Misplaced Pages

Superstring theory: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 00:05, 3 March 2016 editOrphan Wiki (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers35,162 editsm Reverted edits by 2606:A000:6150:F500:100B:366C:C079:48CC (talk): Unexplained removal of content (HG) (3.1.19)← Previous edit Revision as of 14:44, 15 March 2016 edit undo98.119.157.209 (talk) Integrating general relativity and quantum mechanics: Fixed grammatical errorTags: Mobile edit Mobile web editNext edit →
Line 136: Line 136:
] typically deals with situations involving large mass objects in fairly large regions of ] whereas ] is generally reserved for scenarios at the atomic scale (small spacetime regions). The two are very rarely used together, and the most common case that combines them is in the study of ]s. Having ''peak density'', or the maximum amount of matter possible in a space, and very small area, the two must be used in synchrony to predict conditions in such places. Yet, when used together, the equations fall apart, spitting out impossible answers, such as imaginary distances and less than one dimension. ] typically deals with situations involving large mass objects in fairly large regions of ] whereas ] is generally reserved for scenarios at the atomic scale (small spacetime regions). The two are very rarely used together, and the most common case that combines them is in the study of ]s. Having ''peak density'', or the maximum amount of matter possible in a space, and very small area, the two must be used in synchrony to predict conditions in such places. Yet, when used together, the equations fall apart, spitting out impossible answers, such as imaginary distances and less than one dimension.


The major problem with their congruence is that, at ] (a fundamental small unit of length) lengths, general relativity predicts a smooth, flowing surface, while quantum mechanics predicts a random, warped surface, neither of which are anywhere near compatible. Superstring theory resolves this issue, replacing the classical idea of point particles with strings. These strings have an average diameter of the ], with extremely small variances, which completely ignores the quantum mechanical predictions of Planck-scale length dimensional warping. Also, these surfaces can be maped as branes. These branes can be viewed as objects with an morphism between them. In this case, the morphism will be state of a string that stretches between brane A and brane B. The major problem with their congruence is that, at ] (a fundamental small unit of length) lengths, general relativity predicts a smooth, flowing surface, while quantum mechanics predicts a random, warped surface, neither of which are anywhere near compatible. Superstring theory resolves this issue, replacing the classical idea of point particles with strings. These strings have an average diameter of the ], with extremely small variances, which completely ignores the quantum mechanical predictions of Planck-scale length dimensional warping. Also, these surfaces can be maped as branes. These branes can be viewed as objects with
a morphism between them. In this case, the morphism will be state of a string that stretches between brane A and brane B.


] are avoided because the observed consequences of "]es" never reach zero size. In fact, should the universe begin a "big crunch" sort of process, string theory dictates that the universe could never be smaller than the size of one string, at which point it would actually begin expanding. ] are avoided because the observed consequences of "]es" never reach zero size. In fact, should the universe begin a "big crunch" sort of process, string theory dictates that the universe could never be smaller than the size of one string, at which point it would actually begin expanding.

Revision as of 14:44, 15 March 2016

"Superstring" redirects here. For the converse relation of "substring", see Superstring (formal languages). For the bundle of firecrackers, see Superstring (fireworks).
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Superstring theory" – news · newspapers · books · scholar · JSTOR (November 2012) (Learn how and when to remove this message)
String theory
Fundamental objects
Perturbative theory
Non-perturbative results
Phenomenology
Mathematics
Related concepts
Theorists

Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modelling them as vibrations of tiny supersymmetric strings.

'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that incorporates fermions and supersymmetry.

Since the second superstring revolution, the five superstring theories are regarded as different limits of a single theory tentatively called M-theory, or simply string theory.

Background

The deepest problem in theoretical physics is harmonizing the theory of general relativity, which describes gravitation and applies to large-scale structures (stars, galaxies, super clusters), with quantum mechanics, which describes the other three fundamental forces acting on the atomic scale.

The development of a quantum field theory of a force invariably results in infinite possibilities. Physicists have developed mathematical techniques (renormalization) to eliminate these infinities that work for three of the four fundamental forces—electromagnetic, strong nuclear and weak nuclear forces—but not for gravity. The development of a quantum theory of gravity must therefore come about by different means than those used for the other forces.

According to the theory, the fundamental constituents of reality are strings of the Planck length (about 10 cm) that vibrate at resonant frequencies. Every string, in theory, has a unique resonance, or harmonic. Different harmonics determine different fundamental particles. The tension in a string is on the order of the Planck force (10 newtons). The graviton (the proposed messenger particle of the gravitational force), for example, is predicted by the theory to be a string with wave amplitude zero.

History

Main article History of string theory

Since it beginnings in late sixties the theory was developed through several decades of intense research and combined effort of numerous scientists. It has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics.

Lack of experimental evidence

Superstring theory is based on supersymmetry. No supersymmetric particles have been discovered and recent research at LHC and Tevatron has excluded some of the ranges. For instance, the mass constraint of the Minimal Supersymmetric Standard Model squarks has been up to 1.1 TeV, and gluinos up to 500 GeV. No report on suggesting large extra dimensions has been delivered from LHC. There have been no principles so far to limit the number of vacua in the concept of a landscape of vacua.

Some particle physicists became disappointed by the lack of experimental verification of supersymmetry, and some have already discarded it; Jon Butterworth at the University College London said that we had no sign of supersymmetry, even in higher energy region, excluding the superpartners of the top quark up to a few TeV. Ben Allanach at the University of Cambridge states that if we do not discover any new particles in the next trial at the LHC, then we can say it is unlikely to discover supersymmetry at CERN in the foreseeable future.

Extra dimensions

See also: Why does consistency require 10 dimensions?

Our physical space is observed to have three large spatial dimensions and, along with time, is a boundless four-dimensional continuum known as spacetime. However, nothing prevents a theory from including more than 4 dimensions. In the case of string theory, consistency requires spacetime to have 10 (3+1+6) dimensions. The fact that we see only 3 dimensions of space can be explained by one of two mechanisms: either the extra dimensions are compactified on a very small scale, or else our world may live on a 3-dimensional submanifold corresponding to a brane, on which all known particles besides gravity would be restricted.

If the extra dimensions are compactified, then the extra six dimensions must be in the form of a Calabi–Yau manifold. Within the more complete framework of M-theory, they would have to take form of a G2 manifold. Calabi-Yaus are interesting mathematical spaces in their own right. A particular exact symmetry of string/M-theory called T-duality (which exchanges momentum modes for winding number and sends compact dimensions of radius R to radius 1/R), has led to the discovery of equivalences between different Calabi-Yaus called Mirror Symmetry.

Superstring theory is not the first theory to propose extra spatial dimensions. It can be seen as building upon the Kaluza–Klein theory, which proposed a 4+1-dimensional theory of gravity. When compactified on a circle, the gravity in the extra dimension precisely describes electromagnetism from the perspective of the 3 remaining large space dimensions. Thus the original Kaluza–Klein theory is a prototype for the unification of gauge and gravity interactions, at least at the classical level, however it is known to be insufficient to describe nature for a variety of reasons (missing weak and strong forces, lack of parity violation, etc.) A more complex compact geometry is needed to reproduce the known gauge forces. Also, to obtain a consistent, fundamental, quantum theory requires the upgrade to string theory—not just the extra dimensions.

Number of superstring theories

Theoretical physicists were troubled by the existence of five separate string theories. A possible solution for this dilemma was suggested at the beginning of what is called the second superstring revolution in the 1990s, which suggests that the five string theories might be different limits of a single underlying theory, called M-theory. This remains a conjecture.

String theories
Type Spacetime dimensions SUSY generators chiral open strings heterotic compactification gauge group tachyon
Bosonic (closed) 26 N = 0 no no no none yes
Bosonic (open) 26 N = 0 no yes no U(1) yes
I 10 N = (1,0) yes yes no SO(32) no
IIA 10 N = (1,1) no no no U(1) no
IIB 10 N = (2,0) yes no no none no
HO 10 N = (1,0) yes no yes SO(32) no
HE 10 N = (1,0) yes no yes E8 × E8 no
M-theory 11 N = 1 no no no none no

The five consistent superstring theories are:

  • The type I string has one supersymmetry in the ten-dimensional sense (16 supercharges). This theory is special in the sense that it is based on unoriented open and closed strings, while the rest are based on oriented closed strings.
  • The type II string theories have two supersymmetries in the ten-dimensional sense (32 supercharges). There are actually two kinds of type II strings called type IIA and type IIB. They differ mainly in the fact that the IIA theory is non-chiral (parity conserving) while the IIB theory is chiral (parity violating).
  • The heterotic string theories are based on a peculiar hybrid of a type I superstring and a bosonic string. There are two kinds of heterotic strings differing in their ten-dimensional gauge groups: the heterotic E8×E8 string and the heterotic SO(32) string. (The name heterotic SO(32) is slightly inaccurate since among the SO(32) Lie groups, string theory singles out a quotient Spin(32)/Z2 that is not equivalent to SO(32).)

Chiral gauge theories can be inconsistent due to anomalies. This happens when certain one-loop Feynman diagrams cause a quantum mechanical breakdown of the gauge symmetry. The anomalies were canceled out via the Green–Schwarz mechanism.

Even though there are only five superstring theories, making detailed predictions for real experiments requires information about exactly what physical configuration the theory is in. This considerably complicates efforts to test string theory because there is an astronomically high number – 10 or more – of configurations that meet some of the basic requirements to be consistent with our world. Along with the extreme remoteness of the Planck scale, this is the other major reason it is hard to test superstring theory.

Another approach to the number of superstring theories refers to the mathematical structure called composition algebra. In the findings of abstract algebra there are just seven composition algebras over the field of real numbers. In 1990 physicists R. Foot and G.C. Joshi in Australia stated that "the seven classical superstring theories are in one-to-one correspondence to the seven composition algebras."

Integrating general relativity and quantum mechanics

General relativity typically deals with situations involving large mass objects in fairly large regions of spacetime whereas quantum mechanics is generally reserved for scenarios at the atomic scale (small spacetime regions). The two are very rarely used together, and the most common case that combines them is in the study of black holes. Having peak density, or the maximum amount of matter possible in a space, and very small area, the two must be used in synchrony to predict conditions in such places. Yet, when used together, the equations fall apart, spitting out impossible answers, such as imaginary distances and less than one dimension.

The major problem with their congruence is that, at Planck scale (a fundamental small unit of length) lengths, general relativity predicts a smooth, flowing surface, while quantum mechanics predicts a random, warped surface, neither of which are anywhere near compatible. Superstring theory resolves this issue, replacing the classical idea of point particles with strings. These strings have an average diameter of the Planck length, with extremely small variances, which completely ignores the quantum mechanical predictions of Planck-scale length dimensional warping. Also, these surfaces can be maped as branes. These branes can be viewed as objects with a morphism between them. In this case, the morphism will be state of a string that stretches between brane A and brane B.

Singularities are avoided because the observed consequences of "Big Crunches" never reach zero size. In fact, should the universe begin a "big crunch" sort of process, string theory dictates that the universe could never be smaller than the size of one string, at which point it would actually begin expanding.

Mathematics

D-branes

D-branes are membrane-like objects in 10D string theory. They can be thought of as occurring as a result of a Kaluza–Klein compactification of 11D M-theory that contains membranes. Because compactification of a geometric theory produces extra vector fields the D-branes can be included in the action by adding an extra U(1) vector field to the string action.

z z + i A z ( z , z ¯ ) {\displaystyle \partial _{z}\rightarrow \partial _{z}+iA_{z}(z,{\overline {z}})}

In type I open string theory, the ends of open strings are always attached to D-brane surfaces. A string theory with more gauge fields such as SU(2) gauge fields would then correspond to the compactification of some higher-dimensional theory above 11 dimensions, which is not thought to be possible to date. Furthemore, the tachyons attached to the D-branes, show, the instability of those d-branes with respect to the annihilation. We will consider that tachyon total energy is (or reflects) the total energy of the D-branes.

Why five superstring theories?

For a 10 dimensional supersymmetric theory we are allowed a 32-component Majorana spinor. This can be decomposed into a pair of 16-component Majorana-Weyl (chiral) spinors. There are then various ways to construct an invariant depending on whether these two spinors have the same or opposite chiralities:

Superstring model Invariant
Heterotic z X μ i θ L ¯ Γ μ z θ L {\displaystyle \partial _{z}X^{\mu }-i{\overline {\theta _{L}}}\Gamma ^{\mu }\partial _{z}\theta _{L}}
IIA z X μ i θ L ¯ Γ μ z θ L i θ R ¯ Γ μ z θ R {\displaystyle \partial _{z}X^{\mu }-i{\overline {\theta _{L}}}\Gamma ^{\mu }\partial _{z}\theta _{L}-i{\overline {\theta _{R}}}\Gamma ^{\mu }\partial _{z}\theta _{R}}
IIB z X μ i θ L 1 ¯ Γ μ z θ L 1 i θ L 2 ¯ Γ μ z θ L 2 {\displaystyle \partial _{z}X^{\mu }-i{\overline {\theta _{L}^{1}}}\Gamma ^{\mu }\partial _{z}\theta _{L}^{1}-i{\overline {\theta _{L}^{2}}}\Gamma ^{\mu }\partial _{z}\theta _{L}^{2}}

The heterotic superstrings come in two types SO(32) and E8×E8 as indicated above and the type I superstrings include open strings.

Beyond superstring theory

It is conceivable that the five superstring theories are approximated to a theory in higher dimensions possibly involving membranes. Because the action for this involves quartic terms and higher so is not Gaussian, the functional integrals are very difficult to solve and so this has confounded the top theoretical physicists. Edward Witten has popularised the concept of a theory in 11 dimensions M-theory involving membranes interpolating from the known symmetries of superstring theory. It may turn out that there exist membrane models or other non-membrane models in higher dimensions—which may become acceptable when we find new unknown symmetries of nature, such as noncommutative geometry. It is thought, however, that 16 is probably the maximum since O(16) is a maximal subgroup of E8 the largest exceptional lie group and also is more than large enough to contain the Standard Model. Quartic integrals of the non-functional kind are easier to solve so there is hope for the future. This is the series solution, which is always convergent when a is non-zero and negative:

exp ( a x 4 + b x 3 + c x 2 + d x + f ) d x = e f n , m , p = 0 b 4 n ( 4 n ) ! c 2 m ( 2 m ) ! d 4 p ( 4 p ) ! Γ ( 3 n + m + p + 1 4 ) a 3 n + m + p + 1 4 {\displaystyle \int _{-\infty }^{\infty }\exp({ax^{4}+bx^{3}+cx^{2}+dx+f})\,dx=e^{f}\sum _{n,m,p=0}^{\infty }{\frac {b^{4n}}{(4n)!}}{\frac {c^{2m}}{(2m)!}}{\frac {d^{4p}}{(4p)!}}{\frac {\Gamma (3n+m+p+{\frac {1}{4}})}{a^{3n+m+p+{\frac {1}{4}}}}}}

In the case of membranes the series would correspond to sums of various membrane interactions that are not seen in string theory.

Compactification

Investigating theories of higher dimensions often involves looking at the 10 dimensional superstring theory and interpreting some of the more obscure results in terms of compactified dimensions. For example, D-branes are seen as compactified membranes from 11D M-theory. Theories of higher dimensions such as 12D F-theory and beyond produce other effects, such as gauge terms higher than U(1). The components of the extra vector fields (A) in the D-brane actions can be thought of as extra coordinates (X) in disguise. However, the known symmetries including supersymmetry currently restrict the spinors to 32-components—which limits the number of dimensions to 11 (or 12 if you include two time dimensions.) Some commentators (e.g., John Baez et al.) have speculated that the exceptional lie groups E6, E7 and E8 having maximum orthogonal subgroups O(10), O(12) and O(16) may be related to theories in 10, 12 and 16 dimensions; 10 dimensions corresponding to string theory and the 12 and 16 dimensional theories being yet undiscovered but would be theories based on 3-branes and 7-branes respectively. However this is a minority view within the string community. Since E7 is in some sense F4 quaternified and E8 is F4 octonified, then the 12 and 16 dimensional theories, if they did exist, may involve the noncommutative geometry based on the quaternions and octonions respectively. From the above discussion, it can be seen that physicists have many ideas for extending superstring theory beyond the current 10 dimensional theory, but so far none have been successful.

Kac–Moody algebras

Since strings can have an infinite number of modes, the symmetry used to describe string theory is based on infinite dimensional Lie algebras. Some Kac–Moody algebras that have been considered as symmetries for M-theory have been E10 and E11 and their supersymmetric extensions.

See also

Notes

  1. Polchinski, Joseph. String Theory: Volume I. Cambridge University Press, p. 4.
  2. Woit, Peter (February 22, 2011). "Implications of Initial LHC Searches for Supersymmetry".
  3. Cassel, S.; Ghilencea, D. M.; Kraml, S.; Lessa, A.; Ross, G. G. (2011). "Fine-tuning implications for complementary dark matter and LHC SUSY searches". Journal of High Energy Physics. 2011 (5): 120. arXiv:1101.4664. Bibcode:2011JHEP...05..120C. doi:10.1007/JHEP05(2011)120.
  4. Falkowski, Adam (Jester) (February 16, 2011). "What LHC tells about SUSY". resonaances.blogspot.com. Archived from the original on March 22, 2014. Retrieved March 22, 2014. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  5. Tapper, Alex (24 March 2010). "Early SUSY searches at the LHC" (PDF). Imperial College London.
  6. CMS Collaboration (2011). "Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy". Physical Review Letters. 107 (22): 221804. arXiv:1109.2352. Bibcode:2011PhRvL.107v1804C. doi:10.1103/PhysRevLett.107.221804. PMID 22182023.
  7. Shifman, M. (2012). "Frontiers Beyond the Standard Model: Reflections and Impressionistic Portrait of the Conference". Modern Physics Letters A. 27 (40): 1230043. Bibcode:2012MPLA...2730043S. doi:10.1142/S0217732312300431.
  8. ^ Jha, Alok (August 6, 2013). "One year on from the Higgs boson find, has physics hit the buffers?". The Guardian. photograph: Harold Cunningham/Getty Images. London: GMG. ISSN 0261-3077. OCLC 60623878. Archived from the original on March 22, 2014. Retrieved March 22, 2014. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  9. Polchinski, Joseph. String Theory: Volume I. Cambridge University Press, p. 247.
  10. Polchinski, Joseph. String Theory: Volume II. Cambridge University Press, p. 198.
  11. Foot, R.; Joshi, G. C. (1990). "Nonstandard signature of spacetime, superstrings, and the split composition algebras". Letters in Mathematical Physics. 19: 65–71. Bibcode:1990LMaPh..19...65F. doi:10.1007/BF00402262.

References

  • Kaku, Michio (1999). Introduction to Superstring and M-Theory (2nd ed.). New York, USA: Springer-Verlag.
  • Shen, Sinyan (1982). Introduction to Superfluidity (2nd ed.). Beijing, China: Science Press.
  • Greene, Brian (2000). The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. Random House Inc.

External links

Categories:
Superstring theory: Difference between revisions Add topic