Revision as of 17:06, 26 August 2019 editSrleffler (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers44,794 edits Rv unexplained reversions. If you disagree, start a discussion on the talk page.← Previous edit | Revision as of 00:20, 28 August 2019 edit undoXOR'easter (talk | contribs)Extended confirmed users32,780 edits →Experimental simulation: expandNext edit → | ||
Line 46: | Line 46: | ||
== Experimental simulation == | == Experimental simulation == | ||
Zitterbewegung of a free relativistic particle has never been observed. However, it has been simulated twice. |
Zitterbewegung of a free relativistic particle has never been observed. However, it has been simulated twice in model systems that provide condensed-matter analogues of the relativistic phenomenon. The first example, in 2010, placed a trapped ion in an environment such that the non-relativistic Schrödinger equation for the ion had the same mathematical form as the Dirac equation (although the physical situation is different).<ref>{{cite journal|title=Quantum physics: Trapped ion set to quiver|url=http://www.nature.com/nature/journal/v463/n7277/full/463037a.html|newspaper=] | volume=463|issue=7277|pages=37–39|doi=10.1038/463037a|pmid=20054385|year=2010|last1=Wunderlich|first1=Christof}}</ref><ref>{{cite journal|last1=Gerritsma|last2=Kirchmair|last3=Zähringer|last4=Solano|last5=Blatt|last6=Roos|title=Quantum simulation of the Dirac equation|journal=]|year=2010|volume=463|issue=7277|doi=10.1038/nature08688|pmid=20054392|arxiv = 0909.0674 |bibcode = 2010Natur.463...68G|pages=68–71}}</ref> Then, in 2013, it was simulated in a setup with ]s.<ref>{{cite journal|last1=Leblanc|last2=Beeler|last3=Jimenez-Garcia|last4=Perry|last5=Sugawa|last6=Williams|last7=Spielman|title=Direct observation of zitterbewegung in a Bose–Einstein condensate|journal=]|year=2013|url=http://iopscience.iop.org/1367-2630/15/7/073011|volume=15|issue=7|doi=10.1088/1367-2630/15/7/073011|page=073011|arxiv=1303.0914}}</ref> | ||
Other proposals for condensed-matter analogues include ] and ].<ref>{{cite journal|title=Zitterbewegung, chirality, and minimal conductivity in graphene |last=Katsnelson |first=M. I. |journal=] |volume=51 |number=2 |year=2006 |pages=157–160 |arxiv=cond-mat/0512337}}</ref><ref>{{cite journal|title=Anomalous Electron Trajectory in Topological Insulators |last1=Shi |first1=Likun |last2=Zhang |first2=Shoucheng |last3=Cheng |first3=Kai |journal=] |volume=87 |number=16 |year=2013 |doi=10.1103/PhysRevB.87.161115 |arxiv=1109.4771}}</ref> | |||
==See also== | ==See also== |
Revision as of 00:20, 28 August 2019
Zitterbewegung ("trembling motion" in German) is a predicted rapid oscillatory motion of elementary particles that obey relativistic wave equations. The existence of such motion was first proposed by Erwin Schrödinger in 1930 as a result of his analysis of the wave packet solutions of the Dirac equation for relativistic electrons in free space, in which an interference between positive and negative energy states produces what appears to be a fluctuation (up to the speed of light) of the position of an electron around the median, with an angular frequency of 2mc/ℏ, or approximately 1.6×10 radians per second. For the hydrogen atom, zitterbewegung can be invoked as a heuristic way to derive the Darwin term, a small correction of the energy level of the s-orbitals.
Theory for a free fermion
The time-dependent Dirac equation is written as
- ,
where is the (reduced) Planck constant, is the wave function (bispinor) of a fermionic particle spin-½, and H is the Dirac Hamiltonian of a free particle:
- ,
where is the mass of the particle, is the speed of light, is the momentum operator, and and are matrices related to the Gamma matrices , as and .
The Heisenberg picture implies that any operator Q obeys the equation
In particular, the time-dependence of the position operator is given by
- .
where xk(t) is the position operator at time t.
The above equation shows that the operator αk can be interpreted as the k-th component of a "velocity operator". To add time-dependence to αk, one implements the Heisenberg picture, which says
- .
The time-dependence of the velocity operator is given by
- ,
where
Now, because both pk and H are time-independent, the above equation can easily be integrated twice to find the explicit time-dependence of the position operator.
First:
- ,
and finally
- .
The resulting expression consists of an initial position, a motion proportional to time, and an unexpected oscillation term with an amplitude equal to the Compton wavelength. That oscillation term is the so-called zitterbewegung.
The zitterbewegung term vanishes on taking expectation values for wave-packets that are made up entirely of positive- (or entirely of negative-) energy waves. This can be achieved by taking a Foldy–Wouthuysen transformation. Thus, we arrive at the interpretation of the zitterbewegung as being caused by interference between positive- and negative-energy wave components.
Experimental simulation
Zitterbewegung of a free relativistic particle has never been observed. However, it has been simulated twice in model systems that provide condensed-matter analogues of the relativistic phenomenon. The first example, in 2010, placed a trapped ion in an environment such that the non-relativistic Schrödinger equation for the ion had the same mathematical form as the Dirac equation (although the physical situation is different). Then, in 2013, it was simulated in a setup with Bose–Einstein condensates.
Other proposals for condensed-matter analogues include graphene and topological insulators.
See also
- Casimir effect
- Lamb shift
- Stochastic electrodynamics: Zitterbewegung is explained as an interaction of a classical particle with the zero-point field
References and notes
- Wunderlich, Christof (2010). "Quantum physics: Trapped ion set to quiver". Nature News and Views. 463 (7277): 37–39. doi:10.1038/463037a. PMID 20054385.
- Gerritsma; Kirchmair; Zähringer; Solano; Blatt; Roos (2010). "Quantum simulation of the Dirac equation". Nature. 463 (7277): 68–71. arXiv:0909.0674. Bibcode:2010Natur.463...68G. doi:10.1038/nature08688. PMID 20054392.
- Leblanc; Beeler; Jimenez-Garcia; Perry; Sugawa; Williams; Spielman (2013). "Direct observation of zitterbewegung in a Bose–Einstein condensate". New Journal of Physics. 15 (7): 073011. arXiv:1303.0914. doi:10.1088/1367-2630/15/7/073011.
- Katsnelson, M. I. (2006). "Zitterbewegung, chirality, and minimal conductivity in graphene". The European Physical Journal B. 51 (2): 157–160. arXiv:cond-mat/0512337.
- Shi, Likun; Zhang, Shoucheng; Cheng, Kai (2013). "Anomalous Electron Trajectory in Topological Insulators". Physical Review B. 87 (16). arXiv:1109.4771. doi:10.1103/PhysRevB.87.161115.
Further reading
- Schrödinger, E. (1930). Über die kräftefreie Bewegung in der relativistischen Quantenmechanik [On the free movement in relativistic quantum mechanics] (in German). pp. 418–428. OCLC 881393652.
- Schrödinger, E. (1931). Zur Quantendynamik des Elektrons [Quantum Dynamics of the Electron] (in German). pp. 63–72.
- Messiah, A. (1962). "XX, Section 37" (pdf). Quantum Mechanics. Vol. II. pp. 950–952. ISBN 9780471597681.