Misplaced Pages

Ample vector bundle: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:48, 17 June 2004 editCharles Matthews (talk | contribs)Autopatrolled, Administrators360,392 editsmNo edit summary← Previous edit Revision as of 17:49, 17 June 2004 edit undoCharles Matthews (talk | contribs)Autopatrolled, Administrators360,392 editsm lkNext edit →
Line 1: Line 1:
In ], in ] or the theory of ]s, a '''very ample line bundle''' ''L'' is one with enough ]s to set up an ] of its base variety or manifold ''M'' into ]. That is, considering that for any two sections ''s'' and ''t'', the ratio In ], in ] or the theory of ]s, a '''very ample ]''' ''L'' is one with enough ]s to set up an ] of its base variety or manifold ''M'' into ]. That is, considering that for any two sections ''s'' and ''t'', the ratio


:''s''/''t'' :''s''/''t''

Revision as of 17:49, 17 June 2004

In mathematics, in algebraic geometry or the theory of complex manifolds, a very ample line bundle L is one with enough sections to set up an embedding of its base variety or manifold M into projective space. That is, considering that for any two sections s and t, the ratio

s/t

makes sense as a well-defined numerical function on M, one can take a basis for all global sections of L on M and try to use them as a set of homogeneous coordinates on M. If the basis is written out as

s1, s2, ..., sk,

where k is the dimension of the space of sections, it makes sense to regard

as coordinates on M, in the projective space sense. Therefore this sets up a mapping

MP

which is required to be an embedding. (In a more invariant treatment, the RHS here is described as the projective space undelying the space of all global sections.)

An ample line bundle L is one which becomes very ample after it is raiswed to some tensor power, i.e. the tensor product of L with itself enough times has enough sections. These definitions make sense for the underlying divisors (Cartier divisors) D; an ample D is one for which nD moves in a large enough linear system. Such divisors form a cone in all divisors, of those which are in some sense positive enough. The relationship with projective space is that the D for a very ample L will correspond to the hyperplane sections (intersection with some hyperplane) of the embedded M.

There is a more general theory of ample vector bundles.