Revision as of 11:46, 7 May 2019 editOd Mishehu (talk | contribs)107,223 edits top 25 +1← Previous edit | Revision as of 11:53, 7 May 2019 edit undoOd Mishehu (talk | contribs)107,223 edits top 25 +1Next edit → | ||
Line 10: | Line 10: | ||
| b6 <!--Accessibility --> = yes | | b6 <!--Accessibility --> = yes | ||
|importance=Low}} | |importance=Low}} | ||
{{Top 25 Report|January 6, 2013|January 13, 2013|January 20, 2013|January 27, 2013|February 3, 2013}} | {{Top 25 Report|January 6, 2013|January 13, 2013|January 20, 2013|January 27, 2013|February 3, 2013|February 10, 2013}} | ||
{{User:MiszaBot/config | {{User:MiszaBot/config | ||
|maxarchivesize = 100K | |maxarchivesize = 100K |
Revision as of 11:53, 7 May 2019
This is the talk page for discussing improvements to the G-force article. This is not a forum for general discussion of the article's subject. |
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: 1, 2, 3, 4, 5Auto-archiving period: 28 days |
Physics C‑class Mid‑importance | ||||||||||
|
Measurement (defunct) | ||||
|
This article has been viewed enough times in a single week to appear in the Top 25 Report 6 times. The weeks in which this happened: |
Roller coasters
I wondered about the paragraph on amusement rides, where it is said that they usually don't pull over 3 g with some listed exceptions. However, according to "rcdb.com" and other coaster-related sources, almost every looping coaster on the world pulls about 4-5 g on entering the loop (e.g. the Vekoma Boomerang which is found in many parks around the world is said to pull 5.2 g on its first inversion).—Preceding unsigned comment added by 141.203.254.65 (talk • contribs)
Acceleration, not force?
It is inaccurate to say that g-force is an acceleration, not a force. The concept of g-force is the force acting on an object because of acceleration. If you were in a plane pulling 2 g, with a scale under your butt, it would read twice your weight. Electronic and spring scales measure force, not acceleration. Hermanoere (talk) 21:36, 6 April 2017 (UTC)
External links modified
Hello fellow Wikipedians,
I have just modified 2 external links on G-force. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Added archive https://web.archive.org/web/20090210035728/http://mtp.jpl.nasa.gov/notes/altitude/altitude.html to http://mtp.jpl.nasa.gov/notes/altitude/altitude.html
- Added archive https://web.archive.org/web/20081122024243/http://lsda.jsc.nasa.gov/books/apollo/s2ch5.htm to http://lsda.jsc.nasa.gov/books/apollo/s2ch5.htm
When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—InternetArchiveBot (Report bug) 08:17, 9 October 2017 (UTC)
Biplane illustration
The top illustration of a biplane seems to be claiming that an aircraft banking subjects the pilot to 2 Gs force due to the fact he is being acted on by earth's gravity and by the acceleration of the aircraft. Maybe I just read that wrong, but that's what it seems to say, and I don't think that's correct. Worse, it says "G increases as angle of bank increases", which is totally untrue. Angle of bank has nothing to do with the G force on the pilot. It's the rate of turn. Yes, frequently a tighter turn requires more bank, but other than that, no. You could fly a plane with a 90deg bank and not be "pulling" ANY Gs except for gravity trying to pull you straight sideways. It's banking and then pulling UP on the control column that causes the aircraft to turn. Increasing rate of turn is accomplished by pulling harder, or possibly by banking more. The G is a function of rate-of-turn and the speed of the aircraft. I'm no expert, but what is described there is misleading at best, because that's what it seems to be saying to me. AnnaGoFast (talk) 04:46, 26 November 2017 (UTC)
External links modified (January 2018)
Hello fellow Wikipedians,
I have just modified 6 external links on G-force. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Added archive https://web.archive.org/web/20090321182843/http://www.astronautix.com/astros/stapp.htm to http://www.astronautix.com/astros/stapp.htm
- Added archive https://web.archive.org/web/20090217092615/http://content.honeywell.com/sensing/sensotec/accelerometers.asp to http://content.honeywell.com/sensing/sensotec/accelerometers.asp
- Added archive https://web.archive.org/web/20090201150824/http://sensr.com/products/gp1/index.php to http://www.sensr.com/products/gp1/index.php
- Added archive https://web.archive.org/web/20081202091041/http://delphi.com/about/motorsports/products/adr3/ to http://delphi.com/about/motorsports/products/adr3/
- Added archive https://web.archive.org/web/20090118161602/http://www.ksc.nasa.gov/facts/faq04.html to http://www.ksc.nasa.gov/facts/faq04.html
- Corrected formatting/usage for http://www.omegawatches.com/customer-service/faq
When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—InternetArchiveBot (Report bug) 13:35, 22 January 2018 (UTC)
No reference to justify topic or opening statements
The article starts off with the following two statements. "The gravitational force, or more commonly, g-force, is a measurement of the type of acceleration that causes a perception of weight. Despite the name, it is incorrect to consider g-force a fundamental force, as "g-force" is a type of acceleration that can be measured with an accelerometer".
But there are no references following the two statements. The references at the end of the first paragraph do not in any way justify these two statements. It appears that this topic of g-force is something that has been made up but has no justification anywhere in the literature. RHB100 (talk) 21:29, 19 December 2018 (UTC)
Categories: