Misplaced Pages

Polio vaccine: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →
Revision as of 14:07, 3 December 2016 editAcroterion (talk | contribs)Autopatrolled, Administrators232,902 edits Reverted 1 edit by 47.201.179.7 (talk): Rv: that wasn't the result of that discussion. (TW)← Previous edit Revision as of 22:22, 3 December 2016 edit undoRitchie333 (talk | contribs)Edit filter managers, Autopatrolled, Administrators125,315 editsm Protected "Polio vaccine": Edit warring / content dispute: started straight back up the minute protection expired ( (expires 22:22, 17 December 2016 (UTC)) [Move=Require aut...Next edit →
(No difference)

Revision as of 22:22, 3 December 2016

Pharmaceutical compound
Polio vaccine
Vaccine description
TargetPoliomyelitis
Vaccine typeOPV: Attenuated; IPV: Killed
Clinical data
AHFS/Drugs.comMultum Consumer Information
Pregnancy
category
  • C (both OPV and IPV)
Routes of
administration
Parenteral (IPV), By mouth (OPV)
ATC code
Legal status
Legal status
  • Administered by or under the supervision of a health care professional.
Identifiers
ChemSpider
  • none
  (verify)

Polio vaccines are vaccines used to prevent poliomyelitis (polio). One type uses inactivated poliovirus and is given by injection (IPV), while the other type uses weakened poliovirus and is given by mouth (OPV). The World Health Organization recommends all children be vaccinated against polio. The two vaccines have eliminated polio from most of the world, and reduced the number of cases each year from an estimated 350,000 in 1988 to 74 in 2015.

The inactivated polio vaccines are very safe. Mild redness or pain may occur at the site of injection. Oral polio vaccines result in vaccine-associated paralytic poliomyelitis in about three per million doses. This compares with one in two hundred who are paralysed following a polio infection. Both are generally safe to give during pregnancy and in those who have HIV/AIDS but are otherwise well.

The first polio vaccine was the inactivated polio vaccine. It was developed by Jonas Salk and came into use in 1955. The oral polio vaccine was developed by Albert Sabin and came into commercial use in 1961. They are on the World Health Organization's List of Essential Medicines, the most important medication needed in a basic health system. The wholesale cost in the developing world is about 0.25 USD per dose for the oral form as of 2014. In the United States it costs between 25 and 50 USD for the inactivated form.

Medical uses

This 1963 poster featured CDC's national symbol of public health, the "Wellbee", encouraging the public to receive an oral polio vaccine.

Interruption of person-to-person transmission of the virus by vaccination is important in the global polio eradication, since there is no long term carrier state for poliovirus in individuals with normal immune function, polio viruses have no non-primate reservoir in nature, and survival of the virus in the environment for an extended period of time appears to be remote.

Inactivated

When the current formulation of IPV is used, 90% or more of individuals develop protective antibody to all three serotypes of polio virus after two doses of inactivated polio vaccine (IPV), and at least 99% are immune to polio virus following three doses. The duration of immunity induced by IPV is not known with certainty, although a complete series is thought to provide protection for many years.

Attenuated

OPV also proved to be superior in administration, eliminating the need for sterile syringes and making the vaccine more suitable for mass vaccination campaigns. OPV also provided longer lasting immunity than the Salk vaccine.

One dose of OPV produces immunity to all three poliovirus serotypes in approximately 50% of recipients. Three doses of live-attenuated OPV produce protective antibodies to all three poliovirus types in more than 95% of recipients. OPV produces excellent immunity in the intestine, the primary site of wild poliovirus entry, which helps prevent infection with wild virus in areas where the virus is endemic. The live virus used in the vaccine is shed in the stool and can be spread to others within a community. The live virus also has stringent requirements for transport and storage, which are a problem in some hot or remote areas. As with other live-virus vaccines, immunity initiated by OPV is probably lifelong.

The trivalent (against wild type 1, 2 and 3) OPV has been used and nearly eradicated polio infection worldwide. Spearheaded by The Global Polio Eradication Initiative, 155 countries switched to use the bivalent (against wild type 1 and 3) between 17 April and 1 May 2016. The bivalent OPV is at least 30% more effective than the trivalent one.

Schedule

The World Health Organization recommends three or four doses starting at two months of age. It can be begun earlier but then additional doses are needed.

Side effects

Doses of oral polio vaccine are added to sugar cubes for use in a 1967 vaccination campaign in Bonn, West Germany

The inactivated polio vaccines are very safe. Mild redness or pain may occur at the site of injection. Oral polio vaccine results in vaccine-associated paralytic poliomyelitis in about three per million doses. They are generally safe to give during pregnancy and in those who have HIV/AIDS but are otherwise well.

Vaccine-induced polio

A potential, but rare, adverse effect of the oral polio vaccine (OPV) is its known ability to recombine to a form that may cause neurological infection and cause paralysis. Clinical disease, including paralysis, caused by vaccine-derived poliovirus (VDPV) is indistinguishable from that caused by wild polioviruses. This is believed to be a rare event, but outbreaks of vaccine-associated paralytic poliomyelitis (VAPP), caused by a circulating vaccine-derived poliovirus (cVDPV), have been reported, and tend to occur in areas of low coverage by OPV, presumably because the OPV is itself protective against the related outbreak strain.

Contamination concerns

In 1960, it was determined that the rhesus monkey kidney cells used to prepare the poliovirus vaccines were infected with the SV40 virus (Simian Virus-40). SV40 was also discovered in 1960 and is a naturally occurring virus that infects monkeys. In 1961, SV40 was found to cause tumors in rodents. More recently, the virus was found in certain forms of cancer in humans, for instance brain and bone tumors, pleural and peritoneal mesothelioma, and some types of non-Hodgkin's lymphoma. However, it has not been determined that SV40 causes these cancers.

SV40 was found to be present in stocks of the injected form of the polio vaccine (IPV) in use between 1955 and 1963. It is not found in the OPV form. Over 98 million Americans received one or more doses of polio vaccine between 1955 and 1963 when a proportion of vaccine was contaminated with SV40; it has been estimated that 10–30 million Americans may have received a dose of vaccine contaminated with SV40. Later analysis suggested that vaccines produced by the former Soviet bloc countries until 1980, and used in the USSR, China, Japan, and several African countries, may have been contaminated; meaning hundreds of millions more may have been exposed to SV40.

In 1998, the National Cancer Institute undertook a large study, using cancer case information from the Institute's SEER database. The published findings from the study revealed that there was no increased incidence of cancer in persons who may have received vaccine containing SV40. Another large study in Sweden examined cancer rates of 700,000 individuals who had received potentially contaminated polio vaccine as late as 1957; the study again revealed no increased cancer incidence between persons who received polio vaccines containing SV40 and those who did not. The question of whether SV40 causes cancer in humans remains controversial however, and the development of improved assays for detection of SV40 in human tissues will be needed to resolve the controversy.

During the race to develop an oral polio vaccine several large scale human trials were undertaken. By 1958, the National Institutes of Health had determined that OPV produced using the Sabin strains were the safest. Between 1957 and 1960, however, Hilary Koprowski continued to administer his vaccine around the world. In Africa, the vaccines were administered to roughly one million people in the Belgian territories, now the Democratic Republic of the Congo, Rwanda and Burundi. The results of these human trials have been controversial, and unfounded accusations in the 1990s arose that the vaccine had created the conditions necessary for transmission of SIV from chimpanzees to humans, causing HIV/AIDS. These hypotheses have, however, been conclusively refuted. By 2004, cases of poliomyelitis in Africa had been reduced to just a small number of isolated regions in the western portion of the continent, with sporadic cases elsewhere. However, recent local opposition to vaccination campaigns has evolved, often relating to fears that the vaccine might induce sterility. The disease has since resurged in Nigeria and in several other African nations, which epidemiologists believe is due to refusals by certain local populations to allow their children to receive the polio vaccine.

Manufacture

Inactivated

The Salk vaccine, or inactivated poliovirus vaccine (IPV), is based on three wild, virulent reference strains, Mahoney (type 1 poliovirus), MEF-1 (type 2 poliovirus), and Saukett (type 3 poliovirus), grown in a type of monkey kidney tissue culture (Vero cell line), which are then inactivated with formalin. The injected Salk vaccine confers IgG-mediated immunity in the bloodstream, which prevents polio infection from progressing to viremia and protects the motor neurons, thus eliminating the risk of bulbar polio and post-polio syndrome.

In the United States, vaccine is administered along with the diphtheria, tetanus, and acellular pertussis vaccines (DTaP) and a pediatric dose of hepatitis B vaccine. In the UK, IPV is combined with tetanus, diphtheria, pertussis, and Haemophilus influenzae type b vaccines.

Attenuated

Oral polio vaccine (OPV) is an attenuated vaccine, produced by the passage of the virus through non-human cells at a sub-physiological temperature, which produces spontaneous mutations in the viral genome. Oral polio vaccines were developed by several groups, one of which was led by Albert Sabin. Other groups, led by Hilary Koprowski and H.R. Cox, developed their own attenuated vaccine strains. In 1958, the National Institutes of Health created a special committee on live polio vaccines. The various vaccines were carefully evaluated for their ability to induce immunity to polio, while retaining a low incidence of neuropathogenicity in monkeys. Large-scale clinical trials performed in the Soviet Union in late 1950s to early 1960s by Mikhail Chumakov and his colleagues demonstrated safety and high efficacy of the vaccine. Based on these results, the Sabin strains were chosen for worldwide distribution. There are 57 nucleotide substitutions which distinguish the attenuated Sabin 1 strain from its virulent parent (the Mahoney serotype), two nucleotide substitutions attenuate the Sabin 2 strain, and 10 substitutions are involved in attenuating the Sabin 3 strain. The primary attenuating factor common to all three Sabin vaccines is a mutation located in the virus's internal ribosome entry site (IRES) which alters stem-loop structures, and reduces the ability of poliovirus to translate its RNA template within the host cell. The attenuated poliovirus in the Sabin vaccine replicates very efficiently in the gut, the primary site of infection and replication, but is unable to replicate efficiently within nervous system tissue. In 1961, type 1 and 2 monovalent oral poliovirus vaccine (MOPV) was licensed, and in 1962, type 3 MOPV was licensed. In 1963, trivalent OPV (TOPV) was licensed, and became the vaccine of choice in the United States and most other countries of the world, largely replacing the inactivated polio vaccine. A second wave of mass immunizations led to a further dramatic decline in the number of polio cases. Between 1962 and 1965 about 100 million Americans (roughly 56% of the population at that time) received the Sabin vaccine. The result was a substantial reduction in the number of poliomyelitis cases, even from the much reduced levels following the introduction of the Salk vaccine.

OPV is usually provided in vials containing 10–20 doses of vaccine. A single dose of oral polio vaccine (usually two drops) contains 1,000,000 infectious units of Sabin 1 (effective against PV1), 100,000 infectious units of the Sabin 2 strain, and 600,000 infectious units of Sabin 3. The vaccine contains small traces of antibioticsneomycin and streptomycin—but does not contain preservatives.

History

In generic sense, vaccination works by priming the immune system with an 'immunogen'. Stimulating immune response, via use of an infectious agent, is known as immunization. The development of immunity to polio efficiently blocks person-to-person transmission of wild poliovirus, thereby protecting both individual vaccine recipients and the wider community.

The development of two polio vaccines led to the first modern mass inoculations. The last cases of paralytic poliomyelitis caused by endemic transmission of wild virus in the United States occurred in 1979, with an outbreak among the Amish in several Midwest states.

1935

This year, two separate teams were at work developing and testing a polio vaccine. Both projects came to disastrous ends. At New York University, Maurice Brodie, MD (1903-1939), a young researcher, prepared a killed poliovirus vaccine, testing it on chimpanzees, on himself, and finally on children. He enrolled about 11,000 individuals (in both control and vaccine groups) in his trial. Meanwhile, John Kolmer, MD, of Temple University in Philadelphia developed an attenuated poliovirus vaccine, which he tested in about 10,000 children. The tests proved a disaster. Several subjects died of polio, and many were paralyzed, made ill, or suffered allergic reactions to the vaccines.

1936

In 1936, Maurice Brodie, a research assistant at New York University, attempted to produce a formaldehyde-killed polio vaccine from ground-up monkey spinal cords. His initial attempts were hampered by the difficulty of obtaining enough virus. Brodie first tested the vaccine on himself and several of his assistants. He then gave the vaccine to three thousand children. Many of these children developed allergic reactions, but none developed immunity to polio. Philadelphia pathologist John Kolmer also claimed to have developed a vaccine that same year, but it too produced no immunity and was blamed for causing cases of paralytic polio, nine of them fatal.

1948

A breakthrough came in 1948 when a research group headed by John Enders at the Children's Hospital Boston successfully cultivated the poliovirus in human tissue in the laboratory. This group had recently successfully grown mumps in cell culture. In March 1948 Thomas H. Weller was attempting to grow varicella virus in embryonic lung tissue. He had inoculated the planned number of tubes when he noticed that there were a few unused tubes. He retrieved a sample of mouse brain infected with polio virus and added it to the remaining test tubes, on the off chance that the virus might grow. The varicella cultures failed to grow but the polio cultures were successful. This development greatly facilitated vaccine research and ultimately allowed for the development of vaccines against polio. Enders and his colleagues, Thomas H. Weller and Frederick C. Robbins, were recognized in 1954 for their labors with a Nobel Prize in Physiology or Medicine. Other important advances that led to the development of polio vaccines were: the identification of three poliovirus serotypes (Poliovirus type 1 — PV1, or Mahoney; PV2, Lansing; and PV3, Leon); the finding that prior to paralysis, the virus must be present in the blood; and the demonstration that administration of antibodies in the form of gamma globulin protects against paralytic polio.

Albert Sabin (right) with Robert Gallo, circa 1985

1952–1953

The U.S. experienced an outbreak of 58,000 and 35,000 polio cases, respectively, up from a typical number of some 20,000 a year. Amid this U.S. polio epidemic, millions of dollars were invested in finding and marketing a polio vaccine by commercial interests, including Lederle Laboratories in New York under the direction of H. R. Cox. Also working at Lederle was Polish-born virologist and immunologist Hilary Koprowski, who claims to have created the first successful polio vaccine, in 1950. His vaccine, however, being a live attenuated virus taken orally, was still in the research stage and would not be ready for use until five years after Jonas Salk's polio vaccine (a dead-virus injectable vaccine) had reached the market. Koprowski's attenuated vaccine was prepared by successive passages through the brains of Swiss albino mice. By the seventh passage, the vaccine strains could no longer infect nervous tissue or cause paralysis. After one to three further passages on rats, the vaccine was deemed safe for human use. On 27 February 1950, Koprowski's live, attenuated vaccine was tested for the first time on an 8-year-old boy living at Letchworth Village, an institution for the physically and mentally disabled located in New York. After the child suffered no side effects, Koprowski enlarged his experiment to include 19 other children.

Mass polio vaccination in Columbus, Georgia during the early days of the National Polio Immunization Program.

Jonas Salk

Administration of the polio inoculation, including by Salk himself, in 1957 at the University of Pittsburgh where he and his team had developed the vaccine

The first effective polio vaccine was developed in 1952 by Jonas Salk and a team at the University of Pittsburgh that included Julius Youngner, Byron Bennett, L. James Lewis, and Lorraine Friedman, but it required years of subsequent testing. To encourage patience, Salk went on CBS radio to report a successful test on a small group of adults and children on 26 March 1953; two days later the results were published in JAMA. Beginning 23 February 1954, the vaccine was tested at Arsenal Elementary School and the Watson Home for Children in Pittsburgh, Pennsylvania. Salk's vaccine was then used in a test called the Francis Field Trial, led by Thomas Francis; the largest medical experiment in history. The test began with some 4,000 children at Franklin Sherman Elementary School in McLean, Virginia, and would eventually involve 1.8 million children, in 44 states from Maine to California. By the conclusion of the study, roughly 440,000 received one or more injections of the vaccine, about 210,000 children received a placebo, consisting of harmless culture media, and 1.2 million children received no vaccination and served as a control group, who would then be observed to see if any contracted polio. The results of the field trial were announced 12 April 1955 (the tenth anniversary of the death of President Franklin D. Roosevelt, whose paralysis was generally believed to have been caused by polio). The Salk vaccine had been 60–70% effective against PV1 (poliovirus type 1), over 90% effective against PV2 and PV3, and 94% effective against the development of bulbar polio. Soon after Salk's vaccine was licensed in 1955, children's vaccination campaigns were launched. In the U.S, following a mass immunization campaign promoted by the March of Dimes, the annual number of polio cases fell from 35,000 in 1953 to 5,600 by 1957. By 1961 only 161 cases were recorded in the United States. The Pasteur Institute in Paris nearly simultaneously announced an effective polio vaccine.

A Somali boy is injected with inactivated poliovirus vaccine (Mogadishu, 1993)

1987

An enhanced-potency IPV (inactivated polio vaccine) was licensed in the United States in November 1987, and is currently the vaccine of choice in the United States. The first dose of polio vaccine is given shortly after birth, usually between 1 and 2 months of age, a second dose is given at 4 months of age. The timing of the third dose depends on the vaccine formulation but should be given between 6 and 18 months of age. A booster vaccination is given at 4 to 6 years of age, for a total of four doses at or before school entry. In some countries, a fifth vaccination is given during adolescence. Routine vaccination of adults (18 years of age and older) in developed countries is neither necessary nor recommended because most adults are already immune and have a very small risk of exposure to wild poliovirus in their home countries. In 2002, a pentavalent (five-component) combination vaccine (called Pediarix) containing IPV was approved for use in the United States.

1988

A global effort to eradicate polio, led by the World Health Organization, UNICEF, and The Rotary Foundation, began in 1988 and has relied largely on the oral polio vaccine developed by Albert Sabin and Mikhail Chumakov (Sabin-Chumakov vaccine).

Post-1990

Polio was eliminated in the Americas by 1994. The disease was officially eliminated in 36 Western Pacific countries, including China and Australia in 2000. Europe was declared polio-free in 2002. Since January 2011, there were no reported cases of the disease in India, and hence in February 2012, the country was taken off the WHO list of polio endemic countries. If there are no cases of polio in the country for two more years, it will be declared as a polio-free country. As of 2016, polio remains actively spreading in only two countries: Pakistan, and Afghanistan. Although poliovirus transmission has been interrupted in much of the world, transmission of wild poliovirus does continue and creates an ongoing risk for the importation of wild poliovirus into previously polio-free regions. If importations of poliovirus occur, outbreaks of poliomyelitis may develop, especially in areas with low vaccination coverage and poor sanitation. As a result, high levels of vaccination coverage must be maintained. In November 2013, the World Health Organization announced a polio outbreak in Syria. In response, the Armenian government put out a notice asking Syrian Armenians under age 15 to get the polio vaccine. As of 2014, polio virus has spread out to ten countries mainly in Africa, Asia and the Middle East with Pakistan, Syria and Cameroon advising vaccinations to outbound travelers. In 2015, the World Health Organization announced a deal with the Taliban to encourage them to distribute the vaccine in areas they control. Polio vaccination programs have received resistance from some people in Pakistan, Afghanistan, and Nigeria (the three countries with remaining polio cases). Indeed, on September 11, 2016, two unidentified gunmen associated with the Pakistani Taliban, Jamaat-ul-Ahrar, shot Zakaullah Khan, a doctor who was administering polio vaccines in Pakistan. The leader of the Jamaat-ul-Ahrar claimed responsibility for the shooting and says that the group will continue to keep doing these kinds of attacks. There is a history surrounding vaccines in Pakistan as in 2011 the CIA organized a fake vaccination program in order to help find Osama Bin Laden. Additionally, some people believe that the vaccines are secretly being used for sterilization of Muslims. This resistance to and skepticism of vaccinations has consequently slowed down the polio eradication process within the three remaining countries.

Society and culture

Cost

The wholesale cost is about 0.25 USD per dose for the oral form as of 2014. The inactivated vaccine is available to GAVI-supported countries for as little as EUR 0.75 per dose (approximately USD 1.00 per dose at current exchange rates) in ten-dose vials.

In the United States it costs between 25 and 50 USD for the inactivated form.

Misconceptions

A widespread misconception has arisen in Pakistan that polio vaccine contained Haram ingredients and could cause impotence and infertility in male children, leading some less-educated parents not to have their children vaccinated. This belief is most prevalent in the Khyber Pakhtunkhwa province and the FATA region, where people are likely to be influenced by conservative teachings. There also have been attacks on polio vaccination teams. This is hampering international efforts to eradicate polio in Pakistan and globally since the virus can be carried by travelers.

References

  1. ^ "Polio vaccines: WHO position paper, January 2014" (PDF). Wkly Epidemiol Rec. 89 (9): 73–92. 28 February 2014. PMID 24707513.
  2. Aylward RB (2006). "Eradicating polio: today's challenges and tomorrow's legacy". Annals of Tropical Medicine and Parasitology. 100 (5–6): 401–13. doi:10.1179/136485906X97354. PMID 16899145.
  3. Schonberger L, Kaplan J, Kim-Farley R, Moore M, Eddins D, Hatch M (1984). "Control of paralytic poliomyelitis in the United States". Rev. Infect. Dis. 6 Suppl 2: S424–6. doi:10.1093/clinids/6.Supplement_2.S424. PMID 6740085.
  4. ^ "Poliomyelitis: Fact sheet N°114". World Health Organization. September 2016. Retrieved 14 September 2016.
  5. Bazin, H. (2011). Vaccination: A History. John Libbey Eurotext. p. 395. ISBN 9782742007752.
  6. Smith, DR; Leggat, PA (2005). "Pioneering figures in medicine: Albert Bruce Sabin--inventor of the oral polio vaccine". The Kurume medical journal. 52 (3): 111–6. doi:10.2739/kurumemedj.52.111. PMID 16422178.
  7. "WHO Model List of EssentialMedicines" (PDF). World Health Organization. October 2013. Retrieved 22 April 2014.
  8. ^ "Vaccine, Polio". International Drug Price Indicator Guide. Retrieved 6 December 2015.
  9. ^ Hamilton, Richart (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 316. ISBN 978-1-284-05756-0.
  10. ^ Fine P, Carneiro I (15 November 1999). "Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative". Am J Epidemiol. 150 (10): 1001–21. doi:10.1093/oxfordjournals.aje.a009924. PMID 10568615.
  11. Koike S, Choji T, Takeshi K, Shinobu A, Iku I, Hiromichi Y (1991). "Transgenic Mice Susceptible to Polio Virus". Proceedings of the National Academy of Sciences. 88 (1): 951–955. doi:10.1073/pnas.88.3.951. PMC 50932. PMID 1846972. Retrieved 1 March 2014.
  12. ^ Robertson, Susan. "Module 6: Poliomyelitis" (PDF). The Immunological Basis for Immunization Series. World Health Organization (Geneva, Switzerland). Archived from the original (PDF) on 24 March 2006. Retrieved 29 November 2008.
  13. ^ Atkinson W, Hamborsky J, McIntyre L, Wolfe S, eds. (2008). Epidemiology and Prevention of Vaccine-Preventable Diseases (The Pink Book) (PDF) (10th ed. (2nd printing) ed.). Washington, D.C.: Public Health Foundation. Archived from the original (PDF) on 24 September 2008. Retrieved 29 November 2008. {{cite book}}: |author= has generic name (help)CS1 maint: multiple names: authors list (link)
  14. ^ "Poliomyelitis prevention: recommendations for use of inactivated poliovirus vaccine and live oral poliovirus vaccine. American Academy of Pediatrics Committee on Infectious Diseases". Pediatrics. 99 (2): 300–5. 1997. doi:10.1542/peds.99.2.300. PMID 9024465.
  15. Al Idrus, Amirah (13 April 2016). "Worldwide switch to bivalent oral polio vaccine to kick off on Sunday". fiercepharma.com. Retrieved 1 May 2016.
  16. Polio Eradication Initiative. "Bivalent oral polio vaccine". Polio Eradication Initiative. Retrieved 1 May 2016.
  17. Shimizu H; Thorley B; Paladin FJ; et al. (December 2004). "Circulation of Type 1 Vaccine-Derived Poliovirus in the Philippines in 2001". J. Virol. 78 (24): 13512–21. doi:10.1128/JVI.78.24.13512-13521.2004. PMC 533948. PMID 15564462. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  18. Cono J, Alexander LN (2002). "Chapter 10: Poliomyelitis" (PDF). Vaccine-Preventable Disease Surveillance Manual (3rd ed.). Archived from the original (PDF) on 22 October 2011.
  19. "What is vaccine-derived polio?". Online Q&A - WHO. October 2014. Retrieved 6 September 2015.
  20. Kew O; et al. (2002). "Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus". Science. 296 (5566): 356–9. doi:10.1126/science.1068284. PMID 11896235. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  21. Yang CF; Naguib T; Yang SJ; et al. (August 2003). "Circulation of Endemic Type 2 Vaccine-Derived Poliovirus in Egypt from 1983 to 1993". J. Virol. 77 (15): 8366–77. doi:10.1128/JVI.77.15.8366-8377.2003. PMC 165252. PMID 12857906. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  22. ^ "Simian Virus 40 (SV40), Polio Vaccine, and Cancer". Vaccine Safety. Centers for Disease Control. 22 April 2004. Archived from the original on 22 May 2013. Retrieved 22 May 2013.
  23. Eddy B, Borman G, Berkeley W, Young R (1961). "Tumors induced in hamsters by injection of rhesus monkey kidney cell extracts". Proc Soc Exp Biol Med. 107: 191–7. doi:10.3181/00379727-107-26576. PMID 13725644.
  24. Carbone M (1999). "Simian virus 40 and human tumors: It is time to study mechanisms". J Cell Biochem. 76 (2): 189–93. doi:10.1002/(SICI)1097-4644(20000201)76:2<189::AID-JCB3>3.0.CO;2-J. PMID 10618636.
  25. Vilchez R, Kozinetz C, Arrington A, Madden C, Butel J (2003). "Simian virus 40 in human cancers". Am J Med. 114 (8): 675–84. doi:10.1016/S0002-9343(03)00087-1. PMID 12798456.
  26. ^ Engels E (2005). "Cancer risk associated with receipt of vaccines contaminated with simian virus 40: epidemiologic research" (PDF). Expert Rev Vaccines. 4 (2): 197–206. doi:10.1586/14760584.4.2.197. PMID 15889993. Archived from the original (PDF) on 23 September 2006.
  27. Bookchin D (7 July 2004). "Vaccine scandal revives cancer fear". New Scientist. Archived from the original on 20 July 2004. Retrieved 29 November 2008.
  28. Strickler H, Rosenberg P, Devesa S, Hertel J, Fraumeni J, Goedert J (1998). "Contamination of poliovirus vaccines with simian virus 40 (1955–1963) and subsequent cancer rates". JAMA. 279 (4): 292–5. doi:10.1001/jama.279.4.292. PMID 9450713.
  29. Olin P, Giesecke J (1998). "Potential exposure to SV40 in polio vaccines used in Sweden during 1957: no impact on cancer incidence rates 1960 to 1993". Dev Biol Stand. 94: 227–33. PMID 9776244.
  30. ^ "Competition to develop an oral vaccine". Conquering Polio. Sanofi Pasteur SA. 2 February 2007. Archived from the original on 7 October 2007.
  31. ^ Plotkin SA; Modlin, J. F.; Plotkin, S. A. (2001). "CHAT oral polio vaccine was not the source of human immunodeficiency virus type 1 group M for humans". Clin. Infect. Dis. 32 (7): 1068–84. doi:10.1086/319612. PMID 11264036.
  32. Koprowski H (July 1960). "Historical Aspects of the Development of Live Virus Vaccine in Poliomyelitis". Br Med J. 2 (5192): 85–91. doi:10.1136/bmj.2.5192.85. PMC 2096806. PMID 14410975.
  33. Collins, Huntly (6 November 2000). "The Gulp Heard Round the World". Philadelphia Inquirer. pp. Section D, page 1. Retrieved 29 November 2008.
  34. "Nigeria Muslims oppose polio vaccination". Africa. BBC News. 27 June 2002. Retrieved 29 November 2008.
  35. Dugger CW, McNeil DG (20 March 2006). "Rumor, Fear and Fatigue Hinder Final Push to End Polio". New York Times. Retrieved 29 November 2008.
  36. "Anti-polio vaccine Malians jailed". Africa. BBC News. 12 May 2005. Retrieved 29 November 2008.
  37. Jegede AS (March 2007). "What Led to the Nigerian Boycott of the Polio Vaccination Campaign?". PLoS Med. 4 (3): e73. doi:10.1371/journal.pmed.0040073. PMC 1831725. PMID 17388657.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  38. ^ Kew O, Sutter R, de Gourville E, Dowdle W, Pallansch M; Sutter; De Gourville; Dowdle; Pallansch (2005). "Vaccine-derived polioviruses and the endgame strategy for global polio eradication". Annu Rev Microbiol. 59: 587–635. doi:10.1146/annurev.micro.58.030603.123625. PMID 16153180.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Joint Committee on Vaccination and Immunisation, David Salisbury (editor), Mary Ramsay (editor), Karen Noakes (editor) (2006). "26: Poliomyelitis". Immunisation Against Infectious Disease (PDF). Edinburgh: Stationery Office. pp. 313–29. ISBN 0-11-322528-8. Archived from the original (PDF) on 15 June 2007. {{cite book}}: |author= has generic name (help)CS1 maint: multiple names: authors list (link)
  40. Sabin A; Ramos-Alvarez M; Alvarez-Amezquita J; et al. (1960). "Live, orally given poliovirus vaccine. Effects of rapid mass immunization on population under conditions of massive enteric infection with other viruses". JAMA. 173 (14): 1521–6. doi:10.1001/jama.1960.03020320001001. PMID 14440553. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  41. Sabin AB (1987). "Role of my cooperation with Soviet scientists in the elimination of polio: possible lessons for relations between the U.S.A. and the USSR". Perspect. Biol. Med. 31 (1): 57–64. doi:10.1353/pbm.1987.0023. PMID 3696960.
  42. Benison S (1982). "International medical cooperation: Dr. Albert Sabin, live poliovirus vaccine and the Soviets". Bull Hist Med. 56 (4): 460–83. PMID 6760938.
  43. Ochs K; Zeller A; Saleh L; et al. (January 2003). "Impaired Binding of Standard Initiation Factors Mediates Poliovirus Translation Attenuation". J. Virol. 77 (1): 115–22. doi:10.1128/JVI.77.1.115-122.2003. PMC 140626. PMID 12477816. {{cite journal}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  44. Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E (February 1999). "Dual Stem Loops within the Poliovirus Internal Ribosomal Entry Site Control Neurovirulence". J. Virol. 73 (2): 958–64. PMC 103915. PMID 9882296.
  45. ^ Pearce J (2004). "Salk and Sabin: poliomyelitis immunisation". J Neurol Neurosurg Psychiatry. 75 (11): 1552. doi:10.1136/jnnp.2003.028530. PMC 1738787. PMID 15489385.
  46. Smallman-Raynor, Matthew (2006). Poliomyelitis: A World Geography: Emergence to Eradication. Oxford University Press, USA. ISBN 0-19-924474-X.
  47. Poliomyelitis Eradication: Field Guide. Washington: Pan American Health Organization. 2006. ISBN 92-75-11607-5.
  48. http://www.historyofvaccines.org/content/timelines/polio
  49. Rainsberger M (27 June 2005). "More than a March of Dimes". The University of Texas at Austin.
  50. Enders JF, Weller TH, Robbins FC; Weller; Robbins (January 1949). "Cultivation of the Lansing Strain of Poliomyelitis Virus in Cultures of Various Human Embryonic Tissues". Science. 109 (2822): 85–87. Bibcode:1949Sci...109...85E. doi:10.1126/science.109.2822.85. PMID 17794160.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. "The Nobel Prize in Physiology or Medicine 1954". The Nobel Foundation. Retrieved 29 November 2008.
  52. Hammon W, Coriell L, Wehrle P, Stokes J; Coriell; Wehrle; Stokes Jr (1953). "Evaluation of Red Cross gamma globulin as a prophylactic agent for poliomyelitis. IV. Final report of results based on clinical diagnoses". J Am Med Assoc. 151 (15): 1272–85. PMID 13034471.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. "Weekly Reports for OCTOBER 10, 1947". Public Health Rep. 62 (41): 1467–1498. October 1947. PMC 1995293. PMID 19316151.
  54. Koprowski, Hilary (15 October 2010). "Interview with Hilary Koprowski, sourced at History of Vaccines website". College of Physicians of Philadelphia. Retrieved 15 October 2010.
  55. Offit, Paul A. (2007). The Cutter Incident: How America's First Polio Vaccine Led to the Growing Vaccine Crisis. Yale University Press. p. 38. ISBN 0-300-12605-0.
  56. Teri Shors (14 March 2008). Understanding viruses. Jones & Bartlett Learning. pp. 294–. ISBN 978-0-7637-2932-5. Retrieved 22 February 2011.
  57. David Oshinsky "Miracle Workers," American Heritage, Winter 2010.
  58. "Polio Victory Remembered as March of Dimes Marks 50th Anniversary of Salk Vaccine Field Trials". News Desk. 26 April 2004. Retrieved 14 November 2014.
  59. Smith, Jane S. (1990). Patenting the Sun: Polio and the Salk Vaccine. William Morrow & Co. ISBN 0-688-09494-5.
  60. Sorem A, Sass EJ, Gottfried G (1996). Polio's legacy: an oral history. Washington, D.C: University Press of America. ISBN 0-7618-0144-8.
  61. Hinman A (1984). "Landmark perspective: Mass vaccination against polio". JAMA. 251 (22): 2994–6. doi:10.1001/jama.1984.03340460072029. PMID 6371280.
  62. The Pasteur Institute stated that an anti-poliomyelitis vaccine, developed by Professor Pierre Lepine would soon be produced in large quantities. (Times, London, April 4, 1955).
  63. Pasteur, Archives. "Pierre Lépine (1901-1989) - Notice biographique". webext.pasteur.fr. Retrieved 28 November 2016.
  64. Mansoor, Halima (23 October 2015). "Can India's social mobilisation strategy work in Pakistan?". The Express Tribune. Retrieved 24 October 2015.
  65. Mastny, Lisa (25 January 1999). "Eradicating Polio: A Model for International Cooperation". Worldwatch Institute. Retrieved 29 November 2008.
  66. ^ Centers for Disease Control and Prevention (CDC) (1994). "International Notes Certification of Poliomyelitis Eradication — the Americas, 1994". Morbidity and Mortality Weekly Report. 43 (39). Centers for Disease Control and Prevention: 720–722. PMID 7522302.
  67. , (2001). "General News. Major Milestone reached in Global Polio Eradication: Western Pacific Region is certified Polio-Free" (PDF). Health Educ Res. 16 (1): 109–114. doi:10.1093/her/16.1.109. {{cite journal}}: |author= has numeric name (help)CS1 maint: extra punctuation (link)
  68. D'Souza R, Kennett M, Watson C; Kennett; Watson (2002). "Australia declared polio free". Commun Dis Intell. 26 (2): 253–60. PMID 12206379.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. "Europe achieves historic milestone as Region is declared polio-free" (Press release). European Region of the World Health Organization. 21 June 2002. Retrieved 23 August 2008.
  70. Ray, Kalyan (26 February 2012). "India wins battle against dreaded polio". Deccan Herald.
  71. "India polio-free for a year: 'First time in history we're able to put up such a map'". The Telegraph. 26 February 2012. Retrieved 26 February 2012.
  72. Lisa Barron, "Armenian Health Ministry: Syrian Armenian children need polio vaccine", CISTran Finance, 4 Nov 2013. Retrieved 18 Dec 2013.
  73. Basil T. Darras; H. Royden Jones, Jr. Jr.; Monique M. Ryan; Darryl C. De Vivo (2014). Neuromuscular Disorders of Infancy, Childhood, and Adolescence: A Clinician's Approach. Elsevier Science. p. 161. ISBN 978-0-12-417127-5.
  74. Eltaf Najafizada (15 December 2015). "Taliban Join Global Effort to Kill Off Polio in 2016". Bloomberg.com.
  75. "Pakistan polio official killed in Peshawar: police". The Daily Star: Lebanon. 11 September 2016. Retrieved 11 September 2016.
  76. http://www.polioeradication.org/Mediaroom/Newsstories(old)/Newsstories2013/tabid/488/iid/354/Default.aspx#sthash.jGhJ4YUB.dpuf
  77. "BBC NEWS - South Asia - Impotence fears hit polio drive". bbc.co.uk. Retrieved 15 December 2015.
  78. Ikram Junaidi. "Lab tests show polio vaccine is not 'Haram'". dawn.com. Retrieved 15 December 2015.

External links

Artificial induction of immunity / Immunization: Vaccines, Vaccination, Infection, Inoculation (J07)
Development
Classes
Administration
Vaccines
Bacterial
Viral
Protozoan
Helminthiasis
Other
Inventors/
researchers
Controversy
Related

Portals: Categories: