Misplaced Pages

TATB: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 16:35, 2 March 2012 editLuckas-bot (talk | contribs)929,662 editsm r2.7.1) (Robot: Adding nl:Triaminotrinitrobenzeen← Previous edit Revision as of 13:55, 10 March 2012 edit undoJoelwilliamson (talk | contribs)14 edits Removed claim that most US warheads use TATB, based on an article from LLNL.Next edit →
Line 42: Line 42:


TATB is a powerful explosive (somewhat less powerful than ], but more than ]), but it is extremely insensitive to ], ], ], or ]. Because it is so difficult to detonate by accident, even under severe conditions, it has become preferred for applications where extreme ] is required, such as the explosives used in ]s, where accidental detonation during an airplane crash or rocket misfiring would present extreme dangers. All British <ref>, UK MOD position statement, 23 January 2006</ref> TATB is a powerful explosive (somewhat less powerful than ], but more than ]), but it is extremely insensitive to ], ], ], or ]. Because it is so difficult to detonate by accident, even under severe conditions, it has become preferred for applications where extreme ] is required, such as the explosives used in ]s, where accidental detonation during an airplane crash or rocket misfiring would present extreme dangers. All British <ref>, UK MOD position statement, 23 January 2006</ref>
and almost all US ]s, except those where weight is factor, {{Fact|date=March 2008}} are believed to use TATB based explosives for main explosive charges. According to ], ] used TATB to increase their safety.<ref name="Albright">{{cite journal|url=http://books.google.com/?id=VAwAAAAAMBAJ&pg=PA37#v=onepage&q=|author=David Albright|journal=Bulletin of Atomic Scientists|title=South Africa and the Affordable Bomb|month=July|year=1994|page=p. 44}}</ref> ]s, except those where weight is factor, {{Fact|date=March 2008}} are believed to use TATB based explosives for main explosive charges. According to ], ] used TATB to increase their safety.<ref name="Albright">{{cite journal|url=http://books.google.com/?id=VAwAAAAAMBAJ&pg=PA37#v=onepage&q=|author=David Albright|journal=Bulletin of Atomic Scientists|title=South Africa and the Affordable Bomb|month=July|year=1994|page=p. 44}}</ref>


TATB is normally used as the explosive ingredient in ] compositions, such as PBX-9502, LX-17-0, and PBX-9503 (with 15% ]). These formulations are described as ''']''' or '''IHE''' in nuclear weapons literature. TATB is normally used as the explosive ingredient in ] compositions, such as PBX-9502, LX-17-0, and PBX-9503 (with 15% ]). These formulations are described as ''']''' or '''IHE''' in nuclear weapons literature.

Revision as of 13:55, 10 March 2012

TATB
Names
IUPAC name 1,3,5-triamino-2,4,6-trinitrobenzene
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.019.362 Edit this at Wikidata
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C6H6N6O6/c7-1-4(10(13)14)2(8)6(12(17)18)3(9)5(1)11(15)16/h7-9H2Key: JDFUJAMTCCQARF-UHFFFAOYSA-N
  • InChI=1/C6H6N6O6/c7-1-4(10(13)14)2(8)6(12(17)18)3(9)5(1)11(15)16/h7-9H2Key: JDFUJAMTCCQARF-UHFFFAOYAO
SMILES
  • c1(c(c(c(c(c1(=O))N)(=O))N)(=O))N
Properties
Chemical formula C6H6N6O6
Molar mass 258.15 g/mol
Appearance Yellow or brown powdered crystals (rhombohedral)
Density 1.93 g/cm
Melting point 350 °C (662 °F; 623 K)
Explosive data
Shock sensitivity Insensitive
Friction sensitivity Insensitive
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

TATB, or triaminotrinitrobenzene, is an aromatic explosive, based on the basic six-carbon benzene ring structure with three nitro functional groups (NO2) and three amine (NH2) groups attached, alternating around the ring.

TATB is a powerful explosive (somewhat less powerful than RDX, but more than TNT), but it is extremely insensitive to shock, vibration, fire, or impact. Because it is so difficult to detonate by accident, even under severe conditions, it has become preferred for applications where extreme safety is required, such as the explosives used in nuclear weapons, where accidental detonation during an airplane crash or rocket misfiring would present extreme dangers. All British nuclear warheads, except those where weight is factor, are believed to use TATB based explosives for main explosive charges. According to David Albright, South Africa's nuclear weapons used TATB to increase their safety.

TATB is normally used as the explosive ingredient in plastic bonded explosive compositions, such as PBX-9502, LX-17-0, and PBX-9503 (with 15% HMX). These formulations are described as Insensitive High Explosives or IHE in nuclear weapons literature.

Though it could theoretically be mixed with other explosive compounds in castable mixtures or other use forms, the applications for such forms would be unclear since they would largely undo the insensitivity of pure TATB.

TATB's chemical structure is somewhat similar to the powerful experimental insensitive high explosive FOX-7.

Properties

At a pressed density of 1.80, TATB has a velocity of detonation of 7,350 meters per second.

TATB has a crystal density of 1.93 grams/cm, though most use forms have no higher density than 1.80. TATB melts at 350 °C. The chemical formula for TATB is C6(NO2)3(NH2)3.

TATB is a bright yellow color.

TATB has been found to remain stable at temperatures at least as high as 250 °C for prolonged periods of time.

Production

TATB is produced by nitration of 1,3,5-trichlorobenzene to 1,3,5-trichloro-2,4,6-trinitrobenzene, then the chlorine atoms are substituted with amine groups.

However, it is likely that the production of TATB will be switched over to a process involving the nitration and transamination of phloroglucinol, since this process is milder, cheaper, and reduces the amount of ammonium chloride salt produced in waste effluents (greener).

Still another process has been found for the production of TATB from materials that are surplus to military use. 1,1,1-trimethylhydrazinium iodide (TMHI) is formed from the rocket fuel uns-dimethylhydrazine (UDMH) and methyl iodide, and acts as a vicarious nucleophilic substitution (VNS) amination reagent. When Picramide, which is easily produced from Explosive D, is reacted with TMHI it is aminated to TATB. Thus, materials that would have had to have been destroyed when no longer needed are converted into a high value explosive.

See also

Notes

  1. Memorandum from Prospect, UK MOD position statement, 23 January 2006
  2. David Albright (1994). "South Africa and the Affordable Bomb". Bulletin of Atomic Scientists: p. 44. {{cite journal}}: |page= has extra text (help); Unknown parameter |month= ignored (help)

References

  • Cooper, Paul W., Explosives Engineering, New York: Wiley-VCH, 1996. ISBN 0-471-18636-8
  • Michell, Alexander R., et al.; Conversion of the Rocket Propellant UDMH to a Reagent Useful in Vicarious Nucleophilic Substitution Reactions; Lawrence Livermore National Laboratory; UCRL-JC-122489
Categories: