Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Since <math>N</math> is positive definite, there is a <math>j</math> for which <math>n_j \circ a \neq 0</math> (since otherwise <math>n_j^\textsf{T} a = \sum_k (n_j \circ a)_k = 0</math> for all <math>j</math>), and likewise since <math>M</math> is positive definite there exists an <math>i</math> for which <math>\sum m_{i,k} \circ (n_j \circ a)_k = m_i^\textsf{T} (n_j \circ a) \neq 0.</math> However, this last sum is just <math>\sum_k m_{i,k} n_{j,k} a_k</math>. Thus its square is positive. This completes the proof.
Since <math>N</math> is positive definite, there is a <math>j</math> for which <math>n_j \circ a \neq 0</math> (since otherwise <math>n_j^\textsf{T} a = \sum_k (n_j \circ a)_k = 0</math> for all <math>j</math>), and likewise since <math>M</math> is positive definite there exists an <math>i</math> for which <math>\sum_k m_{i,k} \circ (n_j \circ a)_k = m_i^\textsf{T} (n_j \circ a) \neq 0.</math> However, this last sum is just <math>\sum_k m_{i,k} n_{j,k} a_k</math>. Thus its square is positive. This completes the proof.
== References ==
== References ==
Revision as of 01:29, 1 May 2020
In mathematics, particularly in linear algebra, the Schur product theorem states that the Hadamard product of two positive definite matrices is also a positive definite matrix. The result is named after Issai Schur (Schur 1911, p. 14, Theorem VII) (note that Schur signed as J. Schur in Journal für die reine und angewandte Mathematik.)
Proof
Proof using the trace formula
For any matrices and , the Hadamard product considered as a bilinear form acts on vectors as
where is the matrix trace and is the diagonal matrix having as diagonal entries the elements of .
Suppose and are positive definite, and so Hermitian. We can consider their square-roots and , which are also Hermitian, and write
Then, for , this is written as for and thus is strictly positive for , which occurs if and only if . This shows that is a positive definite matrix.
Since a covariance matrix is positive definite, this proves that the matrix with elements is a positive definite matrix.
Proof using eigendecomposition
Proof of positive semidefiniteness
Let and . Then
Each is positive semidefinite (but, except in the 1-dimensional case, not positive definite, since they are rank 1 matrices). Also, thus the sum is also positive semidefinite.
Proof of definiteness
To show that the result is positive definite requires further proof. We shall show that for any vector , we have . Continuing as above, each , so it remains to show that there exist and for which corresponding term above is non-negative. For this we observe that
Since is positive definite, there is a for which (since otherwise for all ), and likewise since is positive definite there exists an for which However, this last sum is just . Thus its square is positive. This completes the proof.
References
"Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen". Journal für die reine und angewandte Mathematik. 1911 (140): 1–28. 1911. doi:10.1515/crll.1911.140.1.
Zhang, Fuzhen, ed. (2005). "The Schur Complement and Its Applications". Numerical Methods and Algorithms. 4. doi:10.1007/b105056. ISBN0-387-24271-6. {{cite journal}}: Cite journal requires |journal= (help), page 9, Ch. 0.6 Publication under J. Schur
Ledermann, W. (1983). "Issai Schur and His School in Berlin". Bulletin of the London Mathematical Society. 15 (2): 97–106. doi:10.1112/blms/15.2.97.