February 2021 |website=www.marhisdata.nl |language=dutch}}</ref> which was carrying 56 Palestinian refugees to ], in the belief that the vessel was evacuating anti-Israeli militias. The ship was hit by two torpedoes, managed to run aground but eventually sank. There were 25 dead, including her captain. The ] disclosed the incident in November 2018.<ref>{{Cite web |last= |first= |date=22 November 2018 |title=Israel admits it sank Lebanese refugee boat in 1982 war error, killing 25 — TV |url=https://www.timesofisrael.com/israel-admits-it-sank-lebanese-refugee-boat-in-1982-war-error-killing-25-tv/ |access-date=11 February 2021 |website=www.timesofisrael.com |language=en-US}}</ref><ref name=":0" />
* A ] ] submarine sank the Indian frigate ] on 9 December 1971 during the ], with the loss of over 18 officers and 176 sailors.
* The ] disabled the Yugoslav patrol boat ] with a torpedo launched by Croatian ] from an improvised device during the ] on 14 November 1991, in the course of the ]. Three members of the crew were killed. The stranded boat was later recovered by Croatian trawlers, salvaged and put in service with the Croatian Navy as OB-02 ''Šolta''.<ref>{{cite web |url=http://uhddr-hrm.com/clanci/2011/premijera-hrvatskog-minitorpeda.html |title=Premijera hrvatskog monitored |first=Stjepan Bernadić |last=Kula |language=hr |access-date=10 December 2018 |archive-date=29 November 2018 |archive-url=https://web.archive.org/web/20181129012738/http://uhddr-hrm.com/clanci/2011/premijera-hrvatskog-minitorpeda.html |url-status=dead }}</ref>
* The British ] nuclear attack submarine ] sank the ] ] ] with two ] torpedoes during the ] with the loss of 323 lives.
* On 26 March 2010 the South Korean Navy ship ] was sunk with the loss of 46 personnel. A subsequent investigation concluded that the warship had been sunk by a North Korean torpedo fired by a ].<ref>{{Cite web |date=2010-09-13 |title=Seoul reaffirms N. Korea's torpedo attack in final report |url=https://www.koreatimes.co.kr/www/news/nation/2010/09/205_72997.html |access-date=2024-12-14 |website=The Korea Times |language=en}}</ref>
* The ] disabled the Yugoslav patrol boat ] with a torpedo launched by Croatian ] from an improvised device during the ] on 14 November 1991, in the course of the ]. Three members of the crew were killed. The stranded boat was later recovered by Croatian trawlers, salvaged and put in service with the Croatian Navy as OB-02 ''Šolta''.<ref> by Stjepan Bernadić Kula {{Hr icon}}</ref>
* On 26 March 2010 the South Korean Navy ship ] was sunk with the loss of 46 personnel. Subsequent investigation concluded that the warship had been sunk by a North Korean torpedo fired by a ].


==Energy sources== == Propulsion ==
] launches a dummy torpedo during exercises.]] ]


===Compressed air=== ===Compressed air===
The Whitehead torpedo of 1866, the first successful self-propelled torpedo, used ] as its energy source. The air was stored at pressures of up to {{convert|2.55|MPa|abbr=on}} and fed to a ] that turned a single ] at about 100 ]. It could travel about {{convert|180|m|yard}} at an average speed of {{convert|6.5|kn|km/h|lk=in}}. The speed and range of later models was improved by increasing the pressure of the stored air. In 1906 Whitehead built torpedoes that could cover nearly {{convert|1000|m|yard}} at an average speed of {{convert|35|kn|km/h}}. The Whitehead torpedo of 1866, the first successful self-propelled torpedo, used ] as its energy source. The air was stored at pressures of up to {{convert|2.55|MPa|abbr=on}} and fed to a ] that turned a single ] at about 100 ]. It could travel about {{convert|180|m|yard}} at an average speed of {{convert|6.5|kn|km/h|lk=in}}. The speed and range of later models were improved by increasing the pressure of the stored air. In 1906 Whitehead built torpedoes that could cover nearly {{convert|1000|m|yard}} at an average speed of {{convert|35|kn|km/h}}.


At higher pressures the ] experienced by the air as it expanded in the engine caused icing problems. This drawback was remedied by heating the air with seawater before it was fed to the engine, which increased engine performance further, because the air expanded even more after heating. This was the principle used by the Brotherhood engine. At higher pressures the ] experienced by the air as it expanded in the engine caused icing problems. This drawback was remedied by heating the air with seawater before it was fed to the engine, which increased engine performance further because the air expanded even more after heating. This was the principle used by the Brotherhood engine.


===Heated torpedoes=== ===Heated torpedoes===
Passing the air through an engine led to the idea of injecting a liquid fuel, like ], into the air and igniting it. In this manner the air is heated more and expands even further, and the burned propellant adds more gas to drive the engine. Construction of such ''heated'' torpedoes started circa 1904 by Whitehead's company. Torpedoes propelled by compressed air encountered a significant problem when attempts were made to increase their range and speed. The cold compressed air, upon entering the expansion phase in the piston chambers of the torpedo's engine, caused a rapid drop in temperature. This could freeze the engine solid, by jamming the piston heads inside the cylinders. This led to the idea of injecting a liquid fuel, like ], into the compressed air and igniting it inside a separate expansion chamber. In this manner, the air is heated more and expands even further, and the burned propellant adds more gas to drive the engine. The earliest form was the "Elswick” heater as patented by ] in 1904. The device was demonstrated in an 18-inch Fiume Mark III torpedo at ] in 1905 before an audience of British and Japanese experts. The weapon speed was {{cvt|9|kn|kph}} more than for the identical unheated version. Construction of such ''heated'' torpedoes started the same year by Whitehead's company.<ref>{{cite book|first = Geoff|last = Kirby|title = JRNSS Volume 27, No.1 - A History of the Torpedo, The Early Days|publisher = Journal of the Royal Navy Scientific Service|date = January 1972|url=https://archive.org/details/DTIC_AD0595766|pages=43–44}}</ref>


===Wet-heater=== ==== Dry heater ====
<!-- "Wet heater" redirects to this section heading. If the section heading changes, please update the redirect to match. -->
A further improvement was the use of water to cool the ] of the fuel-burning torpedo. This not only solved heating problems so more fuel could be burnt but also allowed additional power to be generated by feeding the resulting steam into the engine together with the ] products. Torpedoes with such a propulsion system became known as ''wet heaters'', while heated torpedoes without steam generation were retrospectively called ''dry heaters''. A simpler system was introduced by the British Royal Gun factory in 1908. Most torpedoes used in World War I and World War II were wet-heaters.


The earliest production version of the heated torpedo propulsion system, which became known as the Whitehead heater system, mixed the fuel and compressed air after the pressure regulator. Combustion took place in a specialized expansion chamber, with hot combustion products driving the pistons of a reciprocating engine. This had the disadvantage of badly sooting the air vessel with combustion byproducts, and could also engage in a ], jamming the engine - not from low temperature as observed with compressed air, but from excess heat causing the piston heads to jam. The "dry heater" distinction was only made after wet heater torpedoes were developed, prior to which all heated torpedoes were of the dry heater type - originally simply called "heated".
=== Compressed oxygen ===
The amount of fuel that can be burned by a torpedo engine (i.e. wet engine) is limited by the amount of ] it can carry. Since compressed air contains only about ] oxygen, engineers in ] developed the ] (nicknamed Long Lance postwar)<ref name="Morison, Samuel Eliot 1950 p.195"/> for destroyers and cruisers in the 1930s. It used pure compressed oxygen instead of compressed air and had performance unmatched by any contemporary torpedo in service, through the end of World War II. However, oxygen systems posed a serious danger to any ship that came under attack<!--they pose a hazard just from normal operation...--> while still carrying such torpedoes; Japan lost several cruisers partly due to catastrophic secondary explosions of Type 93s. During the war, Germany experimented with ] for the same purpose.


==== Wet heater ====
] torpedo<!--Mk 8? Or Mk13?--> on display]]
{{Anchor|Wet heater|Wet-heater}}
A further improvement was the use of water to wash and cool the ] of the fuel-burning torpedo. Water would be injected into the combustion chamber, at a rate commensurate with the fuel supply rate. This water would flash to steam, with stray condensate carrying the soot combustion byproducts out through the engine. An early example was the wet heater system developed by Lieutenant Sydney Hardcastle at the ], in 1908.<ref>{{cite book|chapter=The Officers of the Royal Navy Before 1918|chapter-url=https://link.springer.com/content/pdf/10.1057/9781137481962_2.pdf|website=Springer Link|date=2015 |doi=10.1057/9781137481962_2 |access-date=4 October 2024|chapter-url-access=subscription |last1=Farquharson-Roberts |first1=Mike |title=Royal Naval Officers from War to War, 1918–1939 |pages=8–23 |isbn=978-1-349-57163-5 }}</ref> The compressed air bottle was partially filled with water, with an outlet at the bottom leading into the combustion chamber. This would guarantee that compressed air and water would be injected into the combustion chamber at the same pressure. The system not only solved heating problems so more fuel could be burned but also allowed additional power to be generated by feeding the resulting steam into the engine together with the ] products. Torpedoes with such a propulsion system became known as ''wet heaters'', while heated torpedoes without steam generation were retrospectively called ''dry heaters''. Most torpedoes used in World War I and World War II were wet heaters.

==== Increased oxidant ====
The amount of fuel that can be burned by a torpedo engine (i.e. wet engine) is limited by the amount of ] it can carry. Since compressed ], engineers in Japan developed the ] (nicknamed "Long Lance" postwar)<ref name="Morison, Samuel Eliot 1950 p.195" /> for destroyers and cruisers in the 1930s. It used pure compressed oxygen instead of compressed air and had performance unmatched by any contemporary torpedo in service, through the end of World War II. However, oxygen systems posed a danger to ships carrying such torpedoes under normal operation, and more so under attack; Japan lost several cruisers partly due to catastrophic secondary explosions of Type&nbsp;93s.

During World War II, Germany experimented with ] for the same purpose.

The British approached the problem of providing additional oxygen for the torpedo engine by the use of oxygen-enriched air rather than pure oxygen: up to 57% instead of the 21% of normal atmospheric compressed air. This significantly increased the range of the torpedo, the 24.5 inch Mk 1 having a range of {{convert|15000|yard|m}} at {{convert|35|kn|km/h}} or {{convert|20000|yard|m}} at {{convert|30|kn|km/h}} with a {{convert|750|lb|kg}} warhead. There was a general nervousness about the oxygen enrichment equipment, known for reasons of secrecy as 'No 1 Air Compressor Room' on board ships, and development shifted to the highly efficient Brotherhood Burner Cycle engine that used un-enriched air.<ref>'' Washington's Cherry trees, The Evolution of the British 1921-22 Capital Ships'', NJM Campbell, Warship Volume 1, Conway Maritime Press, Greenwich, {{ISBN| 0 85177 132 7}}, pp. 9-10.</ref>

==== Burner cycle engine ====
After the First World War, ] developed a four-cylinder burner cycle engine which was roughly twice as powerful as the older wet heater engine. It was first used in the British Mk VIII torpedoes, which were still in service in 1982. It used a modified diesel cycle, using a small amount of paraffin to heat the incoming air, which was then compressed and further heated by the piston, and then more fuel was injected. It produced about 322 hp when introduced, but by the end of WW2 was at 465 hp, and there was a proposal to fuel it with nitric acid, when it was projected to develop 750 hp.<ref>Torpedo: The Complete History of the World's Most Revolutionary Naval Weapon
By Roger Branfill-Cook</ref>


===Wire driven=== ===Wire driven===
] torpedo<!--Mk 8? Or Mk13?--> on display]]
The ] had two wires wound around internal drums. Shore-based steam ]es pulled the wires, which spun the drums and drove the propellers. An operator controlled the relative speeds of the winches, providing guidance. Such systems were used for ] of the British homeland and colonies from 1887 to 1903 and were purchased by, and under the control of, the Army as opposed to the Navy. Speed was about {{convert|25|kn|km/h|0}} for over 2,400 m.
The ] had two wires wound around internal drums joined to the propellers. Shore-based steam ]es pulled the wires, which spun the internal drums and drove the propellers. An operator controlled the relative speeds of the winches, providing guidance. Such systems were used for ] of the British homeland and colonies from 1887 to 1903 and were purchased by, and under the control of, the Army as opposed to the Navy. Speed was about {{convert|25|kn|km/h|0}} for over 2,400 m.


===Flywheel=== ===Flywheel===
The ] used by the ] in the late 19th century featured a heavy ] that had to be spun up before launch. It was able to travel about {{convert|400|yd|m}} at {{convert|25|kn|km/h}}. The Howell had the advantage of not leaving a trail of bubbles behind it, unlike compressed air torpedoes. This gave the target vessel less chance to detect and evade the torpedo, and avoided giving away the attacker's position. Additionally, it ran at a constant depth, unlike Whitehead models. The ] used by the ] in the late 19th century featured a heavy ] that had to be spun up before launch. It was able to travel about {{convert|400|yd|m}} at {{convert|25|kn|km/h}}. The Howell had the advantage of not leaving a trail of bubbles behind it, unlike compressed air torpedoes. This gave the target vessel less chance to detect and evade the torpedo and avoided giving away the attacker's position. Additionally, it ran at a constant depth, unlike Whitehead models.


===Electric batteries=== ===Electric batteries===
]]] ]]]


Electric propulsion systems avoided tell-tale bubbles. ] invented an electrically propelled torpedo in 1873; it was powered by a cable from an external power source, as ] of the time had insufficient capacity. The Sims-Edison torpedo was similarly powered. The Nordfelt torpedo was also electrically powered and was steered by impulses down a trailing wire. Electric propulsion systems avoided tell-tale bubbles. ] invented an electrically propelled torpedo in 1873; it was powered by a cable from an external power source, because ] of the time had insufficient capacity. The Sims-Edison torpedo was similarly powered. The Nordfelt torpedo was also electrically powered and was steered by impulses down a trailing wire.


Germany introduced its first battery-powered torpedo shortly before World War II, the ]. It was slower and had shorter range than the conventional ], but was wakeless and much cheaper. Its ] ] was sensitive to shock, required frequent maintenance before use, and required preheating for best performance. The experimental ], an enhancement of the G7e, used ]s. Germany introduced its first battery-powered torpedo shortly before World War II, the ]. It was slower and had a shorter range than the conventional ], but was wakeless and much cheaper. Its ] ] was sensitive to shock, required frequent maintenance before use, and required preheating for best performance. The experimental ], an enhancement of the G7e, used ]s.


The United States had an electric design, the ], largely copied from the German torpedo (although with improved batteries), as well as ], an air-dropped acoustic homing torpedo for anti-submarine use. The United States had an electric design, the ], largely copied from the German torpedo (although with improved batteries), as well as ], an air-dropped acoustic homing torpedo for anti-submarine use.


Modern electric torpedoes such as the ] or DM2 series commonly use ] that need no maintenance, so torpedoes can be stored for years without losing performance. Modern electric torpedoes such as the ], the ] or DM2 series commonly use ] that need no maintenance, so torpedoes can be stored for years without losing performance.


===Rockets=== ===Rockets===
A number of experimental rocket-propelled torpedoes were tried soon after Whitehead's invention but were not successful. Rocket propulsion has been implemented successfully by the Soviet Union, for example in the ]—and has been recently revived in Russian and German torpedoes, as it is especially suitable for ] devices.<ref>, by Geoff Kirby (2000)</ref> Several experimental rocket-propelled torpedoes were tried soon after Whitehead's invention but were not successful. Rocket propulsion has been implemented successfully by the Soviet Union, for example in the ]—and has been recently revived in Russian and German torpedoes, as it is especially suitable for ] devices.<ref>, by Geoff Kirby (2000)</ref>


===Modern drive systems=== ===Modern energy sources===
Modern torpedoes use a variety of drive mechanisms, including gas turbines (the British ]), ]s, and ] gas sprayed over a block of solid ]. Modern torpedoes use a variety of propellants, including electric batteries (as with the French ] or Italian ]), ]s (e.g., ] as with the US ]), and bipropellants (e.g., ] plus ] as with the Swedish ], ] plus ] as with the US ], or ] plus hydroxyl ammonium perchlorate as with the British ]).


==Propulsion== === Propeller ===
The first of Whitehead's torpedoes had a single propeller and needed a large vane to stop it spinning about its longitudinal axis. Not long afterward the idea of ] was introduced, to avoid the need for the vane. The three-bladed propeller came in 1893 and the four-bladed one in 1897. To minimise noise, today's torpedoes often use ]s. The first of Whitehead's torpedoes had a single propeller and needed a large vane to stop it spinning about its longitudinal axis. Not long afterward the idea of ] was introduced, to avoid the need for the vane. The three-bladed propeller came in 1893 and the four-bladed one in 1897. To minimize noise, today's torpedoes often use ]s.


=== Supercavitation ===
Some torpedoes—like the Russian ], Iranian ], and German ]—use ] to increase speed to over {{convert|200|kn|km/h}}. Torpedoes that don't use supercavitation, such as the American ] and British ], are limited to under {{convert|100|kn|mph km/h|abbr=on}}, though manufacturers and the military don't always release exact figures.
Some torpedoes—like the Russian ], Iranian ], and German ]—use ] to increase speed to over {{convert|200|kn|km/h}}. Torpedoes that don't use supercavitation, such as the American ] and British ], are limited to under {{convert|100|kn|mph km/h|abbr=on}}, though manufacturers and the military don't always release exact figures.


==Guidance== ==Guidance==
] during World War I]] ] during World War I]]
] ]


Torpedoes may be aimed at the target and fired unguided, similarly to an ], or they may be guided onto the target. They may be guided automatically towards the target by some procedure, e.g., sound (homing), or by the operator, typically via commands sent over a signal-carrying cable (]). Torpedoes may be aimed at the target and fired unguided, similarly to a traditional ], or they may be guided onto the target. They may be guided autonomously towards the target by some procedure, e.g., sound (homing), or by the operator, typically via commands sent over a signal-carrying cable (]).


===Unguided=== ===Unguided===
The Victorian era ] could be steered onto its target by varying the relative speeds of its propulsion cables. However, the Brennan required a substantial infrastructure and was not suitable for shipboard use. Therefore, for the first part of its history, the torpedo was guided only in the sense that its course could be regulated so as to achieve an intended impact depth (because of the sine wave running path of the Whitehead,<ref>Fitzsimons, Bernard, ed. "Bliss-Leavitt", in ''The Illustrated Encyclopedia of 20th Century Weapons and Warfare'' (London: Phoebus, 1978), Volume 4, p.386.</ref> this was a hit or miss proposition, even when everything worked correctly) and, through gyroscopes, a straight course. With such torpedoes the method of attack in ], ]s and small submarines was to steer a predictable collision course abeam to the target and release the torpedo at the last minute, then veer away, all the time subject to defensive fire. The Victorian era ] could be steered onto its target by varying the relative speeds of its propulsion cables. However, the Brennan required a substantial infrastructure and was not suitable for shipboard use. Therefore, for the first part of its history, the torpedo was guided only in the sense that its course could be regulated to achieve an intended impact depth (because of the sine wave running path of the Whitehead,<ref>Fitzsimons, Bernard, ed. "Bliss-Leavitt", in ''The Illustrated Encyclopedia of 20th Century Weapons and Warfare'' (London: Phoebus, 1978), Volume 4, p.386.</ref> this was a hit or miss proposition, even when everything worked correctly) and, through gyroscopes, a straight course. With such torpedoes the method of attack in ], ]s and small submarines was to steer a predictable collision course abeam to the target and release the torpedo at the last minute, then veer away, all the time subject to defensive fire.


In larger ships and submarines, fire control calculators gave a wider engagement envelope. Originally, plotting tables (in large ships), combined with specialised ]s (known in U.S. service as the "banjo" and "Is/Was"),<ref>Beach, Edward L., Jr., Captain, USN (rtd). ''Run Silent, Run Deep''.</ref> reconciled the speed, distance, and course of a target with the firing ship's speed and course, together with the performance of its torpedoes, to provide a firing solution. By the Second World War, all sides had developed automatic electro-mechanical calculators, exemplified by the U.S. Navy's ].<ref>The British called theirs the "fruit machine".</ref> Submarine commanders were still expected to be able to calculate a firing solution by hand as a backup against mechanical failure, and because many submarines existing at the start of the war were not equipped with a TDC; most could keep the "picture" in their heads and do much of the calculations (simple trigonometry) mentally, from extensive training.<ref>Beach describes it well in ''Run Silent, Run Deep''.</ref> In larger ships and submarines, fire control calculators gave a wider engagement envelope. Originally, plotting tables (in large ships), combined with specialized ]s (known in U.S. service as the "banjo" and "Is/Was"),<ref name=Beach55>{{cite book |first=Edward L. |last=Beach |title=Run Silent, Run Deep |url=https://books.google.com/books?id=v6D1DAAAQBAJ |orig-year=1955 |date=2016 |publisher=Naval Institute Press |isbn=978-1-68247-167-8}}</ref> reconciled the speed, distance, and course of a target with the firing ship's speed and course, together with the performance of its torpedoes, to provide a firing solution. By the Second World War, all sides had developed automatic electro-mechanical calculators, exemplified by the U.S. Navy's ].<ref>The British called theirs the "fruit machine".</ref> Submarine commanders were still expected to be able to calculate a firing solution by hand as a backup against mechanical failure, and because many submarines existed at the start of the war were not equipped with a TDC; most could keep the "picture" in their heads and do much of the calculations (simple trigonometry) mentally, from extensive training.<ref name=Beach55/>


Against high-value targets and multiple targets, submarines would launch a spread of torpedoes, to increase the probability of success. Similarly, squadrons of torpedo boats and torpedo bombers would attack together, creating a "fan" of torpedoes across the target's course. Faced with such an attack, the prudent thing for a target to do was to turn so as to parallel the course of the incoming torpedo and steam away from the torpedoes and the firer, allowing the relatively short range torpedoes to use up their fuel. An alternative was to "comb the tracks", turning to parallel the incoming torpedo's course, but turning towards the torpedoes. The intention of such a tactic was still to minimise the size of target offered to the torpedoes, but at the same time be able to aggressively engage the firer. This was the tactic advocated by critics of Jellicoe's actions at ], his caution at turning away from the torpedoes being seen as the reason the Germans escaped. Against high-value targets and multiple targets, submarines would launch a spread of torpedoes, to increase the probability of success. Similarly, squadrons of torpedo boats and torpedo bombers would attack together, creating a "fan" of torpedoes across the target's course. Faced with such an attack, the prudent thing for a target to do was to turn to parallel the course of the incoming torpedo and steam away from the torpedoes and the firer, allowing the relatively short-range torpedoes to use up their fuel. An alternative was to "comb the tracks", turning to parallel the incoming torpedo's course, but turning towards the torpedoes. The intention of such a tactic was still to minimize the size of the target offered to the torpedoes, but at the same time be able to aggressively engage the firer. This was the tactic advocated by critics of Jellicoe's actions at ], his caution at turning away from the torpedoes being seen as the reason the Germans escaped.


The use of multiple torpedoes to engage single targets depletes torpedo supplies and greatly reduces a submarine's ].<ref>''The Attack Submarine'' suggests ''shorter'' patrols actually improve effectiveness.</ref> Endurance can be improved by ensuring a target can be effectively engaged by a single torpedo, which gave rise to the guided torpedo. The use of multiple torpedoes to engage single targets depletes torpedo supplies and greatly reduces a submarine's ].<ref>''The Attack Submarine'' suggests ''shorter'' patrols actually improve effectiveness.</ref> Endurance can be improved by ensuring a target can be effectively engaged by a single torpedo, which gave rise to the guided torpedo.
Line 207: Line 241:
===Pattern running=== ===Pattern running===


In WW2 the Germans introduced programmable pattern running torpedoes, which would run a predetermined pattern until they either ran out of fuel, or hit something. The earlier version, FaT, ran out after launch in a straight line, and then weaved backwards and forwards parallel to that initial course, whilst the more advanced LuT could transit to a different angle after launch, and then enter a more complex weaving pattern.<ref> In World War II the Germans introduced programmable pattern-running torpedoes, which would run a predetermined pattern until they either ran out of fuel or hit something. The earlier version, FaT, ran out after launch in a straight line, and then weaved backward and forwards parallel to that initial course, whilst the more advanced LuT could transit to a different angle after launch, and then enter a more complex weaving pattern.<ref>{{cite web | title = U-boat Archive – Interrogation of U-Boat Survivors – Cumulative Edition | url =http://www.uboatarchive.net/KTB/KTBNotesArmamentCumulativeEdition.htm | access-date = 2017-04-13}}</ref>
{{cite web
| title = U-boat Archive - Interrogation of U-Boat Survivors - Cumulative Edition
| url = http://www.uboatarchive.net/KTB/KTBNotesArmamentCumulativeEdition.htm
| accessdate = 2017-04-13
}}
</ref>


===Radio and wire guidance=== ===Radio and wire guidance===
{{See also|Command guidance}} {{See also|Command guidance}}
Though Luppis' original design had been rope guided, torpedoes were not wire-guided until the 1960s. Though Luppis' original design had been rope-guided, torpedoes were not wire-guided until the 1960s.


During the First World War the U.S. Navy evaluated a ] torpedo launched from a surface ship called the '''Hammond Torpedo'''.<ref>{{cite news| url=http://query.nytimes.com/gst/abstract.html?res=FA0F14F7355B17738DDDA00A94D0405B868DF1D3 | work=The New York Times | title=TO TEST HAMMOND TORPEDO; General Wood Named as Head of Board to Pass Judgment on Invention | date=29 August 1916}}</ref> A later version tested in the 1930s was claimed to have an effective range of 6 miles.<ref> ''Popular Mechanics'', February 1930</ref> During the First World War the U.S. Navy evaluated a radio controlled torpedo launched from a surface ship called the '''Hammond Torpedo'''.<ref>{{cite news| url=https://www.nytimes.com/1916/08/29/archives/to-test-hammond-torpedo-general-wood-named-as-head-of-board-to-pass.html | work=The New York Times | title=TO TEST HAMMOND TORPEDO; General Wood Named as Head of Board to Pass Judgment on Invention | date=29 August 1916}}</ref> A later version tested in the 1930s was claimed to have an effective range of {{convert|6|mi}}.<ref>{{cite magazine |url=https://books.google.com/books?id=p-IDAAAAMBAJ&pg=PA262 |title=Torpedo Controlled By Radio After Striking Water |magazine=Popular Mechanics |date=February 1930 |publisher=Hearst Magazines }}</ref>


Modern torpedoes use an umbilical wire, which nowadays allows the computer processing power of the submarine or ship to be used. Torpedoes such as the U.S. ] can operate in a variety of modes, increasing tactical flexibility. Modern torpedoes use an ], which nowadays allows the computer processing power of the submarine or ship to be used. Torpedoes such as the U.S. ] can operate in a variety of modes, increasing tactical flexibility.


===Homing=== ===Homing===
{{Main article|Acoustic homing|Acoustic torpedo}} {{Main|Acoustic torpedo|Wake homing}}
Homing "]" torpedoes can use passive or active guidance, or a combination of both. Passive ]es home in on emissions from a target. Active acoustic torpedoes home in on the reflection of a signal, or "ping", from the torpedo or its parent vehicle; this has the disadvantage of giving away the presence of the torpedo. In semi-active mode, a torpedo can be fired to the last known position or calculated position of a target, which is then acoustically illuminated ("pinged") once the torpedo is within attack range. Homing "]" torpedoes can use passive or active guidance or a combination of both. Passive ]es home in on emissions from a target. Active acoustic torpedoes home in on the reflection of a signal, or "ping", from the torpedo or its parent vehicle; this has the disadvantage of giving away the presence of the torpedo. In semi-active mode, a torpedo can be fired to the last known position or calculated position of a target, which is then acoustically illuminated ("pinged") once the torpedo is within attack range.


Later in the Second World War torpedoes were given acoustic (homing) ]s, with the American ] and ] and the German ]. Pattern-following and ] torpedoes were also developed. Acoustic homing formed the basis for torpedo guidance after the Second World War. Later in the Second World War torpedoes were given acoustic (homing) ]s, with the American ] and ] and the German ]. Pattern-following and ] torpedoes were also developed. Acoustic homing formed the basis for torpedo guidance after the Second World War.


The homing systems for torpedoes are generally acoustic, though there have been other target sensor types used. A ship's ] is not the only emission a torpedo can home in on: to engage U.S. ]s, the ] developed the ] ]-homing torpedo. As standard acoustic lures can't distract a wake homing torpedo, the US Navy has installed the Surface Ship Torpedo Defense on aircraft carriers that uses a Countermeasure Anti-Torpedo to home in on and destroy the attacking torpedo.<ref>{{cite news |url=http://nationalinterest.org/blog/the-buzz/the-us-navys-master-plan-save-aircraft-carriers-lethal-17870 |title=The US Navy's Master Plan to Save Aircraft Carriers from Lethal Torpedo Attacks |last1=Osborn |first1=Kris |date=28 September 2016 |website=nationalinterest.org |publisher=The National Interest |accessdate=13 October 2016}}</ref> The homing systems for torpedoes are generally acoustic, though there have been other target sensor types used. A ship's ] is not the only emission a torpedo can home in on; to engage U.S. ]s, the ] developed the ] ]-homing torpedo. As standard acoustic lures can't distract a wake homing torpedo, the US Navy has installed the Surface Ship Torpedo Defense on aircraft carriers that use a Countermeasure Anti-Torpedo to home in on and destroy the attacking torpedo.<ref>{{cite news |url=http://nationalinterest.org/blog/the-buzz/the-us-navys-master-plan-save-aircraft-carriers-lethal-17870 |title=The US Navy's Master Plan to Save Aircraft Carriers from Lethal Torpedo Attacks |last1=Osborn |first1=Kris |date=28 September 2016 |website=nationalinterest.org |publisher=The National Interest |access-date=13 October 2016}}</ref>


==Warhead and fuzing== ==Warhead and fuzing==
The ] is generally some form of ] explosive, because the sustained explosive pulse produced by the powdered aluminium is particularly destructive against underwater targets. ] was popular until the 1950s, but has been superseded by ] compositions. ]s for torpedoes have also been developed, e.g. the ]. In lightweight antisubmarine torpedoes designed to penetrate submarine hulls, a ] can be used. ] can be triggered by direct contact with the target or by a ] incorporating sonar and/or magnetic sensors. The ] is generally some form of ] explosive, because the sustained explosive pulse produced by the powdered aluminum is particularly destructive against underwater targets. ] was popular until the 1950s, but has been superseded by ] compositions. ] have also been developed, e.g. the ]. In lightweight antisubmarine torpedoes designed to penetrate submarine hulls, a ] can be used. ] can be triggered by direct contact with the target or by a ] incorporating sonar and/or magnetic sensors.


===Contact detonation=== ===Contact detonation===
When a torpedo with a contact fuze strikes the side of the target hull, the resulting explosion creates a bubble of expanding gas, the walls of which move faster than the ]. The side of the bubble which is against the hull rips away the external plating creating a large breach. The bubble then collapses in on itself, forcing a high-speed stream of water into the breach which can destroy ]s and machinery in its path.<ref name ="Branfill_Cook_2014">{{cite book |last=Branfill-Cook |first=Roger |date=2014 |title=Torpedo: The Complete History of the World's Most Revolutionary Naval Weapon |url=https://books.google.co.uk/books?id=Fk2uBQAAQBAJ&pg=PA157&dq=torpedoes+%22Explosions+beneath+the+keel%22&hl=en&sa=X&ved=0ahUKEwiVmZb9l_jUAhUNmbQKHQ3JDm4Q6AEIKDAA#v=onepage&q=torpedoes%20%22Explosions%20beneath%20the%20keel%22&f=false |location= |publisher=Seaforth Publishing |page=157 |isbn=978-1848322158 }}</ref> When a torpedo with a contact fuze strikes the side of the target hull, the resulting explosion creates a bubble of expanding gas, the walls of which move faster than the ], thus creating a ]. The side of the bubble which is against the hull rips away the external plating creating a large breach. The bubble then collapses in on itself, forcing a high-speed stream of water into the breach which can destroy ]s and machinery in its path.<ref name ="Branfill_Cook_2014">{{cite book |last=Branfill-Cook |first=Roger |date=2014 |title=Torpedo: The Complete History of the World's Most Revolutionary Naval Weapon |url=https://books.google.com/books?id=Fk2uBQAAQBAJ&pg=PA157 |publisher=Seaforth Publishing |page=157 |isbn=978-1848322158 }}</ref>


===Proximity detonation=== ===Proximity detonation===
A torpedo fitted with a proximity fuze can be detonated directly under the ] of a target ship. The explosion creates a gas bubble which may damage the keel or underside plating of the target. However, the most destructive part of the explosion is the upthrust of the gas bubble, which will bodily lift the hull in the water. The structure of the hull is designed to resist downward rather than upward pressure, causing severe strain in this phase of the explosion. When the gas bubble collapses, the hull will tend to fall into the void in the water, creating a sagging effect. Finally, the weakened hull will be hit by the uprush of water caused by the collapsing gas bubble, causing structural failure. On vessels up to the size of a modern ], this can result in the ship breaking in two and sinking. This effect is likely to prove less catastrophic on a much larger hull, for instance that of an ].<ref name ="Branfill_Cook_2014"/> A torpedo fitted with a proximity fuze can be detonated directly under the ] of a target ship. The explosion creates a gas bubble which may damage the keel or underside plating of the target. However, the most destructive part of the explosion is the upthrust of the gas bubble, which will bodily lift the hull in the water. The structure of the hull is designed to resist downward rather than upward pressure, causing severe strain in this phase of the explosion. When the gas bubble collapses, the hull will tend to fall into the void in the water, creating a sagging effect. Finally, the weakened hull will be hit by the uprush of water caused by the collapsing gas bubble, causing structural failure. On vessels up to the size of a modern ], this can result in the ship breaking in two and sinking. This effect is likely to prove less catastrophic on a much larger hull, for instance, that of an ].<ref name ="Branfill_Cook_2014"/>

===Damage===
The damage that may be caused by a torpedo depends on the "] value", a combination of the initial strength of the explosion and the distance between the target and the detonation. When taken about ship hull plating, the term "hull shock factor" (HSF) is used, while keel damage is termed "keel shock factor" (KSF). If the explosion is directly underneath the keel, then HSF is equal to KSF, but explosions that are not directly underneath the ship will have a lower value of KSF.<ref name=Reid1996/>

====Direct damage====
Usually only created by contact detonation, direct damage is a hole blown in the ship. Among the crew, ] wounds are the most common form of injury. Flooding typically occurs in one or two main watertight compartments, which can sink smaller ships or disable larger ones.

====Bubble jet effect====
The bubble jet effect occurs when a mine or torpedo detonates in the water a short distance away from the targeted ship. The explosion creates a bubble in the water, and due to the pressure difference, the bubble will collapse from the bottom. The bubble is buoyant, and so it rises towards the surface. If the bubble reaches the surface as it collapses, it can create a pillar of water that can go over a hundred meters into the air (a "columnar plume"). If conditions are right and the bubble collapses onto the ship's hull, the damage to the ship can be extremely serious; the collapsing bubble forms a high-energy jet that can break a meter-wide hole straight through the ship, flooding one or more compartments, and is capable of breaking smaller ships apart. The crew in the areas hit by the pillar are usually killed instantly. Other damage is usually limited.<ref name=Reid1996/>

The ], in which {{ship|ROKS|Cheonan|PCC-772|6}} broke in half and sank off the coast South Korea in 2010, was caused by the bubble jet effect, according to an international investigation.<ref>{{cite news |url=http://news.bbc.co.uk/nol/shared/bsp/hi/pdfs/20_05_10jigreport.pdf|title=Investigation Result on the Sinking of ROKS "Cheonan" by The Joint Civilian-Military Investigation Group|date=20 May 2010|access-date=27 January 2014|work=BBC News}}</ref><ref>{{cite news|url=https://www.nytimes.com/2010/04/26/world/asia/26korea.html|title=South Korea Cites Attack in Ship Sinking|newspaper=The New York Times|date=25 April 2010|access-date=25 April 2010 | first=Choe | last=Sang-Hun}}</ref>

====Shock effect====
If the torpedo detonates at a distance from the ship, and especially under the keel, the change in water pressure causes the ship to resonate. This is frequently the most deadly type of explosion if it is strong enough. The whole ship is dangerously shaken and everything on board is tossed around. Engines rip from their beds, cables from their holders, etc. A badly shaken ship usually sinks quickly, with hundreds, or even thousands of small leaks all over the ship and no way to power the pumps. The crew fares no better, as the violent shaking tosses them around.<ref name=Reid1996>{{cite web |first=Warren D. |last=Reid |url=https://apps.dtic.mil/dtic/tr/fulltext/u2/a326738.pdf |archive-url=https://web.archive.org/web/20200327122839/https://apps.dtic.mil/dtic/tr/fulltext/u2/a326738.pdf |url-status=live |archive-date=March 27, 2020 |title=The Response of Surface Ships to Underwater Explosions |id=DSTO-GD-0109 |date=September 1996 |publisher=Ship Structures and Materials Division, Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organisation. Department of Defence}}</ref> This shaking is powerful enough to cause disabling injury to knees and other joints in the body, particularly if the affected person stands on surfaces connected directly to the hull (such as steel decks).

The resulting gas cavitation and ]-differential over the width of the human body is sufficient to stun or kill ].<ref>{{cite report |author1=Cudahy, E |author2=Parvin, S |title=The Effects of Underwater Blast on Divers |series=US Naval Submarine Medical Research Lab Technical Report |id=NSMRL-1218 |year=2001 |url=http://archive.rubicon-foundation.org/7518 |access-date=2009-03-22 |archive-date=2009-07-03 |archive-url=https://web.archive.org/web/20090703203738/http://archive.rubicon-foundation.org/7518 |url-status=usurped }}</ref>


==Control surfaces and hydrodynamics== ==Control surfaces and hydrodynamics==
Control surfaces are essential for a torpedo to maintain its course and depth. A homing torpedo also needs to be able to outmanoeuvre a target. Good hydrodynamics are needed for it to attain high speed efficiently and also to give long range, since the torpedo has limited stored energy. Control surfaces are essential for a torpedo to maintain its course and depth. A homing torpedo also needs to be able to outmaneuver a target. Good hydrodynamics are needed for it to attain high speed efficiently and also to give a long range since the torpedo has limited stored energy.


== Launch platforms and launchers == == Launch platforms and launchers ==
{{further information|Torpedo tube}} {{further|Torpedo tube}}
] (SVTT) fires a ]]] ] (SVTT) fires a ]]]


Torpedoes may be launched from submarines, surface ships, ]s and fixed-wing ], unmanned ]s and naval ]es.<ref name="dartmuseum">{{cite web|url=http://dartmouthmuseum.org/collections/memories/ww2.html|title=WW2 Memories - World War 2 - Second World War - Dartmouth Museum: Dartmouth Harbour was defended by Torpedo Tubes|publisher=]|accessdate=2 April 2012|quote=Never fired in anger, a fixed torpedo tube battery was built on the east of the harbour mouth, just up river from Kingswear Castle. The intent was to defend the river Dart.}}</ref> They are also used in conjunction with other weapons; for example the ] torpedo used by the ] is the warhead section of the ] (Anti-Submarine ]) and the ] (CAPsulated TORpedo) is a submerged sensor platform which releases a torpedo when a hostile contact is detected. Torpedoes may be launched from submarines, surface ships, ]s and fixed-wing ], unmanned ]s and naval ]es.<ref name="art museum">{{cite web|url=http://dartmouthmuseum.org/collections/memories/ww2.html|title=WW2 Memories World War 2 Second World War Dartmouth Museum: Dartmouth Harbour was defended by Torpedo Tubes|publisher=]|access-date=2 April 2012|quote=Never fired in anger, a fixed torpedo tube battery was built on the east of the harbor mouth, just upriver from Kingswear Castle. The intent was to defend the river Dart.|url-status=dead|archive-url=http://arquivo.pt/wayback/20160518153630/http://dartmouthmuseum.org/collections/memories/ww2.html|archive-date=18 May 2016}}</ref> They are also used in conjunction with other weapons; for example, the ] used by the ] is the warhead section of the ], a kind of ]; the ] (CAPsulated TORpedo) is a submerged sensor platform which releases a torpedo when a hostile contact is detected.


===Ships=== ===Ships===
] ]


Originally, Whitehead torpedoes were intended for launch underwater and the firm was upset when they found out the British were launching them above water, as they considered their torpedoes too delicate for this. However, the torpedoes survived. The launch tubes could be fitted in a ship's bow, which weakened it for ramming, or on the broadside; this introduced problems because of water flow twisting the torpedo, so guide rails and sleeves were used to prevent it. The torpedoes were originally ejected from the tubes by compressed air but later slow burning gunpowder was used. Torpedo boats originally used a frame that dropped the torpedo into the sea. Royal Navy ] of World War I used a rear-facing trough and a ] ram to push the torpedoes into the water tail-first; they then had to move rapidly out of the way to avoid being hit by their own torpedo. Originally, Whitehead torpedoes were intended for launch underwater and the firm was upset when they found out the British were launching them above water, as they considered their torpedoes too delicate for this. However, the torpedoes survived. The launch tubes could be fitted in a ship's bow, which weakened it for ramming, or on the broadside; this introduced problems because of water flow twisting the torpedo, so guide rails and sleeves were used to prevent it. The torpedoes were originally ejected from the tubes by compressed air but later slow-burning gunpowder was used. Torpedo boats originally used a frame that dropped the torpedo into the sea. Royal Navy ] of World War I used a rear-facing trough and a ] ram to push the torpedoes into the water tail-first; they then had to move rapidly out of the way to avoid being hit by their torpedo.


Developed in the run-up to the First World War,{{citation needed|date=June 2012}} multiple-tube mounts (initially twin, later triple and in WW2 up to quintuple in some ships) for {{convert|21|to|24|in|cm|abbr=on}} torpedoes in rotating turntable mounts appeared. Destroyers could be found with two or three of these mounts with between five and twelve tubes in total. The Japanese went one better, covering their tube mounts with splinter protection and adding reloading gear (both unlike any other navy in the world),<ref>Fitzsimons, Bernard, ed. ''Illustrated Encyclopedia of Weapons and Warfare'' (London: Phoebus, 1978), Volume 10, p.1040, "''Fubuki''"; Preston, Antony. ''Destroyers''.</ref> making them true turrets and increasing the broadside without adding tubes and ] (as the quadruple and quintuple mounts did). Considering their ] very effective weapons, the IJN equipped their cruisers with torpedoes. The Germans also equipped their capital ships with torpedoes. Developed in the run-up to the First World War,{{citation needed|date=June 2012}} multiple-tube mounts (initially twin, later triple and in WW2 up to quintuple in some ships) for {{convert|21|to|24|in|cm|abbr=on}} torpedoes in rotating turntable mounts appeared. Destroyers could be found with two or three of these mounts with between five and twelve tubes in total. The Japanese went one better, covering their tube mounts with splinter protection and adding reloading gear (both unlike any other navy in the world),<ref>Fitzsimons, Bernard, ed. ''Illustrated Encyclopedia of Weapons and Warfare'' (London: Phoebus, 1978), Volume 10, p. 1040, "''Fubuki''"; Preston, Antony. ''Destroyers''.</ref> making them true turrets and increasing the broadside without adding tubes and ] (as the quadruple and quintuple mounts did). Considering that their ] were very effective weapons, the IJN equipped their cruisers with torpedoes. The Germans also equipped their capital ships with torpedoes.


Smaller vessels such as PT boats carried their torpedoes in fixed deck mounted tubes using compressed air. These were either aligned to fire forward or at an offset angle from the centerline. Smaller vessels such as PT boats carried their torpedoes in fixed deck-mounted tubes using compressed air. These were either aligned to fire forward or at an offset angle from the centerline.


Later, lightweight mounts for {{convert|12.75|in|cm|abbr=on}} homing torpedoes were developed for anti-submarine use consisting of triple launch tubes used on the decks of ships. These were the 1960 ] in the USA and part of STWS (Shipborne Torpedo Weapon System) in the UK. Later a below-decks launcher was used by the RN. This basic launch system continues to be used today with improved torpedoes and fire control systems. Later, lightweight mounts for {{convert|12.75|in|cm|abbr=on}} homing torpedoes were developed for anti-submarine use consisting of triple launch tubes used on the decks of ships. These were the 1960 ] in the US and part of STWS (Shipborne Torpedo Weapon System) in the UK. Later a below-decks launcher was used by the RN. This basic launch system continues to be used today with improved torpedoes and fire control systems.


===Submarines=== ===Submarines===
Modern submarines use either swim-out systems or a pulse of water to discharge the torpedo from the tube, both of which have the advantage of being significantly quieter than previous systems, helping avoid detection of the firing from passive sonar. Earlier designs used a pulse of compressed air or a hydraulic ram. Modern submarines use either swim-out systems or a pulse of water to discharge the torpedo from the tube, both of which have the advantage of being significantly quieter than previous systems, helping avoid detection of the firing from passive sonar. Earlier designs used a pulse of compressed air or a hydraulic ram.


Early submarines, when they carried torpedoes, were fitted with a variety of torpedo launching mechanisms in a range of locations; on the deck, in the bow or stern, amidships, with some launch mechanisms permitting the torpedo to be aimed over a wide arc. By World War 2, designs favoured multiple bow tubes and fewer or no stern tubes. Modern submarine bows are usually occupied by a large sonar array, necessitating ] tubes angled outward, while stern tubes have largely disappeared. The first French and Russian submarines carried their torpedoes externally in ] ]s. These were cheaper than tubes, but less reliable. Both the United Kingdom and United States experimented with external tubes in World War II. External tubes offered a cheap and easy way of increasing torpedo capacity without radical redesign, something neither had time or resources to do prior to, or early in, the war. ]s carried up to 13 torpedo tubes, up to 5 of them external. America's use was mainly limited to earlier ]-, ]-, and ]-class boats. Until the appearance of the ]s, most American submarines only carried 4 bow and either 2 or 4 stern tubes, something many American submarine officers felt provided inadequate firepower.{{citation needed|date=May 2013}} This problem was compounded by the notorious unreliability of the ]. Early submarines, when they carried torpedoes, were fitted with a variety of torpedo launching mechanisms in a range of locations; on the deck, in the bow or stern, amidships, with some launch mechanisms permitting the torpedo to be aimed over a wide arc. By World War II, designs favored multiple bow tubes and fewer or no stern tubes. Modern submarine bows are usually occupied by a large sonar array, necessitating ] tubes angled outward, while stern tubes have largely disappeared. The first French and Russian submarines carried their torpedoes externally in ] ]s. These were cheaper than tubes but less reliable. Both the United Kingdom and the United States experimented with external tubes in World War II. External tubes offered a cheap and easy way of increasing torpedo capacity without radical redesign, something neither had time or resources to do before nor early in, the war. ]s carried up to 13 torpedo tubes, up to 5 of them external. America's use was mainly limited to earlier ]-, {{sclass|Salmon|submarine|5}}-, and {{sclass|Sargo|submarine|5}}-class boats. Until the appearance of the {{sclass|Tambor|submarine|5}} class, most American submarines only carried 4 bow and either 2 or 4 stern tubes, something many American submarine officers felt provided inadequate firepower. {{citation needed|date=May 2013}} This problem was compounded by the notorious unreliability of the ].


Late in World War II, the U.S. adopted a {{convert|16|in|cm|abbr=on}} homing torpedo (known as ]) for use against escorts. It was basically a modified ] with wooden rails to allow firing from a {{convert|21|in|cm|abbr=on}} torpedo tube.<ref name="BlairLock">Blair, Clay, Jr. ''Silent Victory'' (Lippencott, 1975); Lockwood, Charles A., Admiral. ''Hellcats of the Sea''.</ref> Late in World War II, the U.S. adopted a {{convert|16|in|cm|abbr=on}} homing torpedo (known as ]) for use against escorts. It was basically a modified ] with wooden rails to allow firing from a {{convert|21|in|cm|abbr=on}} torpedo tube.{{sfn|Blair|1975|p={{pn|date=January 2021}}}}<ref>{{cite book |first1=Charles A. |last1=Lockwood |first2=Hans C. |last2=Adamson |title=Hellcats of the Sea: Operation Barney and the Mission to the Sea of Japan |url=https://books.google.com/books?id=MBJtDwAAQBAJ |date=29 August 2018 |publisher=Lulu.com |isbn=978-0-359-05709-2}}</ref>


===Air launch=== ===Air launch===
{{Main|Aerial torpedo}}
]es may be carried by fixed-wing aircraft, helicopters or missiles. They are launched from the first two at prescribed speeds and altitudes, dropped from bomb-bays or underwing ]s.
]es may be carried by fixed-wing aircraft, helicopters, or missiles. They are launched from the first two at prescribed speeds and altitudes, dropped from bomb-bays or underwing ]s.


== Handling equipment== == Handling equipment ==
Although lightweight torpedoes are fairly easily handled, the transport and handling of heavyweight ones is difficult, especially in the small space of a submarine. After the Second World War, some Type XXI submarines were obtained from Germany by the United States and Britain. One of the main novel developments seen was a mechanical handling system for torpedoes. Such systems were widely adopted as a result of this discovery.{{citation needed|date=September 2014}} Although lightweight torpedoes are fairly easily handled, the transport and handling of heavyweight torpedoes is difficult, especially in the tight spaces in a submarine. After the Second World War, some Type XXI submarines were obtained from Germany by the United States and Britain. One of the main novel developments seen was a mechanical handling system for torpedoes. Such systems were widely adopted as a result of this discovery. {{citation needed|date=September 2014}}


== Classes and diameters== == Classes and diameters ==
] ]
{{Main article|list of torpedoes by diameter}}


Torpedoes are launched several ways: Torpedoes are launched in several ways:
*From a ] mounted either in a trainable deck mount (common in ]s), or fixed above or below the waterline of a surface vessel (as in ]s, ]s, and ]s) or ]. *From a ] mounted either in a trainable deck mount (common in ]s), or fixed above or below the waterline of a surface vessel (as in ]s, ]s, and ]s) or ].
*Early submarines, and some ]s (such as the U.S. World War II ]s, which used the ] aircraft torpedo) used deck-mounted "drop collars", which simply relied on gravity. *Early submarines and some ]s (such as the U.S. World War II ]s, which used the ] aircraft torpedo) used deck-mounted "]s", which simply relied on gravity.
*From shackles aboard low-flying ] or ]s. *From shackles aboard low-flying ] or ]s.
*As the final stage of a compound ] or ] powered munition (sometimes called an '''assisted''' torpedo). *As the final stage of a compound ] or ] powered munition (sometimes called an '''assisted''' torpedo).


Many navies have two weights of torpedoes: Many navies have two weights of torpedoes:
*A light torpedo used primarily as a close attack weapon, particularly by aircraft. *A light torpedo used primarily as a close attack weapon, particularly by aircraft. The {{convert|12.75|in|cm|abbr=on}} caliber has been described as a NATO standard for this class.<ref>{{cite web |title=MU90 LIGHTWEIGHT TORPEDO |url=https://electronics.leonardo.com/documents/16277707/18402409/MU90.pdf?t=1671542549919 |website=electronics.leonardo.com}}</ref>
*A heavy torpedo used primarily as a standoff weapon, particularly by submerged submarines. *A heavy torpedo used primarily as a standoff weapon, particularly by submerged submarines. The {{convert|21|in|cm|abbr=on}} caliber is a common standard.<ref name="Seahake_mod4">{{cite web |url= https://www.atlas-elektronik.com/fileadmin/user_upload/01_Images/Solutions/Datenblaetter_zum_Download/247_Seahake_mod4.pdf|title = SeaHake™ mod4
|publisher=Atlas Elektronik |access-date= 29 June 2024}}</ref>


In the case of deck or tube launched torpedoes, the diameter of the torpedo is obviously a key factor in determining the suitability of a particular torpedo to a tube or launcher, similar to the ] of the gun. The size is not quite as critical as for a gun, but diameter has become the most common way of classifying torpedoes. In the case of deck or tube launched torpedoes, the diameter of the torpedo is a key factor in determining the suitability of a particular torpedo to a tube or launcher, similar to the ] of the gun. The size is not quite as critical as for a gun, but the diameter has become the most common way of classifying torpedoes.


Length, weight, and other factors also contribute to compatibility. In the case of ]es, the key factors are weight, provision of suitable attachment points, and launch speed. Assisted torpedoes are the most recent development in torpedo design, and are normally engineered as an integrated package. Versions for aircraft and assisted launching have sometimes been based on deck or tube launched versions, and there has been at least one case of a submarine torpedo tube being designed to fire an aircraft torpedo. Length, weight, and other factors also contribute to compatibility. In the case of ]es, the key factors are weight, provision of suitable attachment points, and launch speed. Assisted torpedoes are the most recent development in torpedo design, and are normally engineered as an integrated package. Versions for aircraft and assisted launching have sometimes been based on deck or tube launched versions, and there has been at least one case of a submarine torpedo tube being designed to fire an aircraft torpedo.


As in all ] design, there is a compromise between standardisation, which simplifies manufacture and ], and specialisation, which may make the weapon significantly more effective. Small improvements in either logistics or effectiveness can translate into enormous operational advantages. As in all ] design, there is a compromise between standardization, which simplifies manufacture and ], and specialization, which may make the weapon significantly more effective. Small improvements in either logistics or effectiveness can translate into enormous operational advantages.


== Use by various navies ==
] on display at ].]]
{{Main|List of torpedoes}}


== Use by various navies== ===List of active torpedoes by place of origin===
Modern heavyweight torpedoes generally launched from submarines and used to attack both surface ships and submarines. Relatively older heavyweight torpedoes generally used to attack either surface ships or submarines. Modern lightweight torpedoes launched from surface ships, helicopters and fixed-wing aircraft used to attack submarines.
]'' helicopter carrying a ] torpedo.]]
==== China ====
] triple launcher onboard F221 ''Hessen'', a ] of the ].]]
*Yu-11 torpedo (lightweight)
]'' torpedo-carrying missile of the 1960s]]
*] (lightweight)
*] (heavyweight)
*] (heavyweight)
*] (heavyweight)


====France====
{{See also|List of torpedoes}}
] triple launcher onboard ''Hessen'', a {{sclass|Sachsen|frigate|1}} of the ].]]
*] torpedo (heavyweight)
*] torpedo (heavyweight)
*] torpedo (lightweight)


===German Navy=== ====Germany====
].]]
Modern ]:
* Seadpider anti-torpedo (lightweight) (Atlas Elektronik)<ref>{{Cite web |date=2024-11-30 |title=Beschaffung von vier neuen U-Booten 212 CD für die Marine wird konkret |url=https://www.hartpunkt.de/beschaffung-von-vier-neuen-u-booten-212-cd-fuer-die-marine-wird-konkret/ |access-date=2024-11-30 |language=de}}</ref>
* ] torpedo (heavyweight)
* DM2A3 torpedo (heavyweight)
* ] (heavyweight)


====India====
*]
*DM2A3 heavyweight torpedo ]
* ] (surface and submarine launched heavyweight torpedo)<ref>{{Cite web|last=Kumar|first=V. Rishi|title=DRDO flags off first Varunastra, a heavy weight torpedo|url=https://www.thehindubusinessline.com/news/drdo-flags-off-first-varunastra-a-heavy-weight-torpedo/article33150441.ece|access-date=2021-09-30|website=@businessline| date=21 November 2020 |language=en}}</ref>
*]
* ] torpedo (heavyweight)<ref>{{Cite web|last=SUBRAMANIAN|first=T. S.|title=Underwater might|url=https://frontline.thehindu.com/other/article30164828.ece|access-date=2021-09-30|website=Frontline|language=en|archive-date=2021-09-28|archive-url=https://web.archive.org/web/20210928105811/https://frontline.thehindu.com/other/article30164828.ece|url-status=dead}}</ref>
*]
* ]<ref>{{Cite news|last=Bhattacharjee|first=Sumit|date=2021-03-09|title=Lightweight torpedo test-fired successfully|language=en-IN|work=The Hindu|url=https://www.thehindu.com/news/national/andhra-pradesh/lightweight-torpedo-test-fired-successfully/article34022882.ece|access-date=2021-09-30|issn=0971-751X}}</ref> (lightweight)
*Barracuda (supercavitating torpedo)


====Iran====
The torpedoes used by the World War II ] included:
] heavyweight torpedo]]
* ](TI)
* ](TII) * ] (heavyweight)
* ](TIII) * ] supercavitation torpedo (heavyweight)
* G7s(TIV) "Falke"
* ] "Zaunkönig"


===Imperial Japanese Navy=== ====Italy====
* ] torpedo (heavyweight)
* ] torpedo (lightweight)
* ] torpedo (lightweight)
* ] torpedo (miniature)
* ] torpedo (heavyweight)
* ] torpedo (lightweight)
* ] torpedo (miniature)

====Japan====
* ] torpedo (heavyweight)
* ] torpedo (heavyweight)
* ] torpedo (lightweight)
* ] torpedo (lightweight)
* ] torpedo (heavyweight)

====Pakistan====
* ]

====Russia====
]]]
* ] (nuclear-powered, nuclear-armed ])
* ] (Fizik-2) (heavyweight)
* ] family including Fizik (UGST), USET-80 (heavyweight)
* TEST 71/76 torpedo (heavyweight)
* ] supercavitation torpedo (heavyweight)
* ] (heavyweight)<ref>{{Cite web | url=https://ria.ru/arms/20180325/1517217656.html |title = Российский "Кит" может в одиночку потопить вражеский авианосец|date = 25 March 2018}}</ref>
* ] (lightweight)
* APR-2 torpedo (lightweight)
In April 2015, the ''Fizik'' (]) heat-seeking torpedo entered service to replace the wake-homing USET-80 developed in the 1980s<ref name="TASS">{{Cite web|url=http://tass.com/defense/883900|title=Russian Navy to receive advanced Futlyar torpedoes|website=TASS}}</ref><ref>{{Cite web|url=http://www.navweaps.com/Weapons/WTRussian_post-WWII.php|title=Post-World War II Torpedoes of Russia/USSR - NavWeaps|website=www.navweaps.com}}</ref> and the next-gen ] entered service in 2017.<ref name="DW">{{Cite web|url=https://www.defenseworld.net/news/18680/Russian_Navy_To_Commission_Latest_Deep_Water_Torpedo__Futlyar__In_2018|title=Russian Navy To Commission Latest Deep-Water Torpedo 'Futlyar' In 2018|website=www.defenseworld.net}}</ref><ref name="TASS"/><ref name="NR">{{Cite web | url=http://www.navyrecognition.com/index.php/news/defence-news/2017/march-2017-navy-naval-forces-defense-industry-technology-maritime-security-global-news/4995-improved-ugst-fizik-torpedo-futlyar-to-enter-russian-navy-service-in-2018.html | title=Improved UGST / Fizik Torpedo| date=16 March 2017}}</ref>

====Republic of Korea====
] helicopter of the Philippine Navy armed with ] torpedoes taken at the Philippine Fleet Defense Expo (PFDX) 2023]]
* ] torpedo (heavyweight)
* ] torpedo (lightweight)
* ] torpedo (heavyweight)

==== Sweden ====
*] (heavyweight)
*] (heavyweight)
*] (lightweight)
*] (lightweight)

==== Turkey ====
*] torpedo (heavyweight)
*] torpedo (lightweight)

====United Kingdom====
* ] (heavyweight)
* ] torpedo (heavyweight)
* ] torpedo (lightweight)

====United States of America====
] helicopter carrying a ]]]
* ] (lightweight)
* ] (lightweight)
* ] (heavyweight)
* ] (lightweight)

===List of key WW-II torpedoes===
The torpedoes used by the ] (World War II) included: The torpedoes used by the ] (World War II) included:
* ] * ]
Line 327: Line 442:
* ] * ]


The torpedoes used by the World War II ] included:
===Japan Maritime Self-Defense Force===
* ](TI)
Modern ]:
* Type 72 torpedo * ](TII)
* Type 73 Light Weight torpedo * ](TIII)
* G7s(TIV) "Falke"
* ]
* ] * ] "Zaunkönig
* ]
* ]

===Indian Navy===
* ] (heavy weight torpedo)<ref></ref>
* ] (heavyweight torpedo)
* ]

===PLA Navy (China)===
:''See ]''

===Royal Canadian Navy===
Torpedoes used by the ] include:
* ]

===Royal Navy===
The torpedoes used by the ] include:
* ]
* ]
* ]
* Mark 8, designed in 1925, last used in action in 1982


The torpedoes used by the World War II ] included:
===Russian Navy===
* ] family torpedoes (old versions)
Torpedoes used by the ] include:
* ]
* ]
* ]
* ]


The torpedoes used by the World War II ] included:
In April 2015, the ''Fizik'' (]) heat-seeking torpedo entered service to replace the wake-homing USET-80 developed in the 1980s<ref>http://tass.ru/en/defense/883900</ref><ref>http://www.navweaps.com/Weapons/WTRussian_post-WWII.php</ref> and the next-gen ] is expected in 2018.<ref name="DW">http://www.defenseworld.net/news/18680/Russian_Navy_To_Commission_Latest_Deep_Water_Torpedo__Futlyar__In_2018</ref><ref name="TASS">http://tass.com/defense/883900</ref><ref name="NR">http://www.navyrecognition.com/index.php/news/defence-news/2017/march-2017-navy-naval-forces-defense-industry-technology-maritime-security-global-news/4995-improved-ugst-fizik-torpedo-futlyar-to-enter-russian-navy-service-in-2018.html</ref>
*]

*]
===U.S. Navy===
*]
The major torpedoes in the ] inventory are:
* the ]
* the ]
* the ]
* the ]
* the ], a moored anti-submarine mine that releases a torpedo as its warhead


==See also== ==See also==
Line 381: Line 466:
* ] * ]
* ], who supposedly developed a torpedo in the ] (1864–1870) * ], who supposedly developed a torpedo in the ] (1864–1870)
* ]
* ] * ]
* ]


== Notes == ==Footnotes==
{{reflist|20em}}
*{{PD-old-text|title=Overland monthly and Out West magazine|year=1886|author=Bret Harte}}
{{Reflist|colwidth=33em}}


== References == == References ==
* {{cite book |first=Clay |last=Blair |title=Silent Victory: The U.S. Submarine War Against Japan |url=https://books.google.com/books?id=wa0NAQAAMAAJ |year=1975 |publisher=Lippincott |isbn=978-0-397-00753-0}}
* Blair, Clay. ''Silent Victory''. Philadelphia: Lippincott, 1975.
* Boyne, Walter J. ''Clash of Titans''. Simon and Schuster; 1995. {{ISBN|0-684-80196-5}}. * {{cite book |first=Walter J. |last=Boyne |title=Clash of Titans |publisher=Simon and Schuster |year=1995 |isbn=0-684-80196-5 }}
* Brown, David. ''Warship Losses of World War Two''. Arms and Armour, London, 1990. {{ISBN|0-85368-802-8}}. * {{cite book |first=David |last=Brown |title=Warship Losses of World War Two |publisher=Arms and Armour |year=1990 |isbn=0-85368-802-8 }}
* ''The Columbia Encyclopedia'', Sixth Edition, online. * ''The Columbia Encyclopedia'', Sixth Edition, online.
* Crowley, R.O. "Confederate Torpedo Service". '']'', Volume 56, Issue 2, ], New York, June 1898. * {{cite journal |first=R. O. |last=Crowley |title=Confederate Torpedo Service |journal=] |volume=56 |issue=2 |date=June 1898 |publisher=]}}
* {{cite book |first=James |last=Davey |title=In Nelson's Wake |publisher=Yale University Press |year=2016 |isbn=978-0300200652 }}
* Epstein, Katherine C. ''Torpedo: Inventing the Military-Industrial Complex in the United States and Great Britain''. Cambridge, MA: Harvard University Press, 2014.
* {{cite book |first=Katherine C. |last=Epstein |title=Torpedo |url=https://books.google.com/books?id=cay-AQAAQBAJ |date=2014 |publisher=Harvard University Press |isbn=978-0-674-72740-3}}
* Edwyn Gray ''The Devil's Device: The story of Robert Whitehead, Inventor of the Torpedo'' Seeley; 1st UK ed. edition, 1975. {{ISBN|978-0-85422-104-2}}
* {{cite journal |last1=Gibbs |first1=Jay |title=Question 25/00: Defective Torpedoes of WW II|journal=Warship International |date=2001 |volume=XXXVIII |issue=4 |pages=328–329 |issn=0043-0374}}
* Edwyn Gray ''Nineteenth-Century Torpedoes and Their Inventors'' US Naval Institute Press, January 2004. {{ISBN|978-1-59114-341-3}}
* {{cite book |first=Edwyn |last=Gray |title=The Devil's Device: The story of Robert Whitehead, Inventor of the Torpedo |publisher=Seeley |year=1975 |isbn=978-0-85422-104-2 }}
* Lyon, David. ''The First Destroyers''. Chatham Publishing, 1 & 2 Faulkner's Alley, ], London, Great Britain, 1996. {{ISBN|1-55750-271-4}}.
* {{cite book |first=Edwyn |last=Gray |title=Nineteenth-Century Torpedoes and Their Inventors |publisher=US Naval Institute Press |year=2004 |isbn=978-1-59114-341-3 |url=https://books.google.com/books?id=jaaHQ4FlKS4C}}
* Milford, Frederick J. "U.S. Navy Torpedoes: Part One&mdash;Torpedoes through the Thirties". ''The Submarine Review'', April 1996. (Quarterly publication of the Naval Submarine League, P.O. Box 1146, Annandale, VA 22003.)
* {{cite book |first=David |last=Lyon |title=The First Destroyers |publisher=Chatham |year=1996 |isbn=1-55750-271-4 }}
* Milford, Frederick J. "U.S. Navy Torpedoes: Part Two&mdash;The Great Torpedo Scandal, 1941-43". ''The Submarine Review'', October 1996.
* Milford, Frederick J. "U.S. Navy Torpedoes: Part Three&mdash;WW II development of conventional torpedoes 1940–1946". ''The Submarine Review'', January 1997. * {{cite journal |first=Frederick J. |last=Milford |title=U.S. Navy Torpedoes: Part One—Torpedoes through the Thirties |journal=The Submarine Review |date=April 1996 |publisher=Naval Submarine League |location=Annandale, VA |oclc=938396939}}
* {{cite journal |first=Frederick J. |last=Milford |title=U.S. Navy Torpedoes: Part Two—The Great Torpedo Scandal, 1941–43 |journal=The Submarine Review |date=October 1996 }}
* ]. ''History of United States Naval Operations in World War Two''. Volume 3. Little, Brown, and Company, 1984 edition.
* {{cite journal |first=Frederick J. |last=Milford |title=U.S. Navy Torpedoes: Part Three—WW II development of conventional torpedoes 1940–1946 |journal=The Submarine Review |date=January 1997 }}
* O'Kane, Richard H. (1987). "Seventh Patrol", ''Wahoo: The Patrols of America's Most Famous World War II Submarine''. Novato, California: Presidio Press.
* {{cite book |last=Morison |first=Samuel Eliot |author-link=Samuel Eliot Morison |series=History of United States Naval Operations in World War II |title=The rising sun in the Pacific, 1931–April 1942 |volume=3 |url=https://books.google.com/books?id=piEUmkf8o_cC |year=2001 |publisher=University of Illinois Press |isbn=978-0-252-06973-4 |orig-year=1948}}
* Olender, Piotr. ''Russo-Japanese Naval War 1904–1905, Vol. 2, Battle of Tsushima''. Published by Stratus s.c.; Sandomierz, Poland, 2010. {{ISBN|978-83-61421-02-3}}.
* {{cite book |first=Richard |last=O'Kane |title=Wahoo: The Patrols of America's Most Famous World War II Submarine |url=https://books.google.com/books?id=gWF-qw7RH8kC |date=2009 |publisher=Random House |isbn=978-0-307-54884-9 |orig-year=1987}}
* Perry, Milton F. ''Infernal Machines: The Story of Confederate Submarine and Mine Warfare''. Baton Rouge: Louisiana State University Press, 1985. {{ISBN|0-8071-1285-2}}.
* {{cite book |first=Piotr |last=Olender |title=Battle of Tsushima |series=Russo-Japanese Naval War 1904–1905 |volume=2 |publisher=Stratus s.c. |location=Sandomierz, Poland |year=2010 |isbn=978-83-61421-02-3 }}
* {{cite book |first=Milton F. |last=Perry |title=Infernal Machines: The Story of Confederate Submarine and Mine Warfare |publisher=Louisiana State University Press |year=1985 |isbn=0-8071-1285-2 }}
; Attribution
* {{PD-old-text|title=Overland monthly and Out West magazine|year=1886|author=Bret Harte}}


==External links== ==External links==
{{Commons category|Torpedoes}} {{Commons category|Torpedoes}}
* , by Austin Joseph, ''Bharat Rakshak Monitor'', Volume 3(4) January–February 2001. * , by Austin Joseph, ''Bharat Rakshak Monitor'', Volume 3(4) January–February 2001.
* , the source of the US Navy torpedo data (via the ]) * , the source of the US Navy torpedo data (via the ])
* * {{Webarchive|url=https://web.archive.org/web/20190320025704/https://www.navy.mil/navydata/fact_display.asp?cid=2100&tid=900&ct=2 |date=2019-03-20 }}
* * {{Webarchive|url=https://web.archive.org/web/20200702202236/http://www.navy.mil/navydata/fact_display.asp?cid=2100&tid=950&ct=2 |date=2020-07-02 }}
* * {{Webarchive|url=https://web.archive.org/web/20200702084355/http://www.navy.mil/navydata/fact_display.asp?cid=2100&tid=1000&ct=2 |date=2020-07-02 }}
* * {{Webarchive|url=https://web.archive.org/web/20130513045055/http://www.navy.mil/navydata/fact_display.asp?cid=2100&tid=1100&ct=2 |date=2013-05-13 }}
* *
* *
* *
* , US Naval Undersea Museum * , US Naval Undersea Museum
* , US Naval Undersea Museum * , US Naval Undersea Museum
* * {{Webarchive|url=https://web.archive.org/web/20090416213806/http://www.diehl-bgt.de/index.php?id=550&L=1 |date=2009-04-16 }}
* *
* illustration at bottom of page 94 shows how Whitehead's so called "secret unit" (i.e., the Pendulum mechanism) kept a torpedo level after entering the water, which made the self-propelled torpedo possible * , '']'', September 1942; illustration at bottom of page 94 shows how Whitehead's so-called "secret unit" (i.e., the Pendulum mechanism) kept a torpedo level after entering the water, which made the self-propelled torpedo possible
* August 1944 article on testing US torpedoes - detailed photos * —August 1944 '']'' article on testing US torpedoes detailed photos


{{Weapons}} {{Weapons}}

{{Authority control}} {{Authority control}}


]
] ]
]
]

Latest revision as of 02:33, 10 January 2025

See also: Anti-submarine missile Self-propelled underwater weapon This article is about the self-propelled weapon. For the pre-1900 naval meaning of "torpedo", see Naval mine. For other uses, see Torpedo (disambiguation).
Bliss–Leavitt Mark 8 torpedo

A modern torpedo is an underwater ranged weapon launched above or below the water surface, self-propelled towards a target, and with an explosive warhead designed to detonate either on contact with or in proximity to the target. Historically, such a device was called an automotive, automobile, locomotive, or fish torpedo; colloquially a fish. The term torpedo originally applied to a variety of devices, most of which would today be called mines. From about 1900, torpedo has been used strictly to designate a self-propelled underwater explosive device.

While the 19th-century battleship had evolved primarily with a view to engagements between armored warships with large-caliber guns, the invention and refinement of torpedoes from the 1860s onwards allowed small torpedo boats and other lighter surface vessels, submarines/submersibles, even improvised fishing boats or frogmen, and later light aircraft, to destroy large ships without the need of large guns, though sometimes at the risk of being hit by longer-range artillery fire.

Modern torpedoes are classified variously as lightweight or heavyweight; straight-running, autonomous homers, and wire-guided types. They can be launched from a variety of platforms. In modern warfare, a submarine-launched torpedo is almost certain to hit its target; the best defense is a counterattack using another torpedo.

Etymology

The word torpedo was first used as a name for electric rays (in the order Torpediniformes), which in turn comes from the Latin word torpēdō ("lethargy" or "sluggishness"). In naval usage, the American inventor David Bushnell was reported to have first used the term as the name of a submarine of his own design, the "American Turtle or Torpedo." This usage likely inspired Robert Fulton's use of the term to describe his stationary mines, and later Robert Whitehead's naming of the first self-propelled torpedo.

History

Middle Ages

Torpedo-like weapons were first proposed many centuries before they were successfully developed. For example, in 1275, engineer Hasan al-Rammah – who worked as a military scientist for the Mamluk Sultanate of Egypt – wrote that it might be possible to create a projectile resembling "an egg", which propelled itself through water, whilst carrying "fire".

Early naval mines

Main article: Naval mine
Fulton's torpedo
Confederates laying naval mines in Charleston Harbor

In modern language, a "torpedo" is an underwater self-propelled explosive, but historically, the term also applied to primitive naval mines and spar torpedoes. These were used on an ad hoc basis during the early modern period up to the late 19th century.

In the early 17th century, the Dutchman Cornelius Drebbel, in the employ of King James I of England, invented the spar torpedo; he attached explosives to the end of a beam affixed to one of his submarines. These were used (to little effect) during the English expeditions to La Rochelle in 1626. The first use of a torpedo by a submarine was in 1775, by the American Turtle, which attempted to lay a bomb with a timed fuse on the hull of HMS Eagle during the American Revolutionary War, but failed in the attempt.

In the early 1800s, the American inventor Robert Fulton, while in France, "conceived the idea of destroying ships by introducing floating mines under their bottoms in submarine boats". He employed the term "torpedo" for the explosive charges with which he outfitted his submarine Nautilus. However, both the French and the Dutch governments were uninterested in the submarine. Fulton then concentrated on developing the torpedo-like weapon independent of a submarine deployment, and in 1804 succeeded in convincing the British government to employ his 'catamaran' against the French. An April 1804 torpedo attack on French ships anchored at Boulogne, and a follow-up attack in October, produced several explosions but no significant damage and the weapon was abandoned.

Fulton carried out a demonstration for the US government on 20 July 1807, destroying a vessel in New York's harbor. Further development languished as Fulton focused on his "steam-boat matters". After the War of 1812 broke out, the Royal Navy established a blockade of the East Coast of the United States. During the war, American forces unsuccessfully attempted to destroy the British ship of the line HMS Ramillies while it was lying at anchor in New London, Connecticut's harbor with torpedoes launched from small boats. This prompted the captain of Ramillies, Sir Thomas Hardy, 1st Baronet, to warn the Americans to cease using this "cruel and unheard-of warfare" or he would "order every house near the shore to be destroyed". The fact that Hardy had been previously so lenient and considerate to the Americans led them to abandon such attempts with immediate effect.

Torpedoes were used by the Russian Empire during the Crimean War in 1855 against British warships in the Gulf of Finland. They used an early form of chemical detonator. During the American Civil War, the term torpedo was used for what is today called a contact mine, floating on or below the water surface using an air-filled demijohn or similar flotation device. These devices were very primitive and apt to prematurely explode. They would be detonated on contact with the ship or after a set time, although electrical detonators were also occasionally used. USS Cairo was the first warship to be sunk in 1862 by an electrically-detonated mine. Spar torpedoes were also used; an explosive device was mounted at the end of a spar up to 30 feet (9.1 m) long projecting forward underwater from the bow of the attacking vessel, which would then ram the opponent with the explosives. These were used by the Confederate submarine H. L. Hunley to sink USS Housatonic although the weapon was apt to cause as much harm to its user as to its target. Rear Admiral David Farragut's famous/apocryphal command during the Battle of Mobile Bay in 1864, "Damn the torpedoes, full speed ahead!" refers to a minefield laid at Mobile, Alabama.

NMS Rândunica

On 26 May 1877, during the Romanian War of Independence, the Romanian spar torpedo boat Rândunica attacked and sank the Ottoman river monitor Seyfi. This was the first instance in history when a torpedo boat sank its targets without also sinking.

Invention of the modern torpedo

Whitehead torpedo's general profile: A. war-head B. air-flask. B'. immersion chamber C'. after-body C. engine room D. drain holes E. shaft tube F. steering-engine G. bevel gear box H. depth index I. tail K. charging and stop-valves L. locking-gear M. engine bed-plate P. primer case R. rudder S. steering-rod tube T. guide stud U. propellers V. valve-group W. war nose Z. strengthening band

A prototype of the self-propelled torpedo was created on a commission placed by Giovanni Luppis, an Austro-Hungarian naval officer from Rijeka (modern-day Croatia), at the time a port city of the Austro-Hungarian Monarchy and Robert Whitehead, an English engineer who was the manager of a town factory, Stabilimento Tecnico di Fiume (STF). In 1864, Luppis presented Whitehead with the plans of the Salvacoste ("Coastsaver"), a floating weapon driven by ropes from the land that had been dismissed by the naval authorities due to the impractical steering and propulsion mechanisms.

In 1866, Whitehead invented the first effective self-propelled torpedo, the eponymous Whitehead torpedo, the first modern torpedo. French and German inventions followed closely, and the term torpedo came to describe self-propelled projectiles that traveled under or on water. By 1900, the term no longer included mines and booby-traps as the navies of the world added submarines, torpedo boats and torpedo boat destroyers to their fleets.

Whitehead was unable to improve the machine substantially, since the clockwork motor, attached ropes, and surface attack mode all contributed to a slow and cumbersome weapon. However, he kept considering the problem after the contract had finished, and eventually developed a tubular device, designed to run underwater on its own, and powered by compressed air. The result was a submarine weapon, the Minenschiff (mine ship), the first modern self-propelled torpedo, officially presented to the Austrian Imperial Naval commission on 21 December 1866.

The first trials were not successful as the weapon was unable to maintain a course at a steady depth. After much work, Whitehead introduced his "secret" in 1868 which overcame this. It was a mechanism consisting of a hydrostatic valve and pendulum that caused the torpedo's hydroplanes to be adjusted to maintain a preset depth.

Production and spread

Robert Whitehead (right) invented the first modern torpedo in 1866. Pictured examining a battered test torpedo in Rijeka c. 1875.

The Austrian government decided to invest in the invention, and the factory in Rijeka started producing more Whitehead torpedoes. In 1870, he improved the devices to travel up to approximately 1,000 yards (910 m) at a speed of up to 6 knots (11 km/h). Royal Navy (RN) representatives visited Rijeka for a demonstration in late 1869, and in 1870 a batch of torpedoes was ordered. In 1871, the British Admiralty paid Whitehead £15,000 for certain of his developments and production started at the Royal Laboratories in Woolwich the following year.

The company in Fiume went bankrupt in 1873, but was reformed as Whitehead Torpedo Works a few years later, and by 1881 it was exporting torpedoes to ten other countries. The torpedo was powered by compressed air and had an explosive charge of gun-cotton. Whitehead went on to develop more efficient devices, demonstrating torpedoes capable of 18 knots (33 km/h) in 1876, 24 knots (44 km/h) in 1886, and, finally, 30 knots (56 km/h) in 1890.

In the 1880s, a British committee, informed by hydrodynamicist Dr. R. E. Froude, conducted comparative tests and determined that a blunt nose, contrary to prior assumptions, did not hinder speed: in fact, the blunt nose provided a speed advantage of approximately one knot compared to the traditional pointed nose design. This discovery allowed for larger explosive payloads and increased air storage for propulsion without compromising speed.

The Nordenfelt-class Ottoman submarine Abdülhamid (1886) was the first submarine in history to fire a torpedo while submerged.

Whitehead opened a new factory adjacent to Portland Harbour, England, in 1890, which continued making torpedoes until the end of World War II. Because orders from the RN were not as large as expected, torpedoes were mostly exported. A series of devices was produced at Rijeka, with diameters from 14 in (36 cm) upward. The largest Whitehead torpedo was 18 in (46 cm) in diameter and 19 ft (5.8 m) long, made of polished steel or phosphor bronze, with a 200-pound (91 kg) gun-cotton warhead. It was propelled by a three-cylinder Brotherhood radial engine, using compressed air at around 1,300 psi (9.0 MPa) and driving two contra-rotating propellers, and was designed to self-regulate its course and depth as far as possible. By 1881, nearly 1,500 torpedoes had been produced. Whitehead also opened a factory at St Tropez in 1890 that exported torpedoes to Brazil, The Netherlands, Turkey, and Greece.

Whitehead purchased rights to the gyroscope of Ludwig Obry in 1888 but it was not sufficiently accurate, so in 1890 he purchased a better design to improve control of his designs, which came to be called the "Devil's Device". The firm of L. Schwartzkopff in Germany also produced torpedoes and exported them to Russia, Japan, and Spain. In 1885, Britain ordered a batch of 50 as torpedo production at home and Rijeka could not meet demand.

In 1893, Royal Navy torpedo production was transferred to the Royal Gun Factory. The British later established a Torpedo Experimental Establishment at HMS Vernon and a production facility at the Royal Naval Torpedo Factory, Greenock, in 1910. These are now closed.

By World War I, Whitehead's torpedo remained a worldwide success, and his company was able to maintain a monopoly on torpedo production. By that point, his torpedo had grown to a diameter of 18 inches with a maximum speed of 30.5 knots (56.5 km/h; 35.1 mph) with a warhead weighing 170 pounds (77 kg).

Whitehead faced competition from the American Lieutenant Commander John A. Howell, whose design, driven by a flywheel, was simpler and cheaper. It was produced from 1885 to 1895, and it ran straight, leaving no wake. A Torpedo Test Station was set up in Rhode Island in 1870. The Howell torpedo was the only United States Navy model until an American company, Bliss and Williams secured manufacturing rights to produce Whitehead torpedoes. These were put into service for the U.S. Navy in 1892. Five varieties were produced, all 18-inch diameter.

The Royal Navy introduced the Brotherhood wet heater engine in 1907 with the 18 in. Mk. VII & VII* which greatly increased the speed and/or range over compressed air engines and wet heater type engines became the standard in many major navies up to and during the Second World War.

The first modern-day torpedo launching station in Rijeka, 2020

Torpedo boats and guidance systems

HMS Lightning, built in 1877 as a small attack boat armed with torpedoes.

Ships of the line were superseded by ironclads, large steam-powered ships with heavy gun armament and heavy armor, in the mid 19th century. Ultimately this line of development led to the dreadnought category of all-big-gun battleships, starting with HMS Dreadnought.

Although these ships were incredibly powerful, the new weight of armor slowed them down, and the huge guns needed to penetrate that armor fired at very slow rates. The development of torpedoes allowed for the possibility that small and fast vessels could credibly threaten if not sink even the most powerful battleships. While such attacks would carry enormous risks to the attacking boats and their crews (which would likely need to expose themselves to artillery fire which their small vessels were not designed to withstand) this was offset by the ability to construct large numbers of small vessels far more quickly and for a much lower unit cost compared to a capital ship.

The first boat designed to fire the self-propelled Whitehead torpedo was HMS Lightning, completed in 1877. The French Navy followed suit in 1878 with Torpilleur No 1, launched in 1878 though she had been ordered in 1875. The first torpedo boats were built at the shipyards of Sir John Thornycroft and gained recognition for their effectiveness.

At the same time, inventors were working on building a guided torpedo. Prototypes were built by John Ericsson, John Louis Lay, and Victor von Scheliha, but the first practical guided missile was patented by Louis Brennan, an emigre to Australia, in 1877.

The Brennan torpedo was the first practical guided torpedo.

It was designed to run at a consistent depth of 12 feet (3.7 m), and was fitted with an indicator mast that just broke the surface of the water. At night the mast had a small light, only visible from the rear. Two steel drums were mounted one behind the other inside the torpedo, each carrying several thousand yards of high-tensile steel wire. The drums connected via a differential gear to twin contra-rotating propellers. If one drum was rotated faster than the other, then the rudder was activated. The other ends of the wires were connected to steam-powered winding engines, which were arranged so that speeds could be varied within fine limits, giving sensitive steering control for the torpedo.

The torpedo attained a speed of 20 knots (37 km/h; 23 mph) using a wire 1.0 millimetre (0.04 in) in diameter but later this was changed to 1.8 mm (0.07 in) to increase the speed to 27 knots (50 km/h; 31 mph). The torpedo was fitted with elevators controlled by a depth-keeping mechanism, and the fore and aft rudders operated by the differential between the drums.

Brennan traveled to Britain, where the Admiralty examined the torpedo and found it unsuitable for shipboard use. However, the War Office proved more amenable, and in early August 1881, a special Royal Engineer committee was instructed to inspect the torpedo at Chatham and report back directly to the Secretary of State for War, Hugh Childers. The report strongly recommended that an improved model be built at government expense. In 1883 an agreement was reached between the Brennan Torpedo Company and the government. The newly appointed Inspector-General of Fortifications in England, Sir Andrew Clarke, appreciated the value of the torpedo and in spring 1883 an experimental station was established at Garrison Point Fort, Sheerness, on the River Medway, and a workshop for Brennan was set up at the Chatham Barracks, the home of the Royal Engineers. Between 1883 and 1885 the Royal Engineers held trials and in 1886 the torpedo was recommended for adoption as a harbor defense torpedo. It was used throughout the British Empire for more than fifteen years.

Use in conflict

Sinking of Chilean ironclad Blanco Encalada by a torpedo in the Battle of Caldera Bay, during the Chilean Civil War of 1891.

The Royal Navy frigate HMS Shah was the first naval vessel to fire a self-propelled torpedo in anger during the Battle of Pacocha against rebel Peruvian ironclad Huáscar on 29 May 1877. The Peruvian ship successfully outran the device. On 16 January 1878, the Turkish steamer Intibah became the first vessel to be sunk by self-propelled torpedoes, launched from torpedo boats operating from the tender Velikiy Knyaz Konstantin under the command of Stepan Osipovich Makarov during the Russo-Turkish War of 1877–78.

In another early use of the torpedo, during the War of the Pacific, the Peruvian ironclad Huáscar commanded by captain Miguel Grau attacked the Chilean corvette Abtao on 28 August 1879 at Antofagasta with a self-propelled Lay torpedo only to have it reverse course. The ship Huascar was saved when an officer jumped overboard to divert it.

The Chilean ironclad Blanco Encalada was sunk on 23 April 1891 by a self-propelled torpedo from the Almirante Lynch, during the Chilean Civil War of 1891, becoming the first ironclad warship sunk by this weapon. The Chinese turret ship Dingyuan was purportedly hit and disabled by a torpedo after numerous attacks by Japanese torpedo boats during the First Sino-Japanese War in 1894. At this time torpedo attacks were still very close range and very dangerous to the attackers.

Knyaz Suvorov was sunk by Japanese torpedo boats during the Russo-Japanese War.

Several western sources reported that the Qing dynasty Imperial Chinese military, under the direction of Li Hongzhang, acquired electric torpedoes, which they deployed in numerous waterways, along with fortresses and numerous other modern military weapons acquired by China. At the Tientsin Arsenal in 1876, the Chinese developed the capacity to manufacture these "electric torpedoes" on their own. Although a form of Chinese art, the Nianhua, depict such torpedoes being used against Russian ships during the Boxer Rebellion, whether they were actually used in battle against them is undocumented and unknown.

The Russo-Japanese War (1904–1905) was the first great war of the 20th century. During the war the Imperial Russian and Imperial Japanese navies launched nearly 300 torpedoes at each other, all of them of the "self-propelled automotive" type. The deployment of these new underwater weapons resulted in one battleship, two armored cruisers, and two destroyers being sunk in action, with the remainder of the roughly 80 warships being sunk by the more conventional methods of gunfire, mines, and scuttling.

On 27 May 1905, during the Battle of Tsushima, Admiral Rozhestvensky's flagship, the battleship Knyaz Suvorov, had been gunned to a wreck by Admiral Tōgō's 12-inch gunned battleline. With the Russians sunk and scattering, Tōgō prepared for pursuit, and while doing so ordered his torpedo boat destroyers (TBDs) (mostly referred to as just destroyers in most written accounts) to finish off the Russian battleship. Knyaz Suvorov was set upon by 17 torpedo-firing warships, ten of which were destroyers and four torpedo boats. Twenty-one torpedoes were launched at the pre-dreadnought, and three struck home, one fired from the destroyer Murasame and two from torpedo boats No. 72 and No. 75. The flagship slipped under the waves shortly thereafter, taking over 900 men with her to the bottom. On December 9, 1912, the Greek submarine "Dolphin" launched a torpedo against the Ottoman cruiser "Medjidieh".

Aerial torpedo

In 1915, Rear Admiral Bradley A. Fiske conceived of the aerial torpedo.

The end of the Russo-Japanese War fuelled new theories, and the idea of dropping lightweight torpedoes from aircraft was conceived in the early 1910s by Bradley A. Fiske, an officer in the United States Navy. Awarded a patent in 1912, Fiske worked out the mechanics of carrying and releasing the aerial torpedo from a bomber, and defined tactics that included a night-time approach so that the target ship would be less able to defend itself. Fiske determined that the notional torpedo bomber should descend rapidly in a sharp spiral to evade enemy guns, then when about 10 to 20 feet (3 to 6 m) above the water the aircraft would straighten its flight long enough to line up with the torpedo's intended path. The aircraft would release the torpedo at a distance of 1,500 to 2,000 yards (1,400 to 1,800 m) from the target. Fiske reported in 1915 that, using this method, enemy fleets could be attacked within their harbors if there was enough room for the torpedo track.

Meanwhile, the Royal Naval Air Service began actively experimenting with this possibility. The first successful aerial torpedo drop was performed by Gordon Bell in 1914 – dropping a Whitehead torpedo from a Short S.64 seaplane. The success of these experiments led to the construction of the first purpose-built operational torpedo aircraft, the Short Type 184, built-in 1915.

The Short Type 184 was the first torpedo aircraft when built-in 1915.

An order for ten aircraft was placed, and 936 aircraft were built by ten different British aircraft companies during the First World War. The two prototype aircraft were embarked upon HMS Ben-my-Chree, which sailed for the Aegean on 21 March 1915 to take part in the Gallipoli campaign. On 12 August 1915 one of these, piloted by Flight Commander Charles Edmonds, was the first aircraft in the world to attack an enemy ship with an air-launched torpedo.

On 17 August 1915 Flight Commander Edmonds torpedoed and sank an Ottoman transport ship a few miles north of the Dardanelles. His formation colleague, Flight Lieutenant G B Dacre, was forced to land on the water owing to engine trouble but, seeing an enemy tug close by, taxied up to it and released his torpedo, sinking the tug. Without the weight of the torpedo Dacre was able to take off and return to Ben-My-Chree.

World War I

Launching a torpedo in 1915 during World War I
Torpedo launch in 1916

Torpedoes were widely used in World War I, both against shipping and against submarines. Germany disrupted the supply lines to Britain largely by use of submarine torpedoes, though submarines also extensively used guns. Britain and its allies also used torpedoes throughout the war. U-boats themselves were often targeted, twenty being sunk by torpedo. Two Royal Italian Navy torpedo boats scored a success against an Austrian-Hungarian squadron, sinking the battleship SMS Szent István with two torpedoes.

The Royal Navy had been experimenting with ways to further increase the range of torpedoes during World War 1 using pure oxygen instead of compressed air, this work ultimately leading to the development of the oxygen-enriched air 24.5 in. Mk. I intended originally for the G3-class battlecruisers and N3 class battleships of 1921, both being cancelled due to the Washington Naval Treaty.

Initially, the Imperial Japanese Navy purchased Whitehead or Schwartzkopf torpedoes but by 1917, like the Royal Navy, they were conducting experiments with pure oxygen instead of compressed air. Because of explosions they abandoned the experiments but resumed them in 1926 and by 1933 had a working torpedo. They also used conventional wet heater torpedoes.

World War II

In the inter-war years, financial stringency caused nearly all navies to skimp on testing their torpedoes. Only the British and Japanese had fully tested new technologies for torpedoes (in particular the Type 93, nicknamed Long Lance postwar by the US official historian Samuel E. Morison) at the start of World War II. Unreliable torpedoes caused many problems for the American submarine force in the early years of the war, primarily in the Pacific Theater. One possible exception to the pre-war neglect of torpedo development was the 45-cm caliber, 1931-premiered Japanese Type 91 torpedo, the sole aerial torpedo (Koku Gyorai) developed and brought into service by the Japanese Empire before the war. The Type 91 had an advanced PID controller and jettisonable, wooden Kyoban aerial stabilizing surfaces which released upon entering the water, making it a formidable anti-ship weapon; Nazi Germany considered manufacturing it as the Luftorpedo LT 850 after August 1942.

The Royal Navy's 24.5-inch oxygen-enriched air torpedo saw service in the two Nelson class battleships although by World War II the use of enriched oxygen had been discontinued due to safety concerns. In the final phase of the action against Bismarck, Rodney fired a pair of 24.5-inch torpedoes from her port-side tube and claimed one hit. According to Ludovic Kennedy, "if true, the only instance in history of one battleship torpedoing another". The Royal Navy continued the development of oxygen-enriched air torpedoes with the 21 in. Mk. VII of the 1920s designed for the County-class cruisers although once again these were converted to run on normal air at the start of World War II. Around this time too the Royal Navy were perfecting the Brotherhood burner cycle engine which offered a performance as good as the oxygen-enriched air engine but without the issues arising from the oxygen equipment and which was first used in the extremely successful and long-lived 21 in. Mk. VIII torpedo of 1925. This torpedo served throughout WW II (with 3,732 being fired by September 1944) and is still in limited service in the 21st century. The improved Mark VIII** was used in two particularly notable incidents; on 6 February 1945 the only intentional wartime sinking of one submarine by another while both were submerged took place when HMS Venturer sank the German submarine U-864 with four Mark VIII** torpedoes and on 2 May 1982 when the Royal Navy submarine HMS Conqueror sank the Argentine cruiser ARA General Belgrano with two Mark VIII** torpedoes during the Falklands War. This is the only sinking of a surface ship by a nuclear-powered submarine in wartime and the second (of three) sinkings of a surface ship by any submarine since the end of World War II). The other two sinkings were of the Indian frigate INS Khukri and the South Korean corvette ROKS Cheonan.

A Japanese Type 93 torpedo – nicknamed "Long Lance" after the war

Many classes of surface ships, submarines, and aircraft were armed with torpedoes. Naval strategy at the time was to use torpedoes, launched from submarines or warships, against enemy warships in a fleet action on the high seas. There were concerns torpedoes would be ineffective against warships' heavy armor; an answer to this was to detonate torpedoes underneath a ship, badly damaging its keel and the other structural members in the hull, commonly called "breaking its back". This was demonstrated by magnetic influence mines in World War I. The torpedo would be set to run at a depth just beneath the ship, relying on a magnetic exploder to activate at the appropriate time.

Germany, Britain, and the U.S. independently devised ways to do this; German and American torpedoes, however, suffered problems with their depth-keeping mechanisms, coupled with faults in magnetic pistols shared by all designs. Inadequate testing had failed to reveal the effect of the Earth's magnetic field on ships and exploder mechanisms, which resulted in premature detonation. The Kriegsmarine and Royal Navy promptly identified and eliminated the problems. In the United States Navy (USN), there was an extended wrangle over the problems plaguing the Mark 14 torpedo (and its Mark 6 exploder). Cursory trials had allowed bad designs to enter service. Both the Navy Bureau of Ordnance and the United States Congress were too busy protecting their interests to correct the errors, and fully functioning torpedoes only became available to the USN twenty-one months into the Pacific War.

Loading 21-inch RNTF Mark VIII torpedoes into a Vickers Wellington medium bomber, May 1942. This type of torpedo was used to sink the Argentinian cruiser General Belgrano during the 1982 Falklands War

British submarines used torpedoes to interdict the Axis supply shipping to North Africa, while Fleet Air Arm Swordfish sank three Italian battleships at Taranto by a torpedo and (after a mistaken, but abortive, attack on Sheffield) scored one crucial hit in the hunt for the German battleship Bismarck. Large tonnages of merchant shipping were sunk by submarines with torpedoes in both the Battle of the Atlantic and the Pacific War.

Torpedo boats, such as MTBs, PT boats, or S-boats, enabled the relatively small but fast craft to carry enough firepower, in theory, to destroy a larger ship, though this rarely occurred in practice. The largest warship sunk by torpedoes from small craft in World War II was the British cruiser Manchester, sunk by Italian MAS boats on the night of 12/13 August 1942 during Operation Pedestal. Destroyers of all navies were also armed with torpedoes to attack larger ships. In the Battle off Samar, destroyer torpedoes from the escorts of the American task force "Taffy 3" showed effectiveness at defeating armor. Damage and confusion caused by torpedo attacks were instrumental in beating back a superior Japanese force of battleships and cruisers. In the Battle of the North Cape in December 1943, torpedo hits from British destroyers Savage and Saumarez slowed the German battleship Scharnhorst enough for the British battleship Duke of York to catch and sink her, and in May 1945 the British 26th Destroyer Flotilla (coincidentally led by Saumarez again) ambushed and sank Japanese heavy cruiser Haguro.

Frequency-hopping

Main article: Hedy Lamarr

During World War II, Hedy Lamarr and composer George Antheil developed a radio guidance system for Allied torpedoes, it intended to use frequency-hopping technology to defeat the threat of jamming by the Axis powers. As radio guidance had been abandoned some years earlier, it was not pursued. Although the US Navy never adopted the technology, it did, in the 1960s, investigate various spread-spectrum techniques. Spread-spectrum techniques are incorporated into Bluetooth technology and are similar to methods used in legacy versions of Wi-Fi. This work led to their induction into the National Inventors Hall of Fame in 2014.

Post–World War II

Decommissioned P 4-class torpedo boat of the Bangladesh Navy. Preserved at the Bangabandhu Military Museum.

Because of improved submarine strength and speed, torpedoes had to be given improved warheads and better motors. During the Cold War torpedoes were an important asset with the advent of nuclear-powered submarines, which did not have to surface often, particularly those carrying strategic nuclear missiles.

Several navies have launched torpedo strikes since World War II, including:

Propulsion

USS Mustin launches a dummy torpedo during exercises.

Compressed air

The Whitehead torpedo of 1866, the first successful self-propelled torpedo, used compressed air as its energy source. The air was stored at pressures of up to 2.55 MPa (370 psi) and fed to a piston engine that turned a single propeller at about 100 rpm. It could travel about 180 metres (200 yd) at an average speed of 6.5 knots (12.0 km/h). The speed and range of later models were improved by increasing the pressure of the stored air. In 1906 Whitehead built torpedoes that could cover nearly 1,000 metres (1,100 yd) at an average speed of 35 knots (65 km/h).

At higher pressures the adiabatic cooling experienced by the air as it expanded in the engine caused icing problems. This drawback was remedied by heating the air with seawater before it was fed to the engine, which increased engine performance further because the air expanded even more after heating. This was the principle used by the Brotherhood engine.

Heated torpedoes

Torpedoes propelled by compressed air encountered a significant problem when attempts were made to increase their range and speed. The cold compressed air, upon entering the expansion phase in the piston chambers of the torpedo's engine, caused a rapid drop in temperature. This could freeze the engine solid, by jamming the piston heads inside the cylinders. This led to the idea of injecting a liquid fuel, like kerosene, into the compressed air and igniting it inside a separate expansion chamber. In this manner, the air is heated more and expands even further, and the burned propellant adds more gas to drive the engine. The earliest form was the "Elswick” heater as patented by Armstrong Whitworth in 1904. The device was demonstrated in an 18-inch Fiume Mark III torpedo at Bincleaves in 1905 before an audience of British and Japanese experts. The weapon speed was 9 kn (17 km/h) more than for the identical unheated version. Construction of such heated torpedoes started the same year by Whitehead's company.

Dry heater

The earliest production version of the heated torpedo propulsion system, which became known as the Whitehead heater system, mixed the fuel and compressed air after the pressure regulator. Combustion took place in a specialized expansion chamber, with hot combustion products driving the pistons of a reciprocating engine. This had the disadvantage of badly sooting the air vessel with combustion byproducts, and could also engage in a thermal runaway, jamming the engine - not from low temperature as observed with compressed air, but from excess heat causing the piston heads to jam. The "dry heater" distinction was only made after wet heater torpedoes were developed, prior to which all heated torpedoes were of the dry heater type - originally simply called "heated".

Wet heater

A further improvement was the use of water to wash and cool the combustion chamber of the fuel-burning torpedo. Water would be injected into the combustion chamber, at a rate commensurate with the fuel supply rate. This water would flash to steam, with stray condensate carrying the soot combustion byproducts out through the engine. An early example was the wet heater system developed by Lieutenant Sydney Hardcastle at the Royal Gun Factory, in 1908. The compressed air bottle was partially filled with water, with an outlet at the bottom leading into the combustion chamber. This would guarantee that compressed air and water would be injected into the combustion chamber at the same pressure. The system not only solved heating problems so more fuel could be burned but also allowed additional power to be generated by feeding the resulting steam into the engine together with the combustion products. Torpedoes with such a propulsion system became known as wet heaters, while heated torpedoes without steam generation were retrospectively called dry heaters. Most torpedoes used in World War I and World War II were wet heaters.

Increased oxidant

The amount of fuel that can be burned by a torpedo engine (i.e. wet engine) is limited by the amount of oxygen it can carry. Since compressed air contains only about 21% oxygen, engineers in Japan developed the Type 93 (nicknamed "Long Lance" postwar) for destroyers and cruisers in the 1930s. It used pure compressed oxygen instead of compressed air and had performance unmatched by any contemporary torpedo in service, through the end of World War II. However, oxygen systems posed a danger to ships carrying such torpedoes under normal operation, and more so under attack; Japan lost several cruisers partly due to catastrophic secondary explosions of Type 93s.

During World War II, Germany experimented with hydrogen peroxide for the same purpose.

The British approached the problem of providing additional oxygen for the torpedo engine by the use of oxygen-enriched air rather than pure oxygen: up to 57% instead of the 21% of normal atmospheric compressed air. This significantly increased the range of the torpedo, the 24.5 inch Mk 1 having a range of 15,000 yards (14,000 m) at 35 knots (65 km/h) or 20,000 yards (18,000 m) at 30 knots (56 km/h) with a 750 pounds (340 kg) warhead. There was a general nervousness about the oxygen enrichment equipment, known for reasons of secrecy as 'No 1 Air Compressor Room' on board ships, and development shifted to the highly efficient Brotherhood Burner Cycle engine that used un-enriched air.

Burner cycle engine

After the First World War, Peter Brotherhood developed a four-cylinder burner cycle engine which was roughly twice as powerful as the older wet heater engine. It was first used in the British Mk VIII torpedoes, which were still in service in 1982. It used a modified diesel cycle, using a small amount of paraffin to heat the incoming air, which was then compressed and further heated by the piston, and then more fuel was injected. It produced about 322 hp when introduced, but by the end of WW2 was at 465 hp, and there was a proposal to fuel it with nitric acid, when it was projected to develop 750 hp.

Wire driven

U.S. World War II PT boat torpedo on display

The Brennan torpedo had two wires wound around internal drums joined to the propellers. Shore-based steam winches pulled the wires, which spun the internal drums and drove the propellers. An operator controlled the relative speeds of the winches, providing guidance. Such systems were used for coastal defense of the British homeland and colonies from 1887 to 1903 and were purchased by, and under the control of, the Army as opposed to the Navy. Speed was about 25 knots (46 km/h) for over 2,400 m.

Flywheel

The Howell torpedo used by the US Navy in the late 19th century featured a heavy flywheel that had to be spun up before launch. It was able to travel about 400 yards (370 m) at 25 knots (46 km/h). The Howell had the advantage of not leaving a trail of bubbles behind it, unlike compressed air torpedoes. This gave the target vessel less chance to detect and evade the torpedo and avoided giving away the attacker's position. Additionally, it ran at a constant depth, unlike Whitehead models.

Electric batteries

Electric batteries of a French Z13 torpedo

Electric propulsion systems avoided tell-tale bubbles. John Ericsson invented an electrically propelled torpedo in 1873; it was powered by a cable from an external power source, because batteries of the time had insufficient capacity. The Sims-Edison torpedo was similarly powered. The Nordfelt torpedo was also electrically powered and was steered by impulses down a trailing wire.

Germany introduced its first battery-powered torpedo shortly before World War II, the G7e. It was slower and had a shorter range than the conventional G7a, but was wakeless and much cheaper. Its lead-acid rechargeable battery was sensitive to shock, required frequent maintenance before use, and required preheating for best performance. The experimental G7es, an enhancement of the G7e, used primary cells.

The United States had an electric design, the Mark 18, largely copied from the German torpedo (although with improved batteries), as well as FIDO, an air-dropped acoustic homing torpedo for anti-submarine use.

Modern electric torpedoes such as the Mark 24 Tigerfish, the Black Shark or DM2 series commonly use silver oxide batteries that need no maintenance, so torpedoes can be stored for years without losing performance.

Rockets

Several experimental rocket-propelled torpedoes were tried soon after Whitehead's invention but were not successful. Rocket propulsion has been implemented successfully by the Soviet Union, for example in the VA-111 Shkval—and has been recently revived in Russian and German torpedoes, as it is especially suitable for supercavitating devices.

Modern energy sources

Modern torpedoes use a variety of propellants, including electric batteries (as with the French F21 torpedo or Italian Black Shark), monopropellants (e.g., Otto fuel II as with the US Mark 48 torpedo), and bipropellants (e.g., hydrogen peroxide plus kerosene as with the Swedish Torped 62, sulfur hexafluoride plus lithium as with the US Mark 50 torpedo, or Otto fuel II plus hydroxyl ammonium perchlorate as with the British Spearfish torpedo).

Propeller

The first of Whitehead's torpedoes had a single propeller and needed a large vane to stop it spinning about its longitudinal axis. Not long afterward the idea of contra-rotating propellers was introduced, to avoid the need for the vane. The three-bladed propeller came in 1893 and the four-bladed one in 1897. To minimize noise, today's torpedoes often use pump-jets.

Supercavitation

Some torpedoes—like the Russian VA-111 Shkval, Iranian Hoot, and German Unterwasserlaufkörper/ Barracuda—use supercavitation to increase speed to over 200 knots (370 km/h). Torpedoes that don't use supercavitation, such as the American Mark 48 and British Spearfish, are limited to under 100 kn (120 mph; 190 km/h), though manufacturers and the military don't always release exact figures.

Guidance

A torpedo dropped from a Sopwith Cuckoo during World War I
Illustration of General Torpedo Fire Control Problem

Torpedoes may be aimed at the target and fired unguided, similarly to a traditional artillery shell, or they may be guided onto the target. They may be guided autonomously towards the target by some procedure, e.g., sound (homing), or by the operator, typically via commands sent over a signal-carrying cable (wire guidance).

Unguided

The Victorian era Brennan torpedo could be steered onto its target by varying the relative speeds of its propulsion cables. However, the Brennan required a substantial infrastructure and was not suitable for shipboard use. Therefore, for the first part of its history, the torpedo was guided only in the sense that its course could be regulated to achieve an intended impact depth (because of the sine wave running path of the Whitehead, this was a hit or miss proposition, even when everything worked correctly) and, through gyroscopes, a straight course. With such torpedoes the method of attack in small torpedo boats, torpedo bombers and small submarines was to steer a predictable collision course abeam to the target and release the torpedo at the last minute, then veer away, all the time subject to defensive fire.

In larger ships and submarines, fire control calculators gave a wider engagement envelope. Originally, plotting tables (in large ships), combined with specialized slide rules (known in U.S. service as the "banjo" and "Is/Was"), reconciled the speed, distance, and course of a target with the firing ship's speed and course, together with the performance of its torpedoes, to provide a firing solution. By the Second World War, all sides had developed automatic electro-mechanical calculators, exemplified by the U.S. Navy's Torpedo Data Computer. Submarine commanders were still expected to be able to calculate a firing solution by hand as a backup against mechanical failure, and because many submarines existed at the start of the war were not equipped with a TDC; most could keep the "picture" in their heads and do much of the calculations (simple trigonometry) mentally, from extensive training.

Against high-value targets and multiple targets, submarines would launch a spread of torpedoes, to increase the probability of success. Similarly, squadrons of torpedo boats and torpedo bombers would attack together, creating a "fan" of torpedoes across the target's course. Faced with such an attack, the prudent thing for a target to do was to turn to parallel the course of the incoming torpedo and steam away from the torpedoes and the firer, allowing the relatively short-range torpedoes to use up their fuel. An alternative was to "comb the tracks", turning to parallel the incoming torpedo's course, but turning towards the torpedoes. The intention of such a tactic was still to minimize the size of the target offered to the torpedoes, but at the same time be able to aggressively engage the firer. This was the tactic advocated by critics of Jellicoe's actions at Jutland, his caution at turning away from the torpedoes being seen as the reason the Germans escaped.

The use of multiple torpedoes to engage single targets depletes torpedo supplies and greatly reduces a submarine's combat endurance. Endurance can be improved by ensuring a target can be effectively engaged by a single torpedo, which gave rise to the guided torpedo.

Pattern running

In World War II the Germans introduced programmable pattern-running torpedoes, which would run a predetermined pattern until they either ran out of fuel or hit something. The earlier version, FaT, ran out after launch in a straight line, and then weaved backward and forwards parallel to that initial course, whilst the more advanced LuT could transit to a different angle after launch, and then enter a more complex weaving pattern.

Radio and wire guidance

See also: Command guidance

Though Luppis' original design had been rope-guided, torpedoes were not wire-guided until the 1960s.

During the First World War the U.S. Navy evaluated a radio controlled torpedo launched from a surface ship called the Hammond Torpedo. A later version tested in the 1930s was claimed to have an effective range of 6 miles (9.7 km).

Modern torpedoes use an umbilical wire, which nowadays allows the computer processing power of the submarine or ship to be used. Torpedoes such as the U.S. Mark 48 can operate in a variety of modes, increasing tactical flexibility.

Homing

Main articles: Acoustic torpedo and Wake homing

Homing "fire and forget" torpedoes can use passive or active guidance or a combination of both. Passive acoustic torpedoes home in on emissions from a target. Active acoustic torpedoes home in on the reflection of a signal, or "ping", from the torpedo or its parent vehicle; this has the disadvantage of giving away the presence of the torpedo. In semi-active mode, a torpedo can be fired to the last known position or calculated position of a target, which is then acoustically illuminated ("pinged") once the torpedo is within attack range.

Later in the Second World War torpedoes were given acoustic (homing) guidance systems, with the American Mark 24 mine and Mark 27 torpedo and the German G7es torpedo. Pattern-following and wake homing torpedoes were also developed. Acoustic homing formed the basis for torpedo guidance after the Second World War.

The homing systems for torpedoes are generally acoustic, though there have been other target sensor types used. A ship's acoustic signature is not the only emission a torpedo can home in on; to engage U.S. supercarriers, the Soviet Union developed the 53–65 wake-homing torpedo. As standard acoustic lures can't distract a wake homing torpedo, the US Navy has installed the Surface Ship Torpedo Defense on aircraft carriers that use a Countermeasure Anti-Torpedo to home in on and destroy the attacking torpedo.

Warhead and fuzing

The warhead is generally some form of aluminized explosive, because the sustained explosive pulse produced by the powdered aluminum is particularly destructive against underwater targets. Torpex was popular until the 1950s, but has been superseded by PBX compositions. Nuclear torpedoes have also been developed, e.g. the Mark 45 torpedo. In lightweight antisubmarine torpedoes designed to penetrate submarine hulls, a shaped charge can be used. Detonation can be triggered by direct contact with the target or by a proximity fuze incorporating sonar and/or magnetic sensors.

Contact detonation

When a torpedo with a contact fuze strikes the side of the target hull, the resulting explosion creates a bubble of expanding gas, the walls of which move faster than the speed of sound in water, thus creating a shock wave. The side of the bubble which is against the hull rips away the external plating creating a large breach. The bubble then collapses in on itself, forcing a high-speed stream of water into the breach which can destroy bulkheads and machinery in its path.

Proximity detonation

A torpedo fitted with a proximity fuze can be detonated directly under the keel of a target ship. The explosion creates a gas bubble which may damage the keel or underside plating of the target. However, the most destructive part of the explosion is the upthrust of the gas bubble, which will bodily lift the hull in the water. The structure of the hull is designed to resist downward rather than upward pressure, causing severe strain in this phase of the explosion. When the gas bubble collapses, the hull will tend to fall into the void in the water, creating a sagging effect. Finally, the weakened hull will be hit by the uprush of water caused by the collapsing gas bubble, causing structural failure. On vessels up to the size of a modern frigate, this can result in the ship breaking in two and sinking. This effect is likely to prove less catastrophic on a much larger hull, for instance, that of an aircraft carrier.

Damage

The damage that may be caused by a torpedo depends on the "shock factor value", a combination of the initial strength of the explosion and the distance between the target and the detonation. When taken about ship hull plating, the term "hull shock factor" (HSF) is used, while keel damage is termed "keel shock factor" (KSF). If the explosion is directly underneath the keel, then HSF is equal to KSF, but explosions that are not directly underneath the ship will have a lower value of KSF.

Direct damage

Usually only created by contact detonation, direct damage is a hole blown in the ship. Among the crew, fragmentation wounds are the most common form of injury. Flooding typically occurs in one or two main watertight compartments, which can sink smaller ships or disable larger ones.

Bubble jet effect

The bubble jet effect occurs when a mine or torpedo detonates in the water a short distance away from the targeted ship. The explosion creates a bubble in the water, and due to the pressure difference, the bubble will collapse from the bottom. The bubble is buoyant, and so it rises towards the surface. If the bubble reaches the surface as it collapses, it can create a pillar of water that can go over a hundred meters into the air (a "columnar plume"). If conditions are right and the bubble collapses onto the ship's hull, the damage to the ship can be extremely serious; the collapsing bubble forms a high-energy jet that can break a meter-wide hole straight through the ship, flooding one or more compartments, and is capable of breaking smaller ships apart. The crew in the areas hit by the pillar are usually killed instantly. Other damage is usually limited.

The Baengnyeong incident, in which ROKS Cheonan broke in half and sank off the coast South Korea in 2010, was caused by the bubble jet effect, according to an international investigation.

Shock effect

If the torpedo detonates at a distance from the ship, and especially under the keel, the change in water pressure causes the ship to resonate. This is frequently the most deadly type of explosion if it is strong enough. The whole ship is dangerously shaken and everything on board is tossed around. Engines rip from their beds, cables from their holders, etc. A badly shaken ship usually sinks quickly, with hundreds, or even thousands of small leaks all over the ship and no way to power the pumps. The crew fares no better, as the violent shaking tosses them around. This shaking is powerful enough to cause disabling injury to knees and other joints in the body, particularly if the affected person stands on surfaces connected directly to the hull (such as steel decks).

The resulting gas cavitation and shock-front-differential over the width of the human body is sufficient to stun or kill divers.

Control surfaces and hydrodynamics

Control surfaces are essential for a torpedo to maintain its course and depth. A homing torpedo also needs to be able to outmaneuver a target. Good hydrodynamics are needed for it to attain high speed efficiently and also to give a long range since the torpedo has limited stored energy.

Launch platforms and launchers

Further information: Torpedo tube
A Mark 32 Mod 15 Surface Vessel Torpedo Tube (SVTT) fires a Mark 46 Mod 5 lightweight torpedo

Torpedoes may be launched from submarines, surface ships, helicopters and fixed-wing aircraft, unmanned naval mines and naval fortresses. They are also used in conjunction with other weapons; for example, the Mark 46 torpedo used by the United States is the warhead section of the ASROC, a kind of anti-submarine missile; the CAPTOR mine (CAPsulated TORpedo) is a submerged sensor platform which releases a torpedo when a hostile contact is detected.

Ships

Amidships quintuple mounting for 21 in (53 cm) torpedoes aboard the World War II era destroyer USS Charrette

Originally, Whitehead torpedoes were intended for launch underwater and the firm was upset when they found out the British were launching them above water, as they considered their torpedoes too delicate for this. However, the torpedoes survived. The launch tubes could be fitted in a ship's bow, which weakened it for ramming, or on the broadside; this introduced problems because of water flow twisting the torpedo, so guide rails and sleeves were used to prevent it. The torpedoes were originally ejected from the tubes by compressed air but later slow-burning gunpowder was used. Torpedo boats originally used a frame that dropped the torpedo into the sea. Royal Navy Coastal Motor Boats of World War I used a rear-facing trough and a cordite ram to push the torpedoes into the water tail-first; they then had to move rapidly out of the way to avoid being hit by their torpedo.

Developed in the run-up to the First World War, multiple-tube mounts (initially twin, later triple and in WW2 up to quintuple in some ships) for 21 to 24 in (53 to 61 cm) torpedoes in rotating turntable mounts appeared. Destroyers could be found with two or three of these mounts with between five and twelve tubes in total. The Japanese went one better, covering their tube mounts with splinter protection and adding reloading gear (both unlike any other navy in the world), making them true turrets and increasing the broadside without adding tubes and top hamper (as the quadruple and quintuple mounts did). Considering that their Type 93s were very effective weapons, the IJN equipped their cruisers with torpedoes. The Germans also equipped their capital ships with torpedoes.

Smaller vessels such as PT boats carried their torpedoes in fixed deck-mounted tubes using compressed air. These were either aligned to fire forward or at an offset angle from the centerline.

Later, lightweight mounts for 12.75 in (32.4 cm) homing torpedoes were developed for anti-submarine use consisting of triple launch tubes used on the decks of ships. These were the 1960 Mk 32 torpedo launcher in the US and part of STWS (Shipborne Torpedo Weapon System) in the UK. Later a below-decks launcher was used by the RN. This basic launch system continues to be used today with improved torpedoes and fire control systems.

Submarines

Modern submarines use either swim-out systems or a pulse of water to discharge the torpedo from the tube, both of which have the advantage of being significantly quieter than previous systems, helping avoid detection of the firing from passive sonar. Earlier designs used a pulse of compressed air or a hydraulic ram.

Early submarines, when they carried torpedoes, were fitted with a variety of torpedo launching mechanisms in a range of locations; on the deck, in the bow or stern, amidships, with some launch mechanisms permitting the torpedo to be aimed over a wide arc. By World War II, designs favored multiple bow tubes and fewer or no stern tubes. Modern submarine bows are usually occupied by a large sonar array, necessitating midships tubes angled outward, while stern tubes have largely disappeared. The first French and Russian submarines carried their torpedoes externally in Drzewiecki drop collars. These were cheaper than tubes but less reliable. Both the United Kingdom and the United States experimented with external tubes in World War II. External tubes offered a cheap and easy way of increasing torpedo capacity without radical redesign, something neither had time or resources to do before nor early in, the war. British T-class submarines carried up to 13 torpedo tubes, up to 5 of them external. America's use was mainly limited to earlier Porpoise-, Salmon-, and Sargo-class boats. Until the appearance of the Tambor class, most American submarines only carried 4 bow and either 2 or 4 stern tubes, something many American submarine officers felt provided inadequate firepower. This problem was compounded by the notorious unreliability of the Mark 14 torpedo.

Late in World War II, the U.S. adopted a 16 in (41 cm) homing torpedo (known as "Cutie") for use against escorts. It was basically a modified Mark 24 Mine with wooden rails to allow firing from a 21 in (53 cm) torpedo tube.

Air launch

Main article: Aerial torpedo

Aerial torpedoes may be carried by fixed-wing aircraft, helicopters, or missiles. They are launched from the first two at prescribed speeds and altitudes, dropped from bomb-bays or underwing hardpoints.

Handling equipment

Although lightweight torpedoes are fairly easily handled, the transport and handling of heavyweight torpedoes is difficult, especially in the tight spaces in a submarine. After the Second World War, some Type XXI submarines were obtained from Germany by the United States and Britain. One of the main novel developments seen was a mechanical handling system for torpedoes. Such systems were widely adopted as a result of this discovery.

Classes and diameters

Torpedo tube aboard the French submarine Argonaute

Torpedoes are launched in several ways:

Many navies have two weights of torpedoes:

  • A light torpedo used primarily as a close attack weapon, particularly by aircraft. The 12.75 in (32.4 cm) caliber has been described as a NATO standard for this class.
  • A heavy torpedo used primarily as a standoff weapon, particularly by submerged submarines. The 21 in (53 cm) caliber is a common standard.

In the case of deck or tube launched torpedoes, the diameter of the torpedo is a key factor in determining the suitability of a particular torpedo to a tube or launcher, similar to the caliber of the gun. The size is not quite as critical as for a gun, but the diameter has become the most common way of classifying torpedoes.

Length, weight, and other factors also contribute to compatibility. In the case of aircraft launched torpedoes, the key factors are weight, provision of suitable attachment points, and launch speed. Assisted torpedoes are the most recent development in torpedo design, and are normally engineered as an integrated package. Versions for aircraft and assisted launching have sometimes been based on deck or tube launched versions, and there has been at least one case of a submarine torpedo tube being designed to fire an aircraft torpedo.

As in all munition design, there is a compromise between standardization, which simplifies manufacture and logistics, and specialization, which may make the weapon significantly more effective. Small improvements in either logistics or effectiveness can translate into enormous operational advantages.

Use by various navies

Main article: List of torpedoes

List of active torpedoes by place of origin

Modern heavyweight torpedoes generally launched from submarines and used to attack both surface ships and submarines. Relatively older heavyweight torpedoes generally used to attack either surface ships or submarines. Modern lightweight torpedoes launched from surface ships, helicopters and fixed-wing aircraft used to attack submarines.

China

France

MU90 Impact triple launcher onboard Hessen, a Sachsen-class frigate of the German Navy.
  • F21 torpedo (heavyweight)
  • F17 torpedo (heavyweight)
  • MU90 Impact torpedo (lightweight)

Germany

Loading of SUT Torpedo into Indonesian navy submarine, KRI Cakra (401).
  • Seadpider anti-torpedo (lightweight) (Atlas Elektronik)
  • DM2A4 torpedo (heavyweight)
  • DM2A3 torpedo (heavyweight)
  • SUT torpedo (heavyweight)

India

Varunastra heavyweight torpedo

Iran

Valfajr heavyweight torpedo

Italy

Japan

Pakistan

Russia

VA-111 Shkval supercavitating torpedo

In April 2015, the Fizik (UGST) heat-seeking torpedo entered service to replace the wake-homing USET-80 developed in the 1980s and the next-gen Futlyar entered service in 2017.

Republic of Korea

AW159 Wildcat helicopter of the Philippine Navy armed with K745 Blue Shark torpedoes taken at the Philippine Fleet Defense Expo (PFDX) 2023

Sweden

Turkey

United Kingdom

United States of America

A French Lynx helicopter carrying a Mark 46 torpedo

List of key WW-II torpedoes

The torpedoes used by the Imperial Japanese Navy (World War II) included:

The torpedoes used by the World War II Kriegsmarine included:

The torpedoes used by the World War II Royal Navy included:

The torpedoes used by the World War II United States Navy included:

See also

Footnotes

  1. Mizokami, Kyle (November 16, 2022). "Why One of the Slowest Weapons in Modern Warfare Is the Toughest to Defend Against". Popular Mechanics. Retrieved February 11, 2023.
  2. Amick, Aaron (April 16, 2020). "Modern Submarine Torpedo Attacks Are Nothing Like What You See In The Movies". The Drive. Retrieved February 11, 2023.
  3. "torpedo (n.)". Online Etymology Dictionary. Douglas Harper. Retrieved 28 March 2024.
  4. "torpedo". Merriam-Webster Dictionary. Merriam-Webster. 19 March 2024. Retrieved 28 March 2024.
  5. "Navy's Use of Torpedoes". Naval History and Heritage Command. U.S. Navy. Retrieved 28 March 2024.
  6. "HISTORY OF EARLY TORPEDOES (1800-1870)". San Francisco Maritime National Park Association. Retrieved 28 March 2024.
  7. Partington, James Riddick (1999), A History of Greek Fire and Gunpowder, Baltimore, Maryland: Johns Hopkins University Press, p. 203, ISBN 0-8018-5954-9
  8. ^ Lossing, Benson (1868). The Pictorial Field-Book of the War of 1812. New York: Harper & Brothers, Publishers. pp. 240–243, 693. OCLC 886707577.
  9. ^ Gray 2004
  10. Davey 2016
  11. Crăciunoiu, Cristian (2003). Romanian navy torpedo boats. Modelism. p. 19. ISBN 978-973-8101-17-3.
  12. Lawrence Sondhaus (11 June 2014). Navies of Europe. Routledge. pp. 88–. ISBN 978-1-317-86978-8.
  13. The war nose consisted of a detonator, fuse, and protection mechanism which armed the fuse after the torpedo had traveled a short distance.
  14. Gray 1975
  15. Epstein 2014
  16. "The Whitehead Torpedo, notes on handling etc., U.S.N." maritime.org. 1890. Retrieved 10 December 2018.
  17. "A Brief History of U.S. Navy Torpedo Development - Part 1". www.maritime.org. Retrieved 2024-07-12.
  18. "Artifact Spotlight: Whitehead torpedo" (PDF). navalunderseamuseum.org. Archived from the original (PDF) on 12 May 2013. Retrieved 18 December 2012.
  19. National Archive in WO32/6064 In minute to Director of Artillery from Inspector General of Fortifications.
  20. ^ The Brennan Torpedo by Alec Beanse ISBN 978-0-9548453-6-0
  21. Greene, Jack; Massignani, Alessandro (1997). Ironclads At War: The Origin And Development Of The Armored Battleship. Pennsylvania: Da Capo Press. p. 290. ISBN 0-78674-298-4.
  22. Avaroa, Eduardo (2013). "El Huáscar Muralla Móvil Del Perú" (PDF). Universidad Nacional Jorge Basadre Grohmann (in Spanish). Archived from the original (PDF) on 4 March 2016. Retrieved 31 August 2013.
  23. Scheina, Robert L. (1987). Latin America: A Naval History, 1810–1987. Naval Institute Press. p. 64. ISBN 0-87021-295-8.
  24. Harte, Bret, ed. (1886). Overland monthly and Out West magazine. San Francisco, California: A. Roman & Company. p. 425. OCLC 10002180.
  25. Fairbank, John King; Liu, Kwang-Ching, eds. (1980). The Cambridge History of China: Late Ch'ing, 1800–1911 Part 2. Cambridge University Press. p. 249. ISBN 0-521-22029-7.
  26. Elliott, Jane E. (2002). Some Did it for Civilisation, Some did it for Their Country: A Revised View of the Boxer War. Hong Kong: Chinese University Press. p. 204. ISBN 962-996-066-4.
  27. Olender 2010, p. 233
  28. Olender 2010, p. 236
  29. Olender 2010, p. 234
  30. Olender 2010, p. 235
  31. Olender 2010, p. 225
  32. "Submersible Dolphin", Hellenic Navy (in Greek)
  33. ^ Hopkins, Albert Allis. The Scientific American War Book: The Mechanism and Technique of War, Chapter XLV: Aerial Torpedoes and Torpedo Mines. Munn & Company, Incorporated, 1915
  34. US patent 1032394, Bradley A. Fiske, "Method of and apparatus for delivering submarine torpedoes from airships", issued 1912-07-16 
  35. Hart, Albert Bushnell. Harper's pictorial library of the world war, Volume 4. Harper, 1920, p. 335.
  36. "Torpedo Boat That Flies. Admiral Fiske Invents a Craft to Attack Fleets in Harbors". The New York Times. 23 July 1915. Retrieved 29 September 2009.
  37. Polmar, Norman (2008). Aircraft Carriers: A History of Carrier Aviation and Its Influence on World Events, Volume II: 1946–2006. Washington, D.C.: Potomac Books, Inc. p. 16. ISBN 978-1-57488-665-8.
  38. Barnes, C. H. (1967). Shorts Aircraft Since 1900. London: Putnam. p. 113. OCLC 463063844.
  39. Guinness Book of Air Facts and Feats (3rd ed.). London: Book Club Associates. 1977. OCLC 11494729. The first air attack using a torpedo dropped by an airplane was carried out by Flight Commander Charles H. K. Edmonds, flying a Short 184 seaplane from Ben-my-Chree on 12 August 1915, against a 5,000-ton Turkish supply ship in the Sea of Marmara. Although the enemy ship was hit and sunk, the captain of a British submarine claimed to have fired a torpedo simultaneously and sunk the ship. It was further stated that the British submarine E14 had attacked and immobilized the ship four days earlier.
  40. Bruce, J. M. (28 December 1956). "The Short Seaplanes: Historic Military Aircraft No. 14: Part 3". Flight. p. 1000.
  41. ^ "U-boat Losses 1914–1918". uboat.net. Retrieved 10 December 2018.
  42. ^ Morison, Samuel Eliot (1950). History of United States Naval Operations in World War II: Breaking the Bismarcks Barrier. New York. p. 195.{{cite book}}: CS1 maint: location missing publisher (link)
  43. Morison, Samuel Eliot (1963). The Two Ocean War: A Short History of the United States Navy in the Second World War. Little, Brown. p. 195.
  44. "Japan Torpedoes of World War II". NavWeaps.com. Retrieved 2009-08-05.
  45. Fumio Aikō (July 25, 1985). Koku Gyorai Note (in Japanese). Privately printed book. p. 13.
  46. Washington's Cherry trees, The Evolution of the British 1921-22 Capital Ships, NJM Campbell, Warship Volume 1, Conway Maritime Press, Greenwich, ISBN 0 85177 132 7, pp. 9-10.
  47. Reports of Proceedings 1921-1964, G.G.O. Gatacre, Nautical Press & Publications, Sydney, 1982, ISBN 0 949756 02 4, pg.140
  48. On His Majesty's Service, 1940-41, Joseph H. Wellings, http://www.ibiblio.org/anrs/docs/D/D7/1002wellings_onhismajestysservice.pdf
  49. Ballantyne, p. 142
  50. Killing the Bismarck, Iain Ballantyne, Pen & Sword Books, Yorkshire, ISBN 978 1 84415 983 3, pp. 258–260.
  51. Pursuit: The Sinking of the Bismarck, Ludovic Kennedy, William Collins, ISBN 0 00 211739 8
  52. Brown, Colin; Kim Sengupta (2012-04-03). "Sinking the Belgrano: the Pinochet connection". The Independent. London. Archived from the original on 23 June 2015. Retrieved 2012-05-02.
  53. Blair 1975, p. 20
  54. ^ "Movie Legend Hedy Lamarr to be Given Special Award at EFF's Sixth Annual Pioneer Awards" (Press release). Electronic Frontier Foundation. March 11, 1997. Archived from the original on October 16, 2007. Retrieved February 1, 2014.
  55. "short history of spread spectrum". Electronic Engineering (EE) Times. January 26, 2012. Archived from the original on August 26, 2018.
  56. "Hollywood star whose invention paved the way for Wi-Fi", New Scientist, December 8, 2011; retrieved February 4, 2014.
  57. Craddock, Ashley (March 11, 1997). "Privacy Implications of Hedy Lamarr's Idea". Wired. Condé Nast Digital. Archived from the original on August 5, 2015. Retrieved November 9, 2013.
  58. "Hedy Lamarr Inventor" (PDF). The New York Times. October 1, 1941. Archived from the original (PDF) on April 10, 2016. Retrieved February 1, 2014.
  59. "Spotlight – National Inventors Hall of Fame". invent.org. Archived from the original on May 1, 2015. Retrieved May 26, 2015.
  60. Faltum, Andrew (1996). The Essex Aircraft Carriers. Baltimore, Maryland: The Nautical & Aviation Publishing Company of America. pp. 125–126. ISBN 1-877853-26-7.
  61. ^ "Stichting Maritiem Historische Data - Schip". www.marhisdata.nl (in Dutch). Retrieved 11 February 2021.
  62. "Israel admits it sank Lebanese refugee boat in 1982 war error, killing 25 — TV". www.timesofisrael.com. 22 November 2018. Retrieved 11 February 2021.
  63. Kula, Stjepan Bernadić. "Premijera hrvatskog monitored" (in Croatian). Archived from the original on 29 November 2018. Retrieved 10 December 2018.
  64. "Seoul reaffirms N. Korea's torpedo attack in final report". The Korea Times. 2010-09-13. Retrieved 2024-12-14.
  65. Kirby, Geoff (January 1972). JRNSS Volume 27, No.1 - A History of the Torpedo, The Early Days. Journal of the Royal Navy Scientific Service. pp. 43–44.
  66. Farquharson-Roberts, Mike (2015). "The Officers of the Royal Navy Before 1918" (PDF). Royal Naval Officers from War to War, 1918–1939. pp. 8–23. doi:10.1057/9781137481962_2. ISBN 978-1-349-57163-5. Retrieved 4 October 2024. {{cite book}}: |website= ignored (help)
  67. Washington's Cherry trees, The Evolution of the British 1921-22 Capital Ships, NJM Campbell, Warship Volume 1, Conway Maritime Press, Greenwich, ISBN 0 85177 132 7, pp. 9-10.
  68. Torpedo: The Complete History of the World's Most Revolutionary Naval Weapon By Roger Branfill-Cook
  69. "The Development of Rocket-propelled Torpedoes", by Geoff Kirby (2000)
  70. Fitzsimons, Bernard, ed. "Bliss-Leavitt", in The Illustrated Encyclopedia of 20th Century Weapons and Warfare (London: Phoebus, 1978), Volume 4, p.386.
  71. ^ Beach, Edward L. (2016) . Run Silent, Run Deep. Naval Institute Press. ISBN 978-1-68247-167-8.
  72. The British called theirs the "fruit machine".
  73. The Attack Submarine suggests shorter patrols actually improve effectiveness.
  74. "U-boat Archive – Interrogation of U-Boat Survivors – Cumulative Edition". Retrieved 2017-04-13.
  75. "TO TEST HAMMOND TORPEDO; General Wood Named as Head of Board to Pass Judgment on Invention". The New York Times. 29 August 1916.
  76. "Torpedo Controlled By Radio After Striking Water". Popular Mechanics. Hearst Magazines. February 1930.
  77. Osborn, Kris (28 September 2016). "The US Navy's Master Plan to Save Aircraft Carriers from Lethal Torpedo Attacks". nationalinterest.org. The National Interest. Retrieved 13 October 2016.
  78. ^ Branfill-Cook, Roger (2014). Torpedo: The Complete History of the World's Most Revolutionary Naval Weapon. Seaforth Publishing. p. 157. ISBN 978-1848322158.
  79. ^ Reid, Warren D. (September 1996). "The Response of Surface Ships to Underwater Explosions" (PDF). Ship Structures and Materials Division, Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organisation. Department of Defence. DSTO-GD-0109. Archived (PDF) from the original on March 27, 2020.
  80. "Investigation Result on the Sinking of ROKS "Cheonan" by The Joint Civilian-Military Investigation Group" (PDF). BBC News. 20 May 2010. Retrieved 27 January 2014.
  81. Sang-Hun, Choe (25 April 2010). "South Korea Cites Attack in Ship Sinking". The New York Times. Retrieved 25 April 2010.
  82. Cudahy, E; Parvin, S (2001). The Effects of Underwater Blast on Divers (Report). US Naval Submarine Medical Research Lab Technical Report. NSMRL-1218. Archived from the original on 2009-07-03. Retrieved 2009-03-22.
  83. "WW2 Memories – World War 2 – Second World War – Dartmouth Museum: Dartmouth Harbour was defended by Torpedo Tubes". Dartmouth Museum. Archived from the original on 18 May 2016. Retrieved 2 April 2012. Never fired in anger, a fixed torpedo tube battery was built on the east of the harbor mouth, just upriver from Kingswear Castle. The intent was to defend the river Dart.
  84. Fitzsimons, Bernard, ed. Illustrated Encyclopedia of Weapons and Warfare (London: Phoebus, 1978), Volume 10, p. 1040, "Fubuki"; Preston, Antony. Destroyers.
  85. Blair 1975, p. .
  86. Lockwood, Charles A.; Adamson, Hans C. (29 August 2018). Hellcats of the Sea: Operation Barney and the Mission to the Sea of Japan. Lulu.com. ISBN 978-0-359-05709-2.
  87. "MU90 LIGHTWEIGHT TORPEDO" (PDF). electronics.leonardo.com.
  88. "SeaHake™ mod4" (PDF). Atlas Elektronik. Retrieved 29 June 2024.
  89. "Beschaffung von vier neuen U-Booten 212 CD für die Marine wird konkret" (in German). 2024-11-30. Retrieved 2024-11-30.
  90. Kumar, V. Rishi (21 November 2020). "DRDO flags off first Varunastra, a heavy weight torpedo". @businessline. Retrieved 2021-09-30.
  91. SUBRAMANIAN, T. S. "Underwater might". Frontline. Archived from the original on 2021-09-28. Retrieved 2021-09-30.
  92. Bhattacharjee, Sumit (2021-03-09). "Lightweight torpedo test-fired successfully". The Hindu. ISSN 0971-751X. Retrieved 2021-09-30.
  93. "Российский "Кит" может в одиночку потопить вражеский авианосец". 25 March 2018.
  94. ^ "Russian Navy to receive advanced Futlyar torpedoes". TASS.
  95. "Post-World War II Torpedoes of Russia/USSR - NavWeaps". www.navweaps.com.
  96. "Russian Navy To Commission Latest Deep-Water Torpedo 'Futlyar' In 2018". www.defenseworld.net.
  97. "Improved UGST / Fizik Torpedo". 16 March 2017.

References

Attribution
  •  This article incorporates text from Overland monthly and Out West magazine, by Bret Harte, a publication from 1886, now in the public domain in the United States.

External links

Weapons
History
Premodern
Modern
World War I
Interwar period
World War II
Cold War
Post-Cold War
Types
Other
Category: