Misplaced Pages

Van der Grinten projection: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 01:02, 16 August 2011 editStrebe (talk | contribs)Extended confirmed users8,423 edits Replace low-contrast images← Previous edit Revision as of 12:57, 24 August 2011 edit undoBalthCat (talk | contribs)Extended confirmed users, Pending changes reviewers3,667 editsm dangling bracketNext edit →
Line 1: Line 1:
]] ]
The '''van der Grinten projection''' is neither ] nor ]. It projects the entire Earth into a circle, though the polar regions are subject to extreme distortion. The projection was the first of four proposed by Alphons J. van der Grinten in 1904, and, unlike most projections, is an arbitrary geometric construction on the plane. It was made famous when the ] adopted it as their reference map of the world from 1922 until 1988<ref>''Flattening the Earth: Two Thousand Years of Map Projections'', John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.</ref>. The '''van der Grinten projection''' is neither ] nor ]. It projects the entire Earth into a circle, though the polar regions are subject to extreme distortion. The projection was the first of four proposed by Alphons J. van der Grinten in 1904, and, unlike most projections, is an arbitrary geometric construction on the plane. It was made famous when the ] adopted it as their reference map of the world from 1922 until 1988<ref>''Flattening the Earth: Two Thousand Years of Map Projections'', John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.</ref>.



Revision as of 12:57, 24 August 2011

Van der Grinten projection of the world.

The van der Grinten projection is neither equal-area nor conformal. It projects the entire Earth into a circle, though the polar regions are subject to extreme distortion. The projection was the first of four proposed by Alphons J. van der Grinten in 1904, and, unlike most projections, is an arbitrary geometric construction on the plane. It was made famous when the National Geographic Society adopted it as their reference map of the world from 1922 until 1988.

The geometric construction given by van der Grinten can be written algebraically:

x = ± π ( A ( G P 2 ) + A 2 ( G P 2 ) 2 ( P 2 + A 2 ) ( G 2 P 2 ) ) P 2 + A 2 {\displaystyle x={\frac {\pm \pi \left(A\left(G-P^{2}\right)+{\sqrt {A^{2}\left(G-P^{2}\right)^{2}-\left(P^{2}+A^{2}\right)\left(G^{2}-P^{2}\right)}}\right)}{P^{2}+A^{2}}}\,}
y = ± π ( P Q A ( A 2 + 1 ) ( P 2 + A 2 ) Q 2 ) P 2 + A 2 {\displaystyle y={\frac {\pm \pi \left(PQ-A{\sqrt {\left(A^{2}+1\right)\left(P^{2}+A^{2}\right)-Q^{2}}}\right)}{P^{2}+A^{2}}}}

where x {\displaystyle x\,} takes the sign of λ λ 0 {\displaystyle \lambda -\lambda _{0}\,} , y {\displaystyle y\,} takes the sign of ϕ {\displaystyle \phi \,} and

A = 1 2 | π λ λ 0 λ λ 0 π | {\displaystyle A={\frac {1}{2}}|{\frac {\pi }{\lambda -\lambda _{0}}}-{\frac {\lambda -\lambda _{0}}{\pi }}|}
G = cos θ sin θ + cos θ 1 {\displaystyle G={\frac {\cos \theta }{\sin \theta +\cos \theta -1}}}
P = G ( 2 sin θ 1 ) {\displaystyle P=G\left({\frac {2}{\sin \theta }}-1\right)}
θ = arcsin | 2 ϕ π | {\displaystyle \theta =\arcsin |{\frac {2\phi }{\pi }}|}
Q = A 2 + G {\displaystyle Q=A^{2}+G\,}

Should it occur that ϕ = 0 {\displaystyle \phi =0\,} , then

x = ( λ λ 0 ) {\displaystyle x=\left(\lambda -\lambda _{0}\right)\,}
y = 0 {\displaystyle y=0\,}

Similarly, if λ = λ 0 {\displaystyle \lambda =\lambda _{0}\,} or ϕ = ± π / 2 {\displaystyle \phi =\pm \pi /2\,} , then

x = 0 {\displaystyle x=0\,}
y = ± π tan θ / 2 {\displaystyle y=\pm \pi \tan {\theta /2}}

In all cases, ϕ {\displaystyle \phi \,} is the latitude, λ {\displaystyle \lambda \,} is the longitude, and λ 0 {\displaystyle \lambda _{0}\,} is the central meridian of the projection.

Notes

  1. Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.
  2. Map Projections - A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp.239-242

References


Stub icon

This cartography or mapping term article is a stub. You can help Misplaced Pages by expanding it.

Categories: