Revision as of 22:32, 30 June 2006 editViartis (talk | contribs)24 edits More comprehensive version← Previous edit | Revision as of 22:33, 30 June 2006 edit undoPaulWicks (talk | contribs)Extended confirmed users2,219 editsm rv GT sockpuppetNext edit → | ||
Line 1: | Line 1: | ||
{{sprotected}} | |||
'''Parkinson's disease''' (paralysis agitans or PD) is a ] often characterized by muscle rigidity, tremor, a slowing of physical movement (]), and in extreme cases, a loss of physical movement (]). The primary symptoms are due to excessive muscle contraction, normally caused by the insufficient formation and action of ], which is produced in the dopaminergic neurons of the brain. Parkinson's disease was first formally recognised and its symptoms documented in ] in ''An Essay on the Shaking Palsy'' by the British physician Dr ]; the associated ] changes in the ] of ]s were identified in the ]. | |||
], a pattern which aids in diagnosing Parkinson's Disease.]] | |||
'''Parkinson's disease''' (also known as PD or Parkinson disease) is a degenerative disorder of the ], that affects the control of muscles, and so may affect movement, speech and posture. Parkinson's disease belongs to a group of conditions called movement disorders. It is often characterized by muscle rigidity, tremor, a slowing of physical movement (]), and in extreme cases, a loss of physical movement (]). The primary symptoms are due to excessive muscle contraction, normally caused by the insufficient formation and action of ], which is produced in the dopaminergic neurons of the brain. | |||
PD is both chronic, meaning it persists over a long period of time, and progressive. Many researchers now believe that PD results from a combination of genetic susceptibility and exposure to one or more environmental factors that trigger the disease. | |||
PD is the most common form of ], the name for a group of disorders with similar features and symptoms. PD is also called primary parkinsonism or idiopathic PD. The term idiopathic means a disorder for which no cause has yet been found. While most forms of parkinsonism are idiopathic, there are some cases where the cause is known or suspected or where the symptoms result from another disorder. For example, parkinsonism may result from changes in the brain's blood vessels. | |||
==History== | |||
Parkinson's disease was originally known as Paralysis Agitans. It was first formally recognised and its symptoms documented in ] in ''An Essay on the Shaking Palsy''<ref>Reproduced in ''J Neuropsychiatry Clin Neurosci'' 2002;14(2):223-36. . PMID 11983801.</ref> by the British physician Dr ]. The underlying ] changes in the ] were identified in the ], due largely to the work of Swedish sceientist ] who later went on to win a ]. ] entered clinical practice in 1967, and the first study reporting improvements in patients with Parkinson's disease resulting from treatment with L-dopa was published in 1968.<ref>Cotzias GC. L-dopa for Parkinsonism. ''N Engl J Med'' 1968;278:630. PMID 5637779.</ref> | |||
==Symptoms== | ==Symptoms== | ||
] | |||
Parkinson disease affects movement (motor symptoms). Typical other symptoms include disorders of mood, behavior, thinking, and sensation (non-motor symptoms). Individual patients' symptoms may be quite dissimilar; progression is also distinctly individual. | |||
There are four major dopamine pathways in the brain; the nigrostriatal pathway, referred to above, mediates movement and is the most conspicuously affected in early Parkinson's disease. The other pathways are the mesocortical, the mesolimbic, and the tuberoinfundibular. These pathways are associated with, respectively: volition and emotional responsiveness; desire, initiative, and reward; and sensory processes and maternal behavior. Reduction in dopamine along the non-striatal pathways is the likely explanation for much of the neuropsychiatric pathology associated with Parkinson's disease. | |||
===Motor symptoms=== | ===Motor symptoms=== | ||
The ]s are: | The ]s are: | ||
*''']''': 4-7] tremor, maximal when the limb is at rest, and decreased with voluntary movement. It is typically unilateral at onset. This is the most apparent and well-known symptom. However, an estimated 30% of patients have little perceptible tremor |
*''']''': 4-7] tremor, maximal when the limb is at rest, and decreased with voluntary movement. It is typically unilateral at onset. This is the most apparent and well-known symptom. However, an estimated 30% of patients have little perceptible tremor; these are classified as akinetic-rigid. | ||
*''']''': stiffness; increased muscle tone. In combination with a resting tremor, this produces a ratchety, "]" rigidity when the limb is passively moved. | *''']''': stiffness; increased muscle tone. In combination with a resting tremor, this produces a ratchety, "]" rigidity when the limb is passively moved. | ||
*''']/]''': respectively, slowness or absence of movement. Rapid, repetitive movements produce a ] and decremental loss of ]. | *''']/]''': respectively, slowness or absence of movement. Rapid, repetitive movements produce a ] and decremental loss of ]. | ||
*''']''': failure of postural ], which leads to impaired balance and falls. | *''']''': failure of postural ], which leads to impaired balance and falls. | ||
(The ] '''''TRAP''''' ('''T'''remor; '''R'''igidity; '''A'''kinesia/bradykinesia; '''P'''ostural instability) can be used to remember these symptoms.) | |||
Other motor symptoms include: | Other motor symptoms include: | ||
*] and posture disturbances: | |||
*] and Posture Disturbances: | |||
**Shuffling: gait is characterized by short steps, with feet barely leaving the ground, producing an audible shuffling noise. Small obstacles tend to trip the patient | **Shuffling: gait is characterized by short steps, with feet barely leaving the ground, producing an audible shuffling noise. Small obstacles tend to trip the patient | ||
**Decreased arm swing: a form of bradykinesia | **Decreased arm swing: a form of bradykinesia | ||
Line 22: | Line 31: | ||
**Stooped, forward-flexed posture. In severe forms, the head and upper shoulders may be bent at a ] relative to the trunk (]). | **Stooped, forward-flexed posture. In severe forms, the head and upper shoulders may be bent at a ] relative to the trunk (]). | ||
**Festination: a combination of stooped posture, imbalance, and short steps. It leads to a gait that gets progressively faster and faster, often ending in a fall. | **Festination: a combination of stooped posture, imbalance, and short steps. It leads to a gait that gets progressively faster and faster, often ending in a fall. | ||
**Gait freezing: " |
**Gait freezing: "freezing" is another word for akinesia, the inability to move. Gait freezing is characterized by inability to move the feet, especially in tight, cluttered spaces or when initiating gait. | ||
**]: abnormal, sustained, painful twisting muscle contractions, usually affecting the foot and ankle in PD patients. This causes toe flexion and foot inversion, interfering with gait. |
**]: abnormal, sustained, painful twisting muscle contractions, usually affecting the foot and ankle in PD patients. This causes toe flexion and foot inversion, interfering with gait. | ||
*Speech and |
*Speech and swallowing disturbances | ||
**Hypophonia: soft speech. |
**Hypophonia: soft speech. Speech quality tends to be soft, hoarse, and monotonous. | ||
**Festinating speech: excessively rapid, soft, poorly-intelligible speech. | **Festinating speech: excessively rapid, soft, poorly-intelligible speech. | ||
**]: most likely caused by a weak, infrequent swallow and stooped posture. | **]: most likely caused by a weak, infrequent swallow and stooped posture. | ||
Line 33: | Line 42: | ||
|journal=] | |journal=] | ||
|year=1996 | volume=32 | issue=4 | pages= 693–704 | |year=1996 | volume=32 | issue=4 | pages= 693–704 | ||
|url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8954247 | |||
}}</ref> | }}</ref> | ||
**]: impaired ability to swallow. Can lead to ], ], and death. | **]: impaired ability to swallow. Can lead to ], ], and ultimately death. | ||
*Other motor symptoms: | *Other motor symptoms: | ||
**] (up to 50% of cases); | **] (up to 50% of cases); | ||
Line 51: | Line 60: | ||
**Poverty of movement: overall loss of accessory movements, such as decreased arm swing when walking, as well as spontaneous movement. | **Poverty of movement: overall loss of accessory movements, such as decreased arm swing when walking, as well as spontaneous movement. | ||
===Non- |
===Non-motor symptoms=== | ||
Mood disturbances: | Mood disturbances: | ||
Estimated prevalance rates of depression vary widely according to the population sampled and methodology used. Reviews of ] estimate its occurrence in anywhere from 20-80% of cases. Estimates from community samples tend to find lower rates than from specialist centres. Most studies use self-report questionnaires such as the ] which may overinflate scores due to physical symptoms. Studies using diagnostic interviews by trained psychiatrists also report lower rates of depression. | |||
*]: occurs in 40-70% of cases; 20% of depression cases are major depressive disorder; severity and persistence of depression is positively associated with executive dysfunction and dementia; | |||
*] or ]<br>Note: 70% of individuals with Parkinson's disease diagnosed with pre-existing depression go on to develop anxiety; 90% of Parkinson's disease patients with pre-existing anxiety subsequently develop depression); | |||
More generally, there is an increased risk for any individual with depression to go on to develop Parkinson's disease at a later date . | |||
*] or ]: abulia translates from Greek as the absence or negative of will; apathy is an absence of feeling or desire | |||
70% of individuals with Parkinson's disease diagnosed with pre-existing depression go on to develop anxiety. 90% of Parkinson's disease patients with pre-existing anxiety subsequently develop depression); ] or ]. | |||
] disturbances: | ] disturbances: | ||
Line 71: | Line 83: | ||
]: | ]: | ||
*Excessive daytime somnolence; | *Excessive daytime ]; | ||
*Initial, intermediate, and terminal insomnia; | *Initial, intermediate, and terminal insomnia; | ||
*Disturbances in REM sleep: disturbingly vivid dreams, and REM Sleep Disorder, characterized by acting out of dream content; | *Disturbances in REM sleep: disturbingly vivid dreams, and REM Sleep Disorder, characterized by acting out of dream content; | ||
Line 88: | Line 100: | ||
*]: characterized by profound impairment of sexual arousal, behavior, orgasm, and drive is found in mid and late parkinson disease. Current data addresses male sexual function almost exclusively. | *]: characterized by profound impairment of sexual arousal, behavior, orgasm, and drive is found in mid and late parkinson disease. Current data addresses male sexual function almost exclusively. | ||
== |
== Diagnosis == | ||
There are currently no blood or laboratory tests that have been proven to help in diagnosing sporadic PD. Therefore the diagnosis is based on medical history and a neurological examination. The disease can be difficult to diagnose accurately. Early signs and symptoms of PD may sometimes be dismissed as the effects of normal aging. The physician may need to observe the person for some time until it is apparent that the symptoms are consistently present. Doctors may sometimes request brain scans or laboratory tests in order to rule out other diseases. However, CT and MRI brain scans of people with PD usually appear normal. | |||
== Descriptive epidemiology== | |||
There are estimated to be around 4 to 6 million people that have been diagnosed with Parkinson's disease. There are over 1.5 million in ] alone. It is likely that there are millions of people with Parkinson's Disease that remain undiagnosed. Prevalence estimates range from a low of 7 per 100,000 in ] to a high of 329.3 per 100,000 in ], U.S.A., and 328.3 cases per 100,000 in the ] community in ]. The greatest prevalence of any country is the ], with between 100 and 250 cases per 100,000. | |||
The worldwide ] of Parkinson's disease is 4 to 6 million people. There are over 1.5 million in ] alone. The disease usually has a long, subtle onset, so diagnosis occurs most often after many years of subclinical disease {{fact}}. Prevalence estimates range from a low of 7 per 100,000 in ] to a high of 329.3 per 100,000 in ], U.S.A. (although that figure was arrived at using capture-recapture estimates), and 328.3 cases per 100,000 in the ] community in ]. The greatest prevalence of any country is the ], with between 100 and 250 cases per 100,000.{{fact}} | |||
The average age at which symptoms begin is 55-60, and although cases at ages as low as 11 have been reported it is highly unusual for people under 30 to develop Parkinson's. The risk of developing it substantially increases with age. It occurs in all parts of the world, but appears to be more common in people of European ancestry than in those of African ancestry. Those of East Asian ancestry have an intermediate risk. It is more common in rural than urban areas and men are affected at a rate about double that of women. There is a suggestion of increased prevalence in the California Hispanic population <ref>Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. | |||
- Am J Epidemiol. 2003 Jun 1;157(11):1015-22. </ref>. About 2% of the population develops the disease some time during life {{fact}}. | |||
Incidence has been estimated by several groups, starting with northern California <ref>Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. | |||
* ] | |||
- Am J Epidemiol. 2003 Jun 1;157(11):1015-22. </ref>. They observed age and sex corrected incidence of 13.4 per 100,000/year. They note a rapid increase in incidence with age, male rates nearly double female rates, and an elevated rate amongst Hispanics. This study was followed by a group in Spain <ref> J. Benito-Leon, F. Bermejo-Pareja, J. M. Morales-Gonzalez, J. Porta-Etessam, R. Trincado, S. Vega, and E. D. Louis. Incidence of Parkinson disease and parkinsonism in three elderly populations of central Spain. Neurology, March 9, 2004; 62(5): 734 - 741.</ref> who used the two-stage survey technique pioneered in the Copiah County study {{fact}} to survey a cohort age 65 to 85. Within that group, incidence adjusted for age and sex was 186.8/100,000 per year, with men's rates being 2.55 times that of women. For the same age group, Van den Eeden and colleagues observed an incidence of roughly 120/100,000/year. Soon thereafter the Rotterdam sudy was published <ref> L. M.L. de Lau, P. C.L.M. Giesbergen, M. C. de Rijk, A. Hofman, P. J. Koudstaal, and M. M.B. Breteler. Incidence of parkinsonism and Parkinson disease in a general population: The Rotterdam Study | |||
- Neurology, October 12, 2004; 63(7): 1240 - 1244. </ref> using techniques similar to the Spanish group and Copiah County. They note age-specific incidence rates from 0.3 per 1000 person-years in subjects aged 55 to 65 years, to 4.4 per 1000 person-years for those aged ≥85 year, and a sex ratio of 1.55 for male incidence. | |||
==Related diseases== | ==Related diseases== | ||
===Parkinson-Plus diseases=== | |||
There are other disorders that are called ''']'''. * | |||
These include: | |||
There are other disorders that are called ''']'''. These include: | |||
* '''] (MSA)''' | |||
** '''] (SDS)''' | |||
** '''Striatonigral degeneration (SND)''' | |||
** '''Olivopontocerebellar atrophy (OPCA)''' | |||
* '''] (PSP)''' | |||
* '''Corticobasal degeneration (CBD)''' | |||
* '''Cerebellar Thoracic Outlet Syndrome''' | |||
* '''Antiphospholipid Syndrome''' | |||
* '''Vascular Parkinsonism''' | |||
* ''']''' | |||
* ''']''' | |||
* ''']''' | |||
* ] (MSA) | |||
==]== | |||
** ] (SDS) | |||
** Striatonigral degeneration (SND) | |||
** Olivopontocerebellar atrophy (OPCA) | |||
* Progressive supranuclear palsy (PSP) | |||
* Corticobasal degeneration (CBD)''' | |||
Some people include dementia with Lewy bodies (DLB) as one of the 'Parkinson-plus' syndromes. Although idiopathic Parkinson's disease patients also have Lewy bodies in their brain tissue, the distibution is denser and more widespread in DLB. Even so, the relationship between Parkinson disease, Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB) might be most accurately conceptualized as an spectrum, with a discrete area of overlap between each of the three disorders. The natural history and role of Lewy bodies is very little understood. | |||
'''The interaction of Dopamine and Acetylcholine''' | |||
Patients often begin with typical Parkinson's disease symptoms which persist for some years; these Parkinson-plus diseases can only be diagnosed when other symptoms become apparent with the passage of time. These Parkinson-plus diseases usually progress more quickly than typical ideopathic Parkinson disease. The usual anti-Parkinson's medications are typically either less effective or not effective at all in controlling symptoms; patients may be exquisitely sensitive to neuroleptic medications like ]. Additionally, the cholinesterase inhibiting medications have shown preliminary efficacy in treating the cognitive, psychiatric, and behavioral aspcects of the disease, so correct differential diagnosis is important. | |||
The primary symptoms of Parkinson's Disease are due to excessive muscle contraction. | |||
==Pathology== | |||
Acetylcholine affects muscle contraction via the five cholinergic receptors : m1, m2, m3, m4, and m5. The receptors m1, m3 and m5 are stimulatory. The receptors m2 and m4 are inhibitory. The combined stimulatory effect of m1, m3 and m5 is more powerful in total than the combined inhibitory effect of m2 and m4. So the overall effect of acetylcholine is to stimulate muscle contraction. | |||
===The interaction of dopamine and acetylcholine=== | |||
] | |||
The primary symptoms of Parkinson's disease are due to excessive muscle contraction. | |||
] affects muscle contraction via the five cholinergic receptors : m1, m2, m3, m4, and m5. The receptors m1, m3 and m5 are stimulatory. The receptors m2 and m4 are inhibitory. The combined stimulatory effect of m1, m3 and m5 is more powerful in total than the combined inhibitory effect of m2 and m4. So the overall effect of acetylcholine is to stimulate muscle contraction. | |||
Dopamine affects muscle contraction via the five dopamine receptors: D1, D2, D3, D4, and D5. The receptors D2, D3 and D4 are inhibitory. The receptors D1 and D5 are stimulatory. The combined inhibitory effect of D2, D3 and D4 is more powerful in total than the combined stimulatory effect of D1 and D5. So the overall effect of dopamine is to inhibit muscle contraction. | |||
Parkinson's Disease consequently occurs when the effect of dopamine is less than that of acetylcholine. Dopamine deficiency rather than acetylcholine excess is normally responsible for this occurring. | Parkinson's Disease consequently occurs when the effect of dopamine is less than that of acetylcholine. Dopamine deficiency rather than acetylcholine excess is normally responsible for this occurring. | ||
Line 129: | Line 142: | ||
===Dopamine biosynthesis=== | |||
'''Dopamine biosynthesis''' | |||
The primary fault in Parkinson's Disease is that, whatever the cause, there is insufficient dopamine. Dopamine is formed in the dopaminergic neurons by the following pathway : | The primary fault in Parkinson's Disease is that, whatever the cause, there is insufficient dopamine. Dopamine is formed in the dopaminergic neurons by the following pathway : | ||
Line 138: | Line 149: | ||
The first step is biosynthesised by the enzyme Tyrosine 3-Monooxygenase (which is more commonly called by its former name tyrosine hydroxylase). The following is the complete reaction : | The first step is biosynthesised by the enzyme Tyrosine 3-Monooxygenase (which is more commonly called by its former name tyrosine hydroxylase). The following is the complete reaction : | ||
L-tyrosine + THFA + |
L-tyrosine + THFA + O<sub>2</sub> + Fe<sup>2+</sup> >>> L-dopa + DHFA + H<sub>2</sub>O + Fe<sup>2+</sup> | ||
So for L-dopa formation, L-tyrosine, THFA (tetrahydrofolic acid), and ferrous iron are essential. The activity of this enzyme is often as low as 25% in Parkinson's Disease, and in severe cases can be as low as 10%. This indicates that one or more of the elements required for the formation of L-dopa are in insufficient quantities. | So for L-dopa formation, L-tyrosine, THFA (tetrahydrofolic acid), and ferrous iron are essential. The activity of this enzyme is often as low as 25% in Parkinson's Disease, and in severe cases can be as low as 10%. This indicates that one or more of the elements required for the formation of L-dopa are in insufficient quantities. | ||
Line 146: | Line 157: | ||
L-dopa + pyridoxal phosphate >>> dopamine + pyridoxal phosphate + CO2 | L-dopa + pyridoxal phosphate >>> dopamine + pyridoxal phosphate + CO2 | ||
So for dopamine biosynthesis from L-dopa, pyridoxal phosphate is essential. The activity of the enzyme rises and falls according to how much pyridoxal phosphate there is. The level of this enzyme in Parkinson's |
So for dopamine biosynthesis from L-dopa, pyridoxal phosphate is essential. The activity of the enzyme rises and falls according to how much pyridoxal phosphate there is. The level of this enzyme in Parkinson's disease can also be around 25% or even far less. | ||
'''Coenzymes involved in Dopamine biosynthesis | |||
===Coenzymes involved in dopamine biosynthesis=== | |||
Besides two enzymes being required for the formation of dopamine from L-tyrosine (L-tyrosine >>> L-dopa >>> Dopamine), three coenzymes are also required. Enzymes are substances that will enable a specific chemical reaction to take place in the body. Coenzymes are substances that assist enzymes. Some enzymes (including those involved in dopamine biosynthesis) will not function without coenzymes. | Besides two enzymes being required for the formation of dopamine from L-tyrosine (L-tyrosine >>> L-dopa >>> Dopamine), three coenzymes are also required. Enzymes are substances that will enable a specific chemical reaction to take place in the body. Coenzymes are substances that assist enzymes. Some enzymes (including those involved in dopamine biosynthesis) will not function without coenzymes. | ||
Line 161: | Line 170: | ||
Nicotinamide >>> NMN >>> NAD >>> NADH (or NADP) >>> NADPH | Nicotinamide >>> NMN >>> NAD >>> NADH (or NADP) >>> NADPH | ||
===G-proteins=== | |||
In order to relieve Parkinson's disease, dopamine (or dopamine agonists) must stimulate dopamine receptors, which must in turn stimulate the G proteins : | |||
'''G proteins''' | |||
In order to relieve Parkinson's Disease, dopamine (or dopamine agonists) must stimulate dopamine receptors, which must in turn stimulate the G proteins : | |||
L-tyrosine > L-dopa > dopamine > dopamine receptors (D2, D3, D4) > G proteins | L-tyrosine > L-dopa > dopamine > dopamine receptors (D2, D3, D4) > G proteins | ||
G proteins consist of three parts : alpha - beta - gamma, that are lined to each other. There are three types of beta unit (1, 2, 4), and seven types of gamma unit (2, 3, 4, 5, 7, 10, 11). However, they do not matter much to Parkinson's Disease. What matters to Parkinson's Disease are the alpha subunits, because it is actually these that ultimately relieve (or aggravate) Parkinson's |
G proteins consist of three parts : alpha - beta - gamma, that are lined to each other. There are three types of beta unit (1, 2, 4), and seven types of gamma unit (2, 3, 4, 5, 7, 10, 11). However, they do not matter much to Parkinson's Disease. What matters to Parkinson's Disease are the alpha subunits, because it is actually these that ultimately relieve (or aggravate) Parkinson's disease. There are five types: | ||
* G proteins that aggravate Parkinson's disease : Gs 1 alpha | |||
* G proteins that relieve Parkinson's disease : Gi 1 alpha, Gi 2 alpha, Gi 3 alpha | |||
* G proteins that have little effect on Parkinson's disease : Go alpha | |||
The sole purpose of dopamine (or dopamine agonists) stimulating dopamine receptors is to cause the alpha subunits (the active part of G proteins) to break away from the rest of the G protein. Without this occurring almost everybody would have Parkinson's disease. Once the alpha part of G proteins is released, via cyclic AMP, it takes the final action in the series of event that leads to the ridding of Parkinson's Disease, which is to inhibit the cells it has effect on. | |||
G proteins that aggravate Parkinson's Disease : Gs 1 alpha | |||
G proteins that relieve Parkinson's Disease : Gi 1 alpha, Gi 2 alpha, Gi 3 alpha | |||
G proteins that have little effect on Parkinson's Disease : Go alpha | |||
===Neuromelanin=== | |||
The sole purpose of dopamine (or dopamine agonists) stimulating dopamine receptors is to cause the alpha subunits (the active part of G proteins) to break away from the rest of the G protein. Without this occurring almost everybody would have Parkinson's Disease. Once the alpha part of G proteins is released, via cyclic AMP, it takes the final action in the series of event that leads to the ridding of Parkinson's Disease, which is to inhibit the cells it has effect on. | |||
In the cells involved in Parkinson's disease (the dopaminergic neurons) the function is to produce dopamine. In the melanocytes, which are in the skin, the function is to produce the pigment melanin. Melanin is what causes people to suntan. Although they end up with different substances (dopamine and melanin), both of these cells start off with L-tyrosine, and both of them form L-dopa as well : | |||
'''Neuromelanin''' | |||
In the cells involved in Parkinson's Disease (the dopaminergic neurons) the function is to produce dopamine. In the melanocytes, which are in the skin, the function is to produce the pigment melanin. Melanin is what causes people to suntan. Although they end up with different substances (dopamine and melanin), both of these cells start off with L-tyrosine, and both of them form L-dopa as well : | |||
dopaminergic neurons : L-tyrosine > L-dopa > dopamine | dopaminergic neurons : L-tyrosine > L-dopa > dopamine | ||
Line 189: | Line 191: | ||
In the dopaminergic neurons, when somebody can not form dopamine, they can accidentally form melanin instead. In the brain it is called neuromelanin because of the different amino acids it is attached to. However, this is not a normal mechanism, and it occurs via a different mechanism from that found in the skin. The formation of neuromelanin in the brain is often claimed to be what happens in healthy brains. Healthy brains are supposed to be darker in the part of the brain called the substantia nigra. However, it is actually due to the biochemical mechanisms not working properly. As not much L-dopa is formed in Parkinson's Disease, there isn't much capacity for that L-dopa to accidentally form melanin in the brain. So people with Parkinson's Disease can tend to have not much pigment in the part of the brain called the substantia nigra. However, that does not cause a medical problem because melanin is not supposed to be in the brain. | In the dopaminergic neurons, when somebody can not form dopamine, they can accidentally form melanin instead. In the brain it is called neuromelanin because of the different amino acids it is attached to. However, this is not a normal mechanism, and it occurs via a different mechanism from that found in the skin. The formation of neuromelanin in the brain is often claimed to be what happens in healthy brains. Healthy brains are supposed to be darker in the part of the brain called the substantia nigra. However, it is actually due to the biochemical mechanisms not working properly. As not much L-dopa is formed in Parkinson's Disease, there isn't much capacity for that L-dopa to accidentally form melanin in the brain. So people with Parkinson's Disease can tend to have not much pigment in the part of the brain called the substantia nigra. However, that does not cause a medical problem because melanin is not supposed to be in the brain. | ||
===Cell damage=== | |||
'''Cell damage''' | |||
The primary natural means via which cell damage can occur in Parkinson's Disease is due to the reaction from L-tyrosine to L-dopa not taking place. The following is what should happen : | The primary natural means via which cell damage can occur in Parkinson's Disease is due to the reaction from L-tyrosine to L-dopa not taking place. The following is what should happen : | ||
Line 212: | Line 212: | ||
However, the problem with the use of Vitamin C and Vitamin E in trying to prevent cell damage is that they do nothing at all to prevent the original source of the problem, which is the formation of superoxide anion. | However, the problem with the use of Vitamin C and Vitamin E in trying to prevent cell damage is that they do nothing at all to prevent the original source of the problem, which is the formation of superoxide anion. | ||
===Lewy bodies=== | |||
Lewy bodies are found in the ] of neurons, and are composed of densely aggregated ]s. These filaments contain ] and ]. Lewy Bodies are often associated with Parkinson's disease. However, they are not unique to Parkinson's Disease, as they also occur in several other medical disorders. | |||
'''The Lewy Bodies''' | |||
Lewy bodies are found in the ] of neurons, and are composed of densely aggregated ]s. These filaments contain ] and ]. Lewy Bodies are often associated with Parkinson's Disease. However, they are not unique to Parkinson's Disease, as they also occur in several other medical disorders. | |||
==Pathophysiology == | ==Pathophysiology == | ||
Most people with Parkinson's Disease are described as having idiopathic Parkinson's Disease (having no specific cause). There are far less common causes of Parkinson's Disease including genetic, toxins, head trauma, and drug induced Parkinson's Disease. | |||
Most people with Parkinson's Disease are described as having idiopathic Parkinson's Disease (having no specific cause). There are far less common causes of Parkinson's Disease including genetic, toxins and head trauma. | |||
===Genetic=== | ===Genetic=== | ||
Line 279: | Line 276: | ||
===Toxins=== | ===Toxins=== | ||
'''Paraquat''' is a quaternary ammonium herbicide. Other members of this class include diquat, cyperquat, diethamquat, difenzoquat and morfamquat. Pesticides are known to be associated with an increased rate of Parkinson's Disease. Paraquat structurally resembles MPTP and its metabolite MPP+. MPTP and MPP+ are neurotoxic chemicals, that induce Parkinson's Disease in exposed humans. Paraquat might therefore might, as do MPTP and MPP+ inhibit tyrosine hydroxylation, which is essential for the formation of dopamine. | |||
'''Rotenone''' is an insecticide that has been demonstrated as a cause of mouse-model Parkinson's disease. Rotenone is commonly used in powdered form to treat parasitic mites on chickens and other fowl, and so can be found in poultry. Rotenone is produced by extraction from the roots, seeds, and leaves of certain tropical legumes. Rotenone inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So Rotenone causes Parkinson's Disease by lowering dopamine levels. | |||
'''Paraquat''' is a quaternary ammonium herbicide, and the second most widely used herbicide in the world. Other members of this class include diquat, cyperquat, diethamquat, difenzoquat and morfamquat. Pesticides are known to be associated with an increased rate of Parkinson's Disease. Paraquat structurally resembles MPTP and its metabolite MPP+. MPTP and MPP+ are neurotoxic chemicals, that induce Parkinson's Disease in exposed humans. Paraquat might therefore might, as do MPTP and MPP+ inhibit tyrosine hydroxylation, which is essential for the formation of dopamine. | |||
''' |
'''Maneb''' is a fungicide that contains manganese. The major active element of Maneb is manganese ethylene-bis-dithiocarbamate. Pesticides are known to be associated with an increased rate of Parkinson's Disease, so there is a greatly increased likelihood of developing symptoms by people involved in horticulture and agriculture. As Maneb contains manganese it is possible that it causes Parkinson's Disease symptoms via the same means as manganese, which is by inhibiting tyrosine hydroxylation, which is essential for the formation of dopamine. The effects of Maneb are potentiated when there is simultaneous exposure to the pesticide Paraquat. | ||
'''Manganese''' can cause ], an irreversible neurological disorder similar to Parkinson's disease. Occupational exposures occur mainly in welding, mining as miners are surrounded by manganese dust and airborne manganese particles, alloy production, processing, ferro-manganese operations especially in which manganese ore or manganese compounds are turned into steel, and work with agrochemicals. The towns and communities surrounding the areas of manganese heavy industry could also become affected by exposure to manganese. It is also hypothesized that long-term exposure to the naturally-occurring manganese in shower water also puts people at risk. Manganese inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So manganese may cause Parkinson's disease by lowering dopamine levels. | |||
'''Maneb''' is a fungicide that contains manganese. The major active element of Maneb is manganese ethylene-bis-dithiocarbamate. Pesticides are known to be associated with an increased rate of Parkinson's Disease, so there is a greatly increased likelihood of developing symptoms by people involved in horticulture and agriculture. As Maneb contains manganese it is possible that it causes Parkinson's Disease symptoms via the same means as manganese, which is by inhibiting tyrosine hydroxylation, which is essential for the formation of dopamine. The effects of Maneb are potentiated when there is simultaneous exposure to the pesticide Paraquat. | |||
''']''' (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine) is a chemical that may be produced accidentally during illicit manufacture of the recreational drug MPPP, which is a synthetic heroin substitute. The neurotoxicity of MPTP was discovered in 1976 after a chemistry graduate student synthesized MPPP incorrectly and injected the result. It was contaminated with MPTP, and within three days he began exhibiting symptoms of acute Parkinson's disease. It was also developed but unused as a herbicide and was distributed on the streets as a synthetic opioid-like drug. MPTP inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So MPTP causes acute Parkinson's disease by lowering dopamine levels. | |||
'''Carbon monoxide''' toxicity is frequent due to the formation of carbon monoxide by very common means such as gas cookers and exhaust fumes. However, it normally requires the person having gone in to a coma as a result of the carbon monoxide poisoning before symptoms of Parkinson's Disease develop. Carbon monoxide causes hemoglobin (which transports oxygen) to turn in to carboxyhemoglobin (which does not transport oxygen). Oxygen is required for the formation of L-dopa. So carbon monoxide may cause Parkinson's Disease symptoms by interfering with the availability of oxygen to the brain. However, the precise means by which it can cause Parkinsonism has still not been proven. | |||
''']''' is a solvent that has been shown to cause or that has been associated with people with Parkinson's disease. Toluene is used as an octane booster in fuel, as a solvent in paints, paint thinners, chemical reactions, rubber, printing, adhesives, lacquers, leather tanning, disinfectants, and to produce phenol and TNT (a component of explosives). It is also used as a raw material for toluene diisocyanate, which is used in the manufacture of polyurethane foams. The precise means of toxicity is not known. | |||
'''Manganese''' can cause ], an irreversible neurological disorder similar to Parkinson's disease. Occupational exposures occur mainly in - welding, mining as miners are surrounded by manganese dust and airborne manganese particles, alloy production, processing, ferro-manganese operations especially in which manganese ore or manganese compounds are turned into steel, and work with agrochemicals. The towns and communities surrounding the areas of manganese heavy industry could also become affected by exposure to manganese. It is also hypothesized that long-term exposure to the naturally-occurring manganese in shower water also puts people at risk. Manganese inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So manganese causes Parkinson's Disease by lowering dopamine levels. | |||
'''N-Hexane''', a constituent of solvents has been shown to cause parkinsonism. Most of the n-hexane used in industry is mixed with similar chemicals called solvents. The major use for solvents containing n-hexane is to extract vegetable oils from crops such as soybeans. These solvents are also used as cleaning agents in the printing, textile, furniture, and shoemaking industries. Use by chemists. Certain kinds of special glues used in the roofing and shoe and leather industries also contain n-hexane. Several consumer products contain n-hexane, such as gasoline, spot removers, quick-drying glues used in various hobbies, and rubber cement. The precise means is not known. | |||
'''Mercury''' toxicity is a known cause of symptoms that include those of Parkinson's Disease, especially tremor. One of the chief targets of the toxin is the enzyme pyruvate dehydrogenase (PDH). The enzyme is irreversibly inhibited by several mercury compounds, the lipoic acid component of the multienzyme complex binds mercury compounds tightly and thus inhibits PDH. However, the cause of the symptoms of Parkinson's Disease is likely to be due to the fact that mercury potently causes the release of dopamine, thereby lowering dopamine levels.Mercury is found in a wqide variety of sources : dietary fish intake, ethnic over-the-counter medications, occupational exposures to mercury vapour, possession of dental amalgam fillings, gold production, skin ointment, some soaps. | |||
'''Carbon disulfide''', usually in solvents or pesticides, can cause Parkinson's disease that is associated with other neurological symptoms. The effects can persist for years after exposure to the carbon disulfide has ceased. Potential sources include pesticides used as fumigants, disulfiram (a drug used in the treatment of chronic alcoholism), industrial solvents, solvents used in the production of viscose rayon and cellophane film. Means of toxicity is not established. However, carbon disulphide interferes with pyridoxal 5-phosphate. Pyridoxal 5-phosphate is essential for the formation of dopamine from L-dopa. So carbon disulphide may cause Parkinson's Disease symptoms by reducing the formation of L-dopa. | |||
'''MPTP''' (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine) is a chemical that may be produced accidentally during illicit manufacture of the recreational drug MPPP, which is a synthetic heroin substitute. The neurotoxicity of MPTP was discovered in 1976 after a chemistry graduate student synthesized MPPP incorrectly and injected the result. It was contaminated with MPTP, and within three days he began exhibiting symptoms of Parkinson's disease. It was also developed but unused as a herbicide. MPTP inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So MPTP causes Parkinson's Disease by lowering dopamine levels. | |||
'''Toluene''' is a solvent that has been shown to cause or that has been associated with people with Parkinson's Disease. Toluene is used as an octane booster in fuel, as a solvent in paints, paint thinners, chemical reactions, rubber, printing, adhesives, lacquers, leather tanning, disinfectants, and to produce phenol and TNT (a component of explosives). It is also used as a raw material for toluene diisocyanate, which is used in the manufacture of polyurethane foams. The precise means of toxicity is not known. | |||
'''N-Hexane''', a constituent of solvents has been shown to cause Parkinsonism. Most of the n-hexane used in industry is mixed with similar chemicals called solvents. The major use for solvents containing n-hexane is to extract vegetable oils from crops such as soybeans. These solvents are also used as cleaning agents in the printing, textile, furniture, and shoemaking industries. Use by chemists. Certain kinds of special glues used in the roofing and shoe and leather industries also contain n-hexane. Several consumer products contain n-hexane, such as gasoline, spot removers, quick-drying glues used in various hobbies, and rubber cement. The precise means is not known. | |||
'''Carbon disulfide''', usually in solvents or pesticides, can cause Parkinson's Disease that is associated with other neurological symptoms. The effects can persist for years after exposure to the carbon disulfide has ceased. Potential sources : pesticides used as fumigants, disulfiram (a drug used in the treatment of chronic alcoholism), industrial solvents, solvents used in the production of viscose rayon and cellophane film. Means of toxicity is not established. However, carbon disulphide interferes with pyridoxal 5-phosphate. Pyridoxal 5-phosphate is essential for the formation of dopamine from L-dopa. So carbon disulphide may cause Parkinson's Disease symptoms by reducing the formation of L-dopa. | |||
'''Copper''' accumulates in Wilson's Disease, which is associated with Parkinson's Disease. Although copper may cause symptoms by other means, there do not appear to be published studies in which copper has otherwise caused Parkinson's Disease. This may be because copper is not normally formed in to a vapour or dust that can readily be inhaled or consumed. Copper can be found in high quantities in copper mines, copper cooking pots, copper plumbing, very excessive consumption of copper nutritional supplements. Excess copper can cause the formation of a copper-dopamine complex, which leads to the oxidation of dopamine to aminochrome. | |||
'''Cyanide''', usually from the consumption of potassium cyanide or sodium cyanide can result in Parkinsonism. Cyanide is also produced by certain bacteria, fungi, and algae, and are found in a number of foods and plants, such as unprocessed cassava, cherry pits,apricot pits, bitter almonds. Hydrogen cyanide is contained in vehicle exhaust and in tobacco smoke,as does burning plastic.Cyanides are also found in gold processing. | |||
Cyanide interrupts the electron transport chain in the inner membrane of the mitochondrion. Cyanide also occupies the place of oxygen in hemoglobin (which transports oxygen). Oxygen is required for the formation of L-dopa. So carbon monoxide may cause Parkinson's Disease symptoms by interefering with the availability of oxygen to the brain. However, the precise means by which it causes Parkinson's Disease has still not been proven. | |||
===Head trauma=== | ===Head trauma=== | ||
Line 333: | Line 316: | ||
A methodologically strong recent study found that those who have experienced a head injury are four times more likely to develop Parkinson’s disease than those who have never suffered a head injury. The risk of developing Parkinson’s increases eightfold for patients who have had head trauma requiring hospitalization, and it increases 11-fold for patients who have experienced severe head injury.<ref name="Uryu2003" /> | A methodologically strong recent study found that those who have experienced a head injury are four times more likely to develop Parkinson’s disease than those who have never suffered a head injury. The risk of developing Parkinson’s increases eightfold for patients who have had head trauma requiring hospitalization, and it increases 11-fold for patients who have experienced severe head injury.<ref name="Uryu2003" /> | ||
===Drug |
===Drug-induced=== | ||
Antipsychotics, which are used to treat Schizophrenia and Psychosis, can induce the symptoms of Parkinson's Disease by lowering dopaminergic activity. Due to feedback inhibition, L-dopa can eventually cause the symptoms of Parkinson's Disease that it initially relieves. Dopamine receptors can also eventually contribute to Parkinson's Disease symptoms due to making the dopamine receptors increasingly less sensitive. | Antipsychotics, which are used to treat Schizophrenia and Psychosis, can induce the symptoms of Parkinson's Disease by lowering dopaminergic activity. Due to feedback inhibition, L-dopa can eventually cause the symptoms of Parkinson's Disease that it initially relieves. Dopamine receptors can also eventually contribute to Parkinson's Disease symptoms due to making the dopamine receptors increasingly less sensitive. | ||
== |
==Treatment== | ||
Parkinson's disease is a chronic disorder that requires broad-based management including patient and family education, support group services, general wellness maintenance, exercise, and nutrition. At present, there is no cure for PD, but medications or surgery can provide relief from the symptoms. | |||
==== Levodopa ==== | ==== Levodopa ==== | ||
] | |||
The most widely used form of treatment is ] in various forms. ] is transfomed into dopamine in the dopaminergic neurons by L-aromatic amino acid decarboxylase (often known by its former name dopa-decarboxylase). However, only 1-5% of L-DOPA enters the dopaminergic neurons. The remaining L-DOPA is often metabolised to dopamine elsewhere, causing a wide variety of side effects. Due to feedback inhibition, L-dopa results in a reduction in the endogenous formation of L-dopa, and so eventually becomes counterproductive. | The most widely used form of treatment is ] in various forms. ] is transfomed into dopamine in the dopaminergic neurons by L-aromatic amino acid decarboxylase (often known by its former name dopa-decarboxylase). However, only 1-5% of L-DOPA enters the dopaminergic neurons. The remaining L-DOPA is often metabolised to dopamine elsewhere, causing a wide variety of side effects. Due to feedback inhibition, L-dopa results in a reduction in the endogenous formation of L-dopa, and so eventually becomes counterproductive. | ||
Carbidopa and Benserazide are dopa decarboxylase inhibitors. They help to prevent the metabolism of L-dopa before it reaches the dopaminergic neurons. | Carbidopa and Benserazide are dopa decarboxylase inhibitors. They help to prevent the metabolism of L-dopa before it reaches the dopaminergic neurons. | ||
Talcopone inhibits the COMT enzyme, thereby prolonging the effects of L-Dopa, and so has has been used to complement L-dopa. However, due to its side effects, such as possible liver failure is limited in its availability. A similar drug, entacapone, has similar efficacy and has not been shown to cause significant alterations of liver function. | |||
Sinemet contains L-dopa and also ]. Parcopa contains the same two drugs but is orally disintegrating. Madopar contains L-dopa and benserazide. There are also controlled release versions of Sinemet and Madopar that spread out the effect of the L-dopa. Duodopa is a combination of levodopa and carbidopa, dispersed as a viscous gel. Using a patient-operated portable pump, the drug is continuously delivered via a tube directly into the upper small intestine, where it is rapidly absorbed. Stalevo contains Levodopa, Carbidopa and Entacopone. |
Sinemet contains L-dopa and also ]. Parcopa contains the same two drugs but is orally disintegrating. Madopar contains L-dopa and benserazide. There are also controlled release versions of Sinemet and Madopar that spread out the effect of the L-dopa. Duodopa is a combination of levodopa and carbidopa, dispersed as a viscous gel. Using a patient-operated portable pump, the drug is continuously delivered via a tube directly into the upper small intestine, where it is rapidly absorbed. Stalevo contains Levodopa, Carbidopa and Entacopone. '']'', is a natural source of therapeutic quantities of L-dopa. | ||
==== Dopamine |
==== Dopamine agonists ==== | ||
The Dopamine-agonists ] (Parlodel), ] (Permax), ] (Mirapex), ] (Requip), ] (Cabaser), ] (Apokyn), and ] (Revanil), are moderately effective. These have their own side effects including those listed above in addition to somnolence, hallucinations and /or insomnia. Dopamine agonists initially act by stimulating some of the dopamine receptors. However, they cause the dopamine receptors to become progressively less sensitive, thereby eventually increasing the symptoms. | The Dopamine-agonists ] (Parlodel), ] (Permax), ] (Mirapex), ] (Requip), ] (Cabaser), ] (Apokyn), and ] (Revanil), are moderately effective. These have their own side effects including those listed above in addition to somnolence, hallucinations and /or insomnia. Dopamine agonists initially act by stimulating some of the dopamine receptors. However, they cause the dopamine receptors to become progressively less sensitive, thereby eventually increasing the symptoms. | ||
Dopamine agonists can be useful for patients experiencing on-off fluctuations and dyskinesias as a result of high doses of L-dopa. Apomorphine can be administered via subcutaneous injection using a small pump which is carried by the patient. A low dose is automatically administered throughout the day, reducing the fluctuations of motor symptoms by providing a steady dose of dopaminergic stimulation. After an initial "apomorphine challenge" in hospital to test its effectiveness and brief patient and caregiver, the primary caregiver (often a spouse or partner) takes over maintenance of the pump. The injection site must be changed daily and rotated around the body to avoid the formation of nodules. Apomorphine is also available in a more acute dose as an ] pen for emergency doses such as after a fall or first thing in the morning. | |||
==== MAO-B Inhibitors ==== | |||
==== MAO-B inhibitors ==== | |||
] (Eldepryl) and Rasagiline (Azilect) reduce the symptoms by inhibiting monoamine oxidase-B (MAO-B), which inhibits the breakdown of dopamine secreted by the dopaminergic neurons. By-products of selegiline include amphetamine and methamphetamine - each can have side effects that damage tha Dopaminergic neurons. Use of L-DOPA in conjunction with Selegiline has increased mortality rates that have not been effectively explained. | ] (Eldepryl) and Rasagiline (Azilect) reduce the symptoms by inhibiting monoamine oxidase-B (MAO-B), which inhibits the breakdown of dopamine secreted by the dopaminergic neurons. By-products of selegiline include amphetamine and methamphetamine - each can have side effects that damage tha Dopaminergic neurons. Use of L-DOPA in conjunction with Selegiline has increased mortality rates that have not been effectively explained. | ||
=== Surgical |
=== Surgical interventions === | ||
] | |||
] is presently the most used surgical means of treatment. | |||
] | |||
Treating PD with surgery was once a common practice. But after the discovery of levodopa, surgery was restricted to only a few cases. Studies in the past few decades have led to great improvements in surgical techniques, and surgery is again being used in people with advanced PD for whom drug therapy is no longer sufficient. ] is presently the most used surgical means of treatment. | |||
Gene therapy involves using a harmless virus to shuttle a gene into a part of the brain called the subthalamic nucleus (STN). | Gene therapy involves using a harmless virus to shuttle a gene into a part of the brain called the subthalamic nucleus (STN). | ||
Line 377: | Line 366: | ||
|url=http://www.springerlink.com/link.asp?id=tp15r2g8u6327731 | |url=http://www.springerlink.com/link.asp?id=tp15r2g8u6327731 | ||
}}</ref> | }}</ref> | ||
<ref>Early diagnosis and preventive therapy in Parkinson's Disease (1989): 323</ref> Also used alongside existing treatments is a that contains both of these substances and all the other nutrients required for dopamine formation. More limited efficacy has been obtained with the use of THFA, NADH, and pyridoxine - coenzymes and coenzyme precursors involved in dopamine biosynthesis. Vitamin C and Vitamin E in large doses are commonly used by patients in order to lessen the cell damage that occurs in Parkinson's Disease. This is because the enzymes Superoxide Dismutase and Catalase require these vitamins in order to nullify the superoxide anion, a toxin commonly produced in damaged cells. Coenzyme Q10 has more recently been used for similar reasons. | <ref>Early diagnosis and preventive therapy in Parkinson's Disease (1989): 323</ref> Also used alongside existing treatments is a that contains both of these substances and all the other nutrients required for dopamine formation. More limited efficacy has been obtained with the use of THFA, NADH, and pyridoxine - coenzymes and coenzyme precursors involved in dopamine biosynthesis. Vitamin C and Vitamin E in large doses are commonly used by patients in order to lessen the cell damage that occurs in Parkinson's Disease. This is because the enzymes Superoxide Dismutase and Catalase require these vitamins in order to nullify the superoxide anion, a toxin commonly produced in damaged cells. Coenzyme Q10 has more recently been used for similar reasons. MitoQ is a newly developed synthetic substance that is similar in structure and function to Coenzyme Q10. | ||
===Physical exercise=== | ===Physical exercise=== | ||
Regular physical exercise and/or therapy, including in forms such as yoga, tai chi, and dance can be beneficial to the patient for maintaining and improving mobility, flexibility, balance and a range of motion. | Regular physical exercise and/or therapy, including in forms such as yoga, tai chi, and dance can be beneficial to the patient for maintaining and improving mobility, flexibility, balance and a range of motion. | ||
==Prognosis== | ==Prognosis== | ||
PD is not by itself a fatal disease, but it does get worse with time. The average life expectancy of a PD patient is generally the same as for people who do not have the disease. However, in the late stages of the disease, PD may cause complications such as choking, pneumonia, and falls that can lead to death. | |||
Most older studies have noted increased mortality in patients with Parkinson disease (PD). However, the 2005 Rotterdam Study, which ] followed a large ] of participants, noted only a modest decrease in survival in patients without dementia.<ref>{{cite journal | |||
|author=Lonneke M. L. de Lau ''et al.'' | |||
The progression of symptoms in PD may take 20 years or more. In some people, however, the disease progresses more quickly. There is no way to predict what course the disease will take for an individual person. One commonly used system for describing how the symptoms of PD progress is called the ]. | |||
|title=Prognosis of Parkinson Disease | |||
|journal=] | |||
|year=2005 | volume=62 | issue=8 | pages= 1265–1269 | |||
|url=http://archneur.ama-assn.org/cgi/content/abstract/62/8/1265 | |||
}}</ref> A 2004 community-based cohort study of 245 PD patients demonstrated similar findings in patients with clinically definite PD.<ref>{{cite journal | |||
|author=Karen Herlofson ''et al.'' | |||
|title=Mortality and Parkinson disease | |||
|journal=] | |||
|year=2004 | volume=62 | pages=937–942 | |||
|url=http://www.neurology.org/cgi/content/abstract/62/6/937 | |||
}}</ref> | |||
Another commonly used scale is the ] (UPDRS). This much more complicated scale has multiple ratings that measure mental functioning, behavior, and mood; activities of daily living; and motor function. Both the Hoehn and Yahr scale and the UPDRS are used to measure how individuals are faring and how much treatments are helping them. | |||
The most commonly reported cause of death in PD patients is ]. Swallowing difficulties may lead to ] of food, causing ] (a specific form of pneumonia caused by gastric acid, food and digestive tract bacteria). A weak cough secondary to respiratory muscle stiffness may increase susceptibility to ]. Onset of dementia doubles the odds of death and depression more than doubles the odds ratio.<ref>{{cite journal | |||
|author=TA Hughes, HF Ross, RHS Mindham, EGS Spokes | |||
|title=Mortality in Parkinson's disease and its association with dementia and depression | |||
|journal=] | |||
|year=2004 | volume=110 | issue=2 | pages=118 | |||
|url=http://www.blackwell-synergy.com/doi/abs/10.1111/j.1600-0404.2004.00292.x | |||
}}</ref> | |||
With appropriate treatment, most people with PD can live productive lives for many years after diagnosis. | |||
] | |||
==References== | ==References== | ||
<!--See http://en.wikipedia.org/Wikipedia:Footnotes for an explanation of how to generate footnotes or references using the <ref(erences/)> tags--> | <!--See http://en.wikipedia.org/Wikipedia:Footnotes for an explanation of how to generate footnotes or references using the <ref(erences/)> tags--> | ||
<references/> | <references/> | ||
''Some of this article contains text from the public domain document at http://www.ninds.nih.gov/disorders/parkinsons_disease/detail_parkinsons_disease.htm'' | |||
==External links== | ==External links== | ||
{{commons|Category:Parkinson's disease}} | |||
* | * | ||
* | * | ||
Line 436: | Line 411: | ||
* | * | ||
* | * | ||
* | |||
] | ] |
Revision as of 22:33, 30 June 2006
Parkinson's disease (also known as PD or Parkinson disease) is a degenerative disorder of the central nervous system, that affects the control of muscles, and so may affect movement, speech and posture. Parkinson's disease belongs to a group of conditions called movement disorders. It is often characterized by muscle rigidity, tremor, a slowing of physical movement (bradykinesia), and in extreme cases, a loss of physical movement (akinesia). The primary symptoms are due to excessive muscle contraction, normally caused by the insufficient formation and action of dopamine, which is produced in the dopaminergic neurons of the brain.
PD is both chronic, meaning it persists over a long period of time, and progressive. Many researchers now believe that PD results from a combination of genetic susceptibility and exposure to one or more environmental factors that trigger the disease.
PD is the most common form of parkinsonism, the name for a group of disorders with similar features and symptoms. PD is also called primary parkinsonism or idiopathic PD. The term idiopathic means a disorder for which no cause has yet been found. While most forms of parkinsonism are idiopathic, there are some cases where the cause is known or suspected or where the symptoms result from another disorder. For example, parkinsonism may result from changes in the brain's blood vessels.
History
Parkinson's disease was originally known as Paralysis Agitans. It was first formally recognised and its symptoms documented in 1817 in An Essay on the Shaking Palsy by the British physician Dr James Parkinson. The underlying biochemical changes in the brain were identified in the 1950s, due largely to the work of Swedish sceientist Arvid Carlsson who later went on to win a Nobel prize. L-dopa entered clinical practice in 1967, and the first study reporting improvements in patients with Parkinson's disease resulting from treatment with L-dopa was published in 1968.
Symptoms
Parkinson disease affects movement (motor symptoms). Typical other symptoms include disorders of mood, behavior, thinking, and sensation (non-motor symptoms). Individual patients' symptoms may be quite dissimilar; progression is also distinctly individual.
There are four major dopamine pathways in the brain; the nigrostriatal pathway, referred to above, mediates movement and is the most conspicuously affected in early Parkinson's disease. The other pathways are the mesocortical, the mesolimbic, and the tuberoinfundibular. These pathways are associated with, respectively: volition and emotional responsiveness; desire, initiative, and reward; and sensory processes and maternal behavior. Reduction in dopamine along the non-striatal pathways is the likely explanation for much of the neuropsychiatric pathology associated with Parkinson's disease.
Motor symptoms
The cardinal symptoms are:
- tremor: 4-7Hz tremor, maximal when the limb is at rest, and decreased with voluntary movement. It is typically unilateral at onset. This is the most apparent and well-known symptom. However, an estimated 30% of patients have little perceptible tremor; these are classified as akinetic-rigid.
- rigidity: stiffness; increased muscle tone. In combination with a resting tremor, this produces a ratchety, "cogwheel" rigidity when the limb is passively moved.
- bradykinesia/akinesia: respectively, slowness or absence of movement. Rapid, repetitive movements produce a dysrhythmic and decremental loss of amplitude.
- postural instability: failure of postural reflexes, which leads to impaired balance and falls.
Other motor symptoms include:
- Gait and posture disturbances:
- Shuffling: gait is characterized by short steps, with feet barely leaving the ground, producing an audible shuffling noise. Small obstacles tend to trip the patient
- Decreased arm swing: a form of bradykinesia
- Turning "en bloc": rather than the usual twisting of the neck and trunk and pivoting on the toes, PD patients keep their neck and trunk rigid, requiring multiple small steps to accomplish a turn.
- Stooped, forward-flexed posture. In severe forms, the head and upper shoulders may be bent at a right angle relative to the trunk (camptocormia).
- Festination: a combination of stooped posture, imbalance, and short steps. It leads to a gait that gets progressively faster and faster, often ending in a fall.
- Gait freezing: "freezing" is another word for akinesia, the inability to move. Gait freezing is characterized by inability to move the feet, especially in tight, cluttered spaces or when initiating gait.
- Dystonia: abnormal, sustained, painful twisting muscle contractions, usually affecting the foot and ankle in PD patients. This causes toe flexion and foot inversion, interfering with gait.
- Speech and swallowing disturbances
- Hypophonia: soft speech. Speech quality tends to be soft, hoarse, and monotonous.
- Festinating speech: excessively rapid, soft, poorly-intelligible speech.
- Drooling: most likely caused by a weak, infrequent swallow and stooped posture.
- (Non-motor causes of speech/language disturbance in both expressive and receptive language: these include decreased verbal fluency and cognitive disturbance especially related to comprehension of emotional content of speech and of facial expression
- Dysphagia: impaired ability to swallow. Can lead to aspiration, pneumonia, and ultimately death.
- Other motor symptoms:
- fatigue (up to 50% of cases);
- masked facies (a mask-like face also known as hypomimia), with infrequent blinking;
- difficulty rolling in bed or rising from a seated position;
- micrographia (small, cramped handwriting);
- impaired fine motor dexterity and coordination;
- impaired gross motor coordination;
- Poverty of movement: overall loss of accessory movements, such as decreased arm swing when walking, as well as spontaneous movement.
Non-motor symptoms
Mood disturbances: Estimated prevalance rates of depression vary widely according to the population sampled and methodology used. Reviews of depression estimate its occurrence in anywhere from 20-80% of cases. Estimates from community samples tend to find lower rates than from specialist centres. Most studies use self-report questionnaires such as the Beck Depression Inventory which may overinflate scores due to physical symptoms. Studies using diagnostic interviews by trained psychiatrists also report lower rates of depression.
More generally, there is an increased risk for any individual with depression to go on to develop Parkinson's disease at a later date .
70% of individuals with Parkinson's disease diagnosed with pre-existing depression go on to develop anxiety. 90% of Parkinson's disease patients with pre-existing anxiety subsequently develop depression); apathy or abulia.
Cognitive disturbances:
- slowed reaction time; both voluntary and involuntary motor responses are significantly slowed.
- executive dysfunction, characterized by difficulties in: differential allocation of attention, impulse control, set shifting, prioritizing, evaluating the salience of ambient data, interpeting social cues, and subjective time awareness. This complex is present to some degree in most Parkinson's patients; it may progress to:
- dementia: a later development in approximately 20-40% of all patients, typically starting with slowing of thought and progressing to difficulties with abstract thought, memory, and behavioral regulation.
- memory loss; procedural memory is more impaired than declarative memory. Prompting elicits improved recall.
- medication effects: some of the above cognitive disturbances are improved by dopaminergic medications, while others are actually worsened
- Excessive daytime somnolence;
- Initial, intermediate, and terminal insomnia;
- Disturbances in REM sleep: disturbingly vivid dreams, and REM Sleep Disorder, characterized by acting out of dream content;
Sensation disturbances:
- impaired visual contrast sensitivity, spatial reasoning, colour discrimination, convergence insufficiency (characterized by double vision) and oculomotor control
- dizziness and fainting; usually attributable orthostatic hypotension, a failure of the autonomous nervous system to adjust blood pressure in response to changes in body position
- impaired proprioception (the awareness of bodily position in three-dimensional space)
- loss of sense of smell (anosmia),
- pain: neuropathic, muscle, joints, and tendons, attributable to tension, dystonia, rigidity, joint stiffness, and injuries associated with attempts at accommodation
Autonomic disturbances:
- oily skin and seborrheic dermatitis;
- urinary incontinence, typically in later disease progression
- constipation and gastricdysmotility: severe enough to endanger comfort and even health
- altered sexual function: characterized by profound impairment of sexual arousal, behavior, orgasm, and drive is found in mid and late parkinson disease. Current data addresses male sexual function almost exclusively.
Diagnosis
There are currently no blood or laboratory tests that have been proven to help in diagnosing sporadic PD. Therefore the diagnosis is based on medical history and a neurological examination. The disease can be difficult to diagnose accurately. Early signs and symptoms of PD may sometimes be dismissed as the effects of normal aging. The physician may need to observe the person for some time until it is apparent that the symptoms are consistently present. Doctors may sometimes request brain scans or laboratory tests in order to rule out other diseases. However, CT and MRI brain scans of people with PD usually appear normal.
Descriptive epidemiology
The worldwide prevalence of Parkinson's disease is 4 to 6 million people. There are over 1.5 million in China alone. The disease usually has a long, subtle onset, so diagnosis occurs most often after many years of subclinical disease . Prevalence estimates range from a low of 7 per 100,000 in Ethiopia to a high of 329.3 per 100,000 in Nebraska, U.S.A. (although that figure was arrived at using capture-recapture estimates), and 328.3 cases per 100,000 in the Parsi community in Bombay, India. The greatest prevalence of any country is the U.S.A., with between 100 and 250 cases per 100,000.
The average age at which symptoms begin is 55-60, and although cases at ages as low as 11 have been reported it is highly unusual for people under 30 to develop Parkinson's. The risk of developing it substantially increases with age. It occurs in all parts of the world, but appears to be more common in people of European ancestry than in those of African ancestry. Those of East Asian ancestry have an intermediate risk. It is more common in rural than urban areas and men are affected at a rate about double that of women. There is a suggestion of increased prevalence in the California Hispanic population . About 2% of the population develops the disease some time during life .
Incidence has been estimated by several groups, starting with northern California . They observed age and sex corrected incidence of 13.4 per 100,000/year. They note a rapid increase in incidence with age, male rates nearly double female rates, and an elevated rate amongst Hispanics. This study was followed by a group in Spain who used the two-stage survey technique pioneered in the Copiah County study to survey a cohort age 65 to 85. Within that group, incidence adjusted for age and sex was 186.8/100,000 per year, with men's rates being 2.55 times that of women. For the same age group, Van den Eeden and colleagues observed an incidence of roughly 120/100,000/year. Soon thereafter the Rotterdam sudy was published using techniques similar to the Spanish group and Copiah County. They note age-specific incidence rates from 0.3 per 1000 person-years in subjects aged 55 to 65 years, to 4.4 per 1000 person-years for those aged ≥85 year, and a sex ratio of 1.55 for male incidence.
Related diseases
There are other disorders that are called Parkinson-Plus diseases. These include:
- Multiple System Atrophy (MSA)
- Shy-Drager Syndrome (SDS)
- Striatonigral degeneration (SND)
- Olivopontocerebellar atrophy (OPCA)
- Progressive supranuclear palsy (PSP)
- Corticobasal degeneration (CBD)
Some people include dementia with Lewy bodies (DLB) as one of the 'Parkinson-plus' syndromes. Although idiopathic Parkinson's disease patients also have Lewy bodies in their brain tissue, the distibution is denser and more widespread in DLB. Even so, the relationship between Parkinson disease, Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB) might be most accurately conceptualized as an spectrum, with a discrete area of overlap between each of the three disorders. The natural history and role of Lewy bodies is very little understood.
Patients often begin with typical Parkinson's disease symptoms which persist for some years; these Parkinson-plus diseases can only be diagnosed when other symptoms become apparent with the passage of time. These Parkinson-plus diseases usually progress more quickly than typical ideopathic Parkinson disease. The usual anti-Parkinson's medications are typically either less effective or not effective at all in controlling symptoms; patients may be exquisitely sensitive to neuroleptic medications like haloperidol. Additionally, the cholinesterase inhibiting medications have shown preliminary efficacy in treating the cognitive, psychiatric, and behavioral aspcects of the disease, so correct differential diagnosis is important.
Pathology
The interaction of dopamine and acetylcholine
The primary symptoms of Parkinson's disease are due to excessive muscle contraction.
Acetylcholine affects muscle contraction via the five cholinergic receptors : m1, m2, m3, m4, and m5. The receptors m1, m3 and m5 are stimulatory. The receptors m2 and m4 are inhibitory. The combined stimulatory effect of m1, m3 and m5 is more powerful in total than the combined inhibitory effect of m2 and m4. So the overall effect of acetylcholine is to stimulate muscle contraction.
Dopamine affects muscle contraction via the five dopamine receptors: D1, D2, D3, D4, and D5. The receptors D2, D3 and D4 are inhibitory. The receptors D1 and D5 are stimulatory. The combined inhibitory effect of D2, D3 and D4 is more powerful in total than the combined stimulatory effect of D1 and D5. So the overall effect of dopamine is to inhibit muscle contraction.
Parkinson's Disease consequently occurs when the effect of dopamine is less than that of acetylcholine. Dopamine deficiency rather than acetylcholine excess is normally responsible for this occurring.
Symptoms usually only begin to appear after a reduction down to about 25% of the normal activity of the dopaminergic neurons. The level of dopamine tends to continue to fall slowly over time, with an attendant worsening of symptoms. The biochemistry of Parkinson's Disease
Dopamine biosynthesis
The primary fault in Parkinson's Disease is that, whatever the cause, there is insufficient dopamine. Dopamine is formed in the dopaminergic neurons by the following pathway :
L-tyrosine >>> L-dopa >>> Dopamine
The first step is biosynthesised by the enzyme Tyrosine 3-Monooxygenase (which is more commonly called by its former name tyrosine hydroxylase). The following is the complete reaction :
L-tyrosine + THFA + O2 + Fe >>> L-dopa + DHFA + H2O + Fe
So for L-dopa formation, L-tyrosine, THFA (tetrahydrofolic acid), and ferrous iron are essential. The activity of this enzyme is often as low as 25% in Parkinson's Disease, and in severe cases can be as low as 10%. This indicates that one or more of the elements required for the formation of L-dopa are in insufficient quantities.
The second step in the biosynthesis of dopamine is biosynthesised by the enzyme Aromatic L-amino acid decarboxylase (which is more commonly called by its former name dopa decarboxylase). The following is the complete reaction :
L-dopa + pyridoxal phosphate >>> dopamine + pyridoxal phosphate + CO2
So for dopamine biosynthesis from L-dopa, pyridoxal phosphate is essential. The activity of the enzyme rises and falls according to how much pyridoxal phosphate there is. The level of this enzyme in Parkinson's disease can also be around 25% or even far less.
Coenzymes involved in dopamine biosynthesis
Besides two enzymes being required for the formation of dopamine from L-tyrosine (L-tyrosine >>> L-dopa >>> Dopamine), three coenzymes are also required. Enzymes are substances that will enable a specific chemical reaction to take place in the body. Coenzymes are substances that assist enzymes. Some enzymes (including those involved in dopamine biosynthesis) will not function without coenzymes.
The three coenzymes involved in the formation of dopamine are : THFA (for L-tyrosine to L-dopa), Pyridoxal phosphate (for L-dopa to dopamine), and NADH (for the formation of THFA and Pyridoxal phosphate). They are made from vitamins via the following means :
Folic acid >>> Dihydrofolic acid >>> Tetrahydrofolic acid
Pyridoxine >>> Pyridoxal >>> Pyridoxal 5-Phosphate (this requires zinc as a cofactor)
Nicotinamide >>> NMN >>> NAD >>> NADH (or NADP) >>> NADPH
G-proteins
In order to relieve Parkinson's disease, dopamine (or dopamine agonists) must stimulate dopamine receptors, which must in turn stimulate the G proteins :
L-tyrosine > L-dopa > dopamine > dopamine receptors (D2, D3, D4) > G proteins
G proteins consist of three parts : alpha - beta - gamma, that are lined to each other. There are three types of beta unit (1, 2, 4), and seven types of gamma unit (2, 3, 4, 5, 7, 10, 11). However, they do not matter much to Parkinson's Disease. What matters to Parkinson's Disease are the alpha subunits, because it is actually these that ultimately relieve (or aggravate) Parkinson's disease. There are five types:
- G proteins that aggravate Parkinson's disease : Gs 1 alpha
- G proteins that relieve Parkinson's disease : Gi 1 alpha, Gi 2 alpha, Gi 3 alpha
- G proteins that have little effect on Parkinson's disease : Go alpha
The sole purpose of dopamine (or dopamine agonists) stimulating dopamine receptors is to cause the alpha subunits (the active part of G proteins) to break away from the rest of the G protein. Without this occurring almost everybody would have Parkinson's disease. Once the alpha part of G proteins is released, via cyclic AMP, it takes the final action in the series of event that leads to the ridding of Parkinson's Disease, which is to inhibit the cells it has effect on.The biochemistry of Parkinson's Disease: G proteins
Neuromelanin
In the cells involved in Parkinson's disease (the dopaminergic neurons) the function is to produce dopamine. In the melanocytes, which are in the skin, the function is to produce the pigment melanin. Melanin is what causes people to suntan. Although they end up with different substances (dopamine and melanin), both of these cells start off with L-tyrosine, and both of them form L-dopa as well :
dopaminergic neurons : L-tyrosine > L-dopa > dopamine
melanocytes : L-tyrosine > L-dopa > melanin
In the dopaminergic neurons, when somebody can not form dopamine, they can accidentally form melanin instead. In the brain it is called neuromelanin because of the different amino acids it is attached to. However, this is not a normal mechanism, and it occurs via a different mechanism from that found in the skin. The formation of neuromelanin in the brain is often claimed to be what happens in healthy brains. Healthy brains are supposed to be darker in the part of the brain called the substantia nigra. However, it is actually due to the biochemical mechanisms not working properly. As not much L-dopa is formed in Parkinson's Disease, there isn't much capacity for that L-dopa to accidentally form melanin in the brain. So people with Parkinson's Disease can tend to have not much pigment in the part of the brain called the substantia nigra. However, that does not cause a medical problem because melanin is not supposed to be in the brain.The biochemistry of Parkinson's Disease: Neuromelanin
Cell damage
The primary natural means via which cell damage can occur in Parkinson's Disease is due to the reaction from L-tyrosine to L-dopa not taking place. The following is what should happen :
L-tyrosine + THFA + O2 + Fe2+ >>> L-dopa + DHFA + H2O + Fe2+
However, if for example, the THFA in the above reaction is lacking, the following can happen instead :
L-tyrosine + Fe2+ + O2 >>> L-tyrosine + Fe3+ + O-2 (superoxide anion)
As can be seen there is no L-dopa formed in the faulty reaction, and the superoxide anion is formed instead. The superoxide anion is one of the most highly destructive elements in cells. The formation of L-dopa can also fail to take place if L-tyrosine is deficient.
So the simplest means of preventing cell damage from taking place is to ensure that you have those substances required for the formation of L-dopa, which are L-tyrosine, THFA (which is made from the vitamin folic acid using nicotinamide), and ferrous iron.
Vitamin C and Vitamin E have been used to try to help to prevent cell damage in Parkinson's Disease. This is because they are claimed to assist in two enzyme reactions in the brain that get rid of the superoxide anion once it has been formed :
Superoxide Dismutase : 2O-2 + 2H+ >>> H2O2 + O2
Catalase : H2O2 >>> H2O + 1/2 O2
However, the problem with the use of Vitamin C and Vitamin E in trying to prevent cell damage is that they do nothing at all to prevent the original source of the problem, which is the formation of superoxide anion.The biochemistry of Parkinson's Disease: Cell damage
Lewy bodies
Lewy bodies are found in the cytoplasm of neurons, and are composed of densely aggregated filaments. These filaments contain ubiquitin and alpha-synuclein. Lewy Bodies are often associated with Parkinson's disease. However, they are not unique to Parkinson's Disease, as they also occur in several other medical disorders.
Pathophysiology
Most people with Parkinson's Disease are described as having idiopathic Parkinson's Disease (having no specific cause). There are far less common causes of Parkinson's Disease including genetic, toxins, head trauma, and drug induced Parkinson's Disease.
Genetic
In recent years, a number of specific genetic mutations causing Parkinson's Disease have been discovered, including in certain populations (Contursi). These account for a small minority of cases of Parkinson's Disease. Somebody who has Parkinson's Disease is more likely to have relatives that also have Parkinson's Disease. However, this does not mean that the disorder has been passed on genetically.
Genetic forms that have been identified include:
- external links in this section are to OMIM
- PARK1 (OMIM #168601), caused by mutations in the SNCA gene, which codes for the protein alpha-synuclein. PARK1 causes autosomal dominant Parkinson disease. So-called PARK4 is probably caused by triplication of SNCA.
- PARK2 (OMIM *602544), caused by mutations in protein parkin. Parkin mutations may be one of the most common known genetic causes of early-onset Parkinson disease. In one study, of patients with onset of Parkinson disease prior to age 40 (10% of all PD patients), 18% had parkin mutations, with 5% homozygous mutations. Patients with an autosomal recessive family history of parkinsonism are much more likely to carry parkin mutations if age at onset is less than 20 (80% vs. 28% with onset over age 40).Patients with parkin mutations (PARK2) do not have Lewy bodies. Such patients develop a syndrome that closely resembles the sporadic form of PD; however, they tend to develop symptoms at a much younger age.
- PARK3 (OMIM %602404), mapped to 2p, autosomal dominant, only described in a few kindreds.
- PARK5, caused by mutations in the UCHL1 gene (OMIM +191342) which codes for the protein ubiquitin carboxy-terminal hydrolase L1
- PARK6 (OMIM #605909), caused by mutations in PINK1 (OMIM *608309) which codes for the protein PTEN-induced putative kinase 1.
- PARK7 (OMIM #606324), caused by mutations in DJ-1 (OMIM 602533)
- PARK8 (OMIM #607060), caused by mutations in LRRK2 which codes for the protein dardarin. In vitro, mutant LRRK2 causes protein aggregation and cell death, possibly through an interaction with parkin. LRRK2 mutations, of which the most common is G2019S, cause autosomal dominant Parkinson disease, with a penetrance of nearly 100% by age 80. G2019S is the most common known genetic cause of Parkinson disease, found in 1-6% of U.S. and European PD patients. It is especially common in Ashkenazi Jewish patients, with a prevalence of 29.7% in familial cases and 13.3% in sporadic.
- PARK12 (OMIM %300557), maps to the X chromosome
Toxins
Paraquat is a quaternary ammonium herbicide. Other members of this class include diquat, cyperquat, diethamquat, difenzoquat and morfamquat. Pesticides are known to be associated with an increased rate of Parkinson's Disease. Paraquat structurally resembles MPTP and its metabolite MPP+. MPTP and MPP+ are neurotoxic chemicals, that induce Parkinson's Disease in exposed humans. Paraquat might therefore might, as do MPTP and MPP+ inhibit tyrosine hydroxylation, which is essential for the formation of dopamine.
Rotenone is an insecticide that has been demonstrated as a cause of mouse-model Parkinson's disease. Rotenone is commonly used in powdered form to treat parasitic mites on chickens and other fowl, and so can be found in poultry. Rotenone is produced by extraction from the roots, seeds, and leaves of certain tropical legumes. Rotenone inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So Rotenone causes Parkinson's Disease by lowering dopamine levels.
Maneb is a fungicide that contains manganese. The major active element of Maneb is manganese ethylene-bis-dithiocarbamate. Pesticides are known to be associated with an increased rate of Parkinson's Disease, so there is a greatly increased likelihood of developing symptoms by people involved in horticulture and agriculture. As Maneb contains manganese it is possible that it causes Parkinson's Disease symptoms via the same means as manganese, which is by inhibiting tyrosine hydroxylation, which is essential for the formation of dopamine. The effects of Maneb are potentiated when there is simultaneous exposure to the pesticide Paraquat.
Manganese can cause manganism, an irreversible neurological disorder similar to Parkinson's disease. Occupational exposures occur mainly in welding, mining as miners are surrounded by manganese dust and airborne manganese particles, alloy production, processing, ferro-manganese operations especially in which manganese ore or manganese compounds are turned into steel, and work with agrochemicals. The towns and communities surrounding the areas of manganese heavy industry could also become affected by exposure to manganese. It is also hypothesized that long-term exposure to the naturally-occurring manganese in shower water also puts people at risk. Manganese inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So manganese may cause Parkinson's disease by lowering dopamine levels.
MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine) is a chemical that may be produced accidentally during illicit manufacture of the recreational drug MPPP, which is a synthetic heroin substitute. The neurotoxicity of MPTP was discovered in 1976 after a chemistry graduate student synthesized MPPP incorrectly and injected the result. It was contaminated with MPTP, and within three days he began exhibiting symptoms of acute Parkinson's disease. It was also developed but unused as a herbicide and was distributed on the streets as a synthetic opioid-like drug. MPTP inhibits tyrosine hydroxylation, which is essential for the formation of dopamine. So MPTP causes acute Parkinson's disease by lowering dopamine levels.
Toluene is a solvent that has been shown to cause or that has been associated with people with Parkinson's disease. Toluene is used as an octane booster in fuel, as a solvent in paints, paint thinners, chemical reactions, rubber, printing, adhesives, lacquers, leather tanning, disinfectants, and to produce phenol and TNT (a component of explosives). It is also used as a raw material for toluene diisocyanate, which is used in the manufacture of polyurethane foams. The precise means of toxicity is not known.
N-Hexane, a constituent of solvents has been shown to cause parkinsonism. Most of the n-hexane used in industry is mixed with similar chemicals called solvents. The major use for solvents containing n-hexane is to extract vegetable oils from crops such as soybeans. These solvents are also used as cleaning agents in the printing, textile, furniture, and shoemaking industries. Use by chemists. Certain kinds of special glues used in the roofing and shoe and leather industries also contain n-hexane. Several consumer products contain n-hexane, such as gasoline, spot removers, quick-drying glues used in various hobbies, and rubber cement. The precise means is not known.
Carbon disulfide, usually in solvents or pesticides, can cause Parkinson's disease that is associated with other neurological symptoms. The effects can persist for years after exposure to the carbon disulfide has ceased. Potential sources include pesticides used as fumigants, disulfiram (a drug used in the treatment of chronic alcoholism), industrial solvents, solvents used in the production of viscose rayon and cellophane film. Means of toxicity is not established. However, carbon disulphide interferes with pyridoxal 5-phosphate. Pyridoxal 5-phosphate is essential for the formation of dopamine from L-dopa. So carbon disulphide may cause Parkinson's Disease symptoms by reducing the formation of L-dopa.
Head trauma
Past episodes of head trauma are reported more frequently by sufferers than by others in the population. A methodologically strong recent study found that those who have experienced a head injury are four times more likely to develop Parkinson’s disease than those who have never suffered a head injury. The risk of developing Parkinson’s increases eightfold for patients who have had head trauma requiring hospitalization, and it increases 11-fold for patients who have experienced severe head injury.
Drug-induced
Antipsychotics, which are used to treat Schizophrenia and Psychosis, can induce the symptoms of Parkinson's Disease by lowering dopaminergic activity. Due to feedback inhibition, L-dopa can eventually cause the symptoms of Parkinson's Disease that it initially relieves. Dopamine receptors can also eventually contribute to Parkinson's Disease symptoms due to making the dopamine receptors increasingly less sensitive.
Treatment
Parkinson's disease is a chronic disorder that requires broad-based management including patient and family education, support group services, general wellness maintenance, exercise, and nutrition. At present, there is no cure for PD, but medications or surgery can provide relief from the symptoms.
Levodopa
The most widely used form of treatment is L-dopa in various forms. L-dopa is transfomed into dopamine in the dopaminergic neurons by L-aromatic amino acid decarboxylase (often known by its former name dopa-decarboxylase). However, only 1-5% of L-DOPA enters the dopaminergic neurons. The remaining L-DOPA is often metabolised to dopamine elsewhere, causing a wide variety of side effects. Due to feedback inhibition, L-dopa results in a reduction in the endogenous formation of L-dopa, and so eventually becomes counterproductive.
Carbidopa and Benserazide are dopa decarboxylase inhibitors. They help to prevent the metabolism of L-dopa before it reaches the dopaminergic neurons.
Talcopone inhibits the COMT enzyme, thereby prolonging the effects of L-Dopa, and so has has been used to complement L-dopa. However, due to its side effects, such as possible liver failure is limited in its availability. A similar drug, entacapone, has similar efficacy and has not been shown to cause significant alterations of liver function.
Sinemet contains L-dopa and also carbidopa. Parcopa contains the same two drugs but is orally disintegrating. Madopar contains L-dopa and benserazide. There are also controlled release versions of Sinemet and Madopar that spread out the effect of the L-dopa. Duodopa is a combination of levodopa and carbidopa, dispersed as a viscous gel. Using a patient-operated portable pump, the drug is continuously delivered via a tube directly into the upper small intestine, where it is rapidly absorbed. Stalevo contains Levodopa, Carbidopa and Entacopone. Mucuna pruriens, is a natural source of therapeutic quantities of L-dopa.
Dopamine agonists
The Dopamine-agonists bromocriptine (Parlodel), pergolide (Permax), pramipexole (Mirapex), ropinirole (Requip), cabergoline (Cabaser), apomorphine (Apokyn), and lisuride (Revanil), are moderately effective. These have their own side effects including those listed above in addition to somnolence, hallucinations and /or insomnia. Dopamine agonists initially act by stimulating some of the dopamine receptors. However, they cause the dopamine receptors to become progressively less sensitive, thereby eventually increasing the symptoms.
Dopamine agonists can be useful for patients experiencing on-off fluctuations and dyskinesias as a result of high doses of L-dopa. Apomorphine can be administered via subcutaneous injection using a small pump which is carried by the patient. A low dose is automatically administered throughout the day, reducing the fluctuations of motor symptoms by providing a steady dose of dopaminergic stimulation. After an initial "apomorphine challenge" in hospital to test its effectiveness and brief patient and caregiver, the primary caregiver (often a spouse or partner) takes over maintenance of the pump. The injection site must be changed daily and rotated around the body to avoid the formation of nodules. Apomorphine is also available in a more acute dose as an autoinjector pen for emergency doses such as after a fall or first thing in the morning.
MAO-B inhibitors
Selegiline (Eldepryl) and Rasagiline (Azilect) reduce the symptoms by inhibiting monoamine oxidase-B (MAO-B), which inhibits the breakdown of dopamine secreted by the dopaminergic neurons. By-products of selegiline include amphetamine and methamphetamine - each can have side effects that damage tha Dopaminergic neurons. Use of L-DOPA in conjunction with Selegiline has increased mortality rates that have not been effectively explained.
Surgical interventions
Treating PD with surgery was once a common practice. But after the discovery of levodopa, surgery was restricted to only a few cases. Studies in the past few decades have led to great improvements in surgical techniques, and surgery is again being used in people with advanced PD for whom drug therapy is no longer sufficient. Deep brain stimulation is presently the most used surgical means of treatment.
Gene therapy involves using a harmless virus to shuttle a gene into a part of the brain called the subthalamic nucleus (STN). The gene used leads to the production of an enzyme called glutamic acid decarboxylase (GAD), which catalyses the production of a neurotransmitter called GABA. GABA acts as a direct inhibitor on the overactive cells in the STN.
GDNF infusion involves, by surgical means, the infusion of GDNF (glial-derived neurotrophic factor)into the basal ganglia using implanted catheters. Via a series of biochemical reactions, GDNF stimulates the formation of L-dopa. GDNF therapy is still in development.
In the future, implantation of cells genetically engineered to produce dopamine or stem cells that transform into dopamine-producing cells may become available. Even these, however, will not constitute cures because they do not address the considerable loss of activity of the dopaminergic neurons.
Nutrients
Nutrients have been used in clinical studies and are widely used by people with Parkinson's Disease in order to partially treat Parkinson's Disease or slow down its deterioration. The L-dopa precursor L-tyrosine was shown to relieve an average of 70% of symptoms. Ferrous iron, the essential cofactor for L-dopa biosynthesis was shown to relieve between 10% and 60% of symptoms in 110 out of 110 patients. Also used alongside existing treatments is a Parkinson's Disease supplement that contains both of these substances and all the other nutrients required for dopamine formation. More limited efficacy has been obtained with the use of THFA, NADH, and pyridoxine - coenzymes and coenzyme precursors involved in dopamine biosynthesis. Vitamin C and Vitamin E in large doses are commonly used by patients in order to lessen the cell damage that occurs in Parkinson's Disease. This is because the enzymes Superoxide Dismutase and Catalase require these vitamins in order to nullify the superoxide anion, a toxin commonly produced in damaged cells. Coenzyme Q10 has more recently been used for similar reasons. MitoQ is a newly developed synthetic substance that is similar in structure and function to Coenzyme Q10.
Physical exercise
Regular physical exercise and/or therapy, including in forms such as yoga, tai chi, and dance can be beneficial to the patient for maintaining and improving mobility, flexibility, balance and a range of motion.
Prognosis
PD is not by itself a fatal disease, but it does get worse with time. The average life expectancy of a PD patient is generally the same as for people who do not have the disease. However, in the late stages of the disease, PD may cause complications such as choking, pneumonia, and falls that can lead to death.
The progression of symptoms in PD may take 20 years or more. In some people, however, the disease progresses more quickly. There is no way to predict what course the disease will take for an individual person. One commonly used system for describing how the symptoms of PD progress is called the Hoehn and Yahr scale.
Another commonly used scale is the Unified Parkinson's Disease Rating Scale (UPDRS). This much more complicated scale has multiple ratings that measure mental functioning, behavior, and mood; activities of daily living; and motor function. Both the Hoehn and Yahr scale and the UPDRS are used to measure how individuals are faring and how much treatments are helping them.
With appropriate treatment, most people with PD can live productive lives for many years after diagnosis.
References
- Reproduced in J Neuropsychiatry Clin Neurosci 2002;14(2):223-36. Fulltext. PMID 11983801.
- Cotzias GC. L-dopa for Parkinsonism. N Engl J Med 1968;278:630. PMID 5637779.
- MD Pell (1996). "On the receptive prosodic loss in Parkinson's disease". Cortex. 32 (4): 693–704.
- Günther Deuschl, Christof Goddemeier (1998). "Spontaneous and reflex activity of facial muscles in dystonia, Parkinson's disease, and in normal subjects". Journal of neurology, neurosurgery, and psychiatry. 64 (March): 320–324.
- Michael J Frank (2005). "Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Non-mediacated Parkinsonism". Journal of Cognitive Neuroscience. 17: 51–73.
- Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. - Am J Epidemiol. 2003 Jun 1;157(11):1015-22.
- Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. - Am J Epidemiol. 2003 Jun 1;157(11):1015-22.
- J. Benito-Leon, F. Bermejo-Pareja, J. M. Morales-Gonzalez, J. Porta-Etessam, R. Trincado, S. Vega, and E. D. Louis. Incidence of Parkinson disease and parkinsonism in three elderly populations of central Spain. Neurology, March 9, 2004; 62(5): 734 - 741.
- L. M.L. de Lau, P. C.L.M. Giesbergen, M. C. de Rijk, A. Hofman, P. J. Koudstaal, and M. M.B. Breteler. Incidence of parkinsonism and Parkinson disease in a general population: The Rotterdam Study - Neurology, October 12, 2004; 63(7): 1240 - 1244.
- AB Singleton; et al. (2003). "alpha-Synuclein locus triplication causes Parkinson's disease (Brevia)". Science. 302 (5646): 841.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - P Poorkaj; et al. (2004). "parkin mutation analysis in clinic patients with early-onset Parkinson's disease". American Journal of Medical Genetics Part A. 129A (1): 44–50.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Ebba Lohmann; et al. (2003). "How much phenotypic variation can be attributed to parkin genotype?". Annals of Neurology. 54 (2): 176–185.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Wanli W. Smith; et al. (2005). "Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration". Proceedings of the National Academy of Sciences of the United States of America. 102 (51): 18676–18681.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Jennifer Kachergus; et al. (2005). "Identification of a Novel LRRK2 Mutation Linked to Autosomal Dominant Parkinsonism: Evidence of a Common Founder across European Populations". American Journal of Human Genetics. 76 (4): 672–680.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - A Brice (2005). "Genetics of Parkinson's disease: LRRK2 on the rise (Scientific Commentary)". Brain. 128 (12): 2760–2762.
- LJ Ozelius; et al. (2006). "LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews (Letter)". New England Journal of Medicine. 354 (4): 424–425.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - J. H. Bower; et al. (2003). "Head trauma preceding PD". Neurology. 60: 1610–1615.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - M. Stern; et al. (1991). "The epidemiology of Parkinson's disease". Archives of Neurology. 48 (9): 903–907.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - ^ K Uryu; et al. (2003). "Age-dependent synuclein pathology following traumatic brain injury in mice". Experimental neurology. 184 (1): 214–224.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - (unknown) (1986). "(unknown)". Comptes rendus academie des sciences. 302: 435.
{{cite journal}}
: Cite uses generic title (help) - W. Birkmayer and J. G. D. Birkmayer (1986). "Iron, a new aid in the treatment of Parkinson patients". Journal of Neural Transmission. 67 (3–4): 287–292.
- Early diagnosis and preventive therapy in Parkinson's Disease (1989): 323
Some of this article contains text from the public domain document at http://www.ninds.nih.gov/disorders/parkinsons_disease/detail_parkinsons_disease.htm
External links
- The Parkinson's Disease Forum - new research, news reports, new books, web sites
- European Parkinson's Disease Association
- Parkinson Society Canada
- Parkinson's Disease Foundation
- Hope For A Cure Foundation for Parkinson's Research
- Dr. Abe Lieberman's Ask the Doctor Parkinson Forum
- National Parkinson Foundation, Inc.
- American Parkinson's Disease Association
- Michael J. Fox Foundation for Parkinson's Research
- Parkinson's Disease Society (UK)
- Parkinson's NSW (In AUS)
- MyParkinsonsInfo.com
- The PD Webring
- WEMOVE: Worldwide education and awareness for movement disorders
- NETRP Web site
- Northwest Parkinson's Foundation
- Parkinson's Resources on the WWWeb
- Parkinson's Disease Pictures
- Parkinson's Drug Comparison Chart (PDF)
- Can We Prevent Parkinson’s and Alzheimer’s Disease? Article from Journal of Postgraduate Medicine
- International Society for Posture and Gait Research (ISPGR)
- HollyRod Foundation
- Parkinson's speech wikibook
- Lee Silverman Voice Therapy