Misplaced Pages

Redox signaling: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 21:37, 1 August 2006 editPproctor (talk | contribs)1,496 editsNo edit summary← Previous edit Revision as of 20:58, 17 August 2006 edit undo207.44.134.33 (talk)No edit summaryNext edit →
Line 3: Line 3:
==History== ==History==
The concept of electronically-activated species as messengers in both normal metabolism and in pathogenesis goes back to the 19th century. E.g., the biological pigment ] is a stable free radical. Darwin noted that white blued-eyed cats are usually deaf and that this may be secondary to some defect in neuronal development secondary to the absence of melanin pigment. Similarly, it has been known for centuries that radical-generating transition-series metals such as interocular copper or iron may produce massive vitreous fibrosis (scarring) as they oxidize. We now know that likely play a key role in fibrocyte activation. The concept of electronically-activated species as messengers in both normal metabolism and in pathogenesis goes back to the 19th century. E.g., the biological pigment ] is a stable free radical. Darwin noted that white blued-eyed cats are usually deaf and that this may be secondary to some defect in neuronal development secondary to the absence of melanin pigment. Similarly, it has been known for centuries that radical-generating transition-series metals such as interocular copper or iron may produce massive vitreous fibrosis (scarring) as they oxidize. We now know that likely play a key role in fibrocyte activation.




==External links== ==External links==
* *
*


{{biochem-stub}} {{biochem-stub}}

Revision as of 20:58, 17 August 2006

Redox signaling is the concept that free radicals, reactive oxygen species (ROS), and other electronically-activated species act as messengers in biological systems.

History

The concept of electronically-activated species as messengers in both normal metabolism and in pathogenesis goes back to the 19th century. E.g., the biological pigment melanin is a stable free radical. Darwin noted that white blued-eyed cats are usually deaf and that this may be secondary to some defect in neuronal development secondary to the absence of melanin pigment. Similarly, it has been known for centuries that radical-generating transition-series metals such as interocular copper or iron may produce massive vitreous fibrosis (scarring) as they oxidize. We now know that likely play a key role in fibrocyte activation.


External links

Stub icon

This biochemistry article is a stub. You can help Misplaced Pages by expanding it.

Category:
Redox signaling: Difference between revisions Add topic