Revision as of 21:34, 27 November 2018 edit46.193.16.24 (talk)No edit summary← Previous edit | Revision as of 23:43, 24 December 2018 edit undoFvultier (talk | contribs)Extended confirmed users1,158 edits Correcting nonsense article.Next edit → | ||
Line 1: | Line 1: | ||
{{context|date=July 2018}} | {{context|date=July 2018}} | ||
{{technical|date=July 2018}} | {{technical|date=July 2018}} | ||
The '''autocorrelation matrix''' is used in various digital signal processing algorithms. It consists of elements of the discrete ] function, <math>R_{xx}(j)</math> arranged in the following manner: | |||
The '''autocorrelation matrix''' of a ] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> is a <math>n \times n</math> matrix containing as elements the correlations of all pairs of elements of the random vector <math>\mathbf{X}</math>. The autocorrelation matrixis used in various digital signal processing algorithms. | |||
:<math>\mathbf{R}_x = E = \begin{bmatrix} | |||
R_{xx}(0) & R^*_{xx}(1) & R^*_{xx}(2) & \cdots & R^*_{xx}(N-1) \\ | |||
==Definition== | |||
R_{xx}(1) & R_{xx}(0) & R^*_{xx}(1) & \cdots & R^*_{xx}(N-2) \\ | |||
For a ] <math>\mathbf{X} = (X_1,\ldots,X_n)^{\rm T}</math> containing ]s whose ] and ] exist, the '''auto-correlation matrix''' is defined by | |||
R_{xx}(2) & R_{xx}(1) & R_{xx}(0) & \cdots & R^*_{xx}(N-3) \\ | |||
⚫ | \vdots |
||
{{Equation box 1 | |||
R_{xx}(N-1) & R_{xx}(N-2) & R_{xx}(N-3) & \cdots & R_{xx}(0) \\ | |||
|indent = | |||
|title= | |||
|equation = {{NumBlk||<math>\operatorname{R}_{\mathbf{X}\mathbf{X}} \triangleq\ \operatorname{E}</math>|{{EquationRef|Eq.1}}}} | |||
|cellpadding= 6 | |||
|border | |||
|border colour = #0073CF | |||
|background colour=#F5FFFA}} | |||
where <math>{}^{\rm T}</math> denotes transposition and has dimensions <math>n \times n</math>. | |||
Written component-wise: | |||
⚫ | :<math>\operatorname{R}_{\mathbf{X}\mathbf{X}} = | ||
\begin{bmatrix} | |||
\operatorname{E} & \operatorname{E} & \cdots & \operatorname{E} \\ \\ | |||
\operatorname{E} & \operatorname{E} & \cdots & \operatorname{E} \\ \\ | |||
⚫ | \vdots & \vdots & \ddots & \vdots \\ \\ | ||
\operatorname{E} & \operatorname{E} & \cdots & \operatorname{E} \\ \\ | |||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
This is a ] and a ]. If <math>\mathbf{x}</math> is real and ] then its autocorrelation matrix will be ]. | |||
If <math>\mathbf{Z}</math> is a ], the autocorrelation matrix is instead defined by | |||
:<math>\operatorname{R}_{\mathbf{Z}\mathbf{Z}} \triangleq\ \operatorname{E}</math>. | |||
:<math> | |||
\mathbf{C}_x = \operatorname{E} | |||
Here <math>{}^{\rm H}</math> denotes ]. | |||
= | |||
⚫ | \ |
||
==Example== | |||
</math> | |||
For example, if <math>\mathbf{X} = \left( X_1,X_2,X_3 \right)^{\rm T}</math> is a random vectors, then <math>\operatorname{R}_{\mathbf{X}\mathbf{X}}</math> is a <math>3 \times 3</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}</math>. | |||
==Properties== | |||
* The autocorrelation matrix is a ]. | |||
* The autocorrelation matrix is a ]. | |||
* The ''autocovariance matrix'' is related to the autocorrelation matrix as follows: | |||
:<math>\operatorname{K}_{\mathbf{X}\mathbf{X}} = \operatorname{E})(\mathbf{X} - \operatorname{E})^{\rm T}] = \operatorname{R}_{\mathbf{X}\mathbf{X}} - \operatorname{E} \operatorname{E}^{\rm T}</math> | |||
: Respectively for complex random vectors: | |||
:<math>\operatorname{K}_{\mathbf{Z}\mathbf{Z}} = \operatorname{E})(\mathbf{Z} - \operatorname{E})^{\rm H}] = \operatorname{R}_{\mathbf{Z}\mathbf{Z}} - \operatorname{E} \operatorname{E}^{\rm H}</math> | |||
== References == | == References == |
Revision as of 23:43, 24 December 2018
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (July 2018) (Learn how and when to remove this message) |
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (July 2018) (Learn how and when to remove this message) |
The autocorrelation matrix of a random vector is a matrix containing as elements the correlations of all pairs of elements of the random vector . The autocorrelation matrixis used in various digital signal processing algorithms.
Definition
For a random vector containing random elements whose expected value and variance exist, the auto-correlation matrix is defined by
Eq.1 |
where denotes transposition and has dimensions .
Written component-wise:
If is a complex random vector, the autocorrelation matrix is instead defined by
- .
Here denotes Hermitian transposition.
Example
For example, if is a random vectors, then is a matrix whose -th entry is .
Properties
- The autocorrelation matrix is a Hermitian matrix.
- The autocorrelation matrix is a Toeplitz matrix.
- The autocovariance matrix is related to the autocorrelation matrix as follows:
- Respectively for complex random vectors:
References
- Hayes, Monson H., Statistical Digital Signal Processing and Modeling, John Wiley & Sons, Inc., 1996. ISBN 0-471-59431-8.
- Solomon W. Golomb, and Guang Gong. Signal design for good correlation: for wireless communication, cryptography, and radar. Cambridge University Press, 2005.
- M. Soltanalian. Signal Design for Active Sensing and Communications. Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.