Revision as of 20:55, 28 December 2024 editFrap (talk | contribs)Autopatrolled, Extended confirmed users, File movers, Pending changes reviewers, Rollbackers33,328 editsNo edit summary← Previous edit | Revision as of 18:10, 31 December 2024 edit undoCitation bot (talk | contribs)Bots5,457,841 edits Add: authors 1-1. Removed URL that duplicated identifier. Removed access-date with no URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by BorgQueen | Linked from User:AlexNewArtBot/PhysicsSearchResult | #UCB_webform_linked 144/349Next edit → | ||
Line 17: | Line 17: | ||
| website = {{URL|https://www.nist.gov/srd/refprop}} | | website = {{URL|https://www.nist.gov/srd/refprop}} | ||
}} | }} | ||
'''REFPROP''' is a software program for the prediction of thermophysical properties of ]s, developed by the ] (NIST).<ref name="w514">{{cite journal | |
'''REFPROP''' is a software program for the prediction of thermophysical properties of ]s, developed by the ] (NIST).<ref name="w514">{{cite journal | last1=Huber | first1=Marcia L. | last2=Lemmon | first2=Eric W. | last3=Bell | first3=Ian H. | last4=McLinden | first4=Mark O. | title=The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids | journal=Industrial & Engineering Chemistry Research | volume=61 | issue=42 | date=2022-10-26 | issn=0888-5885 | pmid=36329835 | pmc=9619405 | doi=10.1021/acs.iecr.2c01427 | doi-access=free | pages=15449–15472 }}</ref><ref name="e723">{{cite book | last1=Reynolds | first1=William C. | last2=Colonna | first2=Piero | title=Thermodynamics | publisher=Cambridge University Press | publication-place=New York, NY, USA | date=2018-09-20 | isbn=978-0-521-86273-8}}</ref><ref name="z632">{{cite book | last=Penoncello | first=Steven G. | title=Thermal Energy Systems | publisher=CRC Press | date=2018-09-19 | isbn=978-1-351-73657-2 | page=}}</ref> | ||
The primary component of REFPROP is an ] for each implemented fluid. For most pure fluids, the equation of state is obtained by fitting an expression for the ] to experimental data. This formulation allows the computation of all equilibrium properties of the fluid, such as density, temperature, pressure, ], ], ]s, ]s, saturated liquid and vapor densities, ], ], and the ].<ref name="w514"/> | The primary component of REFPROP is an ] for each implemented fluid. For most pure fluids, the equation of state is obtained by fitting an expression for the ] to experimental data. This formulation allows the computation of all equilibrium properties of the fluid, such as density, temperature, pressure, ], ], ]s, ]s, saturated liquid and vapor densities, ], ], and the ].<ref name="w514"/> |
Revision as of 18:10, 31 December 2024
Developer(s) | National Institute of Standards and Technology (NIST) |
---|---|
Initial release | 1989; 36 years ago (1989) |
Stable release | 10.0 / 2018 |
Written in | Fortran |
Platform | x86-64 |
Available in | English |
Type | Thermophysical property software |
License | Proprietary |
Website | www |
REFPROP is a software program for the prediction of thermophysical properties of fluids, developed by the National Institute of Standards and Technology (NIST).
The primary component of REFPROP is an equation of state for each implemented fluid. For most pure fluids, the equation of state is obtained by fitting an expression for the Helmholtz free energy to experimental data. This formulation allows the computation of all equilibrium properties of the fluid, such as density, temperature, pressure, sound speed, heat capacity, second virial coefficients, vapor pressures, saturated liquid and vapor densities, enthalpy of vaporization, entropy, and the Joule-Thomson coefficient.
REFPROP also predicts surface tension, viscosity, and thermal conductivity for many fluids, either using extended corresponding states formulations or fluid-specific equations fit directly to experimental data.
Various methods are used to compute the analogous properties of fluid mixtures.
The full list of fluids properties implemented in REFPROP v10.0 can be found in Table 2 of Huber, et al. (2022).
List of implemented fluids
REFPROP v10.0 implements equation of state models for 147 pure fluids, listed in Table 1. Except for F3N, R-13, R-123, and R-152a, all of these are Helmholtz free energy formulations.
REFPROP v10.0 also predicts surface tension, viscosity, and thermal conductivity for most of the listed fluids.
Short name | Full name | Short formula | CAS number |
---|---|---|---|
1,3-Butadiene | Buta-1,3-diene | C4H6 | 106-99-0 |
1-Butyne | But-1-yne | C4H6 | 107-00-6 |
1-Pentene | Pent-1-ene | C5H10 | 109-67-1 |
2,2-Dimethylbutane | 2,2-Dimethylbutane | C6H14 | 75-83-2 |
2,3-Dimethylbutane | 2,3-Dimethylbutane | C6H14 | 79-29-8 |
3-Methylpentane | 3-Methylpentane | C6H14 | 96-14-0 |
Acetone | Propanone | C3H6O | 67-64-1 |
Acetylene | Ethyne | C2H2 | 74-86-2 |
Ammonia | Ammonia | NH3 | 7664-41-7 |
Argon | Argon | Ar | 7440-37-1 |
Benzene | Benzene | C6H6 | 71-43-2 |
Butane | n-Butane | C4H10 | 106-97-8 |
Butene | 1-Butene | C4H8 | 106-98-9 |
Carbon dioxide | Carbon dioxide | CO2 | 124-38-9 |
Carbon monoxide | Carbon monoxide | CO | 630-08-0 |
Carbonyl sulfide | Carbon oxide sulfide | COS | 463-58-1 |
Chlorine | Chlorine | Cl2 | 7782-50-5 |
Chlorobenzene | Chlorobenzene | C6H5Cl | 108-90-7 |
cis-Butene | cis-2-Butene | C4H8 | 590-18-1 |
Cyclobutene | 1-Cyclobutene | C4H6 | 822-35-5 |
Cyclohexane | Cyclohexane | C6H12 | 110-82-7 |
Cyclopentane | Cyclopentane | C5H10 | 287-92-3 |
Cyclopropane | Cyclopropane | C3H6 | 75-19-4 |
D4 | Octamethylcyclotetrasiloxane | C8H24O4Si4 | 556-67-2 |
D5 | Decamethylcyclopentasiloxane | C10H30O5Si5 | 541-02-6 |
D6 | Dodecamethylcyclohexasiloxane | C12H36O6Si6 | 540-97-6 |
DEA | 2,2'-Iminodiethanol | C4H11NO2 | 111-42-2 |
Decane | Decane | C10H22 | 124-18-5 |
Deuterium | Deuterium | D2 | 7782-39-0 |
Dichloroethane | 1,2-Dichloroethane | C2H4Cl2 | 107-06-2 |
Diethyl ether | Diethyl ether | C4H10O | 60-29-7 |
Dimethyl carbonate | Dimethyl ester carbonic acid | C3H6O3 | 616-38-6 |
Dimethylether | Methoxymethane | C2H6O | 115-10-6 |
Docosane | Docosane | C22H46 | 629-97-0 |
Dodecane | Dodecane | C12H26 | 112-40-3 |
Ethane | Ethane | C2H6 | 74-84-0 |
Ethanol | Ethyl alcohol | C2H6O | 64-17-5 |
Ethylene glycol | 1,2-Ethandiol | C2H6O2 | 107-21-1 |
Ethyl benzene | Phenylethane | C8H10 | 100-41-4 |
Ethylene | Ethene | C2H4 | 74-85-1 |
Ethylene oxide | Ethylene oxide | C2H4O | 75-21-8 |
Fluorine | Fluorine | F2 | 7782-41-4 |
Heavy water | Deuterium oxide | D2O | 7789-20-0 |
Helium | Helium-4 | He | 7440-59-7 |
Heptane | Heptane | C7H16 | 142-82-5 |
Hexadecane | Hexadecane | C16H34 | 544-76-3 |
Hexane | Hexane | C6H14 | 110-54-3 |
Hydrogen | Hydrogen | H2 | 1333-74-0 |
Hydrogen chloride | Hydrogen chloride | HCl | 7647-01-0 |
Hydrogen sulfide | Hydrogen sulfide | H2S | 7783-06-4 |
Isobutane | 2-Methylpropane | C4H10 | 75-28-5 |
Isobutene | 2-Methyl-1-propene | C4H8 | 115-11-7 |
Isohexane | 2-Methylpentane | C6H14 | 107-83-5 |
Isooctane | 2,2,4-Trimethylpentane | C8H18 | 540-84-1 |
Isopentane | 2-Methylbutane | C5H12 | 78-78-4 |
Krypton | Krypton | Kr | 7439-90-9 |
MD2M | Decamethyltetrasiloxane | C10H30O3Si4 | 141-62-8 |
MD3M | Dodecamethylpentasiloxane | C12H36O4Si5 | 141-63-9 |
MD4M | Tetradecamethylhexasiloxane | C14H42O5Si6 | 107-52-8 |
MDM | Octamethyltrisiloxane | C8H24O2Si3 | 107-51-7 |
MEA | Ethanolamine | C2H7NO | 141-43-5 |
Methane | Methane | CH4 | 74-82-8 |
Methanol | Methanol | CH4O | 67-56-1 |
Methyl linoleate | Methyl(Z,Z)-9,12-octadecadienate | C19H34O2 | 112-63-0 |
Methyl linolenate | Methyl(Z,Z,Z)-9,12,15-octadecatrienoate | C19H32O2 | 301-00-8 |
Methyl oleate | Methylcis-9-octadecenoate | C19H36O2 | 112-62-9 |
Methyl palmitate | Methyl hexadecanoate | C17H34O2 | 112-39-0 |
Methyl stearate | Methyl octadecanoate | C19H38O2 | 112-61-8 |
Methyl cyclohexane | Methylcyclohexane | C7H14 | 108-87-2 |
MM | Hexamethyldisiloxane | C6H18OSi2 | 107-46-0 |
m-Xylene | 1,3-Dimethylbenzene | C8H10 | 108-38-3 |
Neon | Neon | Ne | 7440-01-9 |
Neopentane | 2,2-Dimethylpropane | C5H12 | 463-82-1 |
Nitrogen | Nitrogen | N2 | 7727-37-9 |
Nitrogen trifluoride | Nitrogen trifluoride | F3N | 7783-54-2 |
Nitrous oxide | Dinitrogen monoxide | N2O | 10024-97-2 |
Nonane | Nonane | C9H20 | 111-84-2 |
Novec649,1230 | 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone | C6F12O | 756-13-8 |
Octane | Octane | C8H18 | 111-65-9 |
Orthohydrogen | Orthohydrogen | H2 | - |
Oxygen | Oxygen | O2 | 7782-44-7 |
o-Xylene | 1,2-Dimethylbenzene | C8H10 | 95-47-6 |
Parahydrogen | Parahydrogen | H2 | - |
Pentane | Pentane | C5H12 | 109-66-0 |
Perfluorobutane | Decafluorobutane | C4F10 | 355-25-9 |
Perfluorohexane | Tetradecafluorohexane | C6F14 | 355-42-0 |
Perfluoropentane | Dodecafluoropentane | C5F12 | 678-26-2 |
Propadiene | 1,2-Propadiene | C3H4 | 463-49-0 |
Propane | Propane | C3H8 | 74-98-6 |
Propyl cyclohexane | n-Propyl cyclohexane | C9H18 | 1678-92-8 |
Propylene | Propene | C3H6 | 115-07-1 |
Propylene oxide | 1,2-Epoxy propane | C3H6O | 75-56-9 |
Propyne | Propyne | C3H4 | 74-99-7 |
p-Xylene | 1,4-Dimethylbenzene | C8H10 | 106-42-3 |
R11 | Trichlorofluoromethane | CCl3F | 75-69-4 |
R1123 | Trifluoroethylene | C2HF3 | 359-11-5 |
R113 | 1,1,2-Trichloro-1,2,2-trifluoroethane | C2Cl3F3 | 76-13-1 |
R114 | 1,2-Dichlorotetrafluoroethane | C2Cl2F4 | 76-14-2 |
R115 | Chloropentafluoroethane | C2ClF5 | 76-15-3 |
R116 | Hexafluoroethane | C2F6 | 76-16-4 |
R12 | Dichlorodifluoromethane | CCl2F2 | 75-71-8 |
R1216 | Hexafluoropropene | C3F6 | 116-15-4 |
R1224yd(Z) | (Z)-1-Chloro-2,3,3,3-tetrafluoropropene | C3HClF4 | 111512-60-8 |
R123 | 2,2-Dichloro-1,1,1-trifluoroethane | C2HCl2F3 | 306-83-2 |
R1233zd(E) | trans-1-Chloro-3,3,3-trifluoro-1-propene | C3H2ClF3 | 102687-65-0 |
R1234yf | 2,3,3,3-Tetrafluoroprop-1-ene | C3F4H2 | 754-12-1 |
R1234ze(E) | trans-1,3,3,3-Tetrafluoropropene | C3F4H2 | 29118-24-9 |
R1234ze(Z) | cis-1,3,3,3-Tetrafluoropropene | C3F4H2 | 29118-25-0 |
R124 | 1-Chloro-1,2,2,2-tetrafluoroethane | C2HClF4 | 2837-89-0 |
R1243zf | 3,3,3-Trifluoropropene | C3H3F3 | 677-21-4 |
R125 | Pentafluoroethane | C2HF5 | 354-33-6 |
R13 | Chlorotrifluoromethane | CClF3 | 75-72-9 |
R1336mzz(Z) | (Z)-1,1,1,4,4,4-Hexafluoro-2-butene | C4H2F6 | 692-49-9 |
R134a | 1,1,1,2-Tetrafluoroethane | C2H2F4 | 811-97-2 |
R13I1 | Trifluoroiodomethane | CF3I | 2314-97-8 |
R14 | Tetrafluoromethane | CF4 | 75-73-0 |
R141b | 1,1-Dichloro-1-fluoroethane | C2H3Cl2F | 1717-00-6 |
R142b | 1-Chloro-1,1-difluoroethane | C2H3ClF2 | 75-68-3 |
R143a | 1,1,1-Trifluoroethane | C2H3F3 | 420-46-2 |
R152a | 1,1-Difluoroethane | C2H4F2 | 75-37-6 |
R161 | Fluoroethane | C2H5F | 353-36-6 |
R21 | Dichlorofluoromethane | CHClF | 75-43-4 |
R218 | Octafluoropropane | C3F8 | 76-19-7 |
R22 | Chlorodifluoromethane | CHClF2 | 75-45-6 |
R227ea | 1,1,1,2,3,3,3-Heptafluoropropane | C3HF7 | 431-89-0 |
R23 | Trifluoromethane | CHF3 | 75-46-7 |
R236ea | 1,1,1,2,3,3-Hexafluoropropane | C3H2F6 | 431-63-0 |
R236fa | 1,1,1,3,3,3-Hexafluoropropane | C3H2F6 | 690-39-1 |
R245ca | 1,1,2,2,3-Pentafluoropropane | C3H3F5 | 679-86-7 |
R245fa | 1,1,1,3,3-Pentafluoropropane | C3H3F5 | 460-73-1 |
R32 | Difluoromethane | CH2F2 | 75-10-5 |
R365mfc | 1,1,1,3,3-Pentafluorobutane | C4H5F5 | 406-58-6 |
R40 | Methyl chloride | CH3Cl | 74-87-3 |
R41 | Fluoromethane | CH3F | 593-53-3 |
RC318 | Octafluorocyclobutane | C4F8 | 115-25-3 |
RE143a | Methyl trifluoromethyl ether | C2H3F3O | 421-14-7 |
RE245cb2 | Methyl pentafluoroethyl ether | C3H3F5O | 22410-44-2 |
RE245fa2 | 2,2,2-Trifluoroethyl-difluoromethyl-ether | C3H3F5O | 1885-48-9 |
RE347mcc(HFE7000) | 1,1,1,2,2,3,3-Heptafluoro-3methoxypropane | C4H3F7O | 375-03-1 |
Sulfur dioxide | Sulfur dioxide | O2S | 7446-09-5 |
Sulfur hexafluoride | Sulfur hexafluoride | SF6 | 2551-62-4 |
Toluene | Methylbenzene | C7H8 | 108-88-3 |
trans-Butene | trans-2-Butene | C4H8 | 624-64-6 |
Undecane | Undecane | C11H24 | 1120-21-4 |
Vinyl chloride | Chloroethylene | C2H3Cl | 75-01-4 |
Water | Water | H2O | 7732-18-5 |
Xenon | Xenon | Xe | 7440-63-3 |
See also
- Process engineering
- Prediction of viscosity
- Prediction of thermal conductivity
- Viscosity models for mixtures
- Theorem of corresponding states
- Departure function
- The International Association for the Properties of Water and Steam
References
- ^ Huber, Marcia L.; Lemmon, Eric W.; Bell, Ian H.; McLinden, Mark O. (2022-10-26). "The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids". Industrial & Engineering Chemistry Research. 61 (42): 15449–15472. doi:10.1021/acs.iecr.2c01427. ISSN 0888-5885. PMC 9619405. PMID 36329835.
- Reynolds, William C.; Colonna, Piero (2018-09-20). Thermodynamics. New York, NY, USA: Cambridge University Press. ISBN 978-0-521-86273-8.
- Penoncello, Steven G. (2018-09-19). Thermal Energy Systems. CRC Press. ISBN 978-1-351-73657-2.
External links
This article needs additional or more specific categories. Please help out by adding categories to it so that it can be listed with similar articles. (December 2024) |