Misplaced Pages

Lyndon–Hochschild–Serre spectral sequence: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:29, 5 December 2007 editRobHar (talk | contribs)Extended confirmed users, Pending changes reviewers3,623 editsm smack bot did some weird things← Previous edit Revision as of 20:54, 5 December 2007 edit undoRich Farmbrough (talk | contribs)Edit filter managers, Autopatrolled, Extended confirmed users, File movers, Pending changes reviewers, Rollbackers, Template editors1,725,534 editsNo edit summaryNext edit →
Line 12: Line 12:


==References== ==References==
* {{Citation | last1=Lyndon | first1=Roger B. | title=The cohomology theory of group extensions | year=1948 | journal=] | issn=0012-7094 | volume=15 | issue=1 | pages=271–292}} * {{Citation | last1=Lyndon | first1=Roger B. | title=The cohomology theory of group extensions | year=1948 | journal=] | issn=0012-7094 | volume=15 | issue=1 | pages=271–292}}
* {{Citation | last1=Hochschild | first1=G. | last2=Serre | first2=Jean-Pierre | author2-link=en:Jean-Pierre Serre | title=Cohomology of group extensions | id={{MathSciNet | id = 0052438}} | year=1953 | journal=Transactions of the American Mathematical Society | issn=0002-9947 | volume=74 | pages=110–134}} * {{Citation | last1=Hochschild | first1=G. | last2=Serre | first2=Jean-Pierre | author2-link=en:Jean-Pierre Serre | title=Cohomology of group extensions | id={{MathSciNet | id = 0052438}} | year=1953 | journal=Transactions of the American Mathematical Society | issn=0002-9947 | volume=74 | pages=110–134}}
* {{Citation | last1=Neukirch | first1=Jürgen | last2=Schmidt | first2=Alexander | last3=Wingberg | first3=Kay | title=Cohomology of Number Fields | publisher=] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-3-540-66671-4 | id={{MathSciNet | id = 1737196}} | year=2000 | volume=323}} * {{Citation | last1=Neukirch | first1=Jürgen | last2=Schmidt | first2=Alexander | last3=Wingberg | first3=Kay | title=Cohomology of Number Fields | publisher=] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-3-540-66671-4 | id={{MathSciNet | id = 1737196}} | year=2000 | volume=323}}


] ]

Revision as of 20:54, 5 December 2007

In mathematics, especially in the fields of group cohomology, homological algebra and number theory the Lyndon spectral sequence or Hochschild-Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G/N to the cohomology of the total group G. In fact, the associated five term exact sequence is the usual inflation-restriction exact sequence.

The precise statement is as follows:

Let G be a finite group, N be a normal subgroup. The latter ensures that the quotient G/N is a group, as well. Finally, let A be a G-module. Then there is a spectral sequence:

H p ( G / N , H q ( N , A ) ) H p + q ( G , A ) . {\displaystyle H^{p}(G/N,H^{q}(N,A))\implies H^{p+q}(G,A).\,}

The same statement holds if G is a profinite group and N is a closed normal subgroup.

The spectral sequence is an instance of the more general Grothendieck spectral sequence of the composition of two derived functors. Indeed, H(G, -) is the derived functor of (−) (i.e. taking G-invariants) and the composition of the functors (−) and (−) is exactly (−).

References

Categories: