Misplaced Pages

MapReduce: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:43, 5 July 2006 editGwernol (talk | contribs)94,742 edits Map and Reduce: Copyedit and split out examples for clarity← Previous edit Revision as of 14:28, 11 July 2006 edit undoMarudubshinki (talk | contribs)49,641 edits External links: «+"*, by Jeffrey Dean and Sanjay Ghemawat; from Google LabsNext edit →
Line 31: Line 31:


==External links== ==External links==
*, by Jeffrey Dean and Sanjay Ghemawat; from ]
*- a paper on an internal tool at Google, Sawzall, which acts as an interface to MapReduce, intended to make MapReduce much easier to use. *- a paper on an internal tool at Google, Sawzall, which acts as an interface to MapReduce, intended to make MapReduce much easier to use.
* on '']''. * on '']''.

{{Google Inc.}} {{Google Inc.}}

] ]
] ]

Revision as of 14:28, 11 July 2006

MapReduce is a programming tool developed by Google in C++, in which parallel computations over large (> 1 terabyte) data sets are performed. The terminology of "Map" and "Reduce", and their general idea, is borrowed from functional programming languages use of the constructs map and reduce in functional programming and features of array programming languages.

The actual software is implemented by specifying a Map function that maps key-value pairs to new key-value pairs and a subsequent Reduce function that consolidates all mapped key-value pairs sharing the same keys to single key-value pairs.

Map and Reduce

A map function iterates over a list of independent elements and performs a specified operation on each element. The list of answers is stored independently from the original list. Because each element is operated on independently and the original list is not being modified, it is very easy to perform a map operation in parallel. On appropriate hardware this allows extremely large data sets to be processed in short amounts of elapsed time.

For example consider a list of test scores where each score has been found to be 1 too high. A map function of "-1" could be applied to correct every score.

A reduce operation takes a list and combines elements according to some algorithm. Since a reduce always ends up with a single answer, it is not as parallelizable as a map function, but the large number of relatively independent calculations means that reduce functions are still useful in highly parallel environments.

Continuing the previous example, what if one wanted to know the average of the test scores? One could define a reduce function which halved the size of the list by adding an entry in the list to its neighbor, recursively continuing until there is only one (large) entry, and dividing the total sum by the original entry of elements to get the average.

Distribution and reliability

MapReduce achieves reliability by parceling out a number of operations on the set of data to each node in the network; each node is expected to report back periodically with completed work and status updates. If a node falls silent for longer than that interval, the master node (similar to the master server in the Google File System) records the node as dead, and sends out the node's assigned data to other nodes. Individual operations use atomic operations for naming file outputs as a double check to insure that there are not parallel conflicting threads running; when files are renamed, it is possible to also copy them to another name in addition to the name of the task (allowing for side-effects).

The reduce operations operate much the same way, but because of their inferior properties with regard to parallel operations, the master node attempts to schedule reduce operations on the same node, or as close as possible to the node holding the data being operated on; this property is desirable for Google as it conserves bandwidth, which their internal networks do not have much of.

Uses

According to Google, they use MapReduce in a wide range of applications, including: "distributed grep, distributed sort, web link-graph reversal, term-vector per host, web access log stats, inverted index construction, document clustering, machine learning, statistical machine translation..." Most significantly, when MapReduce was finished, it was used to completely regenerate Google's index of the Internet, and replaced the old ad hoc programs that updated the index.

MapReduce generates a large number of intermediate, temporary files, which are generally managed by, and accessed through, Google File System, for greater performance.

Other Implementations

The Nutch project has developed an experimental implementation of MapReduce.

References

"Our abstraction is inspired by the map and reduce primitives present in Lisp and many other functional languages." -"MapReduce: Simplified Data Processing on Large Clusters"

External links

Google
a subsidiary of Alphabet
Company
Divisions
Subsidiaries
Active
Defunct
Programs
Events
Infrastructure
People
Current
Former
Criticism
General
Incidents
Other
Development
Software
A–C
D–N
O–Z
Operating systems
Language models
Neural networks
Computer programs
Formats and codecs
Programming languages
Search algorithms
Domain names
Typefaces
Software products
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
Y
Hardware products
Pixel
Smartphones
Smartwatches
Tablets
Laptops
Other
Nexus
Smartphones
Tablets
Other
Other
Litigation
Advertising
Antitrust
Intellectual property
Privacy
Other
Related
Concepts
Products
Android
Street View coverage
YouTube
Other
Documentaries
Books
Popular culture
Other
Italics denote discontinued products.
Categories:
MapReduce: Difference between revisions Add topic