Misplaced Pages

Software: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 10:43, 21 June 2012 view sourceValenciano (talk | contribs)Autopatrolled, Extended confirmed users, New page reviewers, Pending changes reviewers, Rollbackers63,276 editsm Reverted 2 edits by 122.178.154.107 (talk) identified as vandalism to last revision by 123.176.35.2. (TW)← Previous edit Revision as of 12:04, 23 June 2012 view source 122.178.147.210 (talk) HistoryNext edit →
Line 12: Line 12:
{{rewrite section|date=January 2012}} {{rewrite section|date=January 2012}}
The first theory about software was proposed by ] in his 1935 essay ''Computable numbers with an application to the Entscheidungsproblem (Decision problem)''.<ref>{{Cite book|last=Hally|first= Mike|year=2005|page=79|title=Electronic brains/Stories from the dawn of the computer age|publisher= British Broadcasting Corporation and Granta Books|location=London| isbn =1-86207-663-4}}</ref> The first theory about software was proposed by ] in his 1935 essay ''Computable numbers with an application to the Entscheidungsproblem (Decision problem)''.<ref>{{Cite book|last=Hally|first= Mike|year=2005|page=79|title=Electronic brains/Stories from the dawn of the computer age|publisher= British Broadcasting Corporation and Granta Books|location=London| isbn =1-86207-663-4}}</ref>
The term "software" was first used in print by ] in 1958.<ref name="NYTobit">{{cite news|title=John Tukey, 85, Statistician; Coined the Word 'Software'|publisher= New York Times|work= Obituaries|date= July 28, 2000 |url=http://query.nytimes.com/gst/fullpage.html?res=9500E4DA173DF93BA15754C0A9669C8B63&scp=1&sq=&pagewanted=1}}</ref> Colloquially, the term is often used to mean application software. In computer science and ], software is all ] processed by ], programs and ].<ref name="NYTobit"/> The academic fields studying software are ] and ]. The term "software" was first used in print by ] in 1958.<ref name="NYTobit">{{cite news|title=John Tukey, 85, Statistician; Coined the Word 'Software'|publisher= New York
<!-- replaced the following citation with the reusable one
><ref>{{cite news|url=http://query.nytimes.com/gst/fullpage.html?res=9500E4DA173DF93BA15754C0A9669C8B63|title=John Tukey, 85, Statistician; Coined the Word 'Software'|publisher=New York Times |date=July 28, 2000 | first=David | last=Leonhardt}}</ref>
-->

The history of computer software is most often traced back to the first ] in 1946{{Citation needed|date=November 2010}}. As more and more programs enter the realm of firmware, and the hardware itself becomes smaller, cheaper and faster as predicted by ], elements of computing first considered to be software, join the ranks of hardware. Most hardware companies today have more software programmers on the payroll than hardware designers{{Citation needed|date=November 2010}}, since software tools have automated many tasks of ] engineers. Just like the ], the ] has grown from a few visionaries operating out of their garage with ]s. ] and ] were the ] and ] of their times{{Citation needed|date=November 2010}}, who capitalized on ideas already commonly known before they started in the business. In the case of ], this moment is generally agreed to be the publication in the 1980s of the specifications for the ] published by ] employee ]. Today his move would be seen as a type of ].

Until that time, software was '']'' with the hardware by ]s (OEMs) such as ], ] and IBM{{Citation needed |date=November 2010}}. When a customer bought a ], at that time the smallest computer on the market, the computer did not come with ], but needed to be installed by engineers employed by the OEM. Computer hardware companies not only bundled their software, they also placed demands on the location of the hardware in a refrigerated space called a ]. Most companies had their software on the books for 0 dollars, unable to claim it as an asset (this is similar to financing of popular music in those days). When Data General introduced the ], a company called Digidyne wanted to use its ] operating system on its own ]. Data General refused to ] (which was hard to do, since it was on the books as a free asset), and claimed their "bundling rights". The ] set a precedent called Digidyne v. Data General in 1985. The Supreme Court let a 9th circuit decision stand, and Data General was eventually forced into licensing the Operating System software because it was ruled that restricting the license to only DG hardware was an illegal ''tying arrangement''.<ref>{{cite web |title=Tying Arrangements and the Computer Industry: Digidyne Corp. vs. Data General|jstor=1372482}}</ref> Soon after, IBM 'published' its ] source for free,{{Citation needed|date=September 2011}} and ] was born. Unable to sustain the loss from lawyer's fees, Data General ended up being taken over by ]. The Supreme Court decision made it possible to value software, and also purchase ]s. The move by IBM was almost a protest at the time. Few in the industry believed that anyone would profit from it other than IBM (through free publicity). Microsoft and ] were able to thus cash in on 'soft' products.

There are many successful companies today that sell only software products, though there are still many common software licensing problems due to the complexity of designs and poor documentation, leading to ]s.

With open software specifications and the possibility of software licensing, new opportunities arose for software tools that then became the ], such as DOS for operating systems, but also various proprietary word processing and ] programs. In a similar growth pattern, proprietary development methods became standard ].


==Types of software== ==Types of software==

Revision as of 12:04, 23 June 2012

For other uses, see Software (disambiguation).

Computer software, or just software, is a collection of computer programs and related data that provides the instructions for telling a computer what to do and how to do it. Software refers to one or more computer programs and data held in the storage of the computer for some reasons. In other words, software is a set of programs, procedures, algorithms and its documentation concerned with the operation of a data processing system. Program software performs the function of the program it implements, either by directly providing instructions to the computer hardware or by serving as input to another piece of software. The term was coined to contrast to the old term hardware (meaning physical devices). In contrast to hardware, software "cannot be touched". Software is also sometimes used in a more narrow sense, meaning application software only. Sometimes the term includes data that has not traditionally been associated with computers, such as film, tapes, and records.

Computer software is so called to distinguish it from computer hardware, which encompasses the physical interconnections and devices required to store and execute (or run) the software. At the lowest level, executable code consists of machine language instructions specific to an individual processor. A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. Programs are an ordered sequence of instructions for changing the state of the computer in a particular sequence. It is usually written in high-level programming languages that are easier and more efficient for humans to use (closer to natural language) than machine language. High-level languages are compiled or interpreted into machine language object code. Software may also be written in an assembly language, essentially, a mnemonic representation of a machine language using a natural language alphabet. Assembly language must be assembled into object code via an assembler.

History

For the history prior to 1946, see History of computing hardware.
This section may need to be rewritten to comply with Misplaced Pages's quality standards. You can help. The talk page may contain suggestions. (January 2012)

The first theory about software was proposed by Alan Turing in his 1935 essay Computable numbers with an application to the Entscheidungsproblem (Decision problem). The term "software" was first used in print by John W. Tukey in 1958.Cite error: A <ref> tag is missing the closing </ref> (see the help page). System software includes device drivers, operating systems, servers, utilities, and window systems.

System software is responsible for managing a variety of independent hardware components, so that they can work together harmoniously. Its purpose is to unburden the application software programmer from the often complex details of the particular computer being used, including such accessories as communications devices, printers, device readers, displays and keyboards, and also to partition the computer's resources such as memory and processor time in a safe and stable manner.

Programming software

Main article: Programming tool

Programming software include tools in the form of programs or applications that software developers use to create, debug, maintain, or otherwise support other programs and applications. The term usually refers to relatively simple programs such as compilers, debuggers, interpreters, linkers, and text editors, that can be combined together to accomplish a task, much as one might use multiple hand tools to fix a physical object. Programming tools are intended to assist a programmer in writing computer programs, and they may be combined in an integrated development environment (IDE) to more easily manage all of these functions.

Application software

Main article: Application software

Application software is developed to perform in any task that benefits from computation. It is a set of programs that allows the computer to perform a specific data processing job for the user. It is a broad category, and encompasses software of many kinds, including the internet browser being used to display this page.

Software topics

Architecture

See also: Software architecture

Users often see things differently than programmers. People who use modern general purpose computers (as opposed to embedded systems, analog computers and supercomputers) usually see three layers of software performing a variety of tasks: platform, application, and user software.

  • Platform software: Platform includes the firmware, device drivers, an operating system, and typically a graphical user interface which, in total, allow a user to interact with the computer and its peripherals (associated equipment). Platform software often comes bundled with the computer. On a PC you will usually have the ability to change the platform software.
  • Application software: Application software or Applications are what most people think of when they think of software. Typical examples include office suites and video games. Application software is often purchased separately from computer hardware. Sometimes applications are bundled with the computer, but that does not change the fact that they run as independent applications. Applications are usually independent programs from the operating system, though they are often tailored for specific platforms. Most users think of compilers, databases, and other "system software" as applications.
  • User-written software: End-user development tailors systems to meet users' specific needs. User software include spreadsheet templates and word processor templates. Even email filters are a kind of user software. Users create this software themselves and often overlook how important it is. Depending on how competently the user-written software has been integrated into default application packages, many users may not be aware of the distinction between the original packages, and what has been added by co-workers.

Documentation

Main article: Software documentation

Most software has software documentation so that the end user can understand the program, what it does, and how to use it. Without clear documentation, software can be hard to use—especially if it is very specialized and relatively complex like Photoshop or AutoCAD.

Developer documentation may also exist, either with the code as comments and/or as separate files, detailing how the programs works and can be modified.

Library

Main article: Software library

An executable is almost always not sufficiently complete for direct execution. Software libraries include collections of functions and functionality that may be embedded in other applications. Operating systems include many standard Software libraries, and applications are often distributed with their own libraries.

Standard

Main article: Software standard

Since software can be designed using many different programming languages and in many different operating systems and operating environments, software standard is needed so that different software can understand and exchange information between each other. For instance, an email sent from a Microsoft Outlook should be readable from Yahoo! Mail and vice versa.

Execution

Main article: Execution (computing)

Computer software has to be "loaded" into the computer's storage (such as the hard drive or memory). Once the software has loaded, the computer is able to execute the software. This involves passing instructions from the application software, through the system software, to the hardware which ultimately receives the instruction as machine code. Each instruction causes the computer to carry out an operation – moving data, carrying out a computation, or altering the control flow of instructions.

Data movement is typically from one place in memory to another. Sometimes it involves moving data between memory and registers which enable high-speed data access in the CPU. Moving data, especially large amounts of it, can be costly. So, this is sometimes avoided by using "pointers" to data instead. Computations include simple operations such as incrementing the value of a variable data element. More complex computations may involve many operations and data elements together.

Quality and reliability

Main articles: Software quality, Software testing, and Software reliability

Software quality is very important, especially for commercial and system software like Microsoft Office, Microsoft Windows and Linux. If software is faulty (buggy), it can delete a person's work, crash the computer and do other unexpected things. Faults and errors are called "bugs." Many bugs are discovered and eliminated (debugged) through software testing. However, software testing rarely – if ever – eliminates every bug; some programmers say that "every program has at least one more bug" (Lubarsky's Law). All major software companies, such as Microsoft, Novell and Sun Microsystems, have their own software testing departments with the specific goal of just testing. Software can be tested through unit testing, regression testing and other methods, which are done manually, or most commonly, automatically, since the amount of code to be tested can be quite large. For instance, NASA has extremely rigorous software testing procedures for many operating systems and communication functions. Many NASA based operations interact and identify each other through command programs called software. This enables many people who work at NASA to check and evaluate functional systems overall. Programs containing command software enable hardware engineering and system operations to function much easier together.

License

Main article: Software license

The software's license gives the user the right to use the software in the licensed environment. Some software comes with the license when purchased off the shelf, or an OEM license when bundled with hardware. Other software comes with a free software license, granting the recipient the rights to modify and redistribute the software. Software can also be in the form of freeware or shareware.

Patents

Main articles: Software patent and Software patent debate

Software can be patented in some but not all countries; however, software patents can be controversial in the software industry with many people holding different views about it. The controversy over software patents is about specific algorithms or techniques that the software contains, which may not be duplicated by others and considered intellectual property and copyright infringement depending on the severity.

Design and implementation

Main articles: Software development, Computer programming, and Software engineering

Design and implementation of software varies depending on the complexity of the software. For instance, design and creation of Microsoft Word software will take much more time than designing and developing Microsoft Notepad because of the difference in functionalities in each one.

Software is usually designed and created (coded/written/programmed) in integrated development environments (IDE) like Eclipse, Emacs and Microsoft Visual Studio that can simplify the process and compile the program. As noted in different section, software is usually created on top of existing software and the application programming interface (API) that the underlying software provides like GTK+, JavaBeans or Swing. Libraries (APIs) are categorized for different purposes. For instance, JavaBeans library is used for designing enterprise applications, Windows Forms library is used for designing graphical user interface (GUI) applications like Microsoft Word, and Windows Communication Foundation is used for designing web services. Underlying computer programming concepts like quicksort, hashtable, array, and binary tree can be useful to creating software. When a program is designed, it relies on the API. For instance, if a user is designing a Microsoft Windows desktop application, he/she might use the .NET Windows Forms library to design the desktop application and call its APIs like Form1.Close() and Form1.Show() to close or open the application and write the additional operations him/herself that it need to have. Without these APIs, the programmer needs to write these APIs him/herself. Companies like Sun Microsystems, Novell, and Microsoft provide their own APIs so that many applications are written using their software libraries that usually have numerous APIs in them.

Computer software has special economic characteristics that make its design, creation, and distribution different from most other economic goods.

A person who creates software is called a programmer, software engineer, software developer, or code monkey, terms that all have a similar meaning.

Industry and organizations

Main article: Software industry

A great variety of software companies and programmers in the world comprise a software industry. Software can be quite a profitable industry: Bill Gates, the founder of Microsoft was the richest person in the world in 2009 largely by selling the Microsoft Windows and Microsoft Office software products. The same goes for Larry Ellison, largely through his Oracle database software. Through time the software industry has become increasingly specialized.

Non-profit software organizations include the Free Software Foundation, GNU Project and Mozilla Foundation. Software standard organizations like the W3C, IETF develop software standards so that most software can interoperate through standards such as XML, HTML, HTTP or FTP.

Other well-known large software companies include Novell, SAP, Symantec, Adobe Systems, and Corel, while small companies often provide innovation.

See also

References

  1. "Wordreference.com: WordNet 2.0". Princeton University, Princeton, NJ. Retrieved 2007-08-19.
  2. "software..(n.d.)". Dictionary.com Unabridged (v 1.1). Retrieved 2007-04-13.
  3. Hally, Mike (2005). Electronic brains/Stories from the dawn of the computer age. London: British Broadcasting Corporation and Granta Books. p. 79. ISBN 1-86207-663-4.
  4. "What is software? - Definition from Whatis.com". Searchsoa.techtarget.com. 2012-05-13. Retrieved 2012-05-18.
  5. "MSDN Library". Retrieved 2010-06-14.
  6. v. Engelhardt, Sebastian (2008). "The Economic Properties of Software". Jena Economic Research Papers. 2 (2008–045.).
  7. Kaminsky, Dan (1999). "Why Open Source Is The Optimum Economic Paradigm for Software".

External links

Category: